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Observation of thermal Hawking radiation and its 
temperature in an analogue black hole
Juan Ramón Muñoz de Nova1, Katrine Golubkov1, Victor I. Kolobov1 & Jeff Steinhauer1*

The entropy of a black hole1 and Hawking radiation2 should have the 
same temperature given by the surface gravity, within a numerical 
factor of the order of unity. In addition, Hawking radiation should 
have a thermal spectrum, which creates an information paradox3,4. 
However, the thermality should be limited by greybody factors5, at 
the very least6. It has been proposed that the physics of Hawking 
radiation could be verified in an analogue system7, an idea that has 
been carefully studied and developed theoretically8–18. Classical 
white-hole analogues have been investigated experimentally19–21, 
and other analogue systems have been presented22,23. The theoretical 
works and our long-term study of this subject15,24–27 enabled us to 
observe spontaneous Hawking radiation in an analogue black hole28. 
The observed correlation spectrum showed thermality at the lowest 
and highest energies, but the overall spectrum was not of the thermal 
form, and no temperature could be ascribed to it. Theoretical 
studies of our observation made predictions about the thermality 
and Hawking temperature29–33. Here we construct an analogue 
black hole with improvements compared with our previous setup, 
such as reduced magnetic field noise, enhanced mechanical and 
thermal stability and redesigned optics. We find that the correlation 
spectrum of Hawking radiation agrees well with a thermal spectrum, 
and its temperature is given by the surface gravity, confirming the 
predictions of Hawking’s theory. The Hawking radiation observed is 
in the regime of linear dispersion, in analogy with a real black hole, 
and the radiation inside the black hole is composed of negative-
energy partner modes only, as predicted.

Our analogue black hole consists of a flowing Bose–Einstein  
condensate. The flow velocity vout in the region x < 0 is less than the 
speed of sound cout, as indicated in Fig. 1a. This region corresponds to 
the outside of a black hole. For x > 0, the flow is supersonic (vin > cin), 
corresponding to the inside of the black hole. In this region, the sound 
cones are tilted to the extent that all phonons travel inward, away 
from the sonic horizon at x = 0. In other words, a phonon travelling 
towards the horizon in the ‘free-falling’ frame (the frame comoving  
with the flow) travels away from the horizon in the laboratory frame. 
The phonon is unable to reach the horizon, in analogy with a particle 
inside a black hole.

For an analogue black hole, the Hawking temperature is given by 
ħg/2πc (ref. 7), where the analogue surface gravity for an effectively 
one-dimensional flow is g = c(dv/dx – dc/dx) (ref. 9), and where the 
derivatives and speed of sound c are evaluated at the sonic horizon. 
For a stationary and effectively one-dimensional flow, nv is a constant, 
where n is the one-dimensional density. We can thus write the Hawking 
temperature TH as
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where kB is Boltzmann’s constant. Equation (1) is the predicted  
temperature of the Hawking radiation in an analogue black hole. We 
evaluate it using the measured c(x) and n(x). It is derived using a linear 
dispersion relation, in analogy with massless particles emanating from 

a real black hole. In a Bose–Einstein condensate, the dispersion relation 
is linear in the low-energy limit. Thus, we should create an analogue 
black hole with sufficiently low Hawking temperature that the radiation 
is in the linear regime of the dispersion relation. We can then test 
whether the emitted Hawking radiation obeys the prediction of equa-
tion (1). There are several theoretical works suggesting that this should 
be the case. Using previous analytical results for a system similar to this 
experiment13, we find that equation (1) gives an accurate prediction for 

� .k T mc0 14B H out
2 , where m is the mass of the atom. We will show that 

the experiment is within this limit. Parentani and colleagues29 studied 
our previous experiment28, and concluded that the spectrum should 
be accurately Planckian, and that the temperature should agree with 
the relativistic prediction of equation (1) to within 10%. Coutant and 
Weinfurtner30 also studied the previous work and found that the tem-
perature is expected to be close to Hawking’s prediction, equation (1).

