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PREFACE

This book is the second edition of a text designed for undergraduate courses in signals and
systems. While such courses are frequently found in electrical engineering curricula, the
concepts and techniques that form the core of the subject are of fundamental importance in
all engineering disciplines. In fact, the scope of potential and actual applications of the
methods of signal and system analysis continues to expand as engineers are confronted with
new challenges involving the synthesis or analysis of complex processes. For these reasons
we feel that a course in signals and systems not only is an essential element in an engineer-
ing program but also can be one of the most rewarding, exciting, and useful courses that
engineering students take during their undergraduate education.

Our treatment of the subject of signals and systems in this second edition maintains the
same general philosophy as in the first edition but with significant rewriting, restructuring,
and additions. These changes are designed to help both the instructor in presenting the sub-
ject material and the student in mastering it. In the preface to the first edition we stated that
our overall approach to signals and systems had been guided by the continuing develop-
ments in technologies for signal and system design and implementation, which made it in-
creasingly important for a student to have equal familiarity with techniques suitable for
analyzing and synthesizing both continuous-time and discrete-time systems. As we write
the preface to this second edition, that observation and guiding principle are even more true
than before. Thus, while students studying signals and systems should certainly have a solid
foundation in disciplines based on the laws of physics, they must also have a firm grounding
in the use of computers for the analysis of phenomena and the implementation of systems
and algorithms. As a consequence, engineering curricula now reflect a blend of subjects,
some involving continuous-time models and others focusing on the use of computers and
discrete representations. For these reasons, signals and systems courses that bring discrete-
time and continuous-time concepts together in a unified way play an increasingly important
role in the education of engineering students and in their preparation for current and future
developments in their chosen fields.

It is with these goals in mind that we have structured this book to develop in parallel the
methods of analysis for continuous-time and discrete-time signals and systems. This ap-
proach also offers a distinct and extremely important pedagogical advantage. Specifically,
we are able to draw on the similarities between continuous- and discrete-time methods in
order to share insights and intuition developed in each domain. Similarly, we can exploit
the differences between them to sharpen an understanding of the distinct properties of each.

In organizing the material both originally and now in the second edition, we have also
considered it essential to introduce the student to some of the important uses of the basic
methods that are developed in the book. Not only does this provide the student with an
appreciation for the range of applications of the techniques being learned and for directions
for further study, but it also helps to deepen understanding of the subject. To achieve this

XVii



XViii Preface

goal we include introductory treatments on the subjects of filtering, communications, sam-
pling, discrete-time processing of continuous-time signals, and feedback. In fact, in one of
the major changes in this second edition, we have introduced the concept of frequency-
domain filtering very early in our treatment of Fourier analysis in order to provide both
motivation for and insight into this very important topic. In addition, we have again included
an up-to-date bibliography at the end of the book in order to assist the student who is inter-
ested in pursuing additional and more advanced studies of the methods and applications of
signal and system analysis.

The organization of the book reflects our conviction that full mastery of a subject of this
nature cannot be accomplished without a significant amount of practice in using and apply-
ing the tools that are developed. Consequently, in the second edition we have significantly
increased the number of worked examples within each chapter. We have also enhanced one
of the key assets of the first edition, namely the end-of-chapter homework problems. As in
the first edition, we have included a substantial number of problems, totaling more than 600
in number. A majority of the problems included here are new and thus provide additional
flexibility for the instructor in preparing homework assignments.

In addition, in order to enhance the utility of the problems for both the student and the
instructor we have made a number of other changes to the organization and presentation of
the problems. In particular, we have organized the problems in each chapter under several
specific headings, each of which spans the material in the entire chapter but with a different
objective. The first two sections of problems in each chapter emphasize the mechanics of
using the basic concepts and methods presented in the chapter. For the first of these two
sections, which has the heading Basic Problems with Answers, we have also provided an-
swers (but not solutions) at the end of the book. These answers provide a simple and imme-
diate way for the student to check his or her understanding of the material. The problems in
this first section are generally appropriate for inclusion in homework sets.

Also, in order to give the instructor additional flexibility in assigning homework problems,

we have provided a second section of Basic Problems for which answers have not been
included.

A third section of problems in each chapter, organized under the heading of Advanced
Problems, is oriented toward exploring and elaborating upon the foundations and practical
implications of the material in the text. These problems often involve mathematical deriva-
tions and more sophisticated use of the concepts and methods presented in the chapter.
Some chapters also include a section of Extension Problems which involve extensions of
material presented in the chapter and/or involve the use of knowledge from applications that
are outside the scope of the main text (such as advanced circuits or mechanical systems).
The overall variety and quantity of problems in each chapter will hopefully provide students
with the means to develop their understanding of the material and instructors with consid-
erable flexibility in putting together homework sets that are tailored to the specific needs of
their students. A solutions manual is also available to instructors through the publisher.

Another significant additional enhancement to this second edition is the availability of
the companion booExplorationsin Signals and Systems Using MATLAB by Buck,

Daniel, and Singer. This book contains MATLAB™-based computer exercises for each
topic in the text, and should be of great assistance to both instructor and student.
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Students using this book are assumed to have a basic background in calculus as well as
some experience in manipulating complex numbers and some exposure to differential equa-
tions. With this background, the book is self-contained. In particular, no prior experience
with system analysis, convolution, Fourier analysis, or Laplacezarahsforms is as-
sumed. Prior to learning the subject of signals and systems most students will have had a
course such as basic circuit theory for electrical engineers or fundamentals of dynamics for
mechanical engineers. Such subjects touch on some of the basic ideas that are developed
more fully in this text. This background can clearly be of great value to students in providing
additional perspective as they proceed through the book.

The Foreword, which follows this preface, is written to offer the reader motivation and
perspective for the subject of signals and systems in general and our treatment of it in par-
ticular. We begin Chapter 1 by introducing some of the elementary ideas related to the
mathematical representation of signals and systems. In particular we discuss transfor-
mations (such as time shifts and scaling) of the independent variable of a signal. We also
introduce some of the most important and basic continuous-time and discrete-time signals,
namely real and complex exponentials and the continuous-time and discrete-time unit step
and unit impulse. Chapter 1 also introduces block diagram representations of interconnec-
tions of systems and discusses several basic system properties such as causality, linearity
and time-invariance. In Chapter 2 we build on these last two properties, together with the
sifting property of unit impulses to develop the convolution-sum representation for discrete-
time linear, time-invariant (LTI) systems and the convolution integral representation for
continuous-time LTI systems. In this treatment we use the intuition gained from our devel-
opment of the discrete-time case as an aid in deriving and understanding its continuous-
time counterpart. We then turn to a discussion of causal, LTI systems characterized by linear
constant-coefficient differential and difference equations. In this introductory discussion we
review the basic ideas involved in solving linear differential equations (to which most stu-
dents will have had some previous exposure) and we also provide a discussion of analogous
methods for linear difference equations. However, the primary focus of our development in
Chapter 2 is not on methods of solution, since more convenient approaches are developed
later using transform methods. Instead, in this first look, our intent is to provide the student
with some appreciation for these extremely important classes of systems, which will be
encountered often in subsequent chapters. Finally, Chapter 2 concludes with a brief discus-
sion of singularity functions—steps, impulses, doublets, and so forth—in the context of
their role in the description and analysis of continuous-time LTI systems. In particular, we
stress the interpretation of these signals in terms of how they are defined under convolu-
tion—that is, in terms of the responses of LTI systems to these idealized signals.

Chapters 3 through 6 present a thorough and self-contained development of the methods
of Fourier analysis in both continuous and discrete time and together represent the most
significant reorganization and revision in the second edition. In particular, as we indicated
previously, we have introduced the concept of frequency-domain filtering at a much earlier
point in the development in order to provide motivation for and a concrete application of
the Fourier methods being developed. As in the first edition, we begin the discussions in
Chapter 3 by emphasizing and illustrating the two fundamental reasons for the important
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role Fourier analysis plays in the study of signals and systems in both continuous and dis-
crete time: (1) extremely broad classes of signals can be represented as weighted sums or
integrals of complex exponentials; and (2) the response of an LTI system to a complex
exponential input is the same exponential multiplied by a complex-number characteristic of
the system. However, in contrast to the first edition, the focus of attention in Chapter 3 is
on Fourier series representations for periodic signals in both continuous time and discrete
time. In this way we not only introduce and examine many of the properties of Fourier
representations without the additional mathematical generalization required to obtain the
Fourier transform for aperiodic signals, but we also can introduce the application to filtering
at a very early stage in the development. In particular, taking advantage of the fact that
complex exponentials are eigenfunctions of LTI systems, we introduce the frequency re-
sponse of an LTI system and use it to discuss the concept of frequency-selective filtering,
to introduce ideal filters, and to give several examples of nonideal filters described by dif-
ferential and difference equations. In this way, with a minimum of mathematical prelimi-
naries, we provide the student with a deeper appreciation for what a Fourier representation
means and why it is such a useful construct.

Chapters 4 and 5 then build on the foundation provided by Chapter 3 as we develop first
the continuous-time Fourier transform in Chapter 4 and, in a parallel fashion, the discrete-
time Fourier transform in Chapter 5. In both chapters we derive the Fourier transform rep-
resentation of an aperiodic signal as the limit of the Fourier series for a signal whose period
becomes arbitrarily large. This perspective emphasizes the close relationship between Fou-
rier series and transforms, which we develop further in subsequent sections and which al-
lows us to transfer the intuition developed for Fourier series in Chapter 3 to the more general
context of Fourier transforms. In both chapters we have included a discussion of the many
important properties of Fourier transforms, with special emphasis placed on the convolution
and multiplication properties. In particular, the convolution property allows us to take a
second look at the topic of frequency-selective filtering, while the multiplication property
serves as the starting point for our treatment of sampling and modulation in later chapters.
Finally, in the last sections in Chapters 4 and 5 we use transform methods to determine the
frequency responses of LTI systems described by differential and difference equations and
to provide several examples illustrating how Fourier transforms can be used to compute the
responses for such systems. To supplement these discussions (and later treatments of La-
place and-transforms) we have again included an Appendix at the end of the book that
contains a description of the method of partial fraction expansion.

Our treatment of Fourier analysis in these two chapters is characteristic of the parallel
treatment we have developed. Specifically, in our discussion in Chapter 5, we are able to
build on much of the insight developed in Chapter 4 for the continuous-time case, and to-
ward the end of Chapter 5 we emphasize the complete duality in continuous-time and dis-
crete-time Fourier representations. In addition, we bring the special nature of each domain
into sharper focus by contrasting the differences between continuous- and discrete-time
Fourier analysis.

As those familiar with the first edition will note, the lengths and scopes of Chapters 4
and 5 in the second edition are considerably smaller than their first edition counterparts.
This is due not only to the fact that Fourier series are now dealt with in a separate chapter
but also to our moving several topics into Chapter 6. The result, we believe, has several
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significant benefits. First, the presentation in three shorter chapters of the basic concepts
and results of Fourier analysis, together with the introduction of the concept of frequency-
selective filtering, should help the student in organizing his or her understanding of this
material and in developing some intuition about the frequency domain and appreciation for
its potential applications. Then, with Chapters 3-5 as a foundation, we can engage in a more
detailed look at a number of important topics and applications. In Chapter 6 we take a deeper
look at both the time- and frequency-domain characteristics of LTI systems. For example,
we introduce magnitude-phase and Bode plot representations for frequency responses and
discuss the effect of frequency response phase on the time domain characteristics of the
output of an LTI system. In addition, we examine the time- and frequency-domain behavior
of ideal and nonideal filters and the tradeoffs between these that must be addressed in prac-
tice. We also take a careful look at first- and second-order systems and their roles as basic
building blocks for more complex system synthesis and analysis in both continuous and
discrete time. Finally, we discuss several other more complex examples of filters in both
continuous and discrete time. These examples together with the numerous other aspects of
filtering explored in the problems at the end of the chapter provide the student with some
appreciation for the richness and flavor of this important subject. While each of the topics
in Chapter 6 was present in the first edition, we believe that by reorganizing and collecting
them in a separate chapter following the basic development of Fourier analysis, we have
both simplified the introduction of this important topic in Chapters 3-5 and presented in
Chapter 6 a considerably more cohesive picture of time- and frequency-domain issues.

In response to suggestions and preferences expressed by many users of the first edition
we have modified notation in the discussion of Fourier transforms to be more consistent
with notation most typically used for continuous-time and discrete-time Fourier transforms.
Specifically, beginning with Chapter 3 we now denote the continuous-time Fourier trans-
form asX( jw ) and the discrete-time Fourier transformXési«). As with all options with
notation, there is not a unique best choice for the notation for Fourier transforms. However,
it is our feeling, and that of many of our colleagues, that the notation used in this edition
represents the preferable choice.

Our treatment of sampling in Chapter 7 is concerned primarily with the sampling theo-
rem and its implications. However, to place this subject in perspective we begin by discuss-
ing the general concepts of representing a continuous-time signal in terms of its samples
and the reconstruction of signals using interpolation. After using frequency-domain meth-
ods to derive the sampling theorem, we consider both the frequency and time domains to
provide intuition concerning the phenomenon of aliasing resulting from undersampling.
One of the very important uses of sampling is in the discrete-time processing of continuous-
time signals, a topic that we explore at some length in this chapter. Following this, we turn
to the sampling of discrete-time signals. The basic result underlying discrete-time sampling
is developed in a manner that parallels that used in continuous time, and the applications of
this result to problems of decimation and interpolation are described. Again a variety of
other applications, in both continuous and discrete time, are addressed in the problems.

Once again the reader acquainted with our first edition will note a change, in this case
involving the reversal in the order of the presentation of sampling and communications. We
have chosen to place sampling before communications in the second edition both because
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we can call on simple intuition to motivate and describe the processes of sampling and
reconstruction from samples and also because this order of presentation then allows us in
Chapter 8 to talk more easily about forms of communication systems that are closely related
to sampling or rely fundamentally on using a sampled version of the signal to be transmitted.

Our treatment of communications in Chapter 8 includes an in -depth discussion of con-
tinuous-time sinusoidal amplitude modulation (AM), which begins with the straightforward
application of the multiplication property to describe the effect of sinusoidal AM in the
frequency domain and to suggest how the original modulating signal can be recovered. Fol-
lowing this, we develop a number of additional issues and applications related to sinusoidal
modulation, including frequency-division multiplexing and single-sideband modulation.
Many other examples and applications are described in the problems. Several additional
topics are covered in Chapter 8. The first of these is amplitude modulation of a pulse train
and time-division multiplexing, which has a close connection to the topic of sampling in
Chapter 7. Indeed we make this tie even more explicit and provide a look into the important
field of digital communications by introducing and briefly describing the topics of pulse-
amplitude modulation (PAM) and intersymbol interference. Finally, our discussion of fre-
guency modulation (FM) provides the reader with a look at a nonlinear modulation problem.
Although the analysis of FM systems is not as straightforward as for the AM case, our
introductory treatment indicates how frequency-domain methods can be used to gain a sig-
nificant amount of insight into the characteristics of FM signals and systems. Through these
discussions and the many other aspects of modulation and communications explored in the
problems in this chapter we believe that the student can gain an appreciation both for the
richness of the field of communications and for the central role that the tools of signals and
systems analysis play in it.

Chapters 9 and 10 treat the Laplace atmnsforms, respectively. For the most part,
we focus on the bilateral versions of these transforms, although in the last section of each
chapter we discuss unilateral transforms and their use in solving differential and difference
equations with nonzero initial conditions. Both chapters include discussions on: the close
relationship between these transforms and Fourier transforms; the class of rational trans-
forms and their representation in terms of poles and zeros; the region of convergence of a
Laplace orz-transform and its relationship to properties of the signal with which it is asso-
ciated; inverse transforms using partial fraction expansion; the geometric evaluation of sys-
tem functions and frequency responses from pole-zero plots; and basic transform properties.
In addition, in each chapter we examine the properties and uses of system functions for LTI
systems. Included in these discussions are the determination of system functions for systems
characterized by differential and difference equations; the use of system function algebra
for interconnections of LTI systems; and the construction of cascade, parallel- and direct-
form block-diagram representations for systems with rational system functions.

The tools of Laplace ar@transforms form the basis for our examination of linear feed-
back systems in Chapter 11. We begin this chapter by describing a number of the important
uses and properties of feedback systems, including stabilizing unstable systems, designing
tracking systems, and reducing system sensitivity. In subsequent sections we use the tools
that we have developed in previous chapters to examine three topics that are of importance
for both continuous-time and discrete-time feedback systems. These are root locus analysis,
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Nyquist plots and the Nyquist criterion, and log-magnitude/phase plots and the concepts of
phase and gain margins for stable feedback systems.

The subject of signals and systems is an extraordinarily rich one, and a variety of ap-
proaches can be taken in designing an introductory course. It was our intention with the first
edition and again with this second edition to provide instructors with a great deal of flexi-
bility in structuring their presentations of the subject. To obtain this flexibility and to max-
imize the usefulness of this book for instructors, we have chosen to present thorough, in-
depth treatments of a cohesive set of topics that forms the core of most introductory courses
on signals and systems. In achieving this depth we have of necessity omitted introductions
to topics such as descriptions of random signals and state space models that are sometimes
included in first courses on signals and systems. Traditionally, at many schools, such topics
are not included in introductory courses but rather are developed in more depth in follow-
on undergraduate courses or in courses explicitly devoted to their investigation. Although
we have not included an introduction to state space in the book, instructors of introductory
courses can easily incorporate it into the treatments of differential and difference equations
that can be found throughout the book. In particular, the discussions in Chapters 9 and | 0
on block diagram representations for systems with rational system functions and on unilat-
eral transforms and their use in solving differential and difference equations with initial
conditions form natural points of departure for the discussions of state-space representa-
tions.

