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When a long thin bar of a material is subject to periodic heating, a temperature wave propagates
along the sample, and its propagation properties can be used to determine the thermal diffusivity of
the material. In this paper, we present a simple experiment that can be used by undergraduate
students to better understand thermal waves and their propagation and to measure thermal
diffusivity. In spite of its simplicity, the experiment provides acceptable results for a copper sample.
© 1998 American Association of Physics Teachers.
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I. INTRODUCTION

During their first undergraduate years, physics stude
become acquainted with the wave equation mainly thro
vibrating strings and electromagnetic field propagation. I
highly likely that only a few of these students are famili
with the phenomenon of heat propagation in solids. One
the reasons for this may be that they have spent less tim
the in-depth study of heat propagation phenomena as c
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pared with other specific phenomena in mechanics or e
tromagnetism during their first years of study. This pap
gives students a concrete example of a wave equation
properties slightly different from waves resulting from th
more complicated Schro¨dinger or Maxwell equations. Ou
aim is to give an account of a simple experiment that
have been offering to our undergraduate students for s
years now. Besides providing a conceptual approach to t
528© 1998 American Association of Physics Teachers
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mal waves and their propagation, the experiment also all
students to perform some measurements on the therma
fusivity of solids. In fact, the measurements proved to
quite accurate in spite of the simplicity of the experimen
equipment involved.

Thermal waves are a simple example to initiate stude
into the study of wave phenomena that are of fundame
importance in physics. They may facilitate the subsequ
study of more complex wave phenomena related to the M
well and Schro¨dinger equations. It is worth noting that a
though these equations belong to fields in physics other
heat conduction, they still have common points such as
conservation laws associated with the different fluxes. Th
fluxes, namely, the heat flux, the current density, and
probability current lead to their corresponding continu
equations. This similarity of the heat equation to other fi
equations provides the heat flux with an intrinsic importan
comparable to that of the current density in electromag
tism or the probability current in quantum physics.

The importance of the heat conduction equation may
seen when we realize that it is implicitly present in ma
everyday objects. For example, the coiled design of firepl
pokers and soldering iron holders provides increased
dissipation in order to reduce conduction toward the hand
Also, the development of new clothing materials may
spond to the necessity of having good thermal insulation
the same time as we require a lightweight resistant fab
and even with waterproof qualities. Other examples may
fer more specifically to the propagation of thermal waves
in the case of those waves which are not damped in liq
Helium-II due to its very high thermal conductivity, whic
approaches infinity for small heat currents. Another intere
ing example is related to the oscillations of soil temperatu
Thus the daily temperature variations penetrate the soil m
rapidly, but less deeply than the annual variations due
seasonal changes. This may be explained in terms of
dependence of the wave propagation velocity and damp
coefficient on the frequency of oscillation.

The reason for the interest in the heat conduction equa
is that it is one of the fundamental linear field equations
physics. It is not as important as Schro¨dinger’s or Maxwell’s
equations, but is somewhat simpler. This simplicity, co
bined with the many properties in common with the mo
essential field equations~i.e., the superposition principle!,
makes it ideal for learning physics in an experimental sett
where most variables are measurable.

Our experiment consists of periodically heating one of
ends of an isolated long thin metal rod and, once the dyna
cal thermal equilibrium is achieved, determining the mate
thermal diffusivity just by monitoring temperature variatio
at two points along the bar. There are in fact two differe
approaches that exploit two different characteristic wa
properties, namely, the amplitude decay along the bar as
travel away from the heating end, and the thermal-wa
phase velocity.