We test Hawking’s prediction by measuring the spectrum of corre-
lations between the Hawking and partner modes, ⟨ ⟩b bˆ ˆ

H P , where b̂H 
and b̂P are the annihilation operators for the Hawking and partner 
modes, respectively. Fortunately, ⟨ ⟩b bˆ ˆ

H P  is largely free of background 
correlations. It represents correlations between the inside and outside 
of the black hole, where Hawking radiation is posited to be the domi-
nant source of such correlations. By contrast, any source of excitations 
can add to the background of the population ⟨ ⟩b bˆ ˆ

H
†

H . Indeed, the back-
ground of ⟨ ⟩b bˆ ˆ

H
†

H  represents the difficulty in observing Hawking  
radiation from a real black hole. Since we work in the regime of low 
Hawking temperature and linear dispersion, there is negligible coupling 
to the mode copropagating with the flow12,29. Thus, we can use the 
2  ×  2 Bogoliubov transformation considered by Hawking2, 

α β= ++ −b b bˆ ˆ ˆ
H

†
 and α β= +− +b b bˆ ˆ ˆ

P
†
, where +b̂  and −b̂  are annihilation 

operators for the positive- and negative-energy incoming modes, 
respectively, and where |α|2 = |β|2 + 1 and ∣ ∣β = / −ω/1 (e 1)ħ k T2 B H . This 
immediately gives ⟨ ⟩ αβ=b bˆ ˆ

H P  in the vacuum of incoming modes. 
We can thus compare our measurement of ∣ ⟨ ⟩ ∣b bˆ ˆ

H P
2
 to (|β|2 + 1)|β|2, 

where |β|2 is the Planck distribution at the predicted Hawking temper-
ature, equation (1).

The Hawking radiation is observed via the density–density correla-
tion function10,11 ⟨ ⟩ξ ξ δ δ= /′ ′G x x n n n x n x( , ) ( ) ( )(2)

out in out in , where 
nout(in) is the density outside (inside) the black hole, ξout(in) = ħ/mcout(in), 
and x and x′ are in units of the healing length ξ ξ ξ= out in  = 1.8 µm. 
We previously found15 that ⟨ ⟩b bˆ ˆ

H P  is readily extracted from G(2)(x, x′) 
by the relation
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where Lout(in) is the length of the outside (inside) region, and kH and kP 
are the wavenumbers of the Hawking and partner modes respectively, 
in units of ξ−1. The integral is performed over the region in the  
correlation function bounded by −Lout/ξ < x < 0 and 0 < x′ < Lin/ξ. 
The zero-temperature static structure factor is given by 

= + +S U V U V( )( )k k k k0 H H P P
, where Ui and Vi are the Bogoliubov  
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coefficients for the phonons, which are not related to the Bogoliubov 
coefficients introduced by Hawking. It is natural that S0 appears in 
equation (2) given that the density amplitude of a phonon is propor-
tional to Ui + Vi (ref. 25). The only assumption in equation (2) is that 
modes with different frequencies are uncorrelated28. It is not necessary 
that the thermal population be zero. Furthermore, equation (2) is exact 
for a stationary configuration33.

Here the analogue black hole is created in a Bose–Einstein con-
densate consisting of 8,000 87Rb atoms (see Methods). The elongated 
condensate is confined in a focused laser beam. The region x < 0 is illu-
minated with an additional laser beam that creates a positive potential, 
as illustrated in the inset to Fig. 2a. Thus, there is a downward potential 
step—a waterfall potential—near x = 0. The step potential moves at a 
constant speed of 0.16 mm s−1, which is equivalent to the condensate 
flowing at constant speed in the reference frame in which the step is 
stationary. The condensate flows over the step, which accelerates the 
x > 0 part of the condensate to supersonic speeds. The correspondingly 
lower density and speed of sound are seen in Fig. 2a, b.

The Hawking radiation experiment is repeated 7,400 times, giving 
a density profile n(x) for each run. The ensemble-averaged n(x) is 
shown in Fig. 2a, where the circle indicates the location of the hori-
zon. The speed of sound c(x) can be derived from n(x) by the relation 
(see Supplementary Information)
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where a is the scattering length, ωr(x) is the radial trapping frequency, 
and ωr0

 and U0 are the radial trapping frequency and potential depth at 
the laser focus, respectively. Using equation (3), we obtain the ensem-
ble-averaged c(x) shown in Fig. 2b. Furthermore, n(x) and c(x) are 
computed for the average of each five adjacent runs. The predicted 
Hawking temperature is then computed using equation (1), indicated 
by the black curve in Fig. 2c, where each point on the curve corresponds 
to one set of five runs. The average over the black curve gives a pre-
dicted Hawking temperature of 0.351(4) nK, or 0.125(1) × mcout

2 , where 
the uncertainty reflects the uncertainty in the speed of sound and sta-
tistical uncertainty.