A typical one-semester course at the sophomore-junior level using this book would
cover Chapters 1-5 in reasonable depth (although various topics in each chapter are easily
omitted at the discretion of the instructor) with selected topics chosen from the remaining
chapters. For example, one possibility is to present several of the basic topics in Chapters
6-8 together with a treatment of Laplace aftcansforms and perhaps a brief introduction
to the use of system function concepts to analyze feedback systems. A variety of alternate
formats are possible, including one that incorporates an introduction to state space or one
in which more focus is placed on continuous-time systems by de-emphasizing Chapters 5
and 10 and the discrete-time topics in Chapters 3, 7, 8, and 11.

In addition to these course formats this book can be used as the basic text for a thorough,
two-semester sequence on linear systems. Alternatively, the portions of the book not used
in a first course on signals and systems can, together with other sources, form the basis for
a subsequent course. For example, much of the material in this book forms a direct bridge
to subjects such as state space analysis, control systems, digital signal processing, commu-
nications and statistical signal processing. Consequently, a follow-on course can be con-
structed that uses some of the topics in this book together with supplementary material in
order to provide an introduction to one or more of these advanced subjects. In fact, a new
course following this model has been developed at MIT and has proven not only to be a
popular course among our students but also a crucial component of our signals and systems
curriculum.

As it was with the first edition, in the process of writing this book we have been fortunate
to have received assistance, suggestions, and support from numerous colleagues, students
and friends. The ideas and perspectives that form the heart of this book have continued to
evolve as a result of our own experiences in teaching signals and systems and the influences
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of the many colleagues and students with whom we have worked. We would like to thank
Professor lan T. Young for his contributions to the first edition of this book and to thank
and welcome Professor Hamid Nawab for the significant role he played in the development
and complete restructuring of the examples and problems for this second edition.

We also express our appreciation to John Buck, Michael Daniel and Andrew Singer for
writing the MATLAB companion to the text. In addition, we would like to thank Jason
Oppenheim for the use of one of his original photographs and Vivian Berman for her ideas
and help in arriving at a cover design. Also, as indicated on the acknowledgement page that
follows, we are deeply grateful to the many students and colleagues who devoted a signifi-
cant number of hours to a variety of aspects of the preparation of this second edition. We
would also like to express our sincere thanks to Mr. Ray Stata and Analog Devices, Inc. for
their generous and continued support of signal processing and this text through funding of
the Distinguished Professor Chair in Electrical Engineering. We also thank M.L.T. for
providing support and an invigorating environment in which to develop our ideas.

The encouragement, patience, technical support, and enthusiasm provided by Prentice-
Hall, and in particular by Marcia Horton, Tom Robbins, Don Fowley, and their predecessors
and by Ralph Pescatore of TKM Productions and the production staff at Prentice-Hall, have
been crucial in making this second edition a reality.
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FoOREWORD

The concepts of signals and systems arise in a wide variety of fields, and the ideas and
techniques associated with these concepts play an important role in such diverse areas of
science and technology as communications, aeronautics and astronautics, circuit design,
acoustics, seismology, biomedical engineering, energy generation and distribution sys-
tems, chemical process control, and speech processing. Although the physical nature of
the signals and systems that arise in these various disciplines may be drastically different,
they all have two very basic features in common. The signals, which are functions of one
or more independent variables, contain information about the behavior or nature of some
phenomenon, whereas the systems respond to particular signals by producing other sig-
nals or some desired behavior. Voltages and currents as a function of time in an electrical
circuit are examples of signals, and a circuit is itself an example of a system, which in this
case responds to applied voltages and currents. As another example, when an automobile
driver depresses the accelerator pedal, the automobile responds by increasing the speed
of the vehicle. In this case, the system is the automobile, the pressure on the accelerator
pedal the input to the system, and the automobile speed the response. A computer program
for the automated diagnosis of electrocardiograms can be viewed as a system which has as
its input a digitized electrocardiogram and which produces estimates of parameters such
as heart rate as outputs. A camera is a system that receives light from different sources
and reflected from objects and produces a photograph. A robot arm is a system whose
movements are the response to control inputs.

In the many contexts in which signals and systems arise, there are a variety of prob-
lems and questions that are of importance. In some cases, we are presented with a specific
system and are interested in characterizing it in detail to understand how it will respond to
various inputs. Examples include the analysis of a circuit in order to quantify its response
to different voltage and current sources and the determination of an aircraft’s response
characteristics both to pilot commands and to wind gusts.

In other problems of signal and system analysis, rather than analyzing existing sys-
tems, our interest may be focused on designing systems to process signals in particular
ways. One very common context in which such problems arise is in the design of systems
to enhance or restore signals that have been degraded in some way. For example, when
a pilot is communicating with an air traffic control tower, the communication can be de-
graded by the high level of background noise in the cockpit. In this and many similar cases,
it is possible to design systems that will retain the desired signal, in this case the pilot’s
voice, and reject (at least approximately) the unwanted signal, i.e., the noise. A similar
set of objectives can also be found in the general area of image restoration and image
enhancement. For example, images from deep space probes or earth-observing satellites
typically represent degraded versions of the scenes being imaged because of limitations of
the imaging equipment, atmospheric effects, and errors in signal transmission in returning
the images to earth. Consequently, images returned from space are routinely processed
by systems to compensate for some of these degradations. In addition, such images are usu-
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ally processed to enhance certain features, such as lines (corresponding, for example, to
river beds or faults) or regional boundaries in which there are sharp contrasts in color or
darkness.

In addition to enhancement and restoration, in many applications there is a need to
design systems to extract specific pieces of information from signals. The estimation of
heart rate from an electrocardiogram is one example. Another arises in economic forecast-
ing. We may, for example, wish to analyze the history of an economic time series, such as
a set of stock market averages, in order to estimate trends and other characteristics such
as seasonal variations that may be of use in making predictions about future behavior. In
other applications, the focus may be on the design of signals with particular properties.
Specifically, in communications applications considerable attention is paid to designing
signals to meet the constraints and requirements for successful transmission. For exam-
ple, long distance communication through the atmosphere requires the use of signals with
frequencies in a particular part of the electromagnetic spectrum. The design of communi-
cation signals must also take into account the need for reliable reception in the presence
of both distortion due to transmission through the atmosphere and interference from other
signals being transmitted simultaneously by other users.

Another very important class of applications in which the concepts and techniques
of signal and system analysis arise are those in which we wish to modify or control the
characteristics of a given system, perhaps through the choice of specific input signals or
by combining the system with other systems. Illustrative of this kind of application is the
design of control systems to regulate chemical processing plants. Plants of this type are
equipped with a variety of sensors that measure physical signals such as temperature, hu-
midity, and chemical composition. The control system in such a plant responds to these
sensor signals by adjusting quantities such as flow rates and temperature in order to regu-
late the ongoing chemical process. The design of aircraft autopilots and computer control
systems represents another example. In this case, signals measuring aircraft speed, alti-
tude, and heading are used by the aircraft’s control system in order to adjust variables such
as throttle setting and the position of the rudder and ailerons. These adjustments are made
to ensure that the aircraft follows a specified course, to smooth out the aircraft’s ride, and
to enhance its responsiveness to pilot commands. In both this case and in the previous ex-
ample of chemical process control, an important concept, referred to as feedback, plays a
major role, as measured signals are fed back and used to adjust the response characteristics
of a system.

The examples in the preceding paragraphs represent only a few of an extraordinarily
wide variety of applications for the concepts of signals and systems. The importance of
these concepts stems not only from the diversity of phenomena and processes in which
they arise, but also from the collection of ideas, analytical techniques, and methodologies
that have been and are being developed and used to solve problems involving signals and
systems. The history of this development extends back over many centuries, and although
most of this work was motivated by specific applications, many of these ideas have proven
to be of central importance to problems in a far larger variety of contexts than those for
which they were originally intended. For example, the tools of Fourier analysis, which
form the basis for the frequency-domain analysis of signals and systems, and which we
will develop in some detail in this book, can be traced from problems of astronomy studied
by the ancient Babylonians to the development of mathematical physics in the eighteenth
and nineteenth centuries.
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In some of the examples that we have mentioned, the signals vary continuously in
time, whereas in others, their evolution is described only at discrete points in time. For
example, in the analysis of electrical circuits and mechanical systems we are concerned
with signals that vary continuously. On the other hand, the daily closing stock market
average is by its very nature a signal that evolves at discrete points in time (i.e., at the
close of each day). Rather than a curve as a function of a continuous variable, then, the
closing stock market average is a sequence of numbers associated with the discrete time
instants at which it is specified. This distinction in the basic description of the evolution of
signals and of the systems that respond to or process these signals leads naturally to two
parallel frameworks for signal and system analysis, one for phenomena and processes that
are described in continuous time and one for those that are described in discrete time.

The concepts and techniques associated both with continuous-time signals and sys-
tems and with discrete-time signals and systems have a rich history and are conceptually
closely related. Historically, however, because their applications have in the past been suf-
ficiently different, they have for the most part been studied and developed somewhat sepa-
rately. Continuous-time signals and systems have very strong roots in problems associated
with physics and, in the more recent past, with electrical circuits and communications.
The techniques of discrete-time signals and systems have strong roots in numerical analy-
sis, statistics, and time-series analysis associated with such applications as the analysis of
economic and demographic data. Over the past several decades, however, the disciplines
of continuous-time and discrete-time signals and systems have become increasingly en-
twined and the applications have become highly interrelated. The major impetus for this
has come from the dramatic advances in technology for the implementation of systems
and for the generation of signals. Specifically, the continuing development of high-speed
digital computers, integrated circuits, and sophisticated high-density device fabrication
techniques has made it increasingly advantageous to consider processing continuous-time
signals by representing them by time samples (i.e., by converting them to discrete-time
signals). As one example, the computer control system for a modern high-performance
aircraft digitizes sensor outputs such as vehicle speed in order to produce a sequence of
sampled measurements which are then processed by the control system.

Because of the growing interrelationship between continuous-time signals and sys-
tems and discrete-time signals and systems and because of the close relationship among
the concepts and techniques associated with each, we have chosen in this text to develop
the concepts of continuous-time and discrete-time signals and systems in parallel. Since
many of the concepts are similar (but not identical), by treating them in parallel, insight
and intuition can be shared and both the similarities and difterences between them become
better focused. In addition, as will be evident as we proceed through the material, there
are some concepts that are inherently easier to understand in one framework than the other
and, once understood, the insight is easily transferable. Furthermore, this parallel treatment
greatly facilitates our understanding of the very important practical context in which con-
tinuous and discrete time are brought together, namely the sampling of continuous-time
signals and the processing of continuous-time signals using discrete-time systems.

As we have so far described them, the notions of signals and systems are extremely
general concepts. At this level of generality, however, only the most sweeping statements
can be made about the nature of signals and systems, and their properties can be discussed
only in the most elementary terms. On the other hand, an important and fundamental notion
in dealing with signals and systems is that by carefully choosing subclasses of each with
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particular properties that can then be exploited, we can analyze and characterize these
signals and systems in great depth. The principal focus in this book is on the particular
class of linear time-invariant systems. The properties of linearity and time invariance that
define this class lead to a remarkable set of concepts and techniques which are not only of
major practical importance but also analytically tractable and intellectually satisfying.

As we have emphasized in this foreword, signal and system analysis has a long his-
tory out of which have emerged some basic techniques and fundamental principles which
have extremely broad areas of application. Indeed, signal and system analysis is constantly
evolving and developing in response to new problems, techniques, and opportunities. We
fully expect this development to accelerate in pace as improved technology makes possi-
ble the implementation of increasingly complex systems and signal processing techniques.
In the future we will see signals and systems tools and concepts applied to an expanding
scope of applications. For these reasons, we feel that the topic of signal and system analy-
sis represents a body of knowledge that is of essential concern to the scientist and engineer.
We have chosen the set of topics presented in this book, the organization of the presen-
tation, and the problems in each chapter in a way that we feel will most help the reader
to obtain a solid foundation in the fundamentals of signal and system analysis; to gain an
understanding of some of the very important and basic applications of these fundamentals
to problems in filtering, sampling, communications, and feedback system analysis; and to
develop some appreciation for an extremely powerful and broadly applicable approach to
formulating and solving complex problems.



SIGNALS AND SYSTEMS

1.0 INTRODUCTION

As described in the Foreword, the intuitive notions of signals and systems arise in arich va-
riety of contexts. Moreover, as we will see in this book, there is an analytical framework—
that is, a language for describing signals and systems and an extremely powerful set of tools
for analyzing them—that applies equally well to problems in many fields. In this chapter,
we begin our development of the analytical framework for signals and systems by intro-
ducing their mathematical description and representations. In the chapters that follow, we
build on this foundation in order to develop and describe additional concepts and methods
that add considerably both to our understanding of signals and systems and to our ability
to analyze and solve problems involving signals and systems that arise in a broad array of
applications.

1.1 CONTINUOUS-TIME AND DISCRETE-TIME SIGNALS

1.1.1 Examples and Mathematical Representation

Signals may describe a wide variety of physical phenomena. Although signals can be rep-
resented in many ways, in all cases the information in a signal is contained in a pattern of
variations of some form. For example, consider the simple circuit in Figure 1.1. In this case,
the patterns of variation over time in the source and capactitor voltages, v, and v, are exam-
ples of signals. Similarly, as depicted in Figure 1.2, the variations over time of the applied
force f and the resulting automobile velocity v are signals. As another example, consider
the human vocal mechanism, which produces speech by creating fluctuations in acous-
tic pressure. Figure 1.3 is an illustration of a recording of such a speech signal, obtained by
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Figure 1.1 A simple AC circuit with source
voltage v and capacitor voltage v;.
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Figure 1.2 An automobile responding to an
applied force f from the engine and to a re-

tarding frictional force pv proportional to the
automobile’s velocity v.
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Figure 1.3 Example of a record-
ing of speech. [Adapted from Ap-
plications of Digital Signal Process-
ing, A.V. Oppenheim, ed. (Englewood
Cliffs, N.J.: Prentice-Hall, Inc., 1978),
p. 121.] The signal represents acous-
tic pressure variations as a function
of time for the spoken words “should
we chase.” The top line of the figure
corresponds to the word “should,”
the second line to the word “we,”
and the last two lines to the word
“chase.” (We have indicated the ap-
proximate beginnings and endings

of each successive sound in each
word.)

using a microphone to sense variations in acoustic pressure, which are then converted into
an electrical signal. As can be seen in the figure, different sounds correspond to different
patterns in the variations of acoustic pressure, and the human vocal system produces intel-
ligible speech by generating particular sequences of these patterns. Alternatively, for the
monochromatic picture, shown in Figure 1.4, it is the pattern of variations in brightness
across the image that is important.
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Figure 1.4 A monochromatic
picture.

Signals are represented mathematically as functions of one or more independent
variables. For example, a speech signal can be represented mathematically by acoustic
pressure as a function of time, and a picture can be represented by brightness as a func-
tion of two spatial variables. In this book, we focus our attention on signals involving a
single independent variable. For convenience, we will generally refer to the independent
variable as time, although it may not in fact represent time in specific applications. For
example, in geophysics, signals representing variations with depth of physical quantities
such as density, porosity, and electrical resistivity are used to study the structure of the
earth. Also, knowledge of the variations of air pressure, temperature, and wind speed with
altitude are extremely important in meteorological investigations. Figure 1.5 depicts a typ-
ical example of annual average vertical wind profile as a function of height. The measured
variations of wind speed with height are used in examining weather patterns, as well as
wind conditions that may affect an aircraft during final approach and landing.

Throughout this book we will be considering two basic types of signals: continuous-
time signals and discrete-time signals. In the case of continuous-time signals the inde-
pendent variable is continuous, and thus these signals are defined for a continuum of values
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Figure 1.6 An example of a discrete-time signal: The weekly Dow-Jones
stock market index from January 5, 1929, to January 4, 1930.

of the independent variable. On the other hand, discrete-time signals are defined only at
discrete times, and consequently, for these signals, the independent variable takes on only
a discrete set of values. A speech signal as a function of time and atmospheric pressure
as a function of altitude are examples of continuous-time signals. The weekly Dow-Jones
stock market index, as illustrated in Figure 1.6, is an example of a discrete-time signal.
Other examples of discrete-time signals can be found in demographic studies in which
various attributes, such as average budget, crime rate, or pounds of fish caught, are tab-
ulated against such discrete variables as family size, total population, or type of fishing
vessel, respectively.

To distinguish between continuous-time and discrete-time signals, we will use the
symbol ¢ to denote the continuous-time independent variable and n to denote the discrete-
time independent variable. In addition, for continuous-time signals we will enclose the
independent variable in parentheses (), whereas for discrete-time signals we will use
brackets [ - ] to enclose the independent variable. We will also have frequent occasions
when it will be useful to represent signals graphically. Illustrations of a continuous-time
signal x(¢) and a discrete-time signal x[n] are shown in Figure 1.7. It is important to note
that the discrete-time signal x[#n] is defined only for integer values of the independent
variable. Our choice of graphical representation for x[n] emphasizes this fact, and for
further emphasis we will on occasion refer to x{n] as a discrete-time sequence.

A discrete-time signal x[n] may represent a phenomenon for which the independent
variable is inherently discrete. Signals such as demographic data are examples of this. On
the other hand, a very important class of discrete-time signals arises from the sampling of
continuous-time signals. In this case, the discrete-time signal x[n] represents successive
samples of an underlying phenomenon for which the independent variable is continuous.
Because of their speed, computational power, and flexibility, modern digital processors are
used to implement many practical systems, ranging from digital autopilots to digital audio
systems. Such systems require the use of discrete-time sequences representing sampled
versions of continuous-time signals—e.g., aircraft position, velocity, and heading for an
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Figure 1.7 Graphical representations of (a) continuous-time and (b) discrete-
time signals.

autopilot or speech and music for an audio system. Also, pictures in newspapers—or in this
book, for that matter—actually consist of a very fine grid of points, and each of these points
represents a sample of the brightness of the corresponding point in the original image. No
matter what the source of the data, however, the signal x[n] is defined only for integer
values of n. It makes no more sense to refer to the S%th sample of a digital speech signal
than it does to refer to the average budget for a family with 2. family members.