The paper is divided into the following sections: Throu
the theoretical analysis, Sec. II relates thermal-wave pro
ties, as experimentally measured, to thermal properties
matter. Section III describes the experimental equipment
the measuring procedure applied. Some results for a co
sample are given in Sec. IV and, finally in Sec. V, som
conclusions are drawn.
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II. THEORETICAL ANALYSIS

The fundamental heat conduction equation that gives
temperature distribution in a homogeneous long thin ba
Fourier’s equation, which, for the one-dimensional case
for an isolated bar, can be written as1

]2u

]x2 5
1

k

]u

]t
, ~1!

whereu(x,t) represents the temperature oscillation with
spect to the mean temperature in (x,t) andk is the material
thermal diffusivity. It is easy to see that this equation is n
valid for a nonhomogeneous solid. The ‘‘heat current’’ isI
5a(x) ]u/]x, wherea(x) is related to the heat conductiv
ity. Conservation of energy implies that the divergence oI
~i.e., ]I /]x! is proportional to]u/]t. For a homogeneous
rod, ]@a]u/]x#/]x5a(]2u/]x2), which leads to Eq.~1!.

Heating in our experiment was actually achieved by
serting a soldering iron in the end of the sample, who
temperature oscillated as a periodic step function. The t
perature oscillation at the origin of the bar could then
expressed as

u~0,t !5 (
n51,3,5,...

`
4u0

np
sin

2npt

t
, ~2!

where the time origin has been chosen so thatu(0,t) is odd.
At the opposite end, we assume that there is no temp

ture oscillation,u(`,t)50. It is clear that the bar is no
semi-infinite, and this condition actually means that the th
mal wave should have been completely damped out at the
extreme so that there is no wave reflection. In our case,
were able to check that the wave almost completely vanis
at about 40 cm, the bar being 50 cm long.

Since we are interested in the long-term temperature
tribution once the system has forgotten the initial conditio
we try the Fourier series2

u~x,t !5 (
n51

`

An~x!sin~vnt2knx! ~3!

as a solution, whereAn , vn , and kn are, respectively, the
amplitude, frequency, and wave number of thenth harmonic.

By introducing this function in the Fourier equation an
applying the boundary conditions, we obtain the solution

u~x,t !5 (
n51,3,5,...

`

une2enx sin~vnt2enx!, ~4!

where

un5
4u0

np
, ~5!

vn5
2np

t
, ~6!

and

en5Avn

2k
~7!

is thenth harmonic damping coefficient.
We can see that each term has its own associated dam

coefficient, and that the higher harmonics damp out m
quickly because the damping coefficient increases with
quency. As a consequence, we may approximate the t
perature distribution by just the first harmonic, if sufficient
far from the origin, and therefore we can redefine our co
529Bodas, Gandı´a, and López-Baeza
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dinate origin to the point of the sample where the presenc
the second harmonic is already negligible, thus approxim
ing u(x,t) from this point by means of

u~x,t !>A0e2ex cosv~ t2x/v !, ~8!

where we have chosen the time origin so thatu is maximum
at x50. In our case, this new origin is given by the fir
measuring point, 8 cm from the sample origin.

Temperature oscillation propagates to the neighbor
points with the following characteristics:

~1! the oscillation amplitude decreases with the dista
from the originO, damping out exponentially, and

~2! the maximum temperature value appears at a poin
time after it appears atO.

This progressive propagation of the temperature osc
tion is what we call a thermal wave.

We see that the amplitude decays exponentially with d
tance and that the thermal wave is periodic both in time, w
a periodt, and in space, with a wavelengthl5vt.

Taking into account Eq.~8! and the first harmonic of the
complete solution, Eq.~4!, we can then obtain the expre
sions

ke5
p

te2 ~9!

and

kv5
v2t

4p
~10!

that relate the thermal properties of the material, in our c
thermal diffusivity,k, to the two wave properties velocity,v,
and damping coefficient,e, that can be experimentally dete
mined. In principle, we have distinguished betweenke and
kv to account for the eventual differences we might get
thermal diffusivity, coming from the application of differen
experimental parameters. This means that although the
diffusivity of a particular material should be the sam
whether calculated frome or from v, however, the influence
of thermal losses in the experimental determination of
two wave properties could be different.3 Then, by calculating
e/v from Eqs.~9! and ~10! and assumingke5kv , we may
obtain an expression for thermal diffusivity that combin
both wave properties simultaneously. Thus

k5
v
2e

. ~11!

