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Higgs amplitude mode in a two-dimensional
quantum antiferromagnet near the quantum
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Spontaneous symmetry-breaking quantum phase transitions
play an essential role in condensed-matter physics1–3. The
collective excitations in the broken-symmetry phase near the
quantum critical point can be characterized by fluctuations
of phase and amplitude of the order parameter. The phase
oscillations correspond to the massless Nambu–Goldstone
modes whereas themassive amplitudemode, analogous to the
Higgs boson in particle physics4,5, is prone to decay into a pair
of low-energy Nambu–Goldstone modes in low dimensions2,6,7.
Especially, observation of a Higgs amplitude mode in two
dimensions is an outstanding experimental challenge. Here,
using inelastic neutron scattering and applying the bond-
operator theory, we directly and unambiguously identify the
Higgs amplitude mode in a two-dimensional S= 1/2 quantum
antiferromagnet C9H18N2CuBr4 near a quantum critical point
in two dimensions. Owing to an anisotropic energy gap, it
kinematically prevents such decay and the Higgs amplitude
mode acquires an infinite lifetime.

TheHiggs boson appears as the amplitude fluctuation of the con-
densed Higgs field in the Standard Model of particle physics. Since
its discovery, there has been much interest in searching for similar
Higgs boson-like particles in condensed-matter physics, such as
in superconductors8–10, charge-density-wave systems11,12, ultracold
bosonic systems13, and antiferromagnets14–16. Strictly speaking, only
superconductors are analogous to the particle physics from the
point that the gauge field (photon) coupling to the condensate
acquires its mass (Meissner effect) by means of symmetry breaking
(Anderson–Higgs mechanism). In a broad sense, nevertheless, the
excitationmode of the amplitude fluctuation of the order parameter
is also termed as ‘Higgs amplitude mode’ in condensed-matter
physics17. Theseworks providednew insights about the fundamental
theories underlying these exotic materials.

The Higgs amplitude mode is expected in the proximity of a
quantum critical point (QCP) but can decay into a pair of low-
energy Nambu–Goldstone modes which makes it experimentally
difficult to detect. In three-dimensional (3D) systems, where the
QCP is a Gaussian fixed point, the Higgs amplitude mode is
well defined near the QCP18. In contrast, in the two-dimensional

(2D) case, where the longitudinal susceptibility becomes infrared
divergent near the QCP, it has been debated whether the Higgs
amplitude mode may not survive or it is still visible in terms of
a scalar susceptibility6,7,19–23. Indeed, the Higgs amplitude mode in
2D was evidenced by the scalar response for an ultracold atomic
gas near the superfluid to Mott-insulator transition13, although
the observed spectral function is heavily damped. Note that
when the Nambu–Goldstone modes become gapped, there is no
such physical infrared singularity. In the following paper, we will
demonstrate observation of a sharp Higgs amplitude mode through
the longitudinal response being such a case in an S= 1/2 2D
coupled-ladder compound C9H18N2CuBr4 (abbreviated as DLCB)
in the vicinity of a QCP in two dimensions.

The quantum S= 1/2 Heisenberg antiferromagnetic two-leg
spin ladder is one of the cornerstone models in low-dimensional
quantum magnetism24,25. In the one-dimensional limit of isolated
spin-1/2 ladders, the ground state consists of dressed valence-bond
singlets on each rung of the ladder. Interestingly, the ground state
as shown in Fig. 1a can be tuned by the inter-ladder coupling
from the quantum disordered (QD) state, through the QCP, to the
renormalized classical regime of a long-range magnetically ordered
(LRO) state26,27. In the QD phase, the magnetic excitations are triply
degenerate magnons with a spin gap energy ∆ which vanishes
on approach to the QCP. In the LRO phase, the triplet modes
evolve into two gapless Nambu–Goldstone modes reflecting spin
fluctuations perpendicular to the ordered moment, accompanied
by a longitudinal mode (LM) reflecting spin fluctuations along
the ordered moment. The latter mode has a gap which grows
continuously with the moment and is analogous to the Higgs
amplitude mode. Such a LM is usually unstable and decays into
a pair of transverse modes, as observed in the S= 1/2 coupled
Heisenberg chain compound KCuF3, and has a finite lifetime28,29.