Throughout most of this book we will treat discrete-time signals and continuous-time
signals separately but in parallel, so that we can draw on insights developed in one setting
to aid our understanding of another. In Chapter 7 we will return to the question of sampling,
and in that context we will bring continuous-time and discrete-time concepts together in
order to examine the relationship between a continuous-time signal and a discrete-time
signal obtained from it by sampling.

1.1.2 Signal Energy and Power

From the range of examples provided so far, we see that signals may represent a broad
variety of phenomena. In many, but not all, applications, the signals we consider are di-
rectly related to physical quantities capturing power and energy in a physical system. For
example, if v(r) and i(¢) are, respectively, the voltage and current across a resistor with
resistance R, then the instantaneous power is

plE) = vOI(D) = (D, (L.1)
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The total energy expended over the time interval t; = t < ¢, is

ty t 1
J p(dt = J Evz(t)dz, (1.2)
h n
and the average power over this time interval is
Jtz )d : Jl *(nd (1.3)
t)yatr = —vo(t)at. .
onl, P n—nl, R

Similarly, for the automobile depicted in Figure 1.2, the instantaneous power dissipated
through friction is p(f) = bv*(f), and we can then define the total energy and average
power over a time interval in the same way as in eqs. (1.2) and (1.3).

With simple physical examples such as these as motivation, it is a common and
worthwhile convention to use similar terminology for power and energy for any continuous-
time signal x(¢) or any discrete-time signal x[n]. Moreover, as we will see shortly, we will
frequently find it convenient to consider signals that take on complex values. In this case,
the total energy over the time interval #; =< ¢ =< f, in a continuous-time signal x(z) is
defined as

153
J |x(0)|*dt, (1.4)
f
where | x| denotes the magnitude of the (possibly complex) number x. The time-averaged
power is obtained by dividing eq. (1.4) by the length, t, — ¢, of the time interval. Simi-
larly, the total energy in a discrete-time signal x[n] over the time interval ny = n < ny is
defined as

2 (1.5)

> |xlnl

n=n

and dividing by the number of points in the interval, ny — n; + 1, yields the average power
over the interval. It is important to remember that the terms “power” and “energy” are used
here independently of whether the quantities in eqgs. (1.4) and (1.5) actually are related to
physical energy.! Nevertheless, we will find it convenient to use these terms in a general
fashion.

Furthermore, in many systems we will be interested in examining power and energy
in signals over an infinite time interval, i.e., for —o0 <t < 4o or for —0 < n < +o. In
these cases, we define the total energy as limits of egs. (1.4) and (1.5) as the time interval
increases without bound. That is, in continuous time,

T +oc
E.2 lim J Ix(t)dt = J Ix(O)P dt, (1.6)
- f_7 o
and in discrete time,
A +N oo
E. = lim > lxnlF = D> |x[nl (1.7)
n=-N n=—x

"Even if such a relationship does exist, egs. (1.4) and (1.5) may have the wrong dimensions and scalings.
For example, comparing eqs. (1.2) and (1.4), we see that if x(r) represents the voltage across a resistor, then
eq. (1.4) must be divided by the resistance (measured, for example, in ohms) to obtain units of physical energy.
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Note that for some signals the integral in eq. (1.6) or sum in eq. (1.7) might not converge—
e.g., if x(¢) or x[n] equals a nonzero constant value for all time. Such signals have infinite
energy, while signals with E.. < « have finite energy.

In an analogous fashion, we can define the time-averaged power over an infinite
interval as

P. £ lim LJT lx(D) dt (1.8)
* T—= 2T -T '
and
4 2
P = dim SN T 1 2N 'y Z Ll (19)

in continuous time and discrete time, respectively. With these definitions, we can identify
three important classes of signals. The first of these is the class of signals with finite total
energy, i.e., those signals for which E.. < . Such a signal must have zero average power,
since in the continuous time case, for example, we see from eq. (1.8) that

P. = lim E _ 0. (1.10)

An example of a finite-energy signal is a signal that takes on the value 1 for0 = r = 1
and 0 otherwise. In this case, E. = 1 and P. = 0.

A second class of signals are those with finite average power P.. From what we
have just seen, if P.. > 0, then, of necessity, F.. = . This, of course, makes sense, since
if there is a nonzero average energy per unit time (i.e., nonzero power), then integrating
or summing this over an infinite time interval yields an infinite amount of energy. For
example, the constant signal x[n] = 4 has infinite energy, but average power P.. = 16.
There are also signals for which neither P.. nor E. are finite. A simple example is the
signal x(#) = t. We will encounter other examples of signals in each of these classes in
the remainder of this and the following chapters.

1.2 TRANSFORMATIONS OF THE INDEPENDENT VARIABLE

A central concept in signal and system analysis is that of the transformation of a signal.
For example, in an aircraft control system, signals corresponding to the actions of the pilot
are transformed by electrical and mechanical systems into changes in aircraft thrust or
the positions of aircraft control surfaces such as the rudder or ailerons, which in turn are
transformed through the dynamics and kinematics of the vehicle into changes in aircraft
velocity and heading. Also, in a high-fidelity audio system, an input signal representing
music as recorded on a cassette or compact disc is modified in order to enhance desirable
characteristics, to remove recording noise, or to balance the several components of the
signal (e.g., treble and bass). In this section, we focus on a very limited but important class
of elementary signal transformations that involve simple modification of the independent
variable, i.e., the time axis. As we will see in this and subsequent sections of this chapter,
these elementary transformations allow us to introduce several basic properties of signals
and systems. In later chapters, we will find that they also play an important role in defining
and characterizing far richer and important classes of systems.
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1.2.1 Examples of Transformations of the Independent Variable

A simple and very important example of transforming the independent variable of a signal
is a time shift. A time shift in discrete time is illustrated in Figure 1.8, in which we have
two signals x[n] and x[n — ny] that are identical in shape, but that are displaced or shifted
relative to each other. We will also encounter time shifts in continuous time, as illustrated
in Figure 1.9, in which x(¢ — 1y) represents a delayed (if #y is positive) or advanced (if ¢y
is negative) version of x(t). Signals that are related in this fashion arise in applications
such as radar, sonar, and seismic signal processing, in which several receivers at different
locations observe a signal being transmitted through a medium (water, rock, air, etc.). In
this case, the difference in propagation time from the point of origin of the transmitted
signal to any two receivers results in a time shift between the signals at the two receivers.

A second basic transformation of the time axis is that of time reversal. For example,
as illustrated in Figure 1.10, the signal x[—#] is obtained from the signal x[n] by a reflec-
tion about n = 0 (i.e., by reversing the signal). Similarly, as depicted in Figure 1.11, the
signal x(—7) is obtained from the signal x(¢) by a reflection about r = 0. Thus, if x(f) rep-
resents an audio tape recording, then x(—¢) is the same tape recording played backward.
Another transformation is that of time scaling. In Figure 1.12 we have illustrated three
signals, x(f), x(2t), and x(#/2), that are related by linear scale changes in the independent
variable. If we again think of the example of x(7) as a tape recording, then x(2¢) is that
recording played at twice the speed, and x(#/2) is the recording played at half-speed.

It is often of interest to determine the effect of transforming the independent variable
of a given signal x(7) to obtain a signal of the form x(«at + 3), where & and 3 are given
numbers. Such a transformation of the independent variable preserves the shape of x(t),
except that the resulting signal may be linearly stretched if || < 1, linearly compressed
if || > 1, reversed in time if & < 0, and shifted in time if 8 is nonzero. This is illustrated
in the following set of examples.

x[n]

il

o [ .

x[n—ng]

Figure 1.8 Discrete-time signals

0

i

0

“h ﬂ” related by a time shift. In this figure

| ?‘ g?f I ny > 0, so that x[n — np] is a delayed

lln_u‘ n verson of x[n] (i.e., each point in x[n]
occurs later in x[n — my)).
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/\K
X(t-tg)
w
)

Figure 1.9 Continuous-time signals related

x[n]

t

by a time shift. In this figure & < 0, so that (b)
x(t — f) is an advanced version of x(t) (i.e.,
each point in x(t) occurs at an earlier time in Figure 1.10 (a) A discrete-time signal x[n]; (b) its reflec-
x(t — b)). tion x[~n) about n = 0.
x(t)
x(t)
m / t
0 t
\./ x(21)
@)
x(—1)
t
/\‘\ x(t/2)
\
\/ 0 t
(b) t

Figure 1.11 (a) A continuous-time signal x(1); (b} its Figure 1.12 Continuous-time signals
reflection x(—1) about t = 0. related by time scaling.
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Example 1.1

.. Given the signal x(z) shown in Figure 1.13(a), the signal x(s + 1) corresponds to an
. advance (shift to the left) by one unit along the ¢ axis as illustrated in Figure 1.13(b).
. Specifically, we note that the value of x(¢) at# = # occurs in x(¢ + 1) att = o — 1. For

x(t)
:\ |
0 1 2
@
1| x{t+1)
t
-1 0 1 2
(b)
1| x(=t+1)
t
-1 0 1
()
3
] X(5t)
LN t
0 2/3  4/3
(@)
1| xG+

—-2/3 0 2/3
(e}

Figure 1.13 (a) The continuous-time signal x(f) used in Examples 1.1-1.3
to illustrate transformations of the independent variable; (b) the time-shifted
signal x(t + 1); (c) the signal x(—¢ + 1) obtained by a time shift and a time
reversal; (d) the time-scaled signal x(31); and (e) the signal x(2t+ 1) obtained
by time-shifting and scaling.
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example, the value of x(#) at# = 1is foundin x(z + 1) at = 1 — 1 = 0. Also, since
x(t) is zero for t < 0, we have x(t + 1) zero for t < —1. Similarly, since x(¢) is zero for
t>2, x(t + 1)1is zero fort > 1.

Let us also consider the signal x(—¢ + 1), which may be obtained by replacing ¢
with —¢ in x(¢ + 1). That is, x(—¢ + 1) is the time reversed version of x(t + 1). Thus,
x(—t + 1) may be obtained graphically by reflecting x(t + 1) about the  axis as shown
in Figure 1.13(c).

Example 1.2

Given the signal x(7), shown in Flgure 1.13(a), the signal x(zt) corresponds to a linear
compression of x(¢) by a factor of as 111ustrated m Flgure 1.13(d). Specifically we note
that the value of x(¢) at r = 1 occurs in x( t) att = —to For example, the value of
x(r) att = 1 is found in x( Hatt = % (1) = Z. Also, since x(¢) i 1s zero for t < 0, we
have x( t) zero for t < 0. S1m11ar1y, smce x(1)1 1s zero fort > 2, x( t) is zero for ¢ > z

Example 1.3

Suppose that we would like to determine the effect of transforming the independent vari-
able of a given signal, x(r), to obtain a signal of the form x(at + 8), where @ and 3 are
given numbers. A systematic approach to doing this is to first delay or advance x(#) in
accordance with the value of 3, and then to perform time scaling and/or time reversal on
the resulting signal in accordance with the value of «. The delayed or advanced signal is
linearly stretched if || < 1, linearly compressed if [a| > 1, and reversed intime if & << 0.
To illustrate this approach, let us show how x(%t + 1) may be determined for the
signal x(t) shown in Figure 1.13(a). Since 8 = 1 we first advance (shift to the left) x(¢)
by 1 as shown in Figure 1.13(b). Smce la| = 2, we may linearly compress the shifted
signal of Figure 1.13(b) by a factor of z to obtam the signal shown in Figure 1.13(e).

In addition to their use in representing physical phenomena such as the time shift
in a sonar signal and the speeding up or reversal of an audiotape, transformations of the
independent variable are extremely useful in signal and system analysis. In Section 1.6
and in Chapter 2, we will use transformations of the independent variable to introduce and
analyze the properties of systems. These transformations are also important in defining
and examining some important properties of signals.

1.2.2 Periodic Signals

An important class of signals that we will encounter frequently throughout this book is
the class of periodic signals. A periodic continuous-time signal x(¢) has the property that
there is a positive value of T for which

x(t) = x@¢+T) (1.11)

for all values of 7. In other words, a periodic signal has the property that it is unchanged by a
time shift of T. In this case, we say that x(¢) is periodic with period T. Periodic continuous-
time signals arise in a variety of contexts. For example, as illustrated in Problem 2.61,
the natural response of systems in which energy is conserved, such as ideal LC circuits
without resistive energy dissipation and ideal mechanical systems without frictional losses,
are periodic and, in fact, are composed of some of the basic periodic signals that we will
introduce in Section 1.3.
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/\ /\ /‘\ /\ /\ Figure 1.14 A continuous-time
-2T

t  periodic signal.

An example of a periodic continuous-time signal is given in Figure 1.14. From the
figure or from eq. (1.11), we can readily deduce that if x(¢) is periodic with period 7, then
x(t) = x(t + mT) for all ¢ and for any integer m. Thus, x(¢) is also periodic with period
2T,3T,4T,.... The fundamental period T, of x(t) is the smallest positive value of T for
which eq. (1.11) holds. This definition of the fundamental period works, except if x(z) is
a constant. In this case the fundamental period is undefined, since x(t) is periodic for any
choice of T (so there is no smallest positive value). A signal x(¢) that is not periodic will
be referred to as an aperiodic signal.

Periodic signals are defined analogously in discrete time. Specifically, a discrete-
time signal x[n] is periodic with period N, where N is a positive integer, if it is unchanged
by a time shift of N, i.e., if

x[n] = x[n + N] (1.12)

for all values of n. If eq. (1.12) holds, then x[r] is also periodic with period 2N, 3N, ....
The fundamental period Ny is the smallest positive value of N for which eq. (1.12) holds.
An example of a discrete-time periodic signal with fundamental period Ny = 3 is shown
in Figure 1.15.

xn]

LR .
[T T ]

N riodic signal with fundamental period
Ny = 3.

Example 1.4

Let us illustrate the type of problem solving that may be required in determining whether
or not a given signal is periodic. The signal whose periodicity we wish to check is given
by

() = { cos(t) ifr<0 (L13)

sin(t) ifr =0’

From trigonometry, we know that cos(t + 277) = cos(t) and sin(f + 27) = sin(r). Thus,
considering ¢ > 0 and ¢ < 0 separately, we see that x(r) does repeat itself over every
interval of length 277. However, as illustrated in Figure 1.16, x(¢) also has a discontinuity
at the time origin that does not recur at any other time. Since every feature in the shape of
a periodic signal must recur periodically, we conclude that the signal x(7) is not periodic.
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Figure 1.16 The signal x(t) considered in Example 1.4.

1.2.3 Even and Odd Signals

Another set of useful properties of signals relates to their symmetry under time reversal.
A signal x(1) or x[n] is referred to as an even signal if it is identical to its time-reversed
counterpart, i.e., with its reflection about the origin. In continuous time a signal is even if

x(—1) = x(1), (1.14)
while a discrete-time signal is even if
x[—n] = x[n]. (1.15)
A signal is referred to as odd if
x(=1)y = —x(@), (1.16)
x[—n] = —x[n]. (1.17)
An odd signal must necessarily be O att = Oorn = 0, since egs. (1.16) and (1.17) require
that x(0) = —x(0) and x[0] = —x[0]. Examples of even and odd continuous-time signals
are shown in Figure 1.17.
x(t)
0 t
(@)
x(t)

Figure 1.17 (a) An even con-
tinuous-time signal; (b) an odd
(b) continuous-time signal.



14 Signals and Systems Chap. 1

- 15 n<o0
oa{xinl} =1 0,n=0
3n>0
’
oo 1T
1 1 1 012 3 n Figure 1.18 Example of the even-
[ odd decomposition of a discrete-time

=

signal.

An important fact is that any signal can be broken into a sum of two signals, one of
which is even and one of which is odd. To see this, consider the signal

1
&vix(n} = 5 [x(1) + x(—1)], (1.18)
which is referred to as the even part of x(t). Similarly, the odd part of x(t) is given by
1
Od{x(t)} = i[x(t) — x(—0). (1.19)

It is a simple exercise to check that the even part is in fact even, that the odd part is odd,
and that x(r) is the sum of the two. Exactly analogous definitions hold in the discrete-

time case. An example of the even-odd decomposition of a discrete-time signal is given
in Figure 1.18.

1.3 EXPONENTIAL AND SINUSOIDAL SIGNALS

In this section and the next, we introduce several basic continuous-time and discrete-time

signals. Not only do these signals occur frequently, but they also serve as basic building
blocks from which we can construct many other signals.



Sec. 1.3 Exponential and Sinusoidal Signals 15

1.3.1 Continuous-Time Complex Exponential
and Sinusoidal Signals

The continuous-time complex exponential signal is of the form
x(t) = Ce", (1.20)

where C and a are, in general, complex numbers. Depending upon the values of these
parameters, the complex exponential can exhibit several different characteristics.

Real Exponential Signals

As illustrated in Figure 1.19, if C and a are real [in which case x(¢) is called a real
exponential], there are basically two types of behavior. If a is positive, then as ¢ in-
creases x(#) is a growing exponential, a form that is used in describing many different
physical processes, including chain reactions in atomic explosions and complex chemical
reactions. If a is negative, then x(¢) is a decaying exponential, a signal that is also used
to describe a wide variety of phenomena, including the process of radioactive decay and
the responses of RC circuits and damped mechanical systems. In particular, as shown
in Problems 2.61 and 2.62, the natural responses of the circuit in Figure 1.1 and the
automobile in Figure 1.2 are decaying exponentials. Also, we note that for a = 0, x(7)
is constant.

