An undergraduate experiment on the propagation of thermal waves
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When a long thin bar of a material is subject to periodic heating, a temperature wave propagates
along the sample, and its propagation properties can be used to determine the thermal diffusivity of
the material. In this paper, we present a simple experiment that can be used by undergraduate
students to better understand thermal waves and their propagation and to measure thermal
diffusivity. In spite of its simplicity, the experiment provides acceptable results for a copper sample.
© 1998 American Association of Physics Teachers.

[. INTRODUCTION pared with other specific phenomena in mechanics or elec-
. - . tromagnetism during their first years of study. This paper
During their first undergraduate years, physics student g 9 y y pap

become acquainted with the wave equation mainly througl?'ves s'tuden't sa copcrete example of a wave equation with
vibrating strings and electromagnetic field propagation. It jgProperties s!lghtly dn‘fqgnt from waves resultmg from the
highly likely that only a few of these students are familiar MOré complicated Schdinger or Maxwell equations. Our
with the phenomenon of heat propagation in solids. One ofiMm is to give an account of a simple experiment that we
the reasons for this may be that they have spent less time drave been offering to our undergraduate students for some
the in-depth study of heat propagation phenomena as conyears now. Besides providing a conceptual approach to ther-
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mal waves and their propagation, the experiment also allowl. THEORETICAL ANALYSIS

students to perform some measurements on the thermal dif- _ _ _

fusivity of solids. In fact, the measurements proved to be The fundamental heat conduction equation that gives the

quite accurate in spite of the simplicity of the experimentaltémperature distribution in a homogeneous long thin bar is

equipment involved. Fourier's equation, which, for the ?ne—dlmensmnal case and
Thermal waves are a simple example to initiate studentfO" an isolated bar, can be written"as

into the study of wave phenomena that are of fundamental ’9_‘9: l a_a

importance in physics. They may facilitate the subsequent dx° « dt’

study of more complex wave phenomena related to the Ma

well and Schrdinger equations. It is worth noting that al- spect to the mean temperature it) and  is the material

though these equations belong to fields in physics other th e . . L

heatgconductior? they still ha\?e common pF:)ir)llts such as tha e_rmal diffusivity. It is easy to see that this equation |s_n0t

conservation laws associated with the different fluxes. Thes\éalld for @ nonhomogeneous solid. The "heat currentis

fluxes, namely, the heat flux, the current density, and the_ a(x) 96lox, wherea(x) is related to the heat conductiv-

probability current lead to their corresponding continuity Y- COnservation of energy implies that the divergencé of
equations. This similarity of the heat equation to other field(-€- 91/9X) is proportlgnal tga@/at.. For a homogeneous
equations provides the heat flux with an intrinsic importance©d; dLad6/9x]/dx=a(d°6/9x%), which leads to Eq(l).
comparable to that of the current density in electromagne- H€ating in our experiment was actually achieved by in-
tism or the probability current in quantum physics. serting a soldering iron in the end of the sample, whose

The importance of the heat conduction equation may hdSMPerature oscillated as a periodic step function. The tem-
seen when we realize that it is implicitly present in manyperature oscillation at the origin of the bar could then be

everyday objects. For example, the coiled design of ﬁreplachpressed as o
pokers and soldering iron holders provides increased heat 0(01) = z Sl P @)
dissipation in order to reduce conduction toward the handler. "on=135.. N T

Also, the development of new clothing materials may re-

spond to the necessity of having good thermal insulation a\fvr:r?h?%“rgiig'ge': dh%\?ebssesrlu(r:r?g?ﬁgtstﬁeﬁgﬁg r:s(’) ct)gg]' era-
the same time as we require a lightweight resistant fabric PP ' P

. L ture oscillation, 6(«,t)=0. It is clear that the bar is not
and even with waterproof qualities. Other examples may re emi-infinite, and this condition actually means that the ther-

ifﬁrtrzn ore specf|f|t;:]ally tsvtr:/e prvc\)IE?%aturJn r?f tth derrr:al \C/iv?:]/e“s eéwal wave should have been completely damped out at the far
€ case of those waves ch are not dampe AUIGxtreme so that there is no wave reflection. In our case, we

Helium-Il due to its very high thermal conductivity, which e ahje to check that the wave almost completely vanished
approaches infinity for small heat currents. Another interestz; about 40 em. the bar being 50 cm long.

ing example is related to the oscillations of soil temperature. gince we are interested in the long-term temperature dis-