We compare the density fluctuations at a pair of points (x, x′) in 
Fig. 2a over the ensemble of 7,400 runs. Figure 3a shows the resulting 
density–density correlation function for every pair of points. The dark 
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Fig. 1 | Hawking and partner modes. a, A space-time diagram showing 
the modes outgoing from the horizon. In addition to the Hawking mode 
(HR) and negative-energy partner mode (P) indicated by solid lines, the 
dashed line indicates the positive-energy mode that copropagates with  
the flow in the comoving frame. The partner and copropagating modes 
form a tilted sound cone inside the analogue black hole. The horizontal 
arrows indicate the flow of the condensate. b, The correlation function  
at 50 Hz from the oscillating horizon experiment (see Methods).  
c, d, Dispersion relations. Circles are measurements from the oscillating 
horizon experiment. The solid and dashed curves are fits of Bogoliubov 

spectra, including a Doppler shift. The dotted lines indicate the Hawking 
temperature. c shows the dispersion relation outside the analogue black 
hole; d shows the dispersion relation inside the analogue black hole. The 
filled circles and solid curve indicate the partner mode and the open 
circles and dashed curve indicate the copropagating mode. kmax indicates 
the ultraviolet cut-off. e, The dispersion relation inside the analogue 
black hole, in the ‘free-falling’ comoving frame. The black curve is the 
Bogoliubov dispersion relation, and the grey curve is the parabolic 
dispersion relation of a free particle.
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Fig. 2 | Profile of the analogue black hole. a, Density. The average of 
the 7,400 runs of the experiment is shown, where the circle indicates 
the horizon. Inset, schematic illustration of the step potential and the 
flow of the condensate; x axis as in main panel. b, The speed of sound 
by equation (3). c, The predicted Hawking temperature by equation (1). 
Each point is computed from the average of five runs of the experiment. 
The green and blue curves are the first and second terms in equation (1), 
respectively, and the black curve is the sum of the two terms, that is, the 
predicted Hawking temperature.
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band extending from the centre of the figure represents the correlations 
between the Hawking and partner particles. Figure 3a is integrated 
along line segments at various angles, as shown in the inset of Fig. 3b. 
This angular profile gives the angle of the Hawking–partner correla-
tion band, as indicated by the grey line. It can be seen that the correla-
tion band is 5(1)° from the hydrodynamic angle. The latter is derived 
under the assumption that the correlations propagate at the wave speeds 
cout − vout and vin − cin outside and inside the black hole, respectively. 
The profile of the band in the perpendicular x″ direction, averaged 
over the length of the band, is shown in Fig. 3b. Figure 3c, d shows a 
numerical simulation that employs a non-polynomial Gross–Pitaevskii 
equation and the truncated Wigner method11, using parameters similar 
to the experiment. The results are similar to those in Fig. 3a, b. The 
maximum near x″ = −2 in Fig. 3b was also apparent in a previous 
numerical simulation14. The green curve in Fig. 3c shows the hydrody-
namic path of Hawking and partner modes, which travel at c(x) − v(x) 
and v(x) − c(x) outside and inside the black hole, respectively. The red 
curve shows the Hawking and copropagating modes, where the latter 
propagate with speed v(x) + c(x). It can be seen that the simulation is 
consistent with the Hawking–partner pairs (green curve), rather than 
the Hawking–copropagating pairs (red curve), as expected.

We extract the correlations between pairs of Hawking and partner 
modes by equation (2). The Fourier transform is performed in the 
region outlined in green in Fig. 3a. The resulting correlation pattern 

∣ ⟨ ⟩ ∣S b bˆ ˆ
0 H P  is shown in Fig. 4a. We obtain a one-dimensional plot of 

∣ ⟨ ⟩ ∣S b bˆ ˆ
0
2

H P
2
 from the Fourier transform of the profile in Fig. 3b, by 

the following relation28 derived from equation (2)

⟨ ⟩ ∫θ θ= − − ″ ′″S b b x G x xˆ ˆ tan cot d e ( , ) (4)ikx
0 H P

(2)

where θ is the angle of the correlation band in the x−x′ plane in Fig. 3a, 
measured relative to the positive x axis. The resulting correlation spec-
trum is shown in Fig. 4b. The spectrum becomes negligible near the 
ultraviolet cut-off kmax as predicted13. The main contributions to the 
error bars are the uncertainties in the speeds of sound. The uncertainty 

in the angle of the correlation band, the uncertainty due to the region 
chosen for the analysis and the statistical uncertainty are also included.