Figure 1.19 Continuous-time real
exponential x(t) = Ce®: (a) a > 0,
) (b) a< 0.
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Periodic Complex Exponential and Sinusoidal Signals

A second important class of complex exponentials is obtained by constraining a to be
purely imaginary. Specifically, consider

x(t) = e/, (1.21)

An important property of this signal is that it is periodic. To verify this, we recall from
eq. (1.11) that x(¢) will be periodic with period T if

eJ@0 — pjwolt+T) (1.22)
Or, since
eJwottT) — ejwofejwo'l"
it follows that for periodicity, we must have
e/l = 1. (1.23)

If wg = 0, then x(¢) = 1, which is periodic for any value of T. If wy # 0, then the fun-
damental period Ty of x(#)—that is, the smallest positive value of T for which eq. (1.23)
holds—is

21

Ty = ——.
* 7 Jwol

(1.24)

Thus, the signals e/ and e~ /' have the same fundamental period.
A signal closely related to the periodic complex exponential is the sinusoidal signal
x(t) = Acos(wpt + ¢), (1.25)

as illustrated in Figure 1.20. With seconds as the units of ¢, the units of ¢ and w, are radians
and radians per second, respectively. It is also common to write wy = 27 fj, where f; has
the units of cycles per second, or hertz (Hz). Like the complex exponential signal, the si-
nusoidal signal is periodic with fundamental period T given by eq. (1.24). Sinusoidal and

x(t) = A cos (wgt + )

Ll p—

Acos ¢

Figure 1.20 Continuous-time sinu-
soidal signal.
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complex exponential signals are also used to describe the characteristics of many physical
processes—in particular, physical systems in which energy is conserved. For example, as
shown in Problem 2.61, the natural response of an LC circuit is sinusoidal, as is the simple
harmonic motion of a mechanical system consisting of a mass connected by a spring to a
stationary support. The acoustic pressure variations corresponding to a single musical tone
are also sinusoidal.

By using Euler’s relation,” the complex exponential in eq. (1.21) can be written in
terms of sinusoidal signals with the same fundamental period:

e/ = coswot + j sinwyt. (1.26)

Similarly, the sinusoidal signal of eq. (1.25) can be written in terms of periodic complex
exponentials, again with the same fundamental period:

o A .
Acos(wof + @) = ge-’qseﬂ”o’ + Ee”‘be’-’“’“’. (1.27)

Note that the two exponentials in eq. (1.27) have complex amplitudes. Alternatively, we
can express a sinusoid in terms of a complex exponential signal as

Acos(wot + @) = ARe{e/ @D} (1.28)

where, if ¢ is a complex number, Re{c} denotes its real part. We will also use the notation
9Im{c} for the imaginary part of c, so that, for example,

Asin(wot + ¢) = AIm{e/ @), (1.29)

From eq. (1.24), we see that the fundamental period T of a continuous-time sinu-
soidal signal or a periodic complex exponential is inversely proportional to |wo|, which
we will refer to as the fundamental frequency. From Figure 1.21, we see graphically what
this means. If we decrease the magnitude of wg, we slow down the rate of oscillation and
therefore increase the period. Exactly the opposite effects occur if we increase the mag-
nitude of w. Consider now the case wy = 0. In this case, as we mentioned earlier, x(z)
is constant and therefore is periodic with period T for any positive value of T. Thus, the
fundamental period of a constant signal is undefined. On the other hand, there is no am-
biguity in defining the fundamental frequency of a constant signal to be zero. That is, a
constant signal has a zero rate of oscillation.

Periodic signals—and in particular, the complex periodic exponential signal in
eq. (1.21) and the sinusoidal signal in eq. (1.25)—provide important examples of signals
with infinite total energy but finite average power. For example, consider the periodic ex-
ponential signal of eq. (1.21), and suppose that we calculate the total energy and average
power in this signal over one period:

To . 2
Epcriud = J e»;w“rr dt
N (1.30)
= J 1-dt = TO,
0

*Euler’s relation and other basic ideas related to the manipulation of complex numbers and exponentials
are considered in the mathematical review section of the problems at the end of the chapter.



18 Signals and Systems Chap. 1

X4(t) = cos w4t

@)

Xo(t) = cos wyt

-

\ /)

{0)

x3(t) = cos wst

Figure 1.21 Relationship between

the fundamental frequency and period

for continuous-time sinusoidal signals;

here, wy > wy > w3, Which implies
(© that T, < L, < T

Ppcriod = TLEperiod =1 (1.31)

0
Since there are an infinite number of periods as ¢ ranges from — to +oo, the total energy
integrated over all time is infinite. However, each period of the signal looks exactly the
same. Since the average power of the signal equals 1 over each period, averaging over
multiple periods always yields an average power of 1. That is, the complex periodic ex-
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ponential signal has finite average power equal to

T 2
P. = ']]"i__,rrl%{_,[.k!w“’l—d[ =1 (1.32)
Problem 1.3 provides additional examples of energy and power calculations for periodic
and aperiodic signals.

Periodic complex exponentials will play a central role in much of our treatment of
signals and systems, in part because they serve as extremely useful building blocks for
many other signals. We will often find it useful to consider sets of harmonically related
complex exponentials—that is, sets of periodic exponentials, all of which are periodic with
a common period T. Specifically, a necessary condition for a complex exponential e/’ to
be periodic with period T is that

ello =1, (1.33)
which implies that wT is a multiple of 27, i.e.,
wTy = 27k, k=0 =*1,%2,.... (1.34)
Thus, if we define

2m
Ty’
we see that, to satisfy eq. (1.34), w must be an integer multiple of w(. That is, a harmoni-

cally related set of complex exponentials is a set of periodic exponentials with fundamental
frequencies that are all multiples of a single positive frequency wy:

bi(r) = elkeol, k=0*1+2 ..., (1.36)

(1.35)

w(y =

For k = 0, ¢,(?) is a constant, while for any other value of &, ¢,(r) is periodic with fun-
damental frequency |k|w, and fundamental period

2 _ T()

—_ = . 1.37
|k|w0 |k| ( )

The kth harmonic ¢, (1) is still periodic with period T, as well, as it goes through exactly
|k| of its fundamental periods during any time interval of length T}.

Our use of the term “harmonic” is consistent with its use in music, where it refers
to tones resulting from variations in acoustic pressure at frequencies that are integer mul-
tiples of a fundamental frequency. For example, the pattern of vibrations of a string on an
instrument such as a violin can be described as a superposition—i.e., a weighted sum—of
harmonically related periodic exponentials. In Chapter 3, we will see that we can build a
very rich class of periodic signals using the harmonically related signals of eq. (1.36) as
the building blocks.

Example 1.5
It is sometimes desirable to express the sum of two complex exponentials as the product
of a single complex exponential and a single sinusoid. For example, suppose we wish to
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plot the magnitude of the signal
x(1) = e/ + e/ (1.38)
To do this, we first factor out a complex exponential from the right side of eq. (1.38),
where the frequency of this exponential factor is taken as the average of the frequencies
of the two exponentials in the sum. Doing this, we obtain
x(t) = e/ (e7 103 4 £, (1.39)
which, because of Euler’s relation, can be rewritten as
x(1) = 2> cos(0.51). (1.40)
From this, we can directly obtain an expression for the magnitude of x(¢):
|x()] = 2|cos(0.52)|. (1.41)
Here, we have used the fact that the magnitude of the complex exponential e/ is always

unity. Thus, |x(#)| is what is commonly referred to as a full-wave rectified sinusoid, as
shown in Figure 1.22.

Ix(®)|
2

| | | |
0 2m 4 e 8m t

Figure 1.22 The full-wave rectified sinusoid of Example 1.5.

General Complex Exponential Signals

The most general case of a complex exponential can be expressed and interpreted in terms
of the two cases we have examined so far: the real exponential and the periodic complex
exponential. Specifically, consider a complex exponential Ce®, where C is expressed in
polar form and a in rectangular form. That is,

and

Then

C = |Cle

a=r+ jwp

Ce" = |Cleferti@0t = |Cle" e/ @o!*0), (1.42)

Using Euler’s relation, we can expand this further as

Ce" = |Cle" cos(wot + 0) + j|Cle" sin(wyt + 0). (1.43)
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Thus, for » = 0, the real and imaginary parts of a complex exponential are sinusoidal. For
r > 0 they correspond to sinusoidal signals multiplied by a growing exponential, and for
r < 0 they correspond to sinuseidal signals multiplied by a decaying exponential. These
two cases are shown in Figure 1.23. The dashed lines in the figure correspond to the func-
tions +|Cle”. From eq. (1.42), we see that |C|e” is the magnitude of the complex expo-
nential. Thus, the dashed curves act as an envelope for the oscillatory curve in the figure
in that the peaks of the oscillations just reach these curves, and in this way the envelope
provides us with a convenient way to visualize the general trend in the amplitude of the
oscillations.

x(t) -

Figure 1.23 (a) Growing sinusoidal
signal x(f) = Ce™ cos (wpt + ),

r > 0; (b) decaying sinusoid x(t) =
Ce" cos (wgt + 8), r < 0.

Sinusoidal signals multiplied by decaying exponentials are commonly referred to as
damped sinusoids. Examples of damped sinusoids arise in the response of RLC circuits
and in mechanical systems containing both damping and restoring forces, such as automo-
tive suspension systems. These kinds of systems have mechanisms that dissipate energy
(resistors, damping forces such as friction) with oscillations that decay in time. Examples
illustrating such systems and their damped sinusoidal natural responses can be found in
Problems 2.61 and 2.62.

1.3.2 Discrete-Time Complex Exponential and Sinusoidal Signals

As in continuous time, an important signal in discrete time is the complex exponential
signal or sequence, defined by

x[n] = Ca”, (1.44)
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where C and « are, in general, complex numbers. This could alternatively be expressed
in the form

x[n] = CeP", (1.45)

where
a = é°.

Although the form of the discrete-time complex exponential sequence given in eq. (1.45) is
more analogous to the form of the continuous-time exponential, it is often more convenient
to express the discrete-time complex exponential sequence in the form of eq. (1.44).

Real Exponential Signals

If C and « are real, we can have one of several types of behavior, as illustrated in Fig-
ure 1.24.1f || > 1 the magnitude of the signal grows exponentially with n, while if || < 1
we have a decaying exponential. Furthermore, if « is positive, all the values of Ca” are of
the same sign, but if @ is negative then the sign of x[n] alternates. Note also that if « = 1
then x[#] is a constant, whereas if « = —1, x[n] alternates in value between +C and —C.
Real-valued discrete-time exponentials are often used to describe population growth as
a function of generation and total return on investment as a function of day, month, or
quarter.

Sinusoidal Signals
Another important complex exponential is obtained by using the form given in eq. (1.45)
and by constraining 8 to be purely imaginary (so that |a| = 1). Specifically, consider
x[n] = e/®o". (1.46)
As in the continuous-time case, this signal is closely related to the sinusoidal signal
x[n] = Acos(wgn + ). (1.47)

If we take n to be dimensionless, then both w( and ¢ have units of radians. Three examples
of sinusoidal sequences are shown in Figure 1.25.

As before, Euler’s relation allows us to relate complex exponentials and sinusoids:

e/ = coswon + jsinwgn (1.48)

and
A . o
Acos(won + @) = Ee"’se”"”” + %e‘f‘i’e_f‘”””. (1.49)

The signals in eqs. (1.46) and (1.47) are examples of discrete-time signals with infinite
total energy but finite average power. For example, since |e/*"|> = 1, every sample of
the signal in eq. (1.46) contributes 1 to the signal’s energy. Thus, the total energy for
—oo < n < o is infinite, while the average power per time point is obviously equal to 1.
Other examples of energy and power calculations for discrete-time signals are given in
Problem 1.3.
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n

Figure 1.24 The real exponential
signal x[n] = Ca™
@Qa>10M0<a<t;

) 1<a<0;(d)a<—1.
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x[n] = cos 2mn/12)

x[n] = cos (8wn/31)

i ”

x[n] = cos (n/6)

1] Hm““““” n

Figure 1.25 Discrete-time sinusoidal signals.

Wi,

General Complex Exponential Signals

The general discrete-time complex exponential can be written and interpreted in terms of
real exponentials and sinusoidal signals. Specifically, if we write C and « in polar form,
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viz.,
C = |Cle’
and
a = |ale’,
then
Ca" = |Clla|" cos(won + 0) + j|C|la|" sin(wyn + 6). (1.50)
Thus, for |a| = 1, the real and imaginary parts of a complex exponential sequence are

sinusoidal. For |a| < 1 they correspond to sinusoidal sequences multiplied by a decaying
exponential, while for |a| > 1 they correspond to sinusoidal sequences multiplied by a
growing exponential. Examples of these signals are depicted in Figure 1.26.

\;‘;i‘rm,;; v
‘H I

Figure 1.26 (a) Growing discrete-time sinusoidal signals; (b) decaying
discrete-time sinusoid.

1.3.3 Periodicity Properties of Discrete-Time Complex Exponentials

While there are many similarities between continuous-time and discrete-time signals,
there are also a number of important differences. One of these concerns the discrete-time
exponential signal e/ In Section 1.3.1, we identified the following two properties of its
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continuous-time counterpart ¢/“’: (1) the larger the magnitude of wy, the higher is the rate
of oscillation in the signal; and (2) e/*¥! is periodic for any value of . In this section we
describe the discrete-time versions of both of these properties, and as we will see, there
are definite differences between each of these and its continuous-time counterpart.

The fact that the first of these properties is different in discrete time is a direct conse-
quence of another extremely important distinction between discrete-time and continuous-
time complex exponentials. Specifically, consider the discrete-time complex exponential
with frequency w( + 27

ej(w()+277)n _ ejZmzejwnn — ejw”n. (]51)

From eq. (1.51), we see that the exponential at frequency w( + 27 is the same as that
at frequency wy. Thus, we have a very different situation from the continuous-time case,
in which the signals e/“’ are all distinct for distinct values of . In discrete time, these
signals are not distinct, as the signal with frequency wy is identical to the signals with
frequencies wy * 27, wg * 47, and so on. Therefore, in considering discrete-time com-
plex exponentials, we need only consider a frequency interval of length 27 in which to
choose wy. Although, according to eq. (1.51), any interval of length 27r will do, on most
occasions we will use the interval 0 = wy < 27 or the interval —7 = wo < 7.

Because of the periodicity implied by eq. (1.51), the signal e/“v" does not have a
continually increasing rate of oscillation as wy is increased in magnitude. Rather, as il-
lustrated in Figure 1.27, as we increase wg from 0, we obtain signals that oscillate more
and more rapidly until we reach wy = 7. As we continue to increase w(, we decrease the
rate of oscillation until we reach wy = 27, which produces the same constant sequence as
wo = 0. Therefore, the low-frequency (that is, slowly varying) discrete-time exponentials
have values of wq near 0, 27, and any other even multiple of 7r, while the high frequen-
cies (corresponding to rapid variations) are located near wg = *7r and other odd multiples
of . Note in particular that for wy = 7 or any other odd multiple of 7,

ejwn — (ejﬂ)” — (_1)”' (]52)

so that this signal oscillates rapidly, changing sign at each point in time [as illustrated in
Figure 1.27(e)].

The second property we wish to consider concerns the periodicity of the discrete-
time complex exponential. In order for the signal e/“o" to be periodic with period N > 0,
we must have

ejw”(n+N) — ejw()”, (]53)
or equivalently,
eJooN = 1. (1.54)

For eq. (1.54) to hold, woN must be a multiple of 27r. That is, there must be an integer m
such that

woN = 2mm, (1.55)

or equivalently,

(1.56)
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x[n] = cos (O-n) = 1 x[n] = cos (1Tn/8) x[n] = cos (wn/4)

(o) (©

x[n] = cos (mn/2) x[n] = cos mn x[n] = cos (31n/2)

(@) C

x[n] = cos (7mn/4) x[n] = cos (157n/8) x[n] = cos 2mn

O

Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.
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According to eq. (1.56), the signal e/“" is periodic if wo/27 is a rational number and is
not periodic otherwise. These same observations also hold for discrete-time sinusoids. For
example, the signals depicted in Figure 1.25(a) and (b) are periodic, while the signal in
Figure 1.25(c) is not.

Using the calculations that we have just made, we can also determine the funda-
mental period and frequency of discrete-time complex exponentials, where we define the
fundamental frequency of a discrete-time periodic signal as we did in continuous time.
That is, if x[r] is periodic with fundamental period N, its fundamental frequency is 277/N.
Consider, then, a periodic complex exponential x[n] = e/“0" with wo # 0. As we have
just seen, wo must satisfy eq. (1.56) for some pair of integers m and N, with N > 0. In
Problem 1.35, it is shown that if wg # 0 and if N and m have no factors in common, then
the fundamental period of x[n] is N. Using this fact together with eq. (1.56), we find that
the fundamental frequency of the periodic signal e/“0" is

21T wo
N om (437
Note that the fundamental period can also be written as
2
N = m(—”) (1.58)
wo

These last two expressions again differ from their continuous-time counterparts. In
Table 1.1, we have summarized some of the differences between the continuous-time sig-
nal e/“0' and the discrete-time signal e/®0"_Note that, as in the continuous-time case, the
constant discrete-time signal resulting from setting wg = 0 has a fundamental frequency
of zero, and its fundamental period is undefined.

TABLE 1.1  Comparison of the signals e/ and efwo”.

eloot eJeon

Distinct signals for distinct values of w,  Identical signals for values of wg
separated by multiples of 27

Periodic for any choice of w Periodic only if wg = 27m/N for some integers N > 0 and m.
Fundamental frequency w, Fundamental frequency” wo/m
Fundamental period Fundamental period”

wo = 0: undefined wg = 0: undefined

mo#O:i—’; wosféO:m(i—:)

*Assumes that m and N do not have any factors in common.