Equation~1! has been established assuming the ideal c
of not considering thermal losses in the experiment. Si
this is not the actual case, the inclusion of a loss term in
~1! would provide other expressions fore andv, depending
explicitly on the losses. However, it can be shown3 that the
ratio e/v remains constant because thermal losses cance
mathematically when combining both wave properties, a
Eq. ~11! still holds. The determination of thermal diffusivit
by accounting for the effects of heat losses has been stu
in more detail,4,5 but is not considered here.

Both the damping coefficient and the wave velocity can
obtained from the temperature oscillations at two poi
along the bar. The damping coefficient can be determi
from the amplitude decay and the wave velocity from t
wave shift at these two points, as we shall show later
This can be done if the wave is perfectly harmonic at th
two points because both quantities depend on the freque
530 Am. J. Phys., Vol. 66, No. 6, June 1998
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In order to see the progressive damping and shifting of
wave as it advances along the bar more clearly, Fig. 1 sh
u(x,t)/u0 vs t/t for four different values ofxAnp/k,
namely, 0~the very beginning of the bar!, 0.5, 1.5, and 3. In
the graph we may observe the progressive harmonizatio
the wave, thus raising the question as to when the wav
sufficiently harmonic to be able to approximate it by a cos
function as in Eq.~8!. We can make some estimates of t
minimum distance from where the wave can be represen
only by the fundamental harmonic by calculating the ratio
successive harmonics to the fundamental one and estab
ing a priori the weight allowed to the second harmonic at t
first measuring point. This ratio will be given by

Pn~x!5
An

A1
5

1

n
e2Ap/tk~An21!x, n51,3,5,... . ~12!

For example, by introducing an approximate value of t
thermal diffusivity of copper, we obtainAp/(tk)
50.132 m21, so that at the first measuring point, we wou
haveP5(8 cm)'0.05, meaning that the third-harmonic am
plitude represents about 5% of the fundamental one. I
worth noting that the actual weight of these harmonics at
measuring points is notably less because, in our case,
boundary condition at the initial end was not exactly a s
function, strictly speaking. The heater was not complet
inserted into the sample but part of it remained outside, t
making the thermal wave undergo the beginning of its h
monization before actually reaching the sample, in the he
itself. In this way, the degree of wave harmonization is a
tually greater than the one represented by the series solu
Eq. ~4!, which is the exact limiting case that has permitted
to carefully choose the first measuring point to carry out
experiment.

III. EXPERIMENTAL METHOD

In this section we describe the experimental equipm
used in the laboratory and the method followed to cond
the experiment.

A. Equipment

Figure 2 shows the experimental setup. The sample w
cylindrical copper bar, 50 cm long, and 15 mm diameter w

Fig. 1. Theoretical progressive harmonization of the wave at different
tances from the sample origin.
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temperature measuring holes of 2.5 mm diameter and 5
depth, placed at 4 cm intervals. The bar was isolated
introducing it snugly within a cylindrical tube of 5-mm-thic
transparent methacrylate. These two elements were mou
on a plastic stand.

The sample was heated by an 11-W soldering iron pa
embedded in the end of the sample and connected to a ti

Since the temperature changes periodically, it is neces
to take as many measurements as possible within a g
period of time, and this was done by using a thermistor
4.7 kV at 25 °C that has very small thermal inertia. It was
bead thermistor of 2 mm diameter embedded in glass wi
thermal characteristic given by the expression

R5AeB/T, ~13!

which had previously been calibrated between 30 and 40
giving the valuesA>1.931022 V andB>3600 K.

The accuracy achieved in measuring temperature with
thermistor can be estimated from its temperature coeffic
a, given by

a5
1

R

dR

dT
>2

B

T2 520.04 K21. ~14!