Using the measured dispersion relation shown in Fig. 1, we can 
express ∣ ∣β = / −ω/1 (e 1)ħ k T2 B H  as a function of wavenumber, where TH 
is the predicted Hawking temperature. The resulting spectrum 

∣ ∣ ∣ ∣β β+S ( 1)0
2 2 2 is indicated by the grey curve of Fig. 4b. The finite 

width of the grey curve reflects the uncertainties in the speeds of sound 
and the flow velocities. Very good agreement with the measured  
correlation spectrum of Hawking radiation can be seen, with no free 
parameters. We can quantify this agreement by assigning a temperature 
to the measured spectrum according to the area enclosed by the  
spectrum, which is proportional to TH

3. With the error bars shown, this 
yields TH

meas = 0.124(6) × mcout
2 , which differs from the prediction by 

−1(5)%.
For a given frequency, the oscillating horizon experiment shown in 

Fig. 1 gives us kout for the Hawking mode, and the corresponding value 
or values of kin for the partner and/or copropagating modes, depending 
on the frequency. We indicate these measured pairs of modes (kout, kin) 
as circles in Fig. 4a. The green circles indicate the Hawking–partner 
modes, and the red circles indicate the Hawking–copropagating modes. 
The correlation pattern of the Hawking radiation (the grey region)  
lies along the green circles. Thus the correlations are observed to be 
composed of Hawking–partner pairs, as expected14. There are no cor-
relations along the red circles, so no correlations between Hawking and 
copropagating modes are seen. We can see that the experiment operates 
in the regime of linear dispersion because most of the correlations lie 
along the linear low-k section of the green circles. This is also seen in 
Fig. 1c, d, where the Hawking temperature indicated by the dotted line 
is in the linear section of the dispersion relations.

This work gives quantitative confirmation of the temperature and 
thermality of Hawking radiation, as predicted in the literature for our 
system. It seems that the Hawking radiation is not strongly affected 
by dispersion or coupling to the mode directed towards the ana-
logue black hole (greybody factors). The measurement made here is  
based on the correlations between the Hawking and partner modes. 
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Fig. 3 | Measured Hawking radiation. a, The correlation function.  
The band extending from the origin represents the correlations between 
the Hawking and partner particles. The green rectangle is the area used 
for the two-dimensional Fourier transform. The dashed line indicates 
the hydrodynamic angle for Hawking–partner pairs. b, The profile of the 
correlation band along the x″ direction in a. Inset, the angular profile of a.  

The grey and dotted vertical lines indicate the angle of the Hawking 
correlation band and the hydrodynamic angle, respectively, relative to the 
positive x axis. The error bars indicate the standard error of the mean.  
c, d, Numerical truncated Wigner simulations of a and b. The green curve 
in c corresponds to Hawking–partner pairs, and the red curve corresponds 
to Hawking–copropagating pairs.
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These correlations are observed to be of the predicted magnitude, with 
no reduction caused by the underlying quantum (atomic) structure of 
the analogue black hole. For a real black hole, the Hawking temperature 
is an important link between Hawking radiation and black-hole ther-
modynamics, because it also arises from considerations of entropy. The 
thermality of Hawking radiation suggests that almost no information 
exits a real black hole, which is the basis of the information paradox.
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green circles and curve indicate the Hawking–partner modes, and the red 
circles and curve indicate the Hawking–copropagating modes, where the 
circles and curves are obtained from the oscillating horizon experiment.  
b, The correlation spectrum of the Hawking radiation. The black curve 
is the measured values; the Fourier transform of Fig. 3b. The error bars 