To gain some additional insight into these properties, let us examine again the signals
depicted in Figure 1.25. First, consider the sequence x[n] = cos(27n/12), depicted in
Figure 1.25(a), which we can think of as the set of samples of the continuous-time sinusoid
x(t) = cos(27rt/12) at integer time points. In this case, x(¢) is periodic with fundamental
period 12 and x[n] is also periodic with fundamental period 12. That is, the values of x[n]
repeat every 12 points, exactly in step with the fundamental period of x(z).
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In contrast, consider the signal x[n] = cos(8mn/31), depicted in Figure 1.25(b),
which we can view as the set of samples of x(¢) = cos (87r#/31) at integer points in time.
In this case, x() is periodic with fundamental period 31/4. On the other hand, x[n] is pe-
riodic with fundamental period 31. The reason for this difference is that the discrete-time
signal is defined only for integer values of the independent variable. Thus, there is no
sample at time ¢ = 31/4, when x(¢) completes one period (starting from ¢ = 0). Similarly,
there is no sample at r = 2 - 31/4 or t = 3 - 31/4, when x(¢) has completed two or three
periods, but there is a sample at t = 4-31/4 = 31, when x(7) has completed four periods.
This can be seen in Figure 1.25(b), where the pattern of x[n] values does not repeat with
each single cycle of positive and negative values. Rather, the pattern repeats after four
such cycles, namely, every 31 points.

Similarly, the signal x[n] = cos(n/6) can be viewed as the set of samples of the
signal x(¢) = cos(¢/6) at integer time points. In this case, the values of x(¢) at integer
sample points never repeat, as these sample points never span an interval that is an exact
multiple of the period, 127, of x(¢). Thus, x[n] is not periodic, although the eye visually
interpolates between the sample points, suggesting the envelope x(¢), which is periodic.
The use of the concept of sampling to gain insight into the periodicity of discrete-time
sinusoidal sequences is explored further in Problem 1.36.

Example 1.6

Suppose that we wish to determine the fundamental period of the discrete-time signal
x[n] — e»/(Zw/‘?)u + ej(371/4)n. (159)

The first exponential on the right-hand side of eq. (1.59) has a fundamental period of 3.
While this can be verified from eq. (1.58), there is a simpler way to obtain that answer. In
particular, note that the angle (277/3)n of the first term must be incremented by a multiple
of 27r for the values of this exponential to begin repeating. We then immediately see that
if n is incremented by 3, the angle will be incremented by a single multiple of 27. With
regard to the second term, we see that incrementing the angle (37/4)n by 27 would
require n to be incremented by 8/3, which is impossible, since n is restricted to being an
integer. Similarly, incrementing the angle by 47 would require a noninteger increment
of 16/3 to n. However, incrementing the angle by 67 requires an increment of § to n,
and thus the fundamental period of the second term is 8.

Now, for the entire signal x[n] to repeat, each of the terms in eq. (1.59) must go
through an integer number of its own fundamental period. The smallest increment of n
that accomplishes this is 24. That is, over an interval of 24 points, the first term on the
right-hand side of eq. (1.59) will have gone through eight of its fundamental periods, the
second term through three of its fundamental periods, and the overall signal x[n] through
exactly one of its fundamental periods.

As in continuous time, it is also of considerable value in discrete-time signal and
system analysis to consider sets of harmonically related periodic exponentials—that is,
periodic exponentials with a common period N. From eq. (1.56), we know that these are
precisely the signals which are at frequencies which are multiples of 27/N. That is,

diln] = /¥, k=0=*1,.... (1.60)
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In the continuous-time case, all of the harmonically related complex exponentials /™77,

k =0, x1, x2,..., are distinct. However, because of eq. (1.51), this is not the case in
discrete time. Specifically,

¢k+N[n] — ej(k+N)(27r/N)n

— ejk(27r/N)nej2ﬂ'n — ({bk[n]-

(1.61)

This implies that there are only N distinct periodic exponentials in the set given in
eq. (1.60). For example,

boln] = 1, ¢i[n] = ™, on] = ™™, fyy[n] = 2TV (162)

are all distinct, and any other ¢ [n] is identical to one of these (e.g., dn[n] = ¢o[n] and

¢-i[n] = dn-1[n)).

1.4 THE UNIT IMPULSE AND UNIT STEP FUNCTIONS

In this section, we introduce several other basic signals—specifically, the unit impulse and
step functions in continuous and discrete time—that are also of considerable importance in
signal and system analysis. In Chapter 2, we will see how we can use unit impulse signals
as basic building blocks for the construction and representation of other signals. We begin
with the discrete-time case.

1.4.1 The Discrete-Time Unit Impulse and Unit Step Sequences

One of the simplest discrete-time signals is the unit impulse (or unit sample), which is
defined as

MM={? Zi% (1.63)

and which is shown in Figure 1.28. Throughout the book, we will refer to 6[n] interchange-
ably as the unit impulse or unit sample.

3[n]

1
‘_,_,_,_,_,_,_,_,J_,_,_H_,_,_,_,_‘ Figure 1.28 Discrete-time unit im-

0 n  pulse (sample).

A second basic discrete-time signal is the discrete-time unit step, denoted by u[n]
and defined by

0, n<0

L n=0 (1.64)

uln] = [

The unit step sequence is shown in Figure 1.29.
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uln]
1
0 N sequence.
Interval of summation
""""""" ! 3[m]
|
1
W
n 0 m
(@
Interval of summation
oM |
]
1
w
0 n M Figure 1.30 Running sum of
(b) eq. (1.66): (a) n < 0; (b) n> 0.

There is a close relationship between the discrete-time unit impulse and unit step. In
particular, the discrete-time unit impulse is the first difference of the discrete-time step

o[n] = uln] — uln — 1]. (1.65)
Conversely, the discrete-time unit step is the running sum of the unit sample. That is,
uln] = > 8[m]. (1.66)

Equation (1.66) is illustrated graphically in Figure 1.30. Since the only nonzero value of
the unit sample is at the point at which its argument is zero, we see from the figure that the
running sum in eq. (1.66) is 0 for n < 0 and 1 for » = 0. Furthermore, by changing the
variable of summation from m to k = n — m in eq. (1.66), we find that the discrete-time
unit step can also be written in terms of the unit sample as

0
uln] = > 8[n— k),

k==

or equivalently,

uln] = > 8[n— kl. (1.67)
k=0
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Interval of summation

—
3[n—k| T
n 0 k
@
Interval of summation
LRk
0 n k ) . L .
Figure 1.31 Relationship given in
(b) eq. (1.67): (@) n < 0; (b) n> 0.

Equation (1.67) is illustrated in Figure 1.31. In this case the nonzero value of 6[n — k] is
at the value of k equal to n, so that again we see that the summation in eq. (1.67) is O for
n<0Oand1forn = 0.

An interpretation of eq. (1.67) is as a superposition of delayed impulses; i.e., we can
view the equation as the sum of a unit impulse 6[n] at n = 0, a unit impulse 8[n — 1] at
n = 1, another, 6[n — 2], at n = 2, etc. We will make explicit use of this interpretation in
Chapter 2.

The unit impulse sequence can be used to sample the value of a signal at n = 0. In
particular, since 8[n] is nonzero (and equal to 1) only for n = 0, it follows that

x[n]é[n} = x[0]86[n]. (1.68)
More generally, if we consider a unit impulse 8[n — ny] at n = ny, then
x[n]6[n — ng} = x[npld[n — nyl. (1.69)

This sampling property of the unit impulse will play an important role in Chapters 2
and 7.

1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

The continuous-time unit step function u(t) is defined in a manner similar to its discrete-
time counterpart. Specifically,

10, <0
”(t)_{l, >0’ (1.70)

as is shown in Figure 1.32. Note that the unit step is discontinuous at + = 0. The
continuous-time unit impulse function 8(¢) is related to the unit step in a manner analogous
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uf)

Figure 1.32 Continuous-time unit
0 t  step function.

to the relationship between the discrete-time unit impulse and step functions. In particular,
the continuous-time unit step is the running integral of the unit impulse

1
u(t) = J o(tr)dr. (1.71)
This also suggests a relationship between 6(¢) and u(t) analogous to the expression for
o[n] in eq. (1.65). In particular, it follows from eq. (1.71) that the continuous-time unit
impulse can be thought of as the first derivative of the continuous-time unit step:

du(r)

(1) = ar

(1.72)

In contrast to the discrete-time case, there is some formal difficulty with this equa-
tion as a representation of the unit impulse function, since u(z) is discontinuous at # = 0
and consequently is formally not differentiable. We can, however, interpret eq. (1.72) by
considering an approximation to the unit step u4(¢), as illustrated in Figure 1.33, which
rises from the value O to the value 1 in a short time interval of length A. The unit step,
of course, changes values instantaneously and thus can be thought of as an idealization of
ua(t) for A so short that its duration doesn’t matter for any practical purpose. Formally,
u(t) is the limit of ua(z) as A — 0. Let us now consider the derivative

_ dua(0)
3a(0) = T (1.73)
as shown in Figure 1.34.
ua(t)
Ba(t)

" i

1

0 A t 0 A t

Figure 1.33 Continuous approximation to Figure 1.34 Derivative of
the unit step, ua(f). us(t).
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3(t) k&(t)
k
1
0 t 0 t
Figure 1.35 Continuous- Figure 1.36 Scaled im-
time unit impulse. pulse.

Note that 8(¢) is a short pulse, of duration A and with unit area for any value of A.
As A — 0, 8A(¢) becomes narrower and higher, maintaining its unit area. Its limiting form,

o) = iii% oa(D), (1.74)

can then be thought of as an idealization of the short pulse 8a(¢) as the duration A becomes
insignificant. Since 6(r) has, in effect, no duration but unit area, we adopt the graphical
notation for it shown in Figure 1.35, where the arrow at¢ = 0 indicates that the area of the
pulse is concentrated at t+ = 0 and the height of the arrow and the “1”” next to the arrow
are used to represent the area of the impulse. More generally, a scaled impulse k6(f) will
have an area k, and thus,

J k&6(T)dT = ku(t).

A scaled impulse with area k is shown in Figure 1.36, where the height of the arrow used
to depict the scaled impulse is chosen to be proportional to the area of the impulse.

As with discrete time, we can provide a simple graphical interpretation of the running
integral of eq. (1.71); this is shown in Figure 1.37. Since the area of the continuous-time
unit impulse 6(7) is concentrated at 7 = 0, we see that the running integral is O forr <0
and 1 for # > 0. Also, we note that the relationship in eq. (1.71) between the continuous-
time unit step and impulse can be rewritten in a different form, analogous to the discrete-
time form in eq. (1.67), by changing the variable of integration fromrtoo = t — 7:

1 0
u(t) = J' o(r)ydr = J o(t — o)(—do),

*% %

or equivalently,

x

u(t) = J 6(t — o)do. (1.75)
0

The graphical interpretation of this form of the relationship between u(r) and 6(¢) is
given in Figure 1.38. Since in this case the area of 6(r — o) is concentrated at the point
o = t, we again see that the integral in eq. (1.75) is O for # < 0 and 1 for ¢ > 0. This type
of graphical interpretation of the behavior of the unit impulse under integration will be
extremely useful in Chapter 2.
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Interval of integration Interval of integration
SR 3(t—0) .
! (1) 1
T 0 T t 0 o
(@) (@)
interval of integration Interval of integration
S A B f““’ _________
0 t T 0 t g
(b) (b)
Figure 1.37 Running integral given in eq. (1.71): Figure 1.38 Relationship given in eq. (1.75):
(@) t<0;(b) t>0. (@) t<0;(b) t>0.

As with the discrete-time impulse, the continuous-time impulse has a very important
sampling property. In particular, for a number of reasons it will be important to consider
the product of an impulse and more well-behaved continuous-time functions x(¢). The in-
terpretation of this quantity is most readily developed using the definition of 6(¢) according
to eq. (1.74). Specifically, consider

x1(1) = x(D)8a(1).

In Figure 1.39(a) we have depicted the two time functions x(¢) and 84(¢), and in Fig-
ure 1.39(b) we see an enlarged view of the nonzero portion of their product. By construc-
tion, x(¢) is zero outside the interval 0 = t < A. For A sufficiently small so that x(¢) is
approximately constant over this interval,

x(1)6a(t) = x(0)64(1).
Since 6(¢) is the limit as A — 0 of 8(¢), it follows that
x()8() = x(0)8(z). (1.76)

By the same argument, we have an analogous expression for an impulse concentrated at
an arbitrary point, say, fy. That is,

x(1)0 (t — tg) = x(tp)d(t — to).
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3
__/—\-/ 0
0A t
(@)
35
xO)F
Figure 1.39 The product x(#)8.(f):
0 A : (a) graphs of both functions; (b) en-
larged view of the nonzero portion of
(b) their product.

Although our discussion of the unit impulse in this section has been somewhat in-
formal, it does provide us with some important intuition about this signal that will be
useful throughout the book. As we have stated, the unit impulse should be viewed as an
idealization. As we illustrate and discuss in more detail in Section 2.5, any real physi-
cal system has some inertia associated with it and thus does not respond instantaneously
to inputs. Consequently, if a pulse of sufficiently short duration is applied to such a sys-
tem, the system response will not be noticeably influenced by the pulse’s duration or by
the details of the shape of the pulse, for that matter. Instead, the primary characteristic
of the pulse that will matter is the net, integrated effect of the pulse—i.e., its area. For
systems that respond much more quickly than others, the pulse will have to be of much
shorter duration before the details of the pulse shape or its duration no longer matter. Nev-
ertheless, for any physical system, we can always find a pulse that is “short enough.”
The unit impulse then is an idealization of this concept—the pulse that is short enough
for any system. As we will see in Chapter 2, the response of a system to this idealized
pulse plays a crucial role in signal and system analysis, and in the process of devel-
oping and understanding this role, we will develop additional insight into the idealized
signal .’

*The unit impulse and other related functions (which are often collectively referred to as singularity
functions) have been thoroughly studied in the field of mathematics under the alternative names of general-
ized functions and the theory of distributions. For more detailed discussions of this subject, see Distribution
Theory and Transform Analysis, by A. H. Zemanian (New York: McGraw-Hill Book Company, 1965), Gen-
eralised Functions, by R.F. Hoskins (New York: Halsted Press, 1979), or the more advanced text, Fourier
Analysis and Generalized Functions, by M. J. Lighthill (New York: Cambridge University Press, 1958).
Our discussion of singularity functions in Section 2.5 is closely related in spirit to the mathematical theory
described in these texts and thus provides an informal introduction to concepts that underlie this topic in
mathematics.
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Example 1.7

Consider the discontinuous signal x(¢) depicted in Figure 1.40(a). Because of the rela-
tionship between the continuous-time unit impulse and unit step, we can readily calculate
and graph the derivative of this signal. Specifically, the derivative of x(¢) is clearly 0,
except at the discontinuities. In the case of the unit step, we have seen {eq. (1.72)] that
differentiation gives rise to a unit impulse located at the point of discontinuity. Further-
more, by multiplying both sides of eq. (1.72) by any number k, we see that the derivative
of a unit step with a discontinuity of size k gives rise to an impulse of area k at the point
of discontinuity. This rule also holds for any other signal with a jump discontinuity, such
as x(¢) in Figure 1.40(a). Consequently, we can sketch its derivative x(f), as in Fig-
ure 1.40(b), where an impulse is placed at each discontinuity of x(¢), with area equal to
the size of the discontinuity. Note, for example, that the discontinuity in x(¢) at 1 = 2
has a value of —3, so that an impulse scaled by —3 is located at ¢+ = 2 in the signal x(z).

x(t)

2 —
1+
2 3
: (@)
1 4 t
_‘] —
X(t)
2 f—
1+
2 3
——t {b)
1 4 t
—1
72 —
_3 —
Interval of integration
f
1
: 2 3
——t— (€
t1 4 T
71 —
_2 —
_3 —

Figure 1.40 (a) The discontinuous signal x(f) analyzed in Example 1.7;
(b) its derivative X(f); (c) depiction of the recovery of x(t) as the running inte-
gral of x(t), illustrated for a value of ¢ between 0 and 1.
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As a check of our result, we can verify that we can recover x(¢) from x(). Specif-
ically, since x(¢) and x(f) are both zero for r < 0, we need only check that for r > 0,

x(t) = J, x(rydr. (1.77)
0

As illustrated in Figure 1.40(c), for t < 1, the integral on the right-hand side of eq. (1.77)
is zero, since none of the impulses that constitute x(¢) are within the interval of integra-
tion. For 1 <t < 2, the first impulse (located at + = 1) is the only one within the inte-
gration interval, and thus the integral in eq. (1.77) equals 2, the area of this impulse. For
2 <t < 4, the first two impulses are within the interval of integration, and the integral
accumulates the sum of both of their areas, namely, 2 — 3 = —1. Finally, for r > 4, all
three impulses are within the integration interval, so that the integral equals the sum of
all three areas—that is, 2 — 3 + 2 = +1. The result is exactly the signal x(¢) depicted
in Figure 1.40(a).

1.5 CONTINUOUS-TIME AND DISCRETE-TIME SYSTEMS

Physical systems in the broadest sense are an interconnection of components, devices,
or subsystems. In contexts ranging from signal processing and communications to elec-
tromechanical motors, automotive vehicles, and chemical-processing plants, a system can
be viewed as a process in which input signals are transformed by the system or cause the
system to respond in some way, resulting in other signals as outputs. For example, a high-
fidelity system takes a recorded audio signal and generates a reproduction of that signal.
If the hi-fi system has tone controls, we can change the tonal quality of the reproduced sig-
nal. Similarly, the circuit in Figure 1.1 can be viewed as a system with input voltage v,()
and output voltage v.(r), while the automobile in Figure 1.2 can be thought of as a system
with input equal to the force f(r) and output equal to the velocity v(t) of the vehicle. An
image-enhancement system transforms an input image into an output image that has some
desired properties, such as improved contrast.