Since the temperature excursions produced on the ba
small, we can approximate the resistance variations line
with respect to temperature variations so that

DR

DT
>Ra, ~15!

and therefore the error in measuring temperatures is of
order ofDT>20.011DR.

The measurement of thermistor resistance is performe
means of a digital multimeter used as an ohmmeter.

Periodic sample heating is achieved by using a combin
switch that activates the heating system at time intervals
cording to two timers, one to control the heating time per
and the other to control the period during which the heat
system is switched off. The connecting system is fed b
9-V battery and changes their contacts when it is activa
by the corresponding timer.

B. Experimental procedure

The metal bar is heated in a pulsing periodic way at 8
intervals, using the timing system mentioned above and c
trolling temperature until a dynamical equilibrium state
achieved without temperature drifts. This state is reac
when temperatures at the measuring points oscillate aro
their respective mean values. From this moment, we m
sured thermistor resistances at two points situated at 8 an
cm, respectively, from the bar origin. These measureme

Fig. 2. Experimental setup.
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were taken every 10 s during several periods with the aid
a digital stopwatch. With these data, we may obtain the a
plitudes of the thermal wave at both measuring points. If w
consider that the temperature oscillations are proportiona
the thermistor resistances in that temperature interval, we
determine the thermal-wave damping coefficient from th
amplitude decrement between both points according to

e5
1

Dx
ln

A1

A2
, ~16!

whereDx is the distance between the measuring points, 8
in our case, andA1 and A2 are the respective amplitudes
Equation~16! has been obtained from the theoretical analys
that shows that the amplitude decays exponentially. To co
firm this, we have measured temperature oscillations alo
the bar at four different positions situated at 8, 12, 16, 20, 2
and 28 cm from the sample origin, and Fig. 3 shows t
variation of the natural logarithm of the amplitude with
length.

The wave velocity may be obtained from the graphic
analysis ofR2R̄ versus time, determining the time lagDt
between both measuring points. This is done by measur
the time difference between two equal-phase points fro
both graphs such as two maxima or two minima or two i
tercepts with the time axis. The wave velocity will then b
v5Dx/Dt.

IV. DATA AND RESULTS FOR A COPPER SAMPLE

In this section we present an example of the experime
described applied to a copper sample, using data and res
actually obtained by undergraduate students.

Figure 4 shows the data obtained at the two measur
points situated at 8 and 16 cm, respectively, once the d
namical state of equilibrium was achieved and we were su
that there were no temperature drifts. These data corresp
to thermistor resistances directly measured on the sam
and it is easy to check that the temperature oscillations
small by means of Eq.~13!. Although we can determine the
wave properties related to thermal diffusivity through Eq
~9! and~10! from the data shown in Fig. 4, namely the damp
ing coefficient and the wave velocity, we should make su

Fig. 3. Variation of the natural logarithm of the amplitude with length.
531Bodas, Gandı´a, and López-Baeza



e
e
in

ult
ig
ib
s
ea

te
in

as

if-
o

s
ent

eat
d

h

his
rift
e

at
his

ree
eed
cha-
tion

er
on
tric
ce
uld
tion
a
ses

s-
m-
ot
in-
ity

tial
as

. It
h as
of

al-
ro-
ith
m
ion.

mal
ical

act
tion

er’s
un-
ac-
dif-
the

, by
de-
on

op-
tal
ults
that the bar was actually isolated, or at least that there w
negligible heat losses. Thus we calculated the mean temp
tures at different measuring points and plotted them aga
their distances from the origin. Figure 5 shows these res
where we may see that the graph obtained follows a stra
line corresponding to the steady state temperature distr
tion of an isolated bar, thus confirming the validity of Eq
~9! and~10! that were obtained on the hypothesis of no h
losses along the bar.

