Laboratorio 4

Docentes

Gustavo Grinblat, Marcelo Luda, Pilar Campos Marino

Pañolero: Marcos Damián Pérez

Departamento de Física, FCEN, UBA – Primer Cuatrimestre, 2024

Web: https://materias.df.uba.ar/l4b2024c1

Cronograma de la materia

Semana	Actividad	Entrega y evaluación	
1 (20/03)	Introducción y formación de grupos		
2 (27/03)	Práctica 1		
3 (03/04)	Práctica 1		
4 (10/04)	Práctica 1		
5 (17/04)	Póster digital (práctica 1)		
6 (24/04)	Práctica 2	Informe 1	
7 (01/05)	-		
8 (08/05)	Práctica 2		
9 (15/05)	Práctica 2		
10 (22/05)	Práctica 3	Informe 2	
11 (29/05)	Práctica 3	Evaluación oral individual	
12 (05/06)	Práctica 3		
13 (12/06)	Práctica 4	Informe 3	
14 (19/06)	Práctica 4		
15 (26/06)	Práctica 4		
16 (03/07)	Charla (práctica 4)		
- (10/07)	-	Informe 4	

Régimen de evaluación:

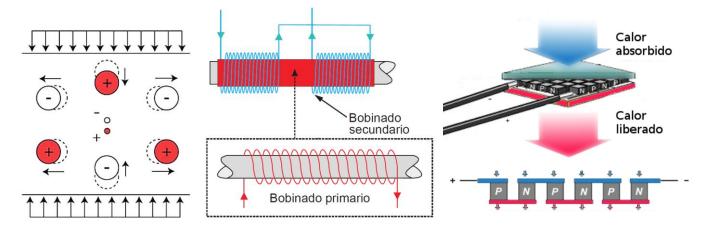
Se tendrá en cuenta la nota de los informes, el desempeño en las presentaciones de póster y charla, la evaluación oral, y el uso del cuaderno (virtual) de laboratorio.

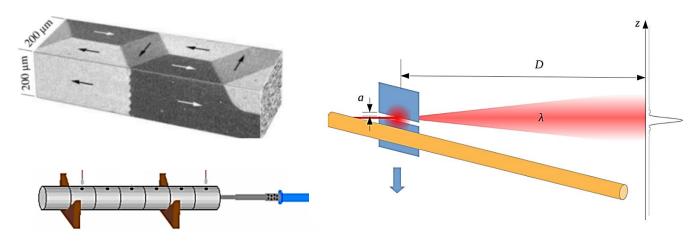
Prácticas

Piezoeléctrico

Susceptibilidad AC

Ferromagnetismo


Termoelectricidad


Difusividad térmica

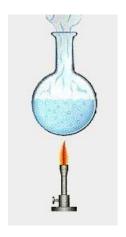
Módulo de Young

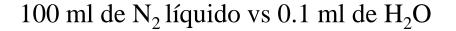
Régimen de trabajo:

Grupos de 2 personas. Al menos una práctica de Lock-in (•), una de magnetismo (•), y una de variación de temperatura (•).

Rutinas en situaciones normales y en emergencias médicas

- Conocer la ubicación de los elementos de seguridad
 <u>Matafuegos</u>: Al lado de la puerta de reja
 <u>Salidas de emergencia</u>: Puerta de entrada al laboratorio
 <u>Botiquín</u>: Al lado del pañol
- Mantener el orden y la limpieza, y no comer o beber en la zona de trabajo.
- No bloquear las rutas de escape o pasillos con elementos que entorpezcan la correcta circulación.

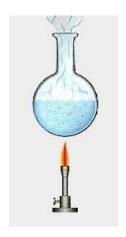

- Ante emergencia médica proveer a los accidentados los primeros auxilios con los elementos provistos en el botiquín.
- Llamar al interno de las *Oficinas de Seguridad y Control: #58311*.
- Avisar al grupo docente.



Seguridad en el uso de líquidos criogénicos

• El bajo calor latente de vaporización de líquidos criogénicos hace que se evaporen rápidamente

1 Watt durante 20 s


- Si la piel es expuesta a muy baja temperatura, el efecto es similar a una quemadura (gravedad ∝ tiempo).
- Puede ocurrir por ejemplo durante transferencias por salpicado o por contacto con superficies frías.
- Es más peligroso tener protección no adecuada que ninguna, ya que puede enfriarse y congelarse. Al ser difícil de remover, el tiempo de exposición aumenta.
- En contacto con los ojos puede producir daño permanente.