In our previous work30,31, we have shown that the metal–organic
compound DLCB is a unique spin ladder material where the inter-
ladder coupling is sufficiently strong to drive the system into the
magnetically ordered phase. Figure 1b shows the molecular two-
leg ladder structure of DLCB. The collinear magnetic structure was
determined by the unpolarized neutron diffraction technique and
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Figure 1 | The two-dimensional spin-1/2 coupled two-leg spin ladder
antiferromagnet. a, Schematic diagram of coupled two-leg square spin
ladders, where the ground state can be tuned by the inter-ladder coupling
αJ from the quantum disordered (QD) phase, through a quantum critical
point αc in two dimensions, to the long-range magnetically ordered (LRO)
phase. Blue circles stand for the spin-1/2 magnetic ions. The ellipses
represent a singlet valence bond of spins. b, The molecular two-leg ladder
structure with the leg direction along the crystalline b axis and a
two-dimensional model for the magnetic interactions in C9H18N2CuBr4.
Pink, red, and yellow bonds indicate the nearest-neighbour leg, rung, and
inter-ladder exchange constants, respectively.

the staggered moments point along the c∗ axis (≡ ẑ) with a reduced
moment size of approximately 0.4µB (ref. 30). A minimal 2D spin-
interacting model was proposed based on the crystal structure, and
the corresponding spin Hamiltonian can be written as:
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where l indexes the site of a ladder, i indexes rungs, and 1 and 2 stand
for each leg. Jrung, Jleg, and Jint are the nearest-neighbour rung, leg,
and inter-ladder exchange constants. λ (between 0 and 1) specifies
an exchange anisotropy, with λ= 0 or 1 being the limiting case
of Ising or Heisenberg interactions. Indeed, the observed magnon
dispersions can be described by this model quantitatively30. The
observed spin gap energy ∆= 0.32(3)meV is due to a small Ising
anisotropy. Further evidence for the two-dimensionality is provided
by a measurement of the inter-layer dispersion (Supplementary
Fig. 1b).

Importantly, the analysis of the spin Hamiltonian indicates that
DLCB is close to a QCP30, making DLCB an ideal S=1/2 quantum
antiferromagnet to investigate theHiggs amplitudemode. Themore
detailed examination of this QCP was analysed by tuning the inter-
rung interactions (Supplementary Fig. 2). In the easy-axis case,
the U(1) symmetry is not spontaneously broken in the ordered

phase, and the two branches of transverse modes (TMs) would have
equal gap energies as predicted by the spin-wave theory. Therefore,
if the LM/Higgs amplitude mode is sufficiently close to TMs, it
could become kinematically unable to decay in this region, and thus
acquire an infinite lifetime.

Since TMs and the LM could be degenerate within the instru-
mental resolution in DLCB, we carried out a follow-up unpolarized
inelastic neutron-scattering (INS) study in an external magnetic
field. In terms of the z component of total spin S, two species of TMs
have Sz=±1 whereas the LM has Sz=0. To make Sz a good quan-
tum number, the field direction has to be aligned along the easy-axis
and a horizontal-field cryomagnet was employed for that purpose.
With an applied field µ0H , the Zeeman energy term is gµBµ0HSz ,
where g is the Landé g -factor and µB is the Bohr magneton. Thus,
the energy shifts of TMs are expected to be ±gµBµ0H while the
LM should remain unchanged. Consequently, if the splitting is large
enough, the LM could be identified by this Zeeman effect.

Figure 2a shows the zero-field background-subtracted en-
ergy scan at the magnetic zone centre q= (0.5,−0.5, 1.5) and
T=50mK. The spectral lineshape was modelled by superposi-
tion of two double-Lorentzian damped harmonic-oscillator (DHO)
models convolved with the instrumental resolution function32,33.
The best fit yields the gap energies of TMs (Sz =±1) and the
LM (Sz=0) as ∆TM = 0.34(3)meV and ∆LM = 0.48(3)meV, re-
spectively. At µ0H = 1 T in Fig. 2b, TMs (Sz =±1) are split into
two branches. The observed quasielastic neutron scattering hinders
observation of TM (Sz=1) at µ0H=1.5 T in Fig. 2c. At µ0H=2 T
in Fig. 2d, TM (Sz = 1) is merged into the elastic line while
the LM becomes clearly visible and well distinguished from TM
(Sz=−1). Figure 2e summarizes the measured field dependences
of∆TMs(Sz=±1) and∆LM (Sz=0).∆TMs (Sz=±1) as a function of
field agree well with the Zeeman spectral splitting±gµBµ0H using
g = 2.15 and the LM is indeed field-independent within the ex-
perimental uncertainties. The small discrepancy between data and
calculations at 2 T is due to the occurrence of a spin-flop transition
(Supplementary Fig. 3). The analysis also indicates that the peak
profile of the Higgs amplitude mode in each field is limited by the
instrumental resolution within experimental uncertainty, as shown
in Fig. 2f. In other words, decay of the LM/Higgs amplitude mode
(Sz=0) into a TM (Sz=1) and another TM (Sz=−1) is forbidden
by the kinematic conditions. However, because of the limited access
of the reciprocal space using a horizontal-field cryomagnet, we
could not map out the excitation spectra in the Brillouin zone (BZ).