Thus the daily temperature variations penetrate the soil morgipytion once the system has forgotten the initial conditions,
rapidly, but less deeply than the annual variations due tQue try the Fourier seri@s

seasonal changes. This may be explained in terms of the
dependence of the wave propagation velocity and damping  g(x,t)= 2 An(X)Sin(wnt—K,X) 3
coefficient on the frequency of oscillation. n=1

The reason for the interest in the heat conduction equatiogs g solution, wherd\,, o,, andk, are, respectively, the
is that it is one of the fundamenta_l_ linear field equations Ofamplitude, frequency, and wave number of thie harmonic.
physics. Itis not as important as Sctimger’'s or Maxwell's By introducing this function in the Fourier equation and

equations, but is somewhat simpler. This simplicity, com-appjying the boundary conditions, we obtain the solution
bined with the many properties in common with the more o

@

Awhere 0(x,t) represents the temperature oscillation with re-

essential field equation6.e., the superposition principle O(x,t)= 2 0, ™ sinf(wpt— €,X), (4
makes it ideal for learning physics in an experimental setting n=135..
where most variables are measurable. where

Our experiment consists of periodically heating one of the 46,
ends of an isolated long thin metal rod and, once the dynami- H”ZE’ 5)
cal thermal equilibrium is achieved, determining the material
thermal diffusivity just by monitoring temperature variations _ 2nm 6)
at two points along the bar. There are in fact two different oo

approaches that exploit two different characteristic wave,q4
properties, namely, the amplitude decay along the bar as we ®
travel away from the heating end, and the thermal-wave ¢ = A/ =
phase velocity. 2K

The paper is divided into the fOIIOWing sections: ThrOUghis thenth harmonic damp|ng coefficient.
the theoretical analysis, Sec. Il relates thermal-wave proper- We can see that each term has its own associated damping
ties, as experimentally measured, to thermal properties dfoefficient, and that the higher harmonics damp out more
matter. Section Ill describes the experimental equipment anduickly because the damping coefficient increases with fre-
the measuring procedure applied. Some results for a coppeuency. As a consequence, we may approximate the tem-
sample are given in Sec. IV and, finally in Sec. V, someperature distribution by just the first harmonic, if sufficiently
conclusions are drawn. far from the origin, and therefore we can redefine our coor-

@)
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dinate origin to the point of the sample where the presence c 1,5
the second harmonic is already negligible, thus approximat

ing #(x,t) from this point by means of 1 0
O(x,t)=Aqge” * cosw(t—x/v), (8) 0.5
where we have chosen the time origin so thad maximum 0,5 + s
at x=0. In our case, this new origin is given by the first ' 3

measuring point, 8 cm from the sample origin.
Temperature oscillation propagates to the neighboring
points with the following characteristics:

0/6,
)
\

-0,5 4
(1) the oscillation amplitude decreases with the distance
from the originO, damping out exponentially, and 14
(2) the maximum temperature value appears at a point ir
time after it appears &b.

-1,5 } } + t
_ Th_is progressive propagation of the temperature oscilla: 0 02 04
tion is what we call a thermal wave. tit
We see that the amplitude decays exponentially with dis-
tance and that the thermal wave is periodic both in time, withFig. 1. Theoretical progressive harmonization of the wave at different dis-
a periodr, and in space, with a wavelengih=uv r. tances from the sample origin.
Taking into account Eq8) and the first harmonic of the
complete solution, Eq(4), we can then obtain the expres-

In order to see the progressive damping and shifting of the

sions . .
wave as it advances along the bar more clearly, Fig. 1 shows
Ke:lz (9) 0(x,t)/ 6y vs t/r for four different values ofxynw/x,
TE namely, O(the very beginning of the bgr0.5, 1.5, and 3. In
and the graph we may observe the progressive harmonization of
v2r the wave, thus raising the question as to when the wave is
Ky=—— (10) sufficiently harmonic to be able to approximate it by a cosine
A function as in Eq(8). We can make some estimates of the

that relate the thermal properties of the material, in our casBlinimum distance from where the wave can be represented

thermal diffusivity, x, to the two wave properties velocity, ~ ©nly by the fundamental harmonic by calculating the ratio of
and damping coefficient, that can be experimentally deter- successive harmonics to the fundamental one and establish-

ing a priori the weight allowed to the second harmonic at the

mined. In principle, we have distinguished betweenand first measuring point. This ratio will be given by

x, to account for the eventual differences we might get in A1
thermal diffusivity, coming from the application of different Py(X)= — == e VA®-1x  pn=135 . (12
experimental parameters. This means that although thermal Ar n

diffusivity of a particular material should be the same g, example, by introducing an approximate value of the

whether calculated froma or fromuv, however, the influence . - .
. L = thermal diffusivity of copper, we obtainm/
of thermal losses in the experimental determination of the y bp (1K)