Seguridad en el uso de líquidos criogénicos

• El bajo calor latente de vaporización de líquidos criogénicos hace que se evaporen rápidamente

1 Watt durante 20 s

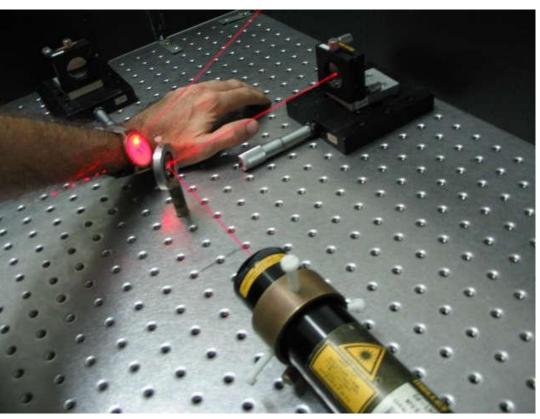
100 ml de N₂ líquido vs 0.1 ml de H₂O

Primeros auxilios

- Enjuagar con agua de la canilla, suave, para restablecer la temperatura.
- No aplicar calor directo.
- Retirar joyas, metales, y llamar a asistencia médica. Hacer reposo y no ingerir alimentos.

Seguridad en el trabajo con láseres

		Daño ocular	
Clase		Luz directa	Luz difusa
1	Seguro	No	No
2 (vis)	< 1mW	Sólo después de 0.25s	No
3a	1mW <p<5mw< th=""><th>Sí</th><th>No</th></p<5mw<>	Sí	No
3b	< 500mW	Si	Sólo cuando la potencia está cerca del límite
4	> 500 mW	Sí	Sí


Láseres de He-Ne @630 nm y diodos láser @670 nm

- Verificar la clasificación del láser y si se debe usar antiparras.
- No mirar nunca directamente al haz.
- Evitar usar objetos metálicos (relojes, anillos) que puedan producir reflexión directa del haz.

Seguridad en el trabajo con láseres

- Verificar la clasificación del láser y si se debe usar antiparras.
- No mirar nunca directamente al haz.
- Evitar usar objetos metálicos (relojes, anillos) que puedan producir reflexión directa del haz.

Riesgos eléctricos y precauciones

Corriente (AC)

- < 25 mA → contracción muscular
- 25-80 mA → contracción muscular + parálisis temporal cardíaca y/o respiratoria
- $80 \text{ mA} 4 \text{ A} \rightarrow \text{Fibrilación ventricular}$
- > 4 A → Parálisis cardíaca, quemaduras

(¡La corriente DC es más peligrosa!)

Precauciones

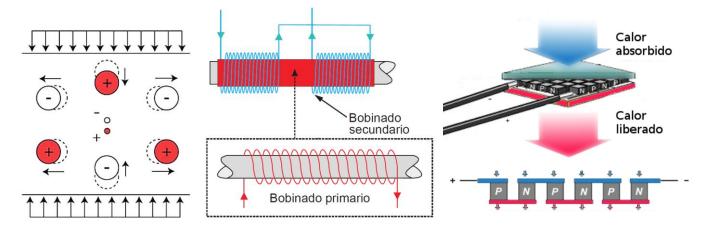
- Armar el experimento con suficiente espacio.
- Controlar la aislación de las conexiones, y trabajar con herramientas de mango aislado.
- Al terminar el experimento, controlar que todo esté descargado.
- Al utilizar adaptadores de enchufes chequear que no se desconecte la tierra.
- Especial cuidado al conectar un auto-transformador o variac. Verificar que el borne común quede conectado al neutro de línea.