Another straightforward way to unambiguously determine the
nature of spin polarization of magnetic excitation spectra is by the
polarized neutron-scatteringmethod. In general, however, it is fairly
challenging to carry out the polarized INS because of significant
loss of neutron intensity due to neutron polarization arrangements
compared with unpolarized neutron arrangements. To compensate
for that, the polarized neutron data were collected using a high-flux
cold neutron spectrometer. The polarization analysis was performed
using the recently developed capability of wide-angle 3He spin
filters34. Figure 3a shows the θ-scans of the nuclear Bragg reflection
(0, 1,−1) at T = 1.4 K with the non-spin-flip (NSF) and spin-
flip (SF) configurations, respectively. The flipping ratio F can be
calculated as INSF/ISF ' 43(1), which corresponds to an overall
polarization efficiency of (F − 1)/(F + 1)= 0.95. Furthermore,
Fig. 3b shows the background-subtracted θ-scans of the magnetic
Bragg reflection (0.5, 0.5,−0.5) at T = 1.4 K with the NSF and
SF configurations, respectively. The scattering intensity in the NSF
channel dominates over that in the SF channel, suggesting that the
out-of-plane spin component is dominant, and thus confirming the
determined orientation of the staggered moments.

With the high efficiency of neutron spin filters firmly established
and the magnetic spin structure in DLCB well determined, we
proceed to investigate the spin dynamics using polarized neutrons.
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Figure 2 | The Zeeman e�ect. a–d, The background-subtracted energy
scans at the magnetic zone centre q= (0.5,−0.5, 1.5), T=50 mK and
µ0H=0 (a), µ0H= 1 T (b), µ0H= 1.5 T (c) and µ0H=2 T (d). Solid lines
are fits to a double-Lorentzian damped harmonic-oscillator model
convolved with the instrumental resolution function and filled areas
represent the contribution from the transverse modes (TMs, blue) and the
longitudinal mode (LM, red) or the Higgs amplitude mode. e, Field
dependences of TMs (Sz=±1) and the LM (Sz=0). The dashed lines are
the calculated Zeeman energy term as described in the text. The solid lines
are the calculations by the bond-operator theory as described in the text.
f, Field dependence of resolution-corrected intrinsic linewidth of the Higgs
amplitude mode. Error bars represent one standard deviation.

The experiment was designed in such a way that TMs and the LM
can be separated from each other in the SF and NSF configurations,
respectively (for further details, see Methods). For the comparison
purposes, Fig. 3c shows the background-subtracted energy scan
at q= (0.5, 0.5,−0.5) and T = 1.4 K using unpolarized neutrons.
Figure 3d,e shows the same energy scans with the SF and NSF
configurations, respectively. And data were fitted to the same DHO
model convolved with the instrumental resolution function. The
spin gap energies of TMs and the LM/Higgs amplitude mode
were obtained as ∆TMs= 0.33(3)meV and ∆LM= 0.48(3)meV, in
excellent agreement with the results from the Zeeman effect. The
spectral weight ratio between them is approximately 2.6:1.

After confirming the feasibility of such a challenging experiment,
we managed to map out the excitation spectra in the BZ. Serving
as a reference, Fig. 4a,b shows the false-colour maps of the spin-
wave spectra along two high-symmetry directions in the reciprocal-
lattice space using unpolarized neutrons.With the SF configuration,
as expected, the magnetic excitation spectra in Fig. 4c,d are in
excellent agreement with the calculations using SPINW35 in the
linear spin-wave theory (LSWT) approximation, and thus was
confirmed as TMs. The Hamiltonian parameters of Jleg=0.64meV,
Jrung = 0.70meV, Jint = 0.19meV, and λ= 0.95 provide the best
agreement with experimental data. The modelled dispersion curves
in Fig. 4c,d are close to the quantitative calculations using the high-
order series expansions30.