; . . =0.132 Mm%, so that at the first measuring point, we would
two wave properties could be differehithen, by calculating have P(8 cm)~0.05, meaning that the thgi]rg—harmonic am-
e/v from Egs.(9) and (10) and assumingc.= «,, we may 5 N

. 0 .
obtain an expression for thermal diffusivity that combines\rl’vlglrjtﬂengﬁﬁretsﬁ;tfh:g%%asl @e?fhtthgf Iﬁggg?g%ﬂnﬁ’&e&mz
both wave properties simultaneously. Thus ) 9

measuring points is notably less because, in our case, the
— i_ (12) boundary condition at the initial end was not exactly a step
2e function, strictly speaking. The heater was not completely

Equation(1) has been established assuming the ideal Casigserted into the sample but part of it remained outside, thus

of not considering thermal losses in the experiment. Sincénaklng the thermal wave undergo the beginning of its har-

this is not the actual case, the inclusion of a loss term in Eq[nonlzatlon before actually reaching the sample, in the heater

(1) would provide other expressions ferandv, depending itself. In this way, the degree of wave harmonization is ac-
explicitly on the losses. However, it can be shéwinat the tually greater than the one represented by the series solution,

Eg. (4), which is the exact limiting case that has permitted us

ratio e/v remains constant because thermal losses cancel ol .4 refylly choose the first measuring point to carry out the
mathematically when combining both wave properties, an xperiment.

Eq. (12) still holds. The determination of thermal diffusivity
by accounting for the effects of heat losses has been studiqﬂ EXPERIMENTAL METHOD
in more detaift® but is not considered here. '

Both the damping coefficient and the wave velocity can be In this section we describe the experimental equipment
obtained from the temperature oscillations at two pointsused in the laboratory and the method followed to conduct
along the bar. The damping coefficient can be determinethe experiment.
from the amplitude decay and the wave velocity from theA
wave shift at these two points, as we shall show later on.”
This can be done if the wave is perfectly harmonic at these Figure 2 shows the experimental setup. The sample was a
two points because both quantities depend on the frequencegylindrical copper bar, 50 cm long, and 15 mm diameter with

K

Equipment
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Fig. 2. Experimental setup.

temperature measuring holes of 2.5 mm diameter and 5 mi
depth, placed at 4 cm intervals. The bar was isolated b
introducing it snugly within a cylindrical tube of 5-mm-thick
transparent methacrylate. These two elements were mount
on a plastic stand.

The sample was heated by an 11-W soldering iron partly rig. 3. variation of the natural logarithm of the amplitude with length.
embedded in the end of the sample and connected to a timer.

Since the temperature changes periodically, it is necessary

to take as many measurements as possible within a givefere taken every 10 s during several periods with the aid of
period of time, and this was done by using a thermistor of digital stopwatch. With these data, we may obtain the am-
4.7 K at 25 °C that has very small thermal inertia. It was apjitudes of the thermal wave at both measuring points. If we
bead thermistor of 2 mm diameter embedded in glass with gonsider that the temperature oscillations are proportional to

I Fl Il I
T T T T

10 15 & (cm) 20 25 30

thermal Ch§¥acteristic given by the expression the thermistor resistances in that temperature interval, we can
R=Ae”", (13 determine the thermal-wave damping coefficient from the

which had previously been calibrated between 30 and 40 °c@mplitude decrement between both points according to

giving the valuesA=1.9x 10"2 () and B=3600 K. 1A 16

; : . . , =-—In—,
The accuracy achieved in measuring temperature with this €T Ax A,

thermistor can be estimated from its temperature Coeff'c'en\}vhereAx is the distance between the measuring points, 8 cm

, given b . . .
“9 1 <)le B in our case, and\; and A, are the respective amplitudes.
0= — —=——=-0.04 KL 14 Equation(16) has been obtained from the theoretical analysis
d 2 ( ) ! X
RdT T that shows that the amplitude decays exponentially. To con-

Since the temperature excursions produced on the bar afm this, we have measured temperature oscillations along
small, we can approximate the resistance variations linearf{he bar at four different positions situated at 8, 12, 16, 20, 24,

with respect to temperature variations so that and 28 cm from the sample origin, and Fig. 3 shows the
AR variation of the natural logarithm of the amplitude with
EERa, (15 length.