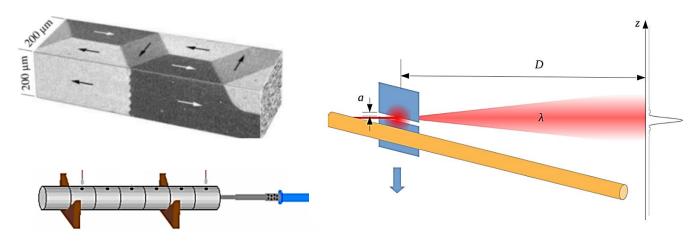
Prácticas

Piezoeléctrico

Susceptibilidad AC

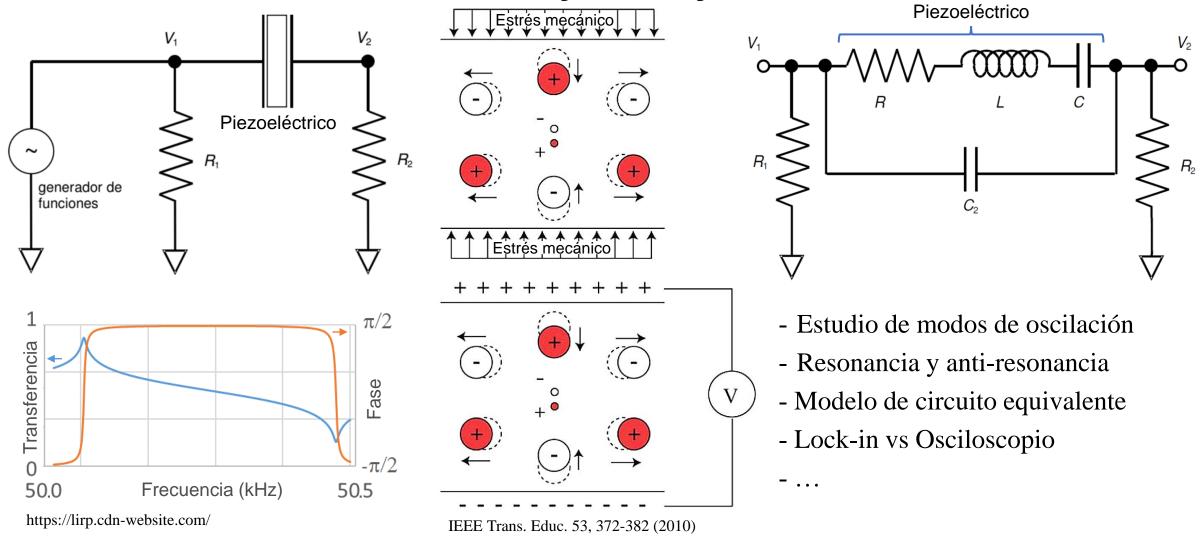
Ferromagnetismo

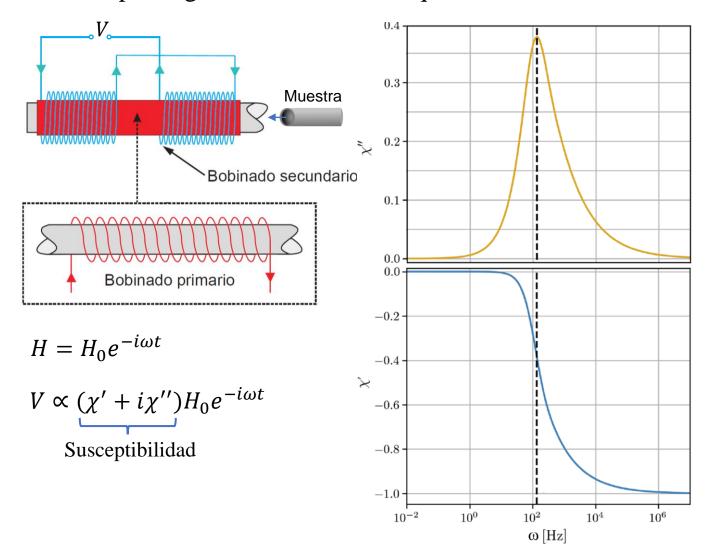

Termoelectricidad


Difusividad térmica

Módulo de Young

Régimen de trabajo:


Grupos de 2 personas. Al menos una práctica de Lock-in (•), una de magnetismo (•), y una de variación de temperatura (•).


Piezoeléctrico

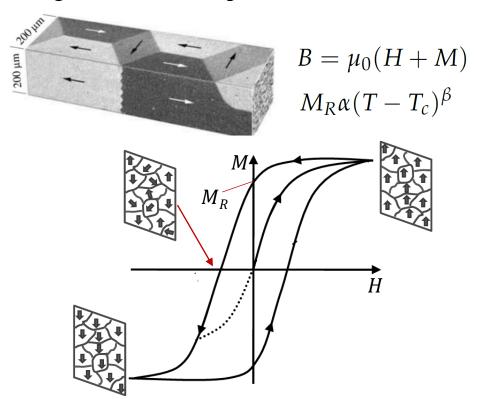
Un material piezoeléctrico adquiere una polarización eléctrica al ser sometido a una tensión mecánica, así como también se deforma mecánicamente si se le aplica un campo eléctrico.