The damping coefficient and the wave velocity calcula
for these two thermal waves between both measuring po
weree513.260.7 m21 andv5(3.160.2)31023 m s21, re-
spectively. According to Eqs.~9! and ~10!, these two quan-
tities respectively give the thermal diffusivity of copper
ke5(1.1360.12)31024 m2 s21 and kv5(1.2160.16)
31024 m2 s21. Thus the estimated value of the thermal d
fusivity of copper could be obtained as the average of b
ke and kv , resulting in k̄5(1.1760.14)31024 m2 s21.
This result agrees with that obtained from Eq.~11!, k̄

Fig. 4. Resistance amplitudes at 8 and 16 cm.

Fig. 5. Variation of the mean temperature along the bar.
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5(1.1760.14)31024 m2 s21, which could be considered a
a physical average. Both results are also in good agreem
with others found in the literature6–8 and with the value ob-
tained from measurements of thermal conductivity and h
capacity per unit volume.9 The most recent reference foun
for the thermal diffusivity of copper is k51.020
31024 m2 s21, which was obtained by periodic heating wit
a sinusoidally modulated laser beam.10

The value ofv5(3.160.2)31023 m s21 obtained forv,
the propagation velocity, deserves some discussion. T
value is, on the one hand, considerably larger than the d
velocity of conduction electrons in copper, which is of th
order11 of 431027 m s21, and on the other hand, a gre
deal smaller than the velocity of sound propagation in t
material, of the order of 3000 m s21, for usual values of the
Young’s modulus and the density of copper. These th
different values should not surprise us since they proc
from processes that respond to different propagation me
nisms. In metals, heat propagates mainly by conduc
through the free electrons that transfer energy from warm
to cooler regions, whereas the drift velocity of conducti
electrons is due to the application of an external elec
field. With regard to sound propagation, it is the latti
which transmits the perturbation. Furthermore, we sho
also consider the dependence of the velocity of propaga
on the frequency,v5A2kv, which means that the solid is
dispersive medium, and therefore the wave velocity increa
with the heating frequency. Thus, ifv tends to infinity,v
would approach infinity as well, which is physically inadmi
sible. The problem is that the conduction equation itself i
plies an infinite velocity of propagation and therefore is n
valid in the whole frequency range. The problem of obta
ing a conduction equation with finite propagation veloc
has been widely studied in the literature.12,13

V. CONCLUSIONS

The heat equation is one of the simplest partial differen
equations of physics, and this is why it may be considered
an ideal tool to introduce oneself to this type of equation
could be the first step for the study of other equations suc
Maxwell’s or Schro¨dinger’s that explain wave phenomena
great relevance in physics.

From our viewpoint, a laboratory experiment on therm
wave propagation in solids at the undergraduate level p
vides students with the opportunity to get acquainted w
heat conduction in a way that is essentially different fro
that of classical experiments on stationary heat transmiss
This type of experiment also allows students to learn ther
diffusivity measuring techniques in a simple and pedagog
way.

We believe that it is good for students to make cont
with nonstationary phenomena such as the heat conduc
process, thus permitting a better understanding of Fouri
equation. In dynamical problem studies such as the one
der consideration, the theoretical analysis along with its pr
tical realization helps to show the student the essential
ferences between a conceptual setting of a problem and
final and complete achievement of an experimental result
assuming some simplifications, making approximations,
termining the accuracy of the result, etc. Thus, in our case
thermal wave propagation or determination of thermal pr
erties of matter, we have tried to simplify the experimen
equipment without detriment to obtaining acceptable res
532Bodas, Gandı´a, and López-Baeza
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for the thermal diffusivity of copper. This is actually a matt
that we consider of fundamental interest for our students
that conducting this experiment in the laboratory not o
gave an opportunity to make contact with the heat cond
tion process, but also the chance to teach~and learn! experi-
mental techniques and measuring methods to determine
properties, in this case thermal diffusivity, with a certain d
gree of accuracy.

We should finally point out that the accurate determinat
of thermal properties of solids should motivate more
depth studies from a microscopic perspective, thereby p
viding an adequate interpretation of the measurements.

a!Deceased 27 December 1997.
b!Author to whom all correspondence should be addressed; electronic-
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