include the standard error of the mean and systematic errors. The grey 
curve is the predicted thermal spectrum using the Hawking temperature 
from equation (1). The uncertainty is indicated by the width of the curve. 
Inset, the correlation spectrum from the numerical simulation. The solid 
curve is the Fourier transform of Fig. 3d, and the dashed curve is the 
predicted thermal spectrum from equation (1).
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Methods
Laser beam potentials. The focused laser beam trap is red-detuned to create an 
attractive potential, with wavelength 812 nm and waist 3.9 µm. We measure its 
transverse trapping frequency by applying a short pulse of a magnetic field gradi-
ent, which excites a dipole oscillation. We observe the oscillations as a function of 
time, giving a trapping frequency of 130 Hz at the focus of the laser. The laser beam 
that creates the positive potential step is blue-detuned with wavelength 442 nm.
Improvements to the experimental setup. The experimental apparatus is as 
described previously28, with improvements. One such improvement is a magnetic 
field environment with lower noise, as a result of improved power supplies which 
activate four of the six sets of magnetic field coils. This is important because static 
magnetic field gradients apply forces to the condensate via the Zeeman shift. Since 
the condensate is decompressed and weakly trapped in the axial direction, it is 
very sensitive to such gradients. In addition, five out of each 200 runs serve as 
reference images. For these images the step potential is not applied and the power 
of the focused laser trap is reduced, which further increases the sensitivity to an 
axial magnetic field gradient or to a tilt resulting in a gravitational gradient. The 
axial centre of the reference images is found, and any axial shift is corrected by a 
slight fractional adjustment (≤3 × 10−4) of the current in one of the axial magnetic 
field coils. In addition, the optics has been improved, with reduced aberrations.  
This includes the optics for creating and translating the waterfall potential, as well 
as for imaging. Specifically, the system of lenses has been redesigned, and the  
acousto-optic modulator used to translate the waterfall potential has been replaced 
by a rotating mirror. Furthermore, there is improved mechanical stability in the 
magnetic field coils and optics. In addition, the temperature of the room has 
improved long-term stability.
Speed of sound calculation. The first factor in equation (3) is the usual expres-
sion for a quasi-one-dimensional condensate with harmonic radial confinement.  
The second factor reduces the speed of sound owing to the transverse degree of 
freedom. The first term in the square root in the second factor accounts for the 
finite density34. The second term accounts for the finite depth of the potential.
Correlation function filtering. Figure 3a has been filtered to remove the effects 
of imaging shot noise, imaging fringes, and overall slopes. The background of  
Fig. 3b was found by a fit of a Gaussian plus a constant background, and has been 
removed. The simulation has also been filtered and its constant background 
removed.
Oscillating horizon experiment. We measure the predicted Hawking temperature, 
as well as the correlation spectrum of Hawking radiation as a function of wave-

number. To compare the two measurements we use the relation between frequency 
and wavenumber, that is, the dispersion relation, which is readily measured by 
the oscillating horizon technique we introduced in previous work28. Waves are 
generated by causing the position of the step potential to oscillate with a defi-
nite frequency and an amplitude of 0.5 µm. This oscillation at the horizon creates 
outgoing waves outside and inside the analogue black hole. The experiment is 
repeated 70 to 429 times with a given frequency and a random phase each run. The 
correlation function is computed, as shown in Fig. 1b. The wavenumbers are found 
by computing the Fourier transform within the green rectangle, the same region 
where Hawking radiation is observed in Fig. 3a. In this region, the horizontal and 
vertical directions correspond to outside and inside, respectively. The resulting 
dispersion relations are shown in Fig. 1c, d. The curves are fits of Bogoliubov 
dispersion relations including a Doppler shift, yielding cout = 0.519(6) mm s−1, 
vout = 0.229(4) mm s−1, cin = 0.31(2) mm s−1 and vin = 0.90(1) mm s−1. The fit 
to the lower points misses the two highest points of the negative-energy (partner) 
branch of the dispersion relation in Fig. 1d. We can see the discrepancy more 
clearly by considering the frame that is comoving with the fluid inside the analogue 
black hole, in which waves travelling to the left and right have the same dispersion 
relation, as seen in Fig. 1e. For larger k, the measured points are not consistent with 
a spectrum of the Bogoliubov form. The outlying points in Fig. 1d are probably 
due to off-resonance stimulation of the excitations near kmax. The modes in the 
radial direction35,36 should play no part because their effect is much smaller and 
occurs at much higher frequency than seen here25. Furthermore, there may be 
weak excitation of the low-lying copropagating modes along the dashed curve of 
Fig. 1d, but they are not resolved from the partner modes along the solid curve. 
These effects are in agreement with our theoretical model of the oscillating horizon 
experiment (see Supplementary Information).

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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