The wave velocity may be obtained from the graphical
and therefore the error in measuring temperatures is of thanalysis ofR—R versus time, determining the time lag

order of AT=-0.011AR. between both measuring points. This is done by measuring
The measurement of thermistor resistance is performed bthe time difference between two equal-phase points from
means of a digital multimeter used as an ohmmeter. both graphs such as two maxima or two minima or two in-

Periodic sample heating is achieved by using a combiningercepts with the time axis. The wave velocity will then be
switch that activates the heating system at time intervals ag, = Ax/At.
cording to two timers, one to control the heating time period

and the other to control the period during which the heatin
system is switched off. The connecting system is fed by %V' DATA AND RESULTS FOR A COPPER SAMPLE

9-V battery and Chang.es their contacts when it is activated In this section we present an examp|e of the experiment
by the corresponding timer. described applied to a copper sample, using data and results
actually obtained by undergraduate students.

Figure 4 shows the data obtained at the two measuring
points situated at 8 and 16 cm, respectively, once the dy-

The metal bar is heated in a pulsing periodic way at 80-s1amical state of equilibrium was achieved and we were sure
intervals, using the timing system mentioned above and corthat there were no temperature drifts. These data correspond
trolling temperature until a dynamical equilibrium state isto thermistor resistances directly measured on the sample,
achieved without temperature drifts. This state is reachednd it is easy to check that the temperature oscillations are
when temperatures at the measuring points oscillate arourgall by means of Eq13). Although we can determine the
their respective mean values. From this moment, we meawave properties related to thermal diffusivity through Egs.
sured thermistor resistances at two points situated at 8 and 168) and(10) from the data shown in Fig. 4, namely the damp-
cm, respectively, from the bar origin. These measurementsg coefficient and the wave velocity, we should make sure

B. Experimental procedure
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=(1.17£0.14)x 10" % m? s, which could be considered as
a physical average. Both results are also in good agreement
with others found in the literatufe® and with the value ob-
tained from measurements of thermal conductivity and heat
capacity per unit volum&.The most recent reference found
for the thermal diffusivity of copper is«=1.020
X 10~ * m? s™1, which was obtained by periodic heating with
a sinusoidally modulated laser beaf.

The value ofv =(3.1+0.2)x10 3 m s obtained forv,
the propagation velocity, deserves some discussion. This
value is, on the one hand, considerably larger than the drift
velocity of conduction electrons in copper, which is of the
ordett! of 4x10°" ms %, and on the other hand, a great

n
[=)

N W
o O o

—_
o

Resistance Amplitude (Q)
8 3 o

-30 deal smaller than the velocity of sound propagation in this
-40 4 material, of the order of 3000 m'§ for usual values of the
50 Young's modulus and the density of copper. These three

different values should not surprise us since they proceed
from processes that respond to different propagation mecha-
Fig. 4. Resistance amplitudes at 8 and 16 cm. nisms. In metals, heat propagates mainly by conduction
through the free electrons that transfer energy from warmer
to cooler regions, whereas the drift velocity of conduction

that the bar was actually isolated, or at least that there werg/€ctrons is due to the application of an external electric
negligible heat losses. Thus we calculated the mean temperi€!d- With regard to sound propagation, it is the lattice
tures at different measuring points and plotted them againdyNich transmits the perturbation. Furthermore, we should
their distances from the origin. Figure 5 shows these resultsé}lso consider the dependence_ of the velocity of prOPaQa“O”
where we may see that the graph obtained follows a straigh@" the frequencyy = y2«xw, which means that the solid is a
line corresponding to the steady state temperature distribiflispersive medium, and therefore the wave velocity increases
tion of an isolated bar, thus confirming the validity of Egs. With the heating frequency. Thus, é tends to infinity,v
(9) and(10) that were obtained on the hypothesis of no heatvould approach infinity as well, which is physically inadmis-
losses along the bar. sible. The problem is that the conduction equation itself im-
The damping coefficient and the wave velocity calculatedplies an infinite velocity of propagation and therefore is not
for these two thermal waves between both measuring pointélid in the whole frequency range. The problem of obtain-
weree=13.2+0.7 m *andv=(3.1+0.2)x 10" 3 ms%, re- Ing a conduction equation with finite %gpagation velocity
spectively. According to Eq€9) and (10), these two quan- has been widely studied in the literatufe’
tities respectively give the thermal diffusivity of copper as
k,=(113:0.12)x10 *m?s! and «,=(1.21+0.16) V. CONCLUSIONS
X 10 * m?s™L. Thus the estimated value of the thermal dif-
fusivity of copper could be obtained as the average of botré
k. and k,, resulting in k=(1.17+0.14)X10 * m?s 1.
This result agrees with that obtained from Ed.1), «

Time (s)

The heat equation is one of the simplest partial differential
quations of physics, and this is why it may be considered as
an ideal tool to introduce oneself to this type of equation. It
could be the first step for the study of other equations such as
Maxwell's or Schralinger’s that explain wave phenomena of
great relevance in physics.