Susceptibilidad AC

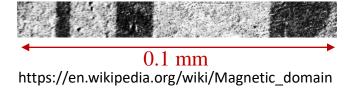
La susceptibilidad magnética relaciona la capacidad de magnetización de una sustancia con la magnitud del campo magnético externo en el que se encuentra.

$$\chi = \chi' + i\chi'' = f(\delta(\rho))$$

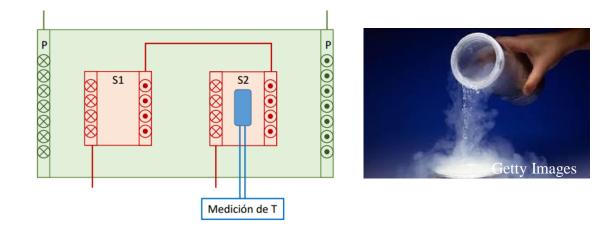
$$\delta(\rho) = \sqrt{\frac{2\rho}{\mu\omega}}$$
Resistividad


Distancia pelicular (longitud de penetración del campo)

- Efecto pelicular y conductividad en metales
- Medición de resistividad con Lock-in
- Contraste de distintos modelos

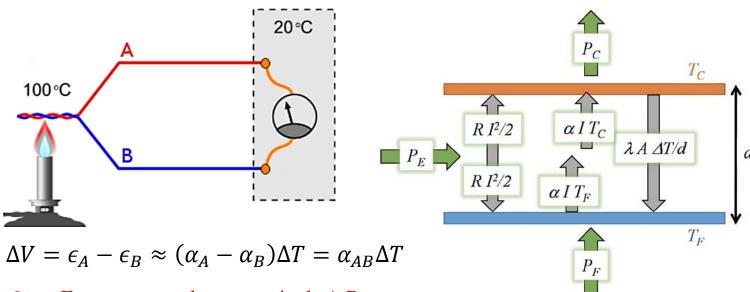

- ...

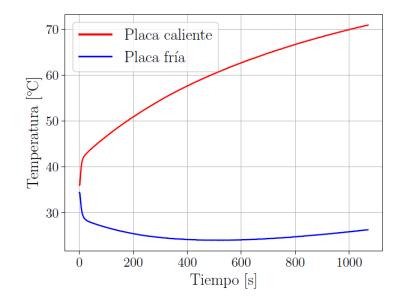
Ferromagnetismo


El ferromagnetismo es un tipo de ordenamiento magnético en donde todos los momentos magnéticos dentro de regiones microscópicas, llamadas dominios magnéticos, apuntan en la misma dirección y sentido.

Un campo magnético externo desplaza paredes de dominio.

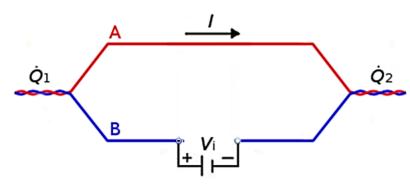
Fuerza electromotriz en los bobinados secundarios $\xi \alpha \frac{dM}{dt}$

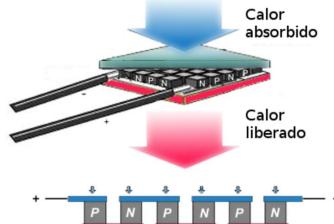



- Magnetización vs de T del monel (aleación Ni-Cu)
- Determinación de la temperatura de Curie
- Estudio de ciclos de histéresis

-...

Termoelectricidad

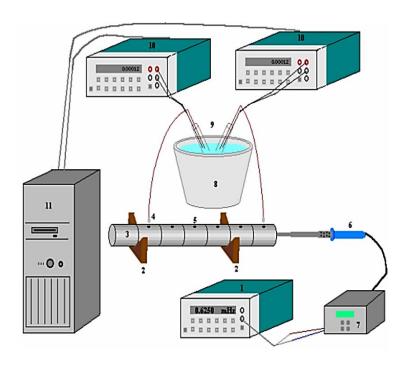

Conversión de gradiente de temperatura a voltaje eléctrico y viceversa.



 $\epsilon_{A,B}$: Fuerza termo-electromotriz de A,B

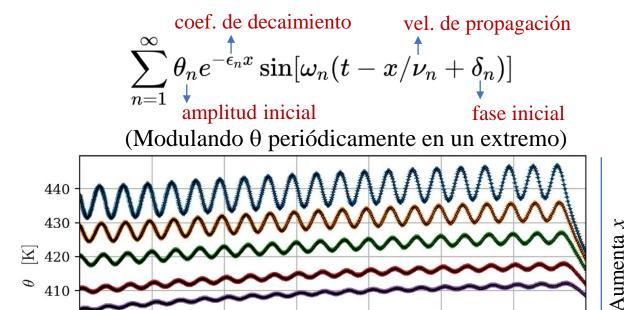
 $\alpha_{A,B}$: Coeficiente Seebeck de A,B

 $\dot{Q} = \Pi_{AB}I$ ($\Pi_{A.B}$: Coeficiente Peltier)



- Estudio de una celda termoeléctrica.
- Efectos Peltier y Seebeck.
- Contribución del efecto Joule y la conductividad térmica.