Since the one-magnon excitation of the LM is not predicted in
LSWT, to analyse the experimental data with theNSF configuration,
we employed the bond-operator theory (BOT) for the description
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Figure 3 | Feasibility of the polarized neutron study. a,b,
Background-subtracted θ-scans at the nuclear Bragg reflection (0, 1,−1)
(a) and the magnetic Bragg reflection (0.5, 0.5,−0.5) (b) with non-spin-flip
(NSF) and spin-flip (SF) configurations, respectively. Solid lines are fits to a
Gaussian function. c–e, The background-subtracted transferred energy
scans at the magnetic zone centre q= (0.5, 0.5,−0.5) with unpolarized
neutron (c), SF (d) and NSF (e) configurations, respectively. Solid lines are
fits to a two-Lorentzian damped harmonic-oscillator model convolved with
the instrumental resolution function. All experimental data were collected
at T= 1.4 K. Error bars represent one standard deviation.

of the low-energy excitations in the vicinity of the QCP on DLCB.
The detailed description of the harmonic BOT can be found in
refs 36–39. The ordered moment is estimated as 38.5% of the
saturation value and is consistent with the experimental value of
37(5)%. The exchange interaction parameters were extracted as
Jleg=0.57meV, Jrung=1.21meV, Jint=0.11meV, and λ=0.95 from
the best fit. Note that the extracted parameters correspond to
the renormalized parameters within the scope of harmonic BOT.
Since DLCB is a weakly interacting ladder system, Jrung and Jleg
are strongly renormalized (the former and latter are enhanced and
reduced, respectively)40,41. Therefore, Jrung is markedly larger than
Jleg. The solid green lines in Fig. 4e,f shows the calculated LM
(Higgs amplitude mode) with a gap energy at 0.48meV. We notice
that the BOT calculation in Fig. 4f increases monotonically and
deviates from the experimental data at the zone boundary, which
may originate from the fact that the BOT is a mean-field treatment
and application of this technique to the low-dimensional system
could be limited. For the low-energy excitations, nevertheless, it
works well in both QD and LRO phases. For instance, as shown in
Fig. 2e, the agreement of the field dependence of the Zeeman energy
term between the experimental data and the calculations by BOT
is excellent.

Figure 4e,f shows the calculated excitation spectra by BOT,
which reproduce the experimental data qualitatively. Thus, our
conclusion that the nature of spin excitation observed in the NSF
configuration is due to spin fluctuation along the staggeredmoment
direction is fairly convincing. Note that the Higgs amplitude mode
in DLCB is distinctly different from the longitudinal excitations in
the S= 1/2 2D Heisenberg square-lattice (HSL) antiferromagnet
Cu(DCOO)2·4D2O (CFTD)42,43 because the S = 1/2 2D HSL
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Figure 4 | Polarized neutron study of the spin dynamics. a,b, False-colour
maps of the background-subtracted magnetic excitation spectra as a
function of energy and wavevector transfer measured by unpolarized
neutrons. c,d, Comparison of data with the spin-flip (SF) configuration and
the calculation by the linear spin-wave theory (LSWT). e,f, Comparison of
data with the non-spin-flip (NSF) configuration and the calculation by the
bond-operator theory (BOT) along the (H0.5−0.5) and (0.5K−K)
directions, respectively. Intensity was enlarged by a factor of three. Dashed
brown lines are the calculation using the high-order series expansions. Solid
yellow lines are the transverse modes calculated by LSWT. Solid green lines
are the longitudinal (Higgs amplitude) modes calculated by BOT. Solid grey
lines are the calculated lower boundary of the two-magnon continuum.
g, Wavevector dependence of the resolution-corrected intrinsic linewidth Γ
of the Higgs amplitude mode. Note that Γ along (0.5K−K) cannot be
reliably extracted due to the weak intensity. All experimental data were
collected at T= 1.4 K.

antiferromagnet is far from the QCP and the observed longitudinal
spectra in CFTD originate from the two-magnon continuum.
Consequently, the spectral lineshapes are broadened. Recent
theoretical work44,45 suggests that there is a prominent resonance,
which was proposed as a Higgs resonance with finite lifetime, inside
the continuum due to the attractive magnon–magnon interaction.
Moreover, the grey lines in Fig. 4e,f are the calculated lower
boundary of the two-magnon continuum in DLCB, which lies well
above the Higgs amplitude mode. Hence, the spontaneous decay
of the Higgs amplitude mode into a pair of TMs is forbidden due
to violation of the laws of energy and momentum conservation, as
evidenced by the wavevector dependence of the intrinsic linewidth
Γ , which is limited by the instrumental resolution, as shown in
Fig. 4g. It is worth pointing out that the Higgs amplitude mode is
also evident from the excitation spectra with an external magnetic
field applied perpendicularly to the easy-axis31. In that case, the
Higgs amplitude mode is stable at low fields and the decay occurs
beyond the crossover with the lower boundary of the two-magnon
continuum at∼1.5 T.

