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Observation of a quantum Cheshire Cat
in a matter-wave interferometer experiment
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Jeff Tollaksen4 & Yuji Hasegawa1

From its very beginning, quantum theory has been revealing extraordinary and counter-

intuitive phenomena, such as wave-particle duality, Schrödinger cats and quantum non-

locality. Another paradoxical phenomenon found within the framework of quantum

mechanics is the ‘quantum Cheshire Cat’: if a quantum system is subject to a certain pre- and

postselection, it can behave as if a particle and its property are spatially separated. It has been

suggested to employ weak measurements in order to explore the Cheshire Cat’s nature.

Here we report an experiment in which we send neutrons through a perfect silicon crystal

interferometer and perform weak measurements to probe the location of the particle and its

magnetic moment. The experimental results suggest that the system behaves as if the

neutrons go through one beam path, while their magnetic moment travels along the other.
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T
he study of fundamental quantum mechanical phenomena
is not only enriching our scientific knowledge, but also our
understanding of the natural laws. This understanding lead

to the development of numerous technological applications:
quantum non-locality1–4 plays an essential role in quantum
cryptology5, the understanding of wave-particle duality6 made
semiconductor technology possible7 and the investigation of
Schrödinger cats8 advanced the field of quantum information
processing and communication9.

During the examination of the quantum measurement process,
Aharonov, Albert and Vaidman10,11 introduced the weak value,
defined as

hÂiw¼
hcf jÂjcii
hcf j cii

ð1Þ

where ciij and cf ij are the initial (‘preselected’) and final
(‘postselected’) states of the system and Â is an observable of
the system. hÂiw represents information of the observable Â
between pre- and postselection, which can be obtained by weakly
coupling the system to a measurement device, that is, a probe,
without significantly altering the subsequent evolution of the
system. Due to the weakness of the coupling between the system
and the measurement device, the information obtained by a single
measurement is limited. To attain useful information about a
quantum system, the measurement has to be repeated several
times. The weak value hÂiw then reflects the average conditioned
on the pre- and postselected ensemble12.

The first experimental determination of a weak value showed
that the weak measurement scheme can be used as a means of
amplification.13 Subsequently, the experimental work on weak
measurements demonstrated that they allow information about a
quantum system to be obtained with minimal disturbance14,15,
that they can be used for high-precision metrology16,17 and that
they are perfectly suited for the study of quantum paradoxes18–22.

A surprising effect originating from pre- and postselection of a
system is the ability to ‘separate’ the location of a system from one
of its properties23–26 as suggested by the Cheshire Cat story in
Alice in Wonderland: ‘Well! I’ve often seen a cat without a grin,’
thought Alice; ‘but a grin without a cat! It’s the most curious
thing I ever saw in all my life!’27. The essential property of a
quantum Cheshire Cat in a Mach–Zehnder-type interferometer
is, that the cat itself is located in one beam path, while its grin is
located in the other one25. An artistic depiction of this behaviour
is shown in Fig. 1.

In this work, we prepare and measure the Cheshire Cat states
by means of neutron interferometry28, which has already been
successfully used to study many other purely quantum
mechanical effects29–31. The experimental results suggest that

the system behaves as if the neutrons go through one beam path,
while their magnetic moment travels along the other.

Results
Theoretical considerations. In our experiment, the neutron plays
the role of the cat and the cat’s grin is represented by the neu-
tron’s spin component along the z direction. The system is
initially prepared so that after entering the beam splitter its
quantum state is given by

jcii¼
1ffiffiffi
2
p jSx; þijIiþ 1ffiffiffi

2
p Sx ;�ijIIi;j ð2Þ

where |Ii (|IIi) stands for the spatial part of the wavefunction
along path I (path II) of the interferometer and |Sx;±i denotes
the spin state in ±x direction. In order to observe the quantum
Cheshire Cat, after we preselect the ensemble, we will next per-
form weak measurements of the neutrons’ population in a given
path on the one hand and of the value of the spin in a given path
on the other. Subsequently, the ensemble is postselected in the
final state:

jcf i¼
1ffiffiffi
2
p Sx; �i Iiþ IIij � :j½j ð3Þ

Whenever the postselection succeeds, that is, when a Cheshire
Cat is created, a minimally disturbing measurement will find the
Cat in the upper beam path, while its grin will be found in the
lower one.