A continuous-time system is a system in which continuous-time input signals are
applied and result in continuous-time output signals. Such a system will be represented
pictorially as in Figure 1.41(a), where x(¢) is the input and y(¢) is the output. Alterna-
tively, we will often represent the input-output relation of a continuous-time system by the
notation

x(t) — y(@). (1.78)

Continuous-time

X (1) e
system

— y(t)

@

Discrete-time

X[N] e |
system

—>y[N]

Figure 1.41 (a) Continuous-time
(b) system; (b) discrete-time system.
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Similarly, a discrete-time system—that is, a system that transforms discrete-time inputs
into discrete-time outputs—will be depicted as in Figure 1.41(b) and will sometimes be
represented symbolically as

x[n] — y[n]. (1.79)

In most of this book, we will treat discrete-time systems and continuous-time systems
separately but in parallel. In Chapter 7, we will bring continuous-time and discrete-time
systems together through the concept of sampling, and we will develop some insights
into the use of discrete-time systems to process continuous-time signals that have been
sampled.

1.5.1 Simple Examples of Systems

One of the most important motivations for the development of general tools for analyzing
and designing systems is that systems from many different applications have very similar
mathematical descriptions. To illustrate this, we begin with a few simple examples.

Example 1.8

Consider the RC circuit depicted in Figure 1.1. If we regard v,(¢) as the input signal and
v.(¢) as the output signal, then we can use simple circuit analysis to derive an equation
describing the relationship between the input and output. Specifically, from Ohm’s law,
the current i(r) through the resistor is proportional (with proportionality constant 1/R) to
the voltage drop across the resistor; i.e.,

V(1) — ve(?)

R (1.80)

i(r) =

Similarly, using the defining constitutive relation for a capacitor, we can relate i(¢) to the
rate of change with time of the voltage across the capacitor:

dv (1)
dt

it =C . (1.81)

Equating the right-hand sides of egs. (1.80) and (1.81), we obtain a differential equation
describing the relationship between the input v(¢) and the output v.(¢):

dv (1) + Lv
dt RC ¢

6 = %v.\v(t). (1.82)

Example 1.9

Consider Figure 1.2, in which we regard the force f(r) as the input and the velocity v(r)
as the output. If we let m denote the mass of the automobile and mpv the resistance due
to friction, then equating acceleration—i.e., the time derivative of velocity—with net
force divided by mass, we obtain

dv(t) _ 1
dt m

(£ = pv(D)], (1.83)
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dv(t)
dt

+ Bv(t) - lf(t)_ (1.84)
m m

Examining and comparing eqs. (1.82) and (1.84) in the above examples, we see that
the input-output relationships captured in these two equations for these two very different
physical systems are basically the same. In particular, they are both examples of first-order
linear differential equations of the form

d

—Lyi? + ay(t) = bx(r), (1.85)
where x(7) is the input, y(¢) is the output, and a and b are constants. This is one very simple
example of the fact that, by developing methods for analyzing general classes of systems
such as that represented by eq. (1.85), we will be able to use them in a wide variety of
applications.

Example 1.10

As a simple example of a discrete-time system, consider a simple model for the balance
in a bank account from month to month. Specifically, let y[n] denote the balance at the
end of the nth month, and suppose that y[n] evolves from month to month according to
the equation

y[n] = 1.01y[n — 1] + x[n], (1.86)
or equivalently,

yln] — 1.01y[n — 1] = x[n], (1.87)
where x[n] represents the net deposit (i.e., deposits minus withdrawals) during the nth

month and the term 1.01y[n — 1] models the fact that we accrue 1% interest each month.

Example 1.11

As a second example, consider a simple digital simulation of the differential equation in
eq. (1.84) in which we resolve time into discrete intervals of length A and approximate
dv(t)/dt att = nA by the first backward difference, i.e.,

v(nA) — v((n — 1A)
A .

In this case, if we letv[n] = v(rnA)and f[n] = f(nA), we obtain the following discrete-
time model relating the sampled signals f[n] and v[n]:

m A

vin] - —————v[n— 1] = ———(m b

FEY flnl. (1.88)

Comparing eqgs. (1.87) and (1.88), we see that they are both examples of the same
general first-order linear difference equation, namely,

yln] + ayln — 1] = bx[n]. (1.89)
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As the preceding examples suggest, the mathematical descriptions of systems from
a wide variety of applications frequently have a great deal in common, and it is this fact
that provides considerable motivation for the development of broadly applicable tools for
signal and system analysis. The key to doing this successfully is identifying classes of
systems that have two important characteristics: (1) The systems in this class have prop-
erties and structures that we can exploit to gain insight into their behavior and to develop
effective tools for their analysis; and (2) many systems of practical importance can be
accurately modeled using systems in this class. It is on the first of these characteristics
that most of this book focuses, as we develop tools for a particular class of systems re-
ferred to as linear, time-invariant systems. In the next section, we will introduce the prop-
erties that characterize this class, as well as a number of other very important basic system
properties.

The second characteristic mentioned in the preceding paragraph is of obvious impor-
tance for any system analysis technique to be of value in practice. It is a well-established
fact that a wide range of physical systems (including those in Examples 1.8-1.10) can
be well modeled within the class of systems on which we focus in this book. However,
a critical point is that any model used in describing or analyzing a physical system rep-
resents an idealization of that system, and thus, any resulting analysis is only as good
as the model itself. For example, the simple linear model of a resistor in eq. (1.80)
and that of a capacitor in eq. (1.81) are idealizations. However, these idealizations are
quite accurate for real resistors and capacitors in many applications, and thus, analy-
ses employing such idealizations provide useful results and conclusions, as long as the
voltages and currents remain within the operating conditions under which these simple
linear models are valid. Similarly, the use of a linear retarding force to represent fric-
tional effects in eq. (1.83) is an approximation with a range of validity. Consequently,
although we will not address this issue in the book, it is important to remember that
an essential component of engineering practice in using the methods we develop here
consists of identifying the range of validity of the assumptions that have gone into a
model and ensuring that any analysis or design based on that model does not violate those
assumptions.

1.5.2 Interconnections of Systems

An important idea that we will use throughout this book is the concept of the interconnec-
tion of systems. Many real systems are built as interconnections of several subsystems.
One example is an audio system, which involves the interconnection of a radio receiver,
compact disc player, or tape deck with an amplifier and one or more speakers. Another is
a digitally controlled aircraft, which is an interconnection of the aircraft, described by its
equations of motion and the aerodynamic forces affecting it; the sensors, which measure
various aircraft variables such as accelerations, rotation rates, and heading; a digital au-
topilot, which responds to the measured variables and to command inputs from the pilot
(e.g., the desired course, altitude, and speed); and the aircraft’s actuators, which respond
to inputs provided by the autopilot in order to use the aircraft control surfaces (rudder,
tail, ailerons) to change the aerodynamic forces on the aircraft. By viewing such a system
as an interconnection of its components, we can use our understanding of the component
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Figure 1.42 Interconnection of two systems: (a) series (cascade) intercon-
nection; (b) parallel interconnection; (c) series-parallel interconnection.

systems and of how they are interconnected in order to analyze the operation and behavior
of the overall system. In addition, by describing a system in terms of an interconnection of
simpler subsystems, we may in fact be able to define useful ways in which to synthesize
complex systems out of simpler, basic building blocks.

While one can construct a variety of system interconnections, there are several basic
ones that are frequently encountered. A series or cascade interconnection of two systems
is illustrated in Figure 1.42(a). Diagrams such as this are referred to as block diagrams.
Here, the output of System 1 is the input to System 2, and the overall system transforms
an input by processing it first by System 1 and then by System 2. An example of a series
interconnection is a radio receiver followed by an amplifier. Similarly, one can define a
series interconnection of three or more systems.

A parallel interconnection of two systems is illustrated in Figure 1.42(b). Here, the
same input signal is applied to Systems 1 and 2. The symbol “®” in the figure denotes
addition, so that the output of the parallel interconnection is the sum of the outputs of
Systems 1 and 2. An example of a parallel interconnection is a simple audio system with
several microphones feeding into a single amplifier and speaker system. In addition to the
simple parallel interconnection in Figure 1.42(b), we can define parallel interconnections
of more than two systems, and we can combine both cascade and parallel interconnections
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to obtain more complicated interconnections. An example of such an interconnection is
given in Figure 1.42(c).*

Another important type of system interconnection is a feedback interconnection, an
example of which is illustrated in Figure 1.43. Here, the output of System 1 is the input to
System 2, while the output of System 2 is fed back and added to the external input to pro-
duce the actual input to System 1. Feedback systems arise in a wide variety of applications.
For example, a cruise control system on an automobile senses the vehicle’s velocity and
adjusts the fuel flow in order to keep the speed at the desired level. Similarly, a digitally
controlled aircraft is most naturally thought of as a feedback system in which differences
between actual and desired speed, heading, or altitude are fed back through the autopilot
in order to correct these discrepancies. Also, electrical circuits are often usefully viewed
as containing feedback interconnections. As an example, consider the circuit depicted in
Figure 1.44(a). As indicated in Figure 1.44(b), this system can be viewed as the feedback
interconnection of the two circuit elements.

+
it (t) 1 i (t)l
Q>Ti(‘) =cC §§ R v(t)
. . Capacitor
i)y + i (t) _
— o) = 2—: S i@ > V()
Resistor Figure 1.44 (a) Simple electrical
v(t) |- circuit; (b) block diagram in which the
) == circuit is depicted as the feedback inter-
connection of two circuit elements.

4On occasion, we will also use the symbol & in our pictorial representation of systems to denote the
operation of multiplying two signals (see, for example, Figure 4.26).



44 Signals and Systems Chap. 1

1.6 BASIC SYSTEM PROPERTIES

In this section we introduce and discuss a number of basic properties of continuous-time
and discrete-time systems. These properties have important physical interpretations and
relatively simple mathematical descriptions using the signals and systems language that
we have begun to develop.

1.6.1 Systems with and without Memory

A system is said to be memoryless if its output for each value of the independent variable
at a given time is dependent only on the input at that same time. For example, the system
specified by the relationship

ylnl = 2x[n] - x*[n])* (1.90)

is memoryless, as the value of y[n] at any particular time 7, depends only on the value of
x[n] at that time. Similarly, a resistor is a memoryless system; with the input x(¢) taken as
the current and with the voltage taken as the output y(¢), the input-output relationship of a
resistor is

y(t) = Rx(1), (1.91)

where R is the resistance. One particularly simple memoryless system is the identity sys-
tem, whose output is identical to its input. That is, the input-output relationship for the
continuous-time identity system is

y(1) = x(),
and the corresponding relationship in discrete time is
ylnl = x[n]).

An example of a discrete-time system with memory is an accumulator or summer

n

ylnl = > x[k], (1.92)

k= —=
and a second example is a delay

y[n] = x[n —1]. (1.93)
A capacitor is an example of a continuous-time system with memory, since if the input is

taken to be the current and the output is the voltage, then

1 t
w0 = c J,x x(7)drT, (1.94)

where C is the capacitance.
Roughly speaking, the concept of memory in a system corresponds to the presence
of a mechanism in the system that retains or stores information about input values at times
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other than the current time. For example, the delay in eq. (1.93) must retain or store the
preceding value of the input. Similarly, the accumulator in eq. (1.92) must “remember” or
store information about past inputs. In particular, the accumulator computes the running
sum of all inputs up to the current time, and thus, at each instant of time, the accumulator
must add the current input value to the preceding value of the running sum. In other words,
the relationship between the input and output of an accumulator can be described as

n—1

ylnl = > x[k] + x[n], (1.95)
k=—x
or equivalently,
yln] = y[n — 1] + x[n]. (1.96)

Represented in the latter way, to obtain the output at the current time #n, the accumulator
must remember the running sum of previous input values, which is exactly the preceding
value of the accumulator output.

In many physical systems, memory is directly associated with the storage of energy.
For example, the capacitor in eq. (1.94) stores energy by accumulating electrical charge,
represented as the integral of the current. Thus, the simple RC circuit in Example 1.8
and Figure 1.1 has memory physically stored in the capacitor. Similarly, the automobile in
Figure 1.2 has memory stored in its kinetic energy. In discrete-time systems implemented
with computers or digital microprocessors, memory is typically directly associated with
storage registers that retain values between clock pulses.

While the concept of memory in a system would typically suggest storing past input
and output values, our formal definition also leads to our referring to a system as having
memory if the current output is dependent on future values of the input and output. While
systems having this dependence on future values might at first seem unnatural, they in fact
form an important class of systems, as we discuss further in Section 1.6.3.

1.6.2 Invertibility and Inverse Systems

A system is said to be invertible if distinct inputs lead to distinct outputs. As illustrated in
Figure 1.45(a) for the discrete-time case, if a system is invertible, then an inverse system
exists that, when cascaded with the original system, yields an output w[n] equal to the
input x[#n] to the first system. Thus, the series interconnection in Figure 1.45(a) has an
overall input-output relationship which is the same as that for the identity system.

An example of an invertible continuous-time system is

W0 = 2x(1), (1.97)

for which the inverse system is

w(t) = % (o). (1.98)

This example is illustrated in Figure 1.45(b). Another example of an invertible system
is the accumulator of eq. (1.92). For this system, the difference between two successive



46 Signals and Systems Chap. 1

n
X[1] | system y[n] | Inverse

> w[n] = x[n]

system
@
y(t) 1
X(t) =] y(t) = 2x(t) > w(t) = Sy(t) =——>wt] = x(t)
(b)
n y[n]
X([N] w1 y[n] =k 4271 x[K] —| w[n] = y[n] — y[n — 1] p=——=>w[n] = x[n]

(©

Figure 1.45 Concept of an inverse system for: (a) a general invertible sys-
tem; (b) the invertible system described by eq. (1.97); (c) the invertible system
defined in eq. (1.92).

values of the output is precisely the last input value. Therefore, in this case, the inverse
system is

win] = y[n] — yln — 1], (1.99)
as illustrated in Figure 1.45(c). Examples of noninvertible systems are
y[n] =0, (1.100)
that is, the system that produces the zero output sequence for any input sequence, and
y(t) = x*(1), (1.101)

in which case we cannot determine the sign of the input from knowledge of the output.

The concept of invertibility is important in many contexts. One example arises in
systems for encoding used in a wide variety of communications applications. In such a
system, a signal that we wish to transmit is first applied as the input to a system known
as an encoder. There are many reasons for doing this, ranging from the desire to encrypt
the original message for secure or private communication to the objective of providing
some redundancy in the signal (for example, by adding what are known as parity bits)
so that any errors that occur in transmission can be detected and, possibly, corrected. For
lossless coding, the input to the encoder must be exactly recoverable from the output; i.e.,
the encoder must be invertible.

1.6.3 Causality

A system is causal if the output at any time depends only on values of the input at the
present time and in the past. Such a system is often referred to as being nonanticipative, as
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the system output does not anticipate future values of the input. Consequently, if two inputs
to a causal system are identical up to some point in time 7, or ng, the corresponding outputs
must also be equal up to this same time. The RC circuit of Figure 1.1 is causal, since
the capacitor voltage responds only to the present and past values of the source voltage.
Similarly, the motion of an automobile is causal, since it does not anticipate future actions
of the driver. The systems described in egs. (1.92) — (1.94) are also causal, but the systems
defined by

yln] = x[n] — x[n + 1] (1.102)
and
y@) = x(t+1) (1.103)

are not. All memoryless systems are causal, since the output responds only to the current
value of the input.

Although causal systems are of great importance, they do not by any means constitute
the only systems that are of practical significance. For example, causality is not often an
essential constraint in applications in which the independent variable is not time, such as in
image processing. Furthermore, in processing data that have been recorded previously, as
often happens with speech, geophysical, or meteorological signals, to name a few, we are
by no means constrained to causal processing. As another example, in many applications,
including historical stock market analysis and demographic studies, we may be interested
in determining a slowly varying trend in data that also contain high-frequency fluctuations
about that trend. In this case, a commonly used approach is to average data over an interval
in order to smooth out the fluctuations and keep only the trend. An example of a noncausal
averaging system is

+M

> aln -kl (1.104)

-—M

[]—#
WM,

Example 1.12

When checking the causality of a system, it is important to look carefully at the input-
output relation. To illustrate some of the issues involved in doing this, we will check the
causality of two particular systems.

The first system is defined by

y[n] = x[—n]. (1.105)

Note that the output y[n,] at a positive time ny depends only on the value of the input
signal x[—ng] at time (—ng), which is negative and therefore in the past of ny. We may
be tempted to conclude at this point that the given system is causal. However, we should
always be careful to check the input-output relation for all times. In particular, for n < 0,
e.g.n = —4,weseethat y[—4] = x[4], so that the output at this time depends on a future
value of the input. Hence, the system is not causal.

It is also important to distinguish carefully the effects of the input from those of
any other functions used in the definition of the system. For example, consider the system

¥(t) = x(t)cos(t + 1). (1.106)
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In this system, the output at any time ¢ equals the input at that same time multiplied by
a number that varies with time. Specifically, we can rewrite eq. (1.106) as

y()y = x(1)g(®),

where g(t) is a time-varying function, namely g(t) = cos(t + 1). Thus, only the current
value of the input x(¢) influences the current value of the output y(z), and we conclude
that this system is causal (and, in fact, memoryless).

1.6.4 Stability

Stability is another important system property. Informally, a stable system is one in which
small inputs lead to responses that do not diverge. For example, consider the pendulum in
Figure 1.46(a), in which the input is the applied force x(¢) and the output is the angular
deviation y(¢) from the vertical. In this case, gravity applies a restoring force that tends
to return the pendulum to the vertical position, and frictional losses due to drag tend to
slow it down. Consequently, if a small force x(¢) is applied, the resulting deflection from
vertical will also be small. In contrast, for the inverted pendulum in Figure 1.46(b), the
effect of gravity is to apply a force that tends to increase the deviation from vertical. Thus,
a small applied force leads to a large vertical deflection causing the pendulum to topple
over, despite any retarding forces due to friction.