In summary, the unique ability of neutron scattering to probe the
spin polarization of dynamic spin pair-correlation functions allows

one to distinguish the Higgs amplitude mode from the dominant
transverse Nambu–Goldstone modes in the two-dimensional
S=1/2 antiferromagnet DLCB. The transverse modes have a finite
excitation gap energy due to a weak Ising anisotropy. The opening
of the gap kinematically prevents the decay process from the Higgs
amplitudemode to a pair of transverse modes. This leads to the long
lifetime for the Higgs amplitude mode andmakes it observable near
the quantum critical point in two dimensions.

Note added in proof: Recently we became aware of an INS work46
that reports the Higgs amplitude mode in a 2D antiferromagnet
Ca2RuO4.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Single crystal growth. Deuterated single crystals were grown using a solution
method47. An aqueous solution containing a 1:1:1 ratio of deuterated (DMA)Br,
(35DMP)Br, where DMA+ is the dimethylammonium cation and 35DMP+ is the
3,5-dimethylpyridinium cation, and copper(II) bromide was allowed to evaporate
over several days in a closed desiccator. A few drops of DBr were added to the
solution to avoid hydrolysis of the Cu(II) ion.

Neutron-scattering measurements. Unpolarized neutron-scattering
measurements using a horizontal-field superconducting magnet with a dilution
fridge insert were carried out on a cold neutron triple-axis spectrometer (FLEXX)48
at Helmholtz-Zentrum Berlin. The sample consists of two co-aligned deuterated
single crystals with a total mass of 2.5 g and a 1.0◦ mosaic spread and was oriented
in the (H−HL) reciprocal-lattice plane. Unpolarized inelastic neutron-scattering
measurements using a standard helium-flow cryostat were carried out on a cold
neutron triple-axis spectrometer (CTAX) at the High Flux Isotope Reactor, Oak
Ridge National Laboratory. Polarized neutron-scattering measurements using a
standard helium-flow cryostat were performed on a high-intensity multi-axis
crystal spectrometer (MACS)49 at the NIST Center for Neutron Research. The peak
flux at the sample position is approximately 5×108 neutrons cm−2 s−1. The sample
assembly with three co-aligned deuterated single crystals (a total mass of 3.5 g and
a 1.0◦ mosaic spread) was oriented in the (HK−K ) reciprocal-lattice plane. In all
experiments, the final neutron energy was fixed at 3.0meV and the energy
resolutions of FLEXX and MACS at the elastic line are 0.10meV and 0.15meV,
respectively. The background was determined at T=15K under the same
instrument configurations, and has been subtracted.

Polarized neutron measurements. In the experimental set-up, both incident and
outgoing neutron beams were polarized by nuclear spin polarized 3He gas cells.
NMR-based inversion of the 3He polarization in the polarizer cell allows
polarization of the incident beam parallel or antiparallel to the vertical axis at will.
The overall transmission at the beginning of a polarized neutron set-up (each run
lasts about two days) is approximately 11% and reduced to approximately 5%
before the 3He gas cells change out. The initial flipping ratio F is about 43(1),
indicating that the product of the polarizing efficiencies of the NSF cells
PA= (F−1)/(F+1) is 95%. Typically, after the two-day operation, F is reduced to
20(1) and PA becomes 91%. Since F was always above 20, the polarization leakage
effect is as small as 1/F (≤5%). To account for decay of the 3He polarization and
neutron transmission with time, the polarized neutron data were corrected by 3He
efficiency correction software as described in Supplementary Information.

The principles for polarized neutron scattering can be summarized as follows:
phonons and structural scattering are seen in the NSF channel; components of spin
fluctuations parallel to the direction of neutron polarization are seen in the NSF
channel; components of spin fluctuations perpendicular to the direction of the
neutron polarization are seen in the SF channel50.