This paradoxical behaviour can be quantified using the weak
value. We can calculate the weak values of the projection
operators on the neutron path eigenstates �̂j � jihjj j, with j¼ I,
II. From equations (1–3), we obtain h�̂Iiw¼0 and h�̂IIiw¼1,
the first of these expressions indicating that a weak interaction
coupling the spatial wavefunction to a probe localized on path I
has no effect on the probe on average, as if there was no neutron
travelling on that path. Note that this is in accordance with the
following theorem18: if the weak value of a dichotomic operator
equals one of its eigenvalues, then the outcome of an ideal (also
known as a strong) measurement of the operator is that same
eigenvalue with probability one. So, if we were to weakly measure
h�̂Iiw and obtain 0, then, per the above theorem, since the
projection operator is dichotomic and the weak value is an
eigenvalue, we could also perform an ideal measurement of �̂I
and again obtain 0. Similarly for �̂II .

We can also rely on weak measurements to determine the
location of the neutrons’ spin component. This is done by
measuring the weak value of the spin component along each path
j by applying a unitary interaction on the respective path. The
appropriate observable to ascertain the weak value of the

Figure 1 | Artistic depiction of the quantum Cheshire Cat. Inside the interferometer, the Cat goes through the upper beam path, while its grin travels

along the lower beam path. Figure courtesy of Leon Filter.
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neutrons’ spin component on path j is hŝz�̂jiw. The computation
of the weak values yields hŝz�̂Iiw¼1 and hŝz�̂IIiw¼0. On
average, a weak interaction coupling with a probe on path II does
not affect the state of that probe, as if there was effectively no spin
component travelling along the path.

Note that in principle, it is possible to perform the weak
measurements jointly along each path. We, however, carried
them out separately (that is, in different runs). This is justified
because a weak measurement made along a given path involves a
local coupling, which in the weak limiting case only minimally
disturbs the subsequent evolution of the quantum state along that
path. It does not affect the evolution of the quantum state along
the other path. This is in clear contrast with standard projective
measurements, which would fundamentally disturb the system
evolution by projecting the quantum state along both paths to a

specific subspace. Then of course it would only be possible to
make any inferences by appealing to counterfactual reasoning25.

Experimental setup. The experiment was performed at the S18
interferometer beam line at the research reactor of the Institut
Laue-Langevin32. The setup is shown in Fig. 2.

A monochromatic neutron beam with a wavelength of
l¼ 1.92 Å passes magnetic birefringent prisms, which polarize
the neutron beam. To avoid depolarization, a magnetic guide field
pointing in the þ z direction is applied around the whole setup. A
spin turner rotates the neutron spin by p/2 into the xy plane. The
neutron’s spin wavefunction is then given by |Sx;þi. Subse-
quently, the neutrons enter a triple-Laue interferometer28,31.
Inside the interferometer, a spin rotator in each beam path allows
the generation of the preselected state ciij .
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Figure 2 | Illustration of the experimental setup. The neutron beam is polarized by passing through magnetic birefringent prisms (P). To prevent

depolarization, a magnetic guide field (GF) is applied around the whole setup. A spin turner (ST1) rotates the neutron spin by p/2. Preselection of the

system’s wavefunction cij i is completed by two spin rotators (SRs) inside the neutron interferometer. These SRs are also used to perform the weak

measurement of ŝz�̂I

� �
w

and ŝz�̂II

� �
w

. The absorbers (ABS) are inserted in the beam paths when �̂I

� �
w

and �̂II

� �
w

are determined. The phase shifter (PS)

makes it possible to tune the relative phase w between the beams in path I and path II. The two outgoing beams of the interferometer are monitored

by the H and O detector in reflected and forward directions, respectively. Only the neutrons reaching the O detector are affected by postselection using a

spin turner (ST2) and a spin analyzer (A).
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Figure 3 | Measurement of P̂I
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w

and P̂II
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w

using an absorber with transmissivity T¼0.79(1). The intensity is plotted as a function of the

relative phase w. The solid lines represent least-square fits to the data and the error bars represent one s.d. (a) An absorber in path I; no significant

loss in intensity is recorded. (b) A reference measurement without any absorber. (c) An absorber in path II: the intensity decreases. These results

suggest that for the successfully postselected ensemble, the neutrons go through path II.
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A phase shifter is inserted into the interferometer to tune the
relative phase w between path I and path II. Hence, a general
postselected path state is given by 1ffiffi