Difusividad térmica


Flujo de calor por conducción térmica en metales.

$$\frac{\partial \theta}{\partial t} = \kappa \frac{\partial^2 \theta}{\partial x^2}$$
 (Ecuación de conducción del calor)

 θ : Temperatura

K: Difusividad térmica

2500

3000

3500

- Modelo de conducción de Fourier
- Propagación de ondas térmicas

1000

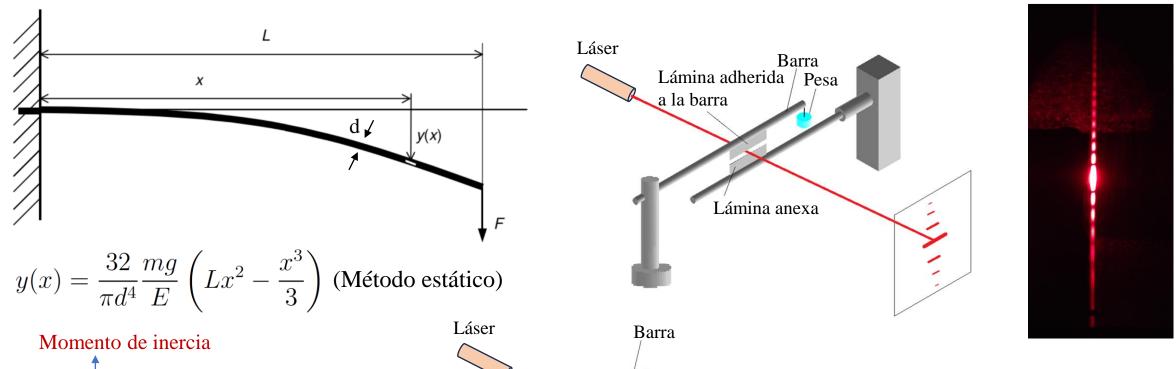
- Determinación de difusividad térmica

1500

2000

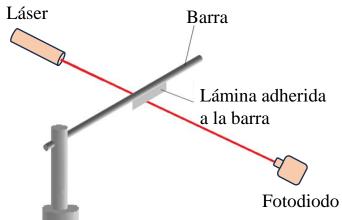
- Estados transitorio y estacionario

. . .


400

390

500


Módulo de Young

Resistencia de un material elástico ante deformaciones longitudinales (Ley de Hooke: $F = E \cdot A \cdot \Delta l/l$)

$$\omega_n^2 = \frac{\stackrel{\uparrow}{IE}}{\rho_l} k_n^4 - \alpha^2 \quad \text{(M\'etodo din\'amico)}$$

$$\stackrel{\downarrow}{\downarrow} \quad \text{Cte. de amortiguamiento}$$
Densidad lineal

- Medición del Módulo de Young
- Flexión estática y dinámica
- Métodos ópticos

- ...

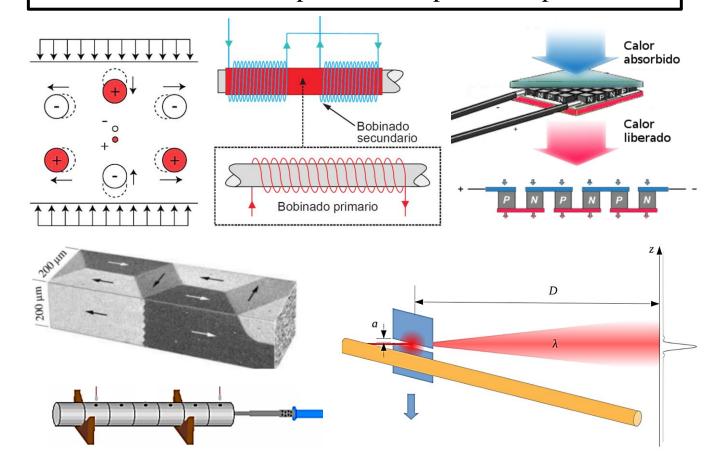
Formación de grupos

Piezoeléctrico

Susceptibilidad AC

Ferromagnetismo

Termoelectricidad


Difusividad térmica

Módulo de Young

Régimen de trabajo:

Grupos de 2 personas. Al menos una práctica de Lock-in (•), una de magnetismo (•), y una de variación de temperatura (•).

Elaborar un orden de preferencias para las 6 prácticas.