The system in Figure 1.46(a) is an example of a stable system, while that in Fig-
ure 1.46(b) is unstable. Models for chain reactions or for population growth with unlim-
ited food supplies and no predators are examples of unstable systems, since the system
response grows without bound in response to small inputs. Another example of an unsta-
ble system is the model for a bank account balance in eq. (1.86), since if an initial deposit
is made (i.e., x[0] = a positive amount) and there are no subsequent withdrawals, then
that deposit will grow each month without bound, because of the compounding effect of
interest payments.

Figure 1.46 (a) A stable pendulum;
(b) an unstable inverted pendulum.
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There are also numerous examples of stable systems. Stability of physical systems
generally results from the presence of mechanisms that dissipate energy. For example,
assuming positive component values in the simple RC circuit of Example 1.8, the resistor
dissipates energy and this circuit is a stable system. The system in Example 1.9 is also
stable because of the dissipation of energy through friction.

The preceding examples provide us with an intuitive understanding of the concept
of stability. More formally, if the input to a stable system is bounded (i.e., if its magnitude
does not grow without bound), then the output must also be bounded and therefore cannot
diverge. This is the definition of stability that we will use throughout this book. For exam-
ple, consider applying a constant force f(#) = F to the automobile in Figure 1.2, with the
vehicle initially at rest. In this case the velocity of the car will increase, but not without
bound, since the retarding frictional force also increases with velocity. In fact, the velocity
will continue to increase until the frictional force exactly balances the applied force; so,
from eq. (1.84), we see that this terminal velocity value V must satisfy

Py g (1.107)
m m
1.e.,
y=F (1.108)
P

As another example, consider the discrete-time system defined by eq. (1.104), and
suppose that the input x[#] is bounded in magnitude by some number, say, B, for all values
of n. Then the largest possible magnitude for y[n] is also B, because y[n] is the average
of a finite set of values of the input. Therefore, y[n] is bounded and the system is stable.
On the other hand, consider the accumulator described by eq. (1.92). Unlike the system
in eq. (1.104), this system sums all of the past values of the input rather than just a finite
set of values, and the system is unstable, since the sum can grow continually even if x{#n]
is bounded. For example, if the input to the accumulator is a unit step u[#n], the output
will be

n

y[n] = Z ulk] = (n + Duln].

k=—
That is, y[0] = 1, y[1] = 2, ¥y[2] = 3, and so on, and y[n] grows without bound.

Example 1.13

If we suspect that a system is unstable, then a useful strategy to verify this is to look for
a specific bounded input that leads to an unbounded output. Finding one such example
enables us to conclude that the given system is unstable. If such an example does not
exist or is difficult to find, we must check for stability by using a method that does not
utilize specific examples of input signals. To illustrate this approach, let us check the
stability of two systems,

Si:y(t) = tx(t) (1.109)
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and
So: y(t) = e, (1.110)

In seeking a specific counterexample in order to disprove stability, we might try simple
bounded inputs such as a constant or a unit step. For system S in eq. (1.109), a constant
input x(t) = 1 yields y(t) = ¢, which is unbounded, since no matter what finite con-
stant we pick, |y(#)| will exceed that constant for some t. We conclude that system S| is
unstable.

For system S, which happens to be stable, we would be unable to find a bounded
input that results in an unbounded output. So we proceed to verify that all bounded inputs
result in bounded outputs. Specifically, let B be an arbitrary positive number, and let x(z)
be an arbitrary signal bounded by B; that is, we are making no assumption about x(z),
except that

|x(1)| < B, (1.111)
or
—B < x(t) < B, (1.112)

for all ¢. Using the definition of S, in eq. (1.110), we then see that if x(¢) satisfies
eq. (1.111), then y(¢) must satisfy

e B < |y(n)| < €b. (1.113)

We conclude that if any input to S, is bounded by an arbitrary positive number B, the
corresponding output is guaranteed to be bounded by e?. Thus, S, is stable.

The system properties and concepts that we have introduced so far in this section
are of great importance, and we will examine some of these in more detail later in the
book. There remain, however, two additional properties—time invariance and linearity—
that play a particularly central role in the subsequent chapters of the book, and in the
remainder of this section we introduce and provide initial discussions of these two very
important concepts.

1.6.5 Time Invariance

Conceptually, a system is time invariant if the behavior and characteristics of the system
are fixed over time. For example, the RC circuit of Figure 1.1 is time invariant if the
resistance and capacitance values R and C are constant over time: We would expect to
get the same results from an experiment with this circuit today as we would if we ran the
identical experiment tomorrow. On the other hand, if the values of R and C are changed
or fluctuate over time, then we would expect the results of our experiment to depend on
the time at which we run it. Similarly, if the frictional coefficient b and mass m of the
automobile in Figure 1.2 are constant, we would expect the vehicle to respond identically
independently of when we drive it. On the other hand, if we load the auto’s trunk with
heavy suitcases one day, thus increasing m, we would expect the car to behave differently
than at other times when it is not so heavily loaded.

The property of time invariance can be described very simply in terms of the signals
and systems language that we have introduced. Specifically, a system is time invariant if
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a time shift in the input signal results in an identical time shift in the output signal. That
is, if y[n] is the output of a discrete-time, time-invariant system when x[#n] is the input,
then y [n — ng] is the output when x [n — ng] is applied. In continuous time with y(¢) the
output corresponding to the input x(¢), a time-invariant system will have y (¢ — #y) as the
output when x (¢ — #o) is the input.

To see how to determine whether a system is time invariant or not, and to gain some
insight into this property, consider the following examples:

Example 1.14
Consider the continuous-time system defined by
y(t) = sin[x(1)]. (1.114)

To check that this system is time invariant, we must determine whether the time-
invariance property holds for any input and any time shift #,. Thus, let x,(¢) be an
arbitrary input to this system, and let

yi(t) = sin[x1(1)] (1.115)

be the corresponding output. Then consider a second input obtained by shifting x,(z) in
time:

x2(t) = x1 (£~ 10). (1.116)
The output corresponding to this input is
y2(t) = sin[x2()] = sin[x (t — 1)]. 1.117)
Similarly, from eq. (1.115),
it — tp) = sin[x; (t — 1)]. (1.118)

Comparing eqs. (1.117) and (1.118), we see that y2(f) = y| (¢ — £), and therefore, this
system is time invariant.

Example 1.15
As a second example, consider the discrete-time system
yln] = nx[n]. (1.119)

This is a time-varying system, a fact that can be verified using the same formal procedure
as that used in the preceding example (see Problem 1.28). However, when a system is
suspected of being time varying, an approach to showing this that is often very useful
is to seek a counterexample—i.e., to use our intuition to find an input signal for which
the condition of time invariance is violated. In particular, the system in this example
represents a system with a time-varying gain. For example, if we know that the current
input value is 1, we cannot determine the current output value without knowing the
current time.

Consequently, consider the input signal x;[n] = &8[n], which yields an output
y1[n] that is identically O (since né[n] = 0). However, the input x,{n] = 8[n— 1] yields
the output y,[n] = né[n—1] = 8[n— 1]. Thus, while x,[#] is a shifted version of x,[n],
y2[n] is not a shifted version of y,[#n].
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While the system in the preceding example has a time-varying gain and as a result
is a time-varying system, the system in eq. (1.97) has a constant gain and, in fact, is time
invariant. Other examples of time-invariant systems are given by egs. (1.91)—(1.104). The
following example illustrates a time-varying system.

Example 1.16
Consider the system
() = x(21). (1.120)

This system represents a time scaling. That is, y(z) is a time-compressed (by a factor of
2) version of x(t). Intuitively, then, any time shift in the input will also be compressed
by a factor of 2, and it is for this reason that the system is not time invariant. To demon-
strate this by counterexample, consider the input x,(#) shown in Figure 1.47(a) and the
resulting output y,(¢) depicted in Figure 1.47(b). If we then shift the input by 2—i.e.,
consider x,(t) = x;(t — 2), as shown in Figure 1.47(c)—we obtain the resulting output

X4(t) y1(t)
1 1
-2 2 t —1 1 t
@ (b)
Xot) = x4(t—2) ya(t)
1 1
0 4 t 0 2 i
() (d)
y1(t—2)
1
1 3 t

Figure 1.47 (a) The input x(f) to the system in Example 1.16; (b) the
output y;(f) corresponding to x;(); {c) the shifted input x (1) = X (t — 2);
(d) the output ¥ (t) corresponding to x(t); (e) the shifted signal y;(t — 2).
Note that y»(f) # y4(t — 2), showing that the system is not time invariant.
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v2(t) = x2(2t) shown in Figure 1.47(d). Comparing Figures 1.47(d) and (e), we see that
ya2(2) # yi(t — 2), so that the system is not time invariant. (In fact, y2(r) = y;(z — 1), so
that the output time shift is only half as big as it should be for time invariance, due to the
time compression imparted by the system.)

1.6.6 Linearity

A linear system, in continuous time or discrete time, is a system that possesses the impor-
tant property of superposition: If an input consists of the weighted sum of several signals,
then the output is the superposition—that is, the weighted sum—of the responses of the
system to each of those signals. More precisely, let y;(¢) be the response of a continuous-
time system to an input x| (), and let y-(#) be the output corresponding to the input x»(?).
Then the system is linear if:

1. The response to x;(z) + x2(z) is yi (1) + y2(2).
2. The response to ax,(t) is ay,(t), where a is any complex constant.

The first of these two properties is known as the additivity property; the second is known
as the scaling or homogeneity property. Although we have written this description using
continuous-time signals, the same definition holds in discrete time. The systems specified
by egs. (1.91)—(1.100), (1.102)—(1.104), and (1.119) are linear, while those defined by
egs. (1.101) and (1.114) are nonlinear. Note that a system can be linear without being
time invariant, as in eq. (1.119), and it can be time invariant without being linear, as in
egs. (1.101) and (1.114).

The two properties defining a linear system can be combined into a single statement:

continuous time: ax(t) + bx,(t) — ay(t) + by (1), (1.121)
discrete time: ax;[n] + bxy[n] — ay,[n] + by;[n]. (1.122)
Here, a and b are any complex constants. Furthermore, it is straightforward to show from
the definition of linearity that if x;[n], k = 1,2,3,..., are a set of inputs to a discrete-
time linear system with corresponding outputs y,[n], k = 1,2, 3, ..., then the response to
a linear combination of these inputs given by
x[n] = Zakxk[n] = ayx[n] + arxa2[n] + azx3{n] + ... (1.123)
k
is
y[n) = > apyilnl = ayyilnl + axya[n] + azyslnd + ... (1.124)

k

This very important fact is known as the superposition property, which holds for linear
systems in both continuous and discrete time.

A direct consequence of the superposition property is that, for linear systems, an
input which is zero for all time results in an output which is zero for all time. For example,
if x{n] — y[n], then the homogeneity property tells us that

0=0-x[n] =0-y[n] =0 (1.125)
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In the following examples we illustrate how the linearity of a given system can be
checked by directly applying the definition of linearity.

Example 1.17
Consider a system S whose input x(f) and output y(t) are related by
(1) = 1x(1)

To determine whether or not S is linear, we consider two arbitrary inputs x;(¢) and x,(¢).
x1(1) = (1) = tx1(t)
X2(t) — ya(t) = tx2(t)

Let x3(¢) be a linear combination of x(¢) and x,(¢). That is,
x3(t) = ax|(t) + bxa(2)

where a and b are arbitrary scalars. If x3(r) is the input to S, then the corresponding
output may be expressed as

yi(0) = tx3(1)

Hax (t) + bxy(1))
atxi(t) + btxy(t)
ayi(r) + by>(2)

We conclude that the system S is linear.

Example 1.18

Let us apply the linearity-checking procedure of the previous example to another system
S whose input x(#) and output y(z) are related by
¥y = x*(1)
Defining x(¢), x2(¢), and x3(¢) as in the previous example, we have
xi(t) = y@) = x@)
x(1) = y(t) = x3(0)
and

x3(t) = y3(1) = x53(t)
= (ax,(t) + bxy(1))*
= a*x}(t) + b*x3(t) + 2abx(£)x,(t)
= @yi(0) + b*ya(0) + 2abx () x2(1)
Clearly, we can specify x,(t), x2(¢), a, and b such that y3(¢) is not the same as ay,(t) +

by,(t). Forexample, if x( (1) = 1, x2(t) = 0,a = 2,and b = 0, then y3(t) = 2x((1))? =
4,but 2y(t) = 2(x,(t))> = 2. We conclude that the system S is not linear.

Example 1.19

In checking the linearity of a system, it is important to remember that the system must
satisfy both the additivity and homogeneity properties and that the signals, as well as
any scaling constants, are allowed to be complex. To emphasize the importance of these
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points, consider the system specified by
yln] = Re{x[n]}. (1.126)

As shown in Problem 1.29, this system is additive; however, it does not satisfy the ho-
mogeneity property, as we now demonstrate. Let

xi[n] = r[n] + js[nl (1.127)

be an arbitrary complex input with real and imaginary parts r[n] and s[n], respectively,
so that the corresponding output is

vi[n] = rln]. (1.128)

Now, consider scaling x;[n] by a complex number, for example, a = j; i.e., consider
the input

x[n] = jxi[n] = j(r[n] + js[n]) (1.129)
—s[n] + jr[n].

The output corresponding to x;[n] is
y2[n] = Refxz[n]} = —s[nl, (1.130)
which is not equal to the scaled version of y[n],
ay|[n] = jr[n]. (1.131)

We conclude that the system violates the homogeneity property and hence is not linear.

Example 1.20

Consider the system
y[n] = 2x[n] + 3. (1.132)

This system is not linear, as can be verified in several ways. For example, the system
violates the additivity property: If x,[n] = 2 and x;[n] = 3, then

xi[n] = yiln]l = 2xi[n] +3 =7, (1.133)

x3[n] = y[n] = 2x2[n] +3 = 9. (1.134)
However, the response to x3[n] = x;[n] + x;[n] is

y3[nl = 2[xi[n] + x2[n]] + 3 = 13, (1.135)

which does not equal y([n] + y,[n] = 16. Alternatively, since y[n] = 3 if x[n] = 0, we
see that the system violates the “zero-in/zero-out” property of linear systems given in
eq. (1.125).

It may seem surprising that the system in the above example is nonlinear, since
eq. (1.132) is a linear equation. On the other hand, as depicted in Figure 1.48, the output
of this system can be represented as the sum of the output of a linear system and another
signal equal to the zero-input response of the system. For the system in eq. (1.132), the
linear system is

x[n] — 2x[n],

and the zero-input response is

yoln] = 3.
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Figure 1.48 Structure of an incrementally linear system. Here, yy[n] is the
zero-input response of the system.

There are, in fact, large classes of systems in both continuous and discrete time that
can be represented as in Figure 1.48—i.e., for which the overall system output consists
of the superposition of the response of a linear system with a zero-input response. As
shown in Problem 1.47, such systems correspond to the class of incrementally linear
systems—i.e., systems in continuous or discrete time that respond linearly to changes in
the input. In other words, the difference between the responses to any two inputs to an
incrementally linear system is a linear (i.e., additive and homogeneous) function of the
difference between the two inputs. For example, if x,[n] and x;[n] are two inputs to the
system specified by eq. (1.132), and if y,[n] and y,[n] are the corresponding outputs,
then

yilnl = y2[n] = 2xi[n] + 3 — {2x3[n] + 3} = 2{xi[n] — x2[n]}. (1.136)

1.7 SUMMARY

In this chapter, we have developed a number of basic concepts related to continuous-time
and discrete-time signals and systems. We have presented both an intuitive picture of what
signals and systems are through several examples and a mathematical representation for
signals and systems that we will use throughout the book. Specifically, we introduced
graphical and mathematical representations of signals and used these representations in
performing transformations of the independent variable. We also defined and examined
several basic signals, both in continuous time and in discrete time. These included com-
plex exponential signals, sinusoidal signals, and unit impulse and step functions. In ad-
dition, we investigated the concept of periodicity for continuous-time and discrete-time
signals.

In developing some of the elementary ideas related to systems, we introduced block
diagrams to facilitate our discussions concerning the interconnection of systems, and we
defined a number of important properties of systems, including causality, stability, time
invariance, and linearity.

The primary focus in most of this book will be on the class of linear, time-invariant
(LTT) systems, both in continuous time and in discrete time. These systems play a par-
ticularly important role in system analysis and design, in part due to the fact that many
systems encountered in nature can be successfully modeled as linear and time invariant.
Furthermore, as we shall see in the following chapters, the properties of linearity and time
invariance allow us to analyze in detail the behavior of LTI systems.
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‘Chapter 1 Problems

Basic problems emphasize the mechanics of using concepts and methods in a man-
ner similar to that illustrated in the examples that are solved in the text.

Advanced problems explore and elaborate upon the foundations and practical im-
plications of the textual material.

The first section of problems belongs to the basic category, and the answers are pro-
vided in the back of the book. The next two sections contain problems belonging to the
basic and advanced categories, respectively. A final section, Mathematical Review, pro-
vides practice problems on the fundamental ideas of complex arithmetic and algebra.

BASIC PROBLEMS WITH ANSWERS

1.1. Express each of the following complex numbers in Cartesian form (x + jy): 5 1el™,
é —Jm Qi —jml2 QST ﬁeﬂ’/‘* \/},%/4 fe Jj9ml4 \/Ee jmld

1.2. Express each of the followmg complex numbers in polar form (re/?, with —7 <
0 = m):5,~2,=3j,5 = 5 14/, (1= P2 jA =), (+ A=) (V2 + jV2
(1 +jJ3.