2
p e� iw=2 Iiþ eiw=2 IIij Þ

���
. Of the

two outgoing beams of the interferometer, only the O beam is
affected by a spin analysis. The H beam without a spin analysis is
used as a reference monitor for phase and count-rate stability.
The spin postselection of the O beam is done using a spin turner
and a polarizing supermirror. Both outgoing beams are measured
using 3He detectors with very high efficiency (over 99%). All
measurements presented here are performed in a similar manner:
The phase shifter is rotated, thereby scanning w and recording
interferograms. The interferograms allow to extract the intensity
for w¼ 0. This ensures that the path postselection is indeed carried
out on the state 1ffiffi

2
p Iiþ IIij Þjð corresponding to the O beam.

Determining the neutrons’ population. To determine the
neutrons’ population in the interferometer’s paths, h�̂jiw are
measured by inserting absorbers into the respective path j of the
interferometer. h�̂jiw is evaluated in three steps: first, a reference
intensity is measured by performing a phase shifter scan of
the empty interferometer to determine IREF. For the reference
measurement, the spin states inside the interferometer are
orthogonal. Therefore, the interferogram shows no intensity

oscillation. As a second step, an absorber with known transmis-
sivity of T¼ 0.79(1) is inserted into path I and the phase shifter
scan is repeated, which yields IABS

I . Finally, the absorber is taken
out of path I and put into path II. The subsequent phase shifter
scan allows the extraction of IABS

II . A typical measurement result is
depicted in Fig. 3.

In path I, the absorber has no effect. In comparison with the
reference intensity, no significant change can be detected in the
count rate. As opposed to this, the very same absorber decreases
the intensity when it is put in path II. This already tells us that the
neutrons’ population in the interferometer is obviously higher in
path II than it is in path I.

Determining the location of the neutrons’ spin component.
The weak measurements of the neutrons’ spin component in each
path are achieved by applying additional magnetic fields in one or
the other beam path. This causes a small spin rotation, which
allows to probe the presence of the neutrons’ magnetic moment
in the respective path. If there is a magnetic moment present in
the path, the field has an effect on the measured interference
fringes. If no change in the interferogram can be detected, there is
no magnetic moment present in the path where the additional
field is applied. The condition of a weak measurement is fulfilled
by tuning the magnetic field small enough. A spin rotation of

PATH I

PATH II Bz

Bz

IOSAIOSAIOSA

I HI HI H

160

150

140

130

120

16

14

12

10

8

6

In
te

ns
ity

 (
c.

p.
s.

)
In

te
ns

ity
 (

c.
p.

s.
)

20° IN PATH I

20° IN PATH I

20° IN PATH II

20° IN PATH II

NO ROTATION

NO ROTATION

H-detector

O-detector O-detector O-detector

H-detector H-detector

Phase shift � (rad)

–– –�
2

��
2

0

Phase shift � (rad)

–– –�
2

��
2

0

Phase shift � (rad)

–– –�
2

��
2

0

Phase shift � (rad)

–– –�
2

��
2

0

Phase shift � (rad)

–– –�
2

��
2

0

Phase shift � (rad)

–– –�
2

��
2

0

a b c

Figure 4 | Measurement of r̂zP̂I

� �
w

and r̂zP̂II

� �
w

applying small additional magnetic fields. The intensity of the O beam (with the spin analysis) and the

H beam (without the spin analysis) is plotted as a function of the relative phase w. The solid lines represent least-square fits to the data and the error bars

represent one s.d. (a) A magnetic field in path I; interference fringes appear both at the postselected O detector and the H detector. (b) A reference

measurement without any additional magnetic fields. Since the spin states inside the interferometer are orthogonal, interference fringes appear neither in

the O, nor the H detector. (c) A magnetic field in path II; interference fringes with minimal contrast can be seen at the spin postselected O detector,

whereas a clear sinusoidal intensity modulation is visible at the H detector without spin analysis. The measurements suggest that for the successfully

postselected ensemble (only the O detector) the neutrons’ spin component travels along path I.
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a¼ 20� is applied. Using the correlation function, one can cal-
culate the wavefunction overlap. It is 98.5%. The results of one
such measurement procedure are shown in Fig. 4, where they are
compared with the reference measurement performed with the
empty interferometer.