The sample was aligned in such a way that the [0,1,1] direction in the real space
is vertical. Thus, the angle α between the vertical polarization and staggered
moment direction is 17.6◦. In this geometry with the NSF configuration, the large
fraction (cos2 α'91%) is due to spin fluctuations along the direction of the
staggered moment (LM/the Higgs amplitude mode), while the remaining 9%
corresponds to the spin fluctuations perpendicular to the staggered moment (TMs)
and is negligible. In contrast, in the SF configuration, TMs have accounted for 91%
of the contribution and the Higgs amplitude mode is negligible. Therefore, by
employing polarized INS, we are able to separate the Higgs amplitude mode from
the TMs in the magnetic excitation spectra. Polarized neutron measurements cover
half of Brillouin zone due to the fact that the polarizing efficiency becomes either
significantly reduced or not available for small neutron-scattering angles.

Data analysis. The spectral lineshape in Figs 2a–d and 3d–e was fitted to the
following double-Lorentzian damped harmonic-oscillator model

S(h̄ω)=
A

1−exp(−h̄ω/kBT )

[
Γ

(h̄ω−∆)2+Γ 2
−

Γ

(h̄ω+∆)2+Γ 2

]
where kB is the Boltzmann constant,∆ is the peak position and Γ is the
resolution-corrected intrinsic excitation linewidth, that is, half-width at
half-maximum (HWHM) and convolved with the instrumental resolution
function. The experimental resolution was calculated using the Reslib software51.

For the false-colour maps in Fig. 4a–f, data were obtained by combining a series
of constant-q scans along either the (H0.5−0.5) or (0.5K−K ) direction with a
step size of 0.05 r.l.u. and simulations were convolved with the instrumental
resolution function where the neutron polarization factor and the magnetic form
factor for Cu2+ were included.

A detailed description about the determination of the lower boundary of
two-magnon continuum can be found in ref. 31.

Measurement of the inter-layer dispersion. Additional unpolarized inelastic
neutron-scattering measurements were performed at MACS to investigate the
possible interaction between the two-dimensional layers in DLCB. For that
purpose, a single crystal (∼2 g) with a 1.0◦ mosaic spread was aligned in the
(HKH ) reciprocal-lattice plane. Supplementary Fig. 1a shows the measured
excitation spectrum along the leg direction and the observed dispersions are
fully consistent with the calculations by LSWT as described in the main text.
Along the inter-layer direction, the dispersion is absent within the instrumental
resolution (Supplementary Fig. 1b), indicating that DLCB is an excellent 2D
spin-interacting system.

Analysis of the energy gap by tuning the inter-rung interactions.We assume that
Jrung is fixed and the inter-rung interactions vary as J ∗leg=RJleg and J ∗int=RJint, where
values of Jrung, Jleg and Jint are obtained as described in the main text. Supplementary
Fig. 2 summarizes the calculations by BOT of the evolution of the spin gap energy
as a function of the enhancement factor R. At small R, due to the Ising anisotropy,
the triplet spin gap energy splits into a singlet (Sz=0) and a doublet (Sz=±1).
When R initially increases, the spin gap energies of both the singlet and the doublet
decrease. Spin gap of the singlet closes at the QCP while the doublet remains
gapped. When R further increases, the softened singlet mode acquires a spin gap
again and becomes the Higgs amplitude mode. The analysis indicates that the QCP
is located at Rc=0.923, which is close to the case in DLCB (R=1) and thus
confirms our conclusion in the main text. For R<Rc, the quantum disordered
phase is stabilized, while the long-range ordered phase is stabilized for R>Rc.
Calculation by BOT of emergence of the staggered moment size as a function of R
is also shown in Supplementary Fig. 2.

The spin-flop transition. In DLCB, an application of a magnetic field along the
easy-axis direction would lead to the spin reorientation, that is, spin-flop transition.
In the spin-flop phase, Sz is no longer a good quantum number. To find out the
critical field where the spin reorientation occurs, we measured the field
dependence of several magnetic reflections, as shown in Supplementary Fig. 3, at
FLEXX using a horizontal-field cryomagnet. The integrated-peak intensities are
almost field-independent at low fields, then start to increase above 1.7 T, and finally
become saturated above 2.5 T after the spin is flopped for the (0.5,−0.5,−1.5) and
(1.5,−1.5, 2.5) magnetic reflections. From the fact that neutron scattering probes
the components of spin fluctuation perpendicular to the transferred wavevector,
the orientation of the ordered moment in the spin-flop phase is 90 ◦ out of the
horizontal plane, with the axis of rotation approximately along q= (1.5,−1.5, 0.5).
Overall, the above results confirm that in DLCB, when the field direction is aligned
parallel to the easy-axis direction, Sz remains as a good quantum number at least
up to 1.7 T.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.
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