From our viewpoint, a laboratory experiment on thermal-
wave propagation in solids at the undergraduate level pro-
vides students with the opportunity to get acquainted with
heat conduction in a way that is essentially different from
that of classical experiments on stationary heat transmission.
This type of experiment also allows students to learn thermal
diffusivity measuring techniques in a simple and pedagogical
way.

304 We believe that it is good for students to make contact
with nonstationary phenomena such as the heat conduction
process, thus permitting a better understanding of Fourier's
equation. In dynamical problem studies such as the one un-
der consideration, the theoretical analysis along with its prac-
tical realization helps to show the student the essential dif-
ferences between a conceptual setting of a problem and the
final and complete achievement of an experimental result, by
assuming some simplifications, making approximations, de-
) 15 20 25 termining the accuracy of the result, etc. Thus, in our case on
thermal wave propagation or determination of thermal prop-
erties of matter, we have tried to simplify the experimental
Fig. 5. Variation of the mean temperature along the bar. equipment without detriment to obtaining acceptable results

35

Mean Temperature (°C)

25 } t t
0 5 1

S

0 x (cm
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for the thermal diffusivity of copper. This is actually a matter egrinus, on behalf of the IEE, London, 198€hap. 10, pp. 120-134.
that we consider of fundamental interest for our students, mCI Y. "t'o FFf W. g’owe”f {ah”dEK h\tfh évof ‘Thermal g'r‘:fus""ltyco“ éhet
h n in hl X rlm n In h | r v n nI elements roceedings o e Eig onterence on ermal Conductiv-
that conducting t-S experiment the _abo atory not only ity, Purdue University, 196@Plenum, New York, 1969 p. 971.
gave an opportunity to make contact with the heat conduc-,Y S. Touloukian. R.W. Powell. C. Y. H 4 M. G. Nicolalh
i but also the chance to teéatd learn experi- | ououan, T L TOWe s e T D0 8nC T e e D THermo-
tion process,_ u . p, hysical Properties of MatterThermal Diffusivity Vol. 10 (IFl/Plenum,
mental techniques and measuring methods to determine soligyey vork, 1973.
properties, in this case thermal diffusivity, with a certain de- 8. verdini and A. Santucci, “Propagation properties of thermal waves and
gree of accuracy. thermal diffusivity in metals,” Nuovo Cimento B2, 399-421(1981).

We should finally point out that the accurate determination °Thermal diffusivity, thermal conductivity and heat capacity per unit vol-
of thermal properties of solids should motivate more in- ume are related through the expression\/pc, , where is the thermal
depth studies from a mlcroscoplc perspectlve thereby pro- conductivity, p the density, ana, the specific heat at constant pressure.

viding an adequate interpretation of the measurements Values of these quantities can be found in endbook of Chemistry and
' Physics edited by R. C. WeagChemical Rubber, Boca Raton, FL, 1986

aDeceased 27 December 1997 67th ed., providing a final thermal diffusivity value ok=1.17
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%H. S. Carslaw and J. C. Jaeg€gnduction of Heat in Solidéxford U.P., iggz (?SI(EjEIMI\[IEKOYTeEhzgg% Com]r-rilgsee Brussels, Belgium, 4-6 June
Oxford, 1969, 2nd ed., pp. 68—69. » New York, pp. .
3). E. Parrott and A. D,pgtuckeg—’hermm Conductivity of SolidgPion, "This order of magnitude has been estimated by adapting an example of
London, 1975, pp. 24—28. Tipler's to the conditions of our sampleross-sectional area of the order
“E. Lopez-Baeza, J. de la Rubia, and H. J. Goldsmid, “Angstschermal of 175 mnf). See P. A. Tipler,Physics for Scientists and Engineers
diffusivity method for short samples,” J. Phys. D: Appl. Phg8, 1156— (Worth, New York, 1991, 3rd ed., p. 718.
1158(1987). 2H. D. Weymann, “Finite speed of propagation in heat conduction, diffu-
5E. Lopez-Baeza, J. de la Rubia, and H. J. Goldsmid, “Argstsanethod sion, and viscous shear motion,” Am. J. Ph@§, 488—496(1967).
for short samples with consideration for heat losses, The First Euro- K. Etori, “Remarks on the temperature propagation and the thermal dif-

pean Conference on Thermoelectrieslited by D. M. RowePeter Per- fusivity of a solid,” Jpn. J. Appl. Physl1, 955-957(1972.
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