Due to the orthogonal spin states inside the interferometer, the
interferogram shows no intensity oscillation for both O and H
detector (the contrast of a sinusoidal fit was 2.5% at most). An
additional magnetic field in path I leads to the appearance of
interference fringes at both O and H beam, giving IMAG

I . The
contrast of the O detector is 28.1%. Obviously, a magnetic
moment is present in path I, since the interferogram’s contrast
changes by an order of magnitude. Now the same field is applied
in path II to obtain III

MAG. The field induces no significant change
in the intensity modulation for the spin postselected O beam. The
contrast of the O detector changes to only 3.8%. At the same time,
a sinusoidal oscillation appears at the H beam, which has no spin
analysis. If the ensemble is successfully postselected, the neutrons’
spin component travels along path I.

Figures 3 and 4 already clearly demonstrate the effect predicted
by refs 23–25: an absorber with high transmissivity has on
average no significant effect on the measurement outcome if it is
placed in path I. It is only effective if it is placed in path II. In
contrast to that, a small magnetic field has on average a significant
effect only in path I, while it has none in path II. Therefore, any
probe system that interacts with the Cheshire Cat system weakly
enough will on average be affected as if the neutron and its spin
are spatially separated.

Weak values. We can now quantify this behaviour using weak
values. To do so, intensities are extracted from the recorded
interferograms. The intensities correspond to the value of
the fit curve for w¼ 0. To gain precision, the measurements
were repeated several times. Each experimental run allows
extracting an intensity value from the data fit. The final results
for the respective measurements are given by: IREF¼ 11.25(5),
IABS

I ¼ 10:90 9ð Þ, IABS
II ¼ 8:83 8ð Þ, IMAG

I ¼ 11:57 6ð Þ and IMAG
II ¼

10:93 6ð Þ (all in counts per second). These intensities are the
average of all performed measurements. Using these values, we
obtain the results of the weak measurements (see Methods
for details). They are: h�̂Iiw¼0:14ð4Þ, h�̂IIiw¼0:96ð6Þ,
hŝz�̂Iiw
�� ��2¼1:07ð25Þ and hŝz�̂IIiw

�� ��2¼0:02ð24Þ. Note that h�̂Iiw
and h�̂IIiw must sum to unity: for the experimental values, we get
h�̂Iiw þh�̂IIiw ¼ 1:1 � 0:1, which confirms the theoretical
predictions at the limit of error. The error in the determination of

hŝz�̂jiw
�� ��2 is dominated by the statistical error of the count rate
and by the systematic error that occurs during the spin
manipulation.

Theory predicts that for the pre- and postselected states ciij
and cf ij , the weak values for the spin components in paths I and
II are given by hŝz�̂Iiw

�� ��2¼1 and hŝz�̂IIiw
�� ��2¼0, while the

weak values for the neutrons’ population along these paths
are h�̂Iiw ¼ 0 and h�̂IIiw ¼ 1. Within the error, the experiment
confirms this prediction. Slight deviations from the theoretical
values were observed in the experiment: they manifest themselves
in a minimal loss in intensity, when the absorber is inserted in
path I and in the emergence of interference fringes with minimal
contrast if a magnetic field is applied in path II. We suspect
systematic misalignments in the experiment to cause this effect,
mostly due to the finite degree of initial polarization, depolariza-
tion caused by the absorber and misalignment in the spin
manipulation. These lead to an ‘imperfect separation’ of the
particle and its property, which is reflected by a deviation of the
weak values from 0–1.

Discussion
Weak measurements combined with neutron interferometry
allowed us to demonstrate a fundamental phenomenon of
quantum mechanics, namely the quantum Cheshire Cat. It makes
sense at the level of a pre- and postselected ensemble that a
property of a quantum system can behave as being spatially
separated from the site where one is certain to probe the particle’s
presence.

In general, it is true in quantum mechanics that one can give
definite answers only for ensembles. So one has to bear in mind
that, in general, no definite assertions about a single particle can
be made. Indeed, there are many examples of situations which
remain paradoxical from the perspective of individual particles19

but which were resolved at the level of ensembles21,22,33.
According to quantum theory, the wavefunction evolves

through both paths of the interferometer. A weak interaction
involving a coupling to the neutrons spatial wavefunction has on
average no effect along path I, while a weak coupling involving
the neutron spin wavefunction has observational consequences
on average only when the coupling takes place along path I
(ref. 24). Consequently, any probe system that interacts with
the Cheshire Cat system weakly enough will on average be
affected as if the neutron and its spin are spatially separated. The
purpose of this article is to report an experimental observation of
the quantum Cheshire Cat which was recently predicted
theoretically20,23–25.

With respect to the interpretation of these empirical facts, there
are many different approaches and perspectives. We briefly
mention here a number of these perspectives.

One approach emphasizes that the weak value’s real part can
be viewed as a conditioned average of the observable, reflecting
the average value of the weakly measured observable given
postselection12.

Another perspective does not interpret the weak value as being
a real property of the system, but as an optimal estimate of the
corresponding observable, given that the postselection is success-
ful. Then it can be argued that the observable has no definite
value between pre- and postselection, and the real part of the
weak value can be connected to the Bayes estimator of the
observable on a pre and postselected ensemble34.

Finally, we want to emphasize that the weak value is completely
general: any weak coupling will result in a shift of the measuring
device by the relevant weak value. The Cheshire Cat phenomenon
is also completely general and can be applied to any quantum
object. These qualities therefore open the possibility for future
applications of the quantum Cheshire Cat such as high-precision
metrology and quantum information technology12,16,25. For
example, one could imagine a situation in which the magnetic
moment of a particle overshadows another of the particle’s
properties which one wants to measure very precisely. The
Cheshire Cat effect might lead to a technology which allows one
to separate the unwanted magnetic moment to a region where it
causes no disturbance to the high-precision measurement of the
other property.

Methods
Weak measurement of hP̂Ii and hP̂IIi. The weak measurement of h�̂Iiw and
h�̂IIiw is performed using absorbers with a high transmissivity (that is, a ‘weak
absorption’). Phenomenologically, an absorption in path j can be represented by an
imaginary optical potential:

V̂j¼� imjðrÞ�̂j; ð4Þ

where the absorption coefficient is given by Mj¼
R
mj(r)dr in path j with r inte-

grated on the absorber slab thickness. For weak absorption, Mj can be related to the
transmissivity Tj through MjE1� (Tj)1/2 (ref. 35). For simplicity the free evolution
operator is omitted in the following expressions. The wavefunction after the
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wavepacket has interacted with the absorber along path j is

jc0i¼ e� i
R

drV̂j cii � 1� Mj�̂jþ � � �
� �

ciij
�� ð5Þ

for small Mj. Using h�̂jiw¼hcf j�̂j
cii
hcf jcii

��� , the intensity for the postselected outcome
takes the form

IABS
j ¼ hcf jciij j2 1� 2Mjh�̂jiw

� �
; ð6Þ

where the assumption was made that the contribution of the imaginary part of
h�̂jiw is of order or less then M2. This is justified, if the experimental pre- and
postselected states are indeed given by equations (2) and (3). Experimentally, this
can be checked by the contrast of the empty interferometer C, since any deviation
from the ideal pre- and postselected state would manifest itself in the emergence of
interference fringes. However, in the experiment, the average maximal contrast
was only Cr0.024(5) confirming the aforementioned assumptions. Since
IREF¼ hcf j ciij j2, the weak values can be extracted from the observation of
IABS

j =IREF.

Weak measurement of hr̂zP̂Ii and hr̂zP̂IIi. The weak value of ŝz�̂j is
determined using path-conditioned spin rotations. To measure hŝz�̂jiw, a small
magnetic field is applied in path j. The interaction Hamiltonian for this
measurement is

Ĥj¼� g
ŝz

2
Bz�̂j ð7Þ

where g is the gyromagnetic ratio and Bz is an externally applied magnetic field. �̂j

denotes the fact that the magnetic field is applied only in the region along path j.
Applying a magnetic field along z leads to the ŝz component of the Pauli matrix,
which is the generator of rotations around the z axis. Thus, a small rotation around
z on path j is generated through the coupling between the magnetic field and the
spin projection of the neutron on the z axis. The rotation angle produced by this
Larmor precession effect will be labelled by a; its magnitude is proportional to the
magnetic field strength28. The evolution of the initial state caused by the weak
measurement is given by

jc0i¼ e� i
R

dtĤj jcii¼ eiaŝz �̂j=2jcii � 1þ ia
2
ŝz�̂j þ � � �

	 

cii:j ð8Þ

After postselection for the outcomes corresponding to the final state cf ij , the
intensity at the O detector is

IMAG
j ¼jhcf j c0ij

2¼jhcf j ciij
2 � a2

4
hcf j�̂jjciihcijcf iþ

a2

4
jhcf jŝz�̂jjciij

2;

ð9Þ

taking into account a up to a2. As in the derivation of the relation to extract h�̂jiw,
the assumption is made that the imaginary part of hŝz�̂jiw is of order or less then
a3. Again this is justified by the average maximal contrast of the empty
interferometer. Consequently we get:

IMAG
j ¼ hcf j ciij j2 1� a2

4
h�̂jiw þ

a2

4
hŝz�̂jiw
�� ��2	 


ð10Þ

Since h�̂jiw is known from the absorber measurements and IREF¼ hcf j ciij j2,
the weak values are extracted from the measurements of the intensities with
the magnetic field along path I, along path II and with the magnetic field
turned off.

Data treatment. When the pre- and postselected states ciij and cf ij are
given by

jcii¼
1ffiffiffi
2
p jSx ; þijIiþ 1ffiffiffi

2
p Sx ; �i IIijj ð11Þ

and

jcf i¼
1ffiffiffi
2
p ðe� iw=2 Iiþ eiw=2 IIij Þ Sx ; �i;j

�� ð12Þ

one can easily see that for an ideal system, the normalized intensities for the O
detector are

IMAG
I=O ¼

1
8

3� cos að Þ� 4sin
a
2

� �
sinðwÞ

h i
ð13Þ

and

IMAG
II=O ¼

1
4

cos2 a
2

� �
; ð14Þ

if a rotation of angle a is applied in the respective paths. Since the H detector is not
spin analysed, the expected normalized intensities are simply given by

IMAG
I=H ¼

1
2

1 þ sin
a
2

� �
sin wð Þ

h i
ð15Þ

And

IMAG
II=H ¼

1
2

1� sin
a
2

� �
sin wð Þ

h i
; ð16Þ

again if a rotation of angle a is applied in the respective paths and for an ideal
system.

Due to the orthogonal preselected spin state, no oscillation fringes appear for
a¼ 0, that is, for the reference intensity. The experimental results are in very good
agreement with the theoretical calculations. The reference measurements show an
average contrast of Cr0.024(5), while the maximal contrast achieved with the
neutron interferometer used for the experiment is CE0.85. Therefore, the
reference intensity IREF is fitted with a line.

When a spin rotation is applied along path I, an intensity oscillation dependent
on the relative phase w is expected to appear at both the O and H detector. Hence,
the data are fitted with a sine curve of the form

f wð Þ¼y0 þA � sin p � wþfð Þ; ð17Þ

where y0 is the offset, A is the amplitude, p is the period and f the phase of the fit
function. Since the H detector is not spin analysed, its count rate is much higher
and it offers much better statistics. The period of the fit is determined from the H
detector measurement and then fixed for the O detector fit. In addition to that, the
H detector is used to normalize the O detector intensity for count-rate stability.
The intensity IMAG

I=O is then taken from the fit of the O detector data for w¼ 0.
If a spin rotation is applied along path II, no intensity oscillation is expected at the

O detector, while interference fringes should appear at the H detector. As predicted,
IMAG

II=H shows clear sinusoidal oscillations, with a contrast similar to the IMAG
I=H

measurements. However, due to systematic misalignments in the experiment, the
most apparent one being the finite degree of initial polarization, depolarization caused
by the absorber and misalignment in the spin manipulation, interference fringes with
minimal contrast can be detected also for IMAG

II=O . Therefore, the data for IMAG
II=O is also

fitted with a sine curve using a fixed period determined by the H detector. Again the
intensity IMAG

II=O is taken from the fit of the O detector data for w¼ 0.
To gain precision, several phase shifter scans were performed to measure IREF

and IMAG
j . The data of each phase shifter scan are then fitted and the intensity is

taken from the fit for w¼ 0. The average of all measurements performed is then
used to calculate the weak values. The same reference intensity is used to normalize
the path and the spin measurements.
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