1.3. Determine the values of P.. and E. for each of the following signals:
@ xi(1) = e ur) (b)) xo(t) = /2™ (€) x3(r) = cos(1)
(@) xi[n] = (3)'uln]  (e) xa[n] = I8 (f) x3[n] = cos(n)

1.4. Let x[n] be a signal with x[n] = 0 for n < —2 and n > 4. For each signal given
below, determine the values of n for which it is guaranteed to be zero.
(@) x[n —3] (b) x[n + 4] (©) x[—n]
d) x[—-n+2] (e) x[—n—2]

1.5. Let x(r) be a signal with x(#) = 0 for r < 3. For each signal given below, determine
the values of ¢ for which it is guaranteed to be zero.
@ x(1 -0 Md) x(1=0)+x2-1) () x(1 =Hx(2 -1

(d) x(31) (e) x(#/3)
1.6. Determine whether or not each of the following signals is periodic:
(@) xi(t) = 2/ ™Mu(r) (b) xa[n] = uln] + u[—n]

(©) x3in] = >, _ _{8[n—4k] — 8[n — 1 — 4k]}

1.7. For each signal given below, determine all the values of the independent variable at
which the even part of the signal is guaranteed to be zero.
(@) xi[n] = uln] —uln—4]  (b) x2(r) = sin(31)
(©) x3[n] = (3)"uln = 3] (d) x(1) = e Vult +2)

1.8. Express the real part of each of the following signals in the form Ae™ ' cos(wt + ¢),
where A, a, w, and ¢ are real numbers with A > 0and —7 < ¢ = m:
(@) x(1) = —2 (b) x2(t) = 2ei™* cos(3t + 2m)
(© x3(t) = e 'sinBt+m) () xy(r) = je'"2r/100x

1.9. Determine whether or not each of the following signals is periodic. If a signal is
periodic, specify its fundamental period.

= jelllt 5 — -+ jn - — Ljlmn
&3 ’fcﬁ% = ermins2ys ((13 :ﬁ([i:)] —eseﬂ/ww“» (© xaln) =
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1.10.
1.11.
1.12,

1.13.

1.14.

1.15.

1.16.

Signals and Systems Chap. 1

Determine the fundamental period of the signal x(t) = 2 cos(10¢ + 1) —sin{4r — 1).
Determine the fundamental period of the signal x[n] = 1 + /477 — /27155,
Consider the discrete-time signal

x[n] =1-=>"8[n—1-kl.
k=3

Determine the values of the integers M and ng so that x[n] may be expressed as
x[n] = u[Mn — ng].
Consider the continuous-time signal
x(t) =6 +2)—6(0—2).

Calculate the value of E.. for the signal
t
¥t = J x()dT.

Consider a periodic signal

(1, o=r=1
x(t)_[—z, 1<r<2

with period T = 2. The derivative of this signal is related to the “impulse train”
gy = > 8(t—2k
k=—x
with period T = 2. It can be shown that

dx(t)
dt

= Ag(t — 1)) + Arg(t — to).

Determine the values of A, #;, A,, and 1,.

Consider a system S with input x[n] and output y[#]. This system is obtained through
a series interconnection of a system S followed by a system S,. The input-output
relationships for S| and S, are

S yiln] = 2x([n] + 4x([n — 1],

S0 walnl = wln =20+ sl 3]

where x[n] and x,[n] denote input signals.

(a) Determine the input-output relationship for system S.

(b) Does the input-output relationship of system S change if the order in which S,
and S, are connected in series is reversed (i.e., if S, follows §;)?

Consider a discrete-time system with input x[n] and output y[{#n]. The input-output
relationship for this system is

yln] = x[n]x[n - 2].
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(a) Is the system memoryless?

(b) Determine the output of the system when the input is Ad[n], where A is any
real or complex number.

(c) Is the system invertible?

Consider a continuous-time system with input x(¢) and output y(¢) related by

y(@) = x(sin(z)).

(a) Is this system causal?
(b) Is this system linear?

Consider a discrete-time system with input x[n] and output y[#] related by

n+ng

yinl = > xlk],

k=n-ngy

where ny is a finite positive integer.

(a) Is this system linear?

(a) Is this system time-invariant?

(¢) If x[n] is known to be bounded by a finite integer B (i.e., |x[n]| < B for all n), it
can be shown that y[n] is bounded by a finite number C. We conclude that the
given system is stable. Express C in terms of B and ny.

For each of the following input-output relationships, determine whether the corre-
sponding system is linear, time invariant or both.

(@) y(n) = x( - 1) (b) yln] = x*[n—2]

(©) ylnl = x[n+ 11— x[n—11 (d) y[n] = Od{x(n)}

A continuous-time linear system S with input x(¢) and output y(#) yields the follow-
ing input-output pairs:

. S .
x(1) = e/ = y(r) = &,
, S .
x(1) = e /¥ — y(t)y = e .

(a) If x;(r) = cos(2t), determine the corresponding output y;(f) for system S.
(b) If x,(t) = cos2(t — %)), determine the corresponding output y,(#) for sys-
tem S.

BASIC PROBLEMS

1.21.

1.22.

A continuous-time signal x() is shown in Figure P1.21. Sketch and label carefully
each of the following signals:

(@ x(tr—1) () x2-1 (€) x2r +1)

@ x@d -5 (e [x(@) + x(=Dlu@)  @® x(OB¢+3)— 81~ )]

A discrete-time signal is shown in Figure P1.22. Sketch and label carefully each of
the following signals:

(@ x[n—4] (b) x[3 —n] (©) x[3n]

d) x[3n+ 1] (e) x[n]ul3 — n] ® x[n—2]6[n — 2]

(® 3x[n]+ 3(=D"x[n]  (h) x[(n — 1)]



60 Signals and Systems Chap. 1
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Figure P1.21 Figure P1.22

1.23. Determine and sketch the even and odd parts of the signals depicted in Figure P1.23.
Label your sketches carefully.

1 2 t
(@)
X(t)
N\
| |
-2 -1 1 t

“~The line
x{t) =tfort>0

The line
x(t) = —2tfort <0

—1 1 t
() Figure P1.23

1.24. Determine and sketch the even and odd parts of the signals depicted in Figure P1.24.
Label your sketches carefully.
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1.25.

1.26.

1.27.

lllllll A "

Figure P1.24

Determine whether or not each of the following continuous-time signals is periodic.
If the signal is periodic, determine its fundamental period.

(a) x(t) = 3cos(4t + T) (b) x(t) = /™D

(¢) x(t) = [cos(2r — D)I? @) x(t) = &{cos(dmt)u(t)}

(€) x(t) = &vfsin@dmu(} @ x() = > e @My — p)

Determine whether or not each of the following discrete-time signals is periodic. If
the signal is penodlc determine its fundamental period.

(a) x[n] = sm(—n +1) (b) x[n] = cos(8 - 1T) (¢) x[n] = cos(%n2)
(d) x[n] = cos(Fn)cos(Fn) (e x[n] = 2cos(Fn) + sin(gn) —2cos(Fn + )
In this chapter, we introduced a number of general properties of systems. In partic-
ular, a system may or may not be

(1) Memoryless

(2) Time invariant

(3) Linear

(4) Causal

(5) Stable

Determine which of these properties hold and which do not hold for each of the
following continuous-time systems. Justify your answers. In each example, y() de-
notes the system output and x(#) is the system input.
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1.28.

1.29.

1.30.

1.31.
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@ y() = x(t —=2)+x(2—1) (b) y() = [cos(31)]x(r)
© y() = [2 x(7)dr @) @) = {g’(t) +x(1 = 2), ;<200

10, x(1) <0
@y = { xX(f) + x(t = 2), x(t) =0
(®) y(n) = 4w
Determine which of the properties listed in Problem 1.27 hold and which do not

hold for each of the following discrete-time systems. Justify your answers. In each
example, y[n] denotes the system output and x[n] is the system input.

® y(t) = x(#/3)

(@) y[n] = x[—n] (b) yln] = x[n — 2] — 2x[n — 8]
(¢) yln] = nx[n] (d) yln] = &{x[n — 11}
x[n], n=1 x[n], n=1
(e) y[n] =<0, n=0 ) y[n] =<0, n=0
xn+1], n=-1 x[n], n= -1

(g) yln]l = x[4n + 1]

(a) Show that the discrete-time system whose input x[n] and output y[n] are related
by y[n] = Re{x[n]} is additive. Does this system remain additive if its input-
output relationship is changed to y[n] = ®Re{e/™*x[n]}? (Do not assume that
x[n] is real in this problem.)

(b) In the text, we discussed the fact that the property of linearity for a system is
equivalent to the system possessing both the additivity property and homogene-
ity property. Determine whether each of the systems defined below is additive
and/or homogeneous. Justify your answers by providing a proof for each prop-
erty if it holds or a counterexample if it does not.

x[n]x[n—2]
. _ 1 rdx)72 . _ ) ===, x[n—11#0
1) yit) = —|—— 1 n| = x[n—1]
@) ¥ = S0P (i) yn] {O, .

Determine if each of the following systems is invertible. If it is, construct the inverse
system. If it is not, find two input signals to the system that have the same output.
(@) y() = x(t —4) (b) y(1) = cos[x(1)]
(¢) y[n] = nx|n] ) y@) = [', x(nd
x[n — 1], n=1
(® y[n] =40, n=20 (® ylnl = x[nlx[n — 1]
x[n}, n<-1
(® yln] = x[1 - n] W) y@) = [, e x(ndr
() yInl = >5_ ()" *x[k] () ) = 40
1 ) x[n+1], n=0 _
(h;M—{xM, 20, Oy =axen
) _ ) _ x[n/2], neven
(m) y[n] = x[2n] (m) y[n] {0 1 odd

In this problem, we illustrate one of the most important consequences of the prop-
erties of linearity and time invariance. Specifically, once we know the response
of a linear system or a linear time-invariant (LTI) system to a single input or the
responses to several inputs, we can directly compute the responses to many other
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input signals. Much of the remainder of this book deals with a thorough exploitation
of this fact in order to develop results and techniques for analyzing and synthesizing
LTI systems.

(a) Consider an LTI system whose response to the signal x;(¢) in Figure P1.31(a) is
the signal y;(¢) illustrated in Figure P1.31(b). Determine and sketch carefully
the response of the system to the input x,(#) depicted in Figure P1.31(c).

(b) Determine and sketch the response of the system considered in part (a) to the
input x3(z) shown in Figure P1.31(d).

X, ®) yi ()

2
1 1
| |
0 1 2 t 0o 1 2 t
(@) (b)
Xa (t) X3 (t)
2

(© (@ Figure P1.31

ADVANCED PROBLEMS

1.32. Let x(¢) be a continuous-time signal, and let
yi(8) = x(2t) and yy(t) = x(¢/2).

The signal y,(¢) represents a speeded up version of x(¢) in the sense that the duration
of the signal is cut in half. Similarly, y,(z) represents a slowed down version of
x(2) in the sense that the duration of the signal is doubled. Consider the following
statements:

(1) If x(#) is periodic, then y, () is periodic.

(2) If y(¢) is periodic, then x(z) is periodic.

(3) If x(z) is periodic, then y,(t) is periodic.

(4) If y,(2) is periodic, then x(¢) is periodic.
For each of these statements, determine whether it is true, and if so, determine the
relationship between the fundamental periods of the two signals considered in the
statement. If the statement is not true, produce a counterexample to it.

1.33. Let x[n] be a discrete-time signal, and let

x[n/2], neven

yiln] = x[2n] and y;[n] = {0 nodd -
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The signals y, [n] and y-»[n] respectively represent in some sense the speeded up and
slowed down versions of x[n]. However, it should be noted that the discrete-time
notions of speeded up and slowed down have subtle differences with respect to their
continuous-time counterparts. Consider the following statements:

(1) If x[n] is periodic, then y[n] is periodic.

(2) If y[n] is periodic, then x[n] is periodic.

(3) If x[n] is periodic, then y»[n] is periodic.

(4) If y2[n] 1s periodic, then x[#n] is periodic.
For each of these statements, determine whether it is true, and if so, determine the
relationship between the fundamental periods of the two signals considered in the
statement. If the statement is not true, produce a counterexample to it.

1.34. In this problem, we explore several of the properties of even and odd signals.
(a) Show that if x[#] is an odd signal, then

—+c

> x[n] = 0.

n=-—x

(b) Show that if x;[n] is an odd signal and x;[#n] is an even signal, then x;[n]x,[n]
is an odd signal.

(c) Let x[n] be an arbitrary signal with even and odd parts denoted by
x.[n] = &{x[n]}
and
x,[n] = Od{x[n]}.
Show that

4o +% +oo

Z x*[n] = Z x2[n] + Z x2[n].

H=—0% n=—x n=-—-=

(d) Although parts (a)—(c) have been stated in terms of discrete-time signals, the
analogous properties are also valid in continuous time. To demonstrate this,
show that

—%

+x +x% +
J x*(tdt = J x2(ndt + J x2(t)dt,

—c —%

where x,(7) and x,(¢) are, respectively, the even and odd parts of x(r).
1.35. Consider the periodic discrete-time exponential time signal
x[n] - ejm(Zw/N)n.
Show that the fundamental period of this signal is
Ny = Nl/gcd(m, N),

where gcd(m, N) is the greatest common divisor of m and N—that is, the largest
integer that divides both m and N an integral number of times. For example,

gcd(2,3) = 1, ged(2,4) = 2, gcd(8, 12) = 4.

Note that Ny = N if m and N have no factors in common.
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1.36. Let x(#) be the continuous-time complex exponential signal
x(t) = elwot

with fundamental frequency wg and fundamental period Ty = 27/wy. Consider the
discrete-time signal obtained by taking equally spaced samples of x(#)—that is,

x[n] = x(nT) = &/“0"7T,

(a) Show that x[n] is periodic if and only if 7/T is a rational number—that is, if
and only if some multiple of the sampling interval exactly equals a multiple of

the period of x(7).
(b) Suppose that x[#n] is periodic—that is, that
r p
— ==, P1.36-1)
To ¢ (

where p and g are integers. What are the fundamental period and fundamental
frequency of x[n]? Express the fundamental frequency as a fraction of w,T'.

(c) Again assuming that 7/T satisfies eq. (P1.36—1), determine precisely how
many periods of x(z) are needed to obtain the samples that form a single period
of x[n].

1.37. An important concept in many communications applications is the correlation be-
tween two signals. In the problems at the end of Chapter 2, we will have more to
say about this topic and will provide some indication of how it is used in practice.
For now, we content ourselves with a brief introduction to correlation functions and
some of their properties.

Let x(¢) and y(7) be two signals; then the correlation function is defined as

o

x(t + H)y(r)dT.

(1) = J

The function ¢, () is usually referred to as the autocorrelation function of the signal
x(t), while ¢ (1) is often called a cross-correlation function.
(a) What is the relationship between ¢, (¢) and ¢, (1)?
(b) Compute the odd part of ¢ (7).
(¢) Suppose that y(r) = x(r + T). Express ¢ ,(t) and ¢,,(?) in terms of ¢, (?).
1.38. In this problem, we examine a few of the properties of the unit impulse function.
(a) Show that

821 = %S(r).

Hint: Examine 84(t). (See Figure 1.34.)

(b) In Section 1.4, we defined the continuous-time unit impulse as the limit of the
signal 64 (7). More precisely, we defined several of the properties of 6(r) by
examining the corresponding properties of 64(z). For example, since the signal

!

upa(t) = J (SA(T)dT
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converges to the unit step
u(t) = girrz) ua(t), (P1.38-1)

we could interpret (¢) through the equation
t
u(t) = J o(rydr

or by viewing 6(¢) as the formal derivative of u(r).

This type of discussion is important, as we are in effect trying to define
o(t) through its properties rather than by specifying its value for each ¢, which
is not possible. In Chapter 2, we provide a very simple characterization of the
behavior of the unit impulse that is extremely useful in the study of linear time-
invariant systems. For the present, however, we concentrate on demonstrating
that the important concept in using the unit impulse is to understand how it
behaves. To do this, consider the six signals depicted in Figure P1.38. Show

ri ) A

]

_a A t A 2A t
2 2
(a) (b)
) @
1 1
A 3
A A t ZA A t
(©) (d)
3 ) f8 ()=he1174
2
A

(e) f) Figure P1.38
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that each “behaves like an impulse” as A — 0 in that, if we let

t

ur(f) = f

rg(*r)d'r,
then
. l —
Alil}) up(@®) = u(t).
In each case, sketch and label carefully the signal uiA(t). Note that

A(0) = r4(0) = 0 for all A,

Therefore, it is not enough to define or to think of 8(¢) as being zero for r # 0
and infinite for # = 0. Rather, it is properties such as eq. (P1.38—1) that define
the impulse. In Section 2.5 we will define a whole class of signals known as
singularity functions, which are related to the unit impulse and which are also
defined in terms of their properties rather than their values.

The role played by u(t), 6(t), and other singularity functions in the study of linear
time-invariant systems is that of an idealization of a physical phenomenon, and, as
we will see, the use of these idealizations allow us to obtain an exceedingly impor-
tant and very simple representation of such systems. In using singularity functions,
we need, however, to be careful. In particular, we must remember that they are ideal-
izations, and thus, whenever we perform a calculation using them, we are implicitly
assuming that this calculation represents an accurate description of the behavior of
the signals that they are intended to idealize. To illustrate, consider the equation

x(0)8(t) = x(0)6(1). (P1.39-1)
This equation is based on the observation that
x(0)0a(2) = x(0)0(2). (P1.39-2)

Taking the limit of this relationship then yields the idealized one given by eq.
(P1.39-1). However, a more careful examination of our derivation of eq. (P1.39-2)
shows that that equation really makes sense only if x(#) is continuous at ¢ = 0. If it
is not, then we will not have x(z) = x(0) for # small.

To make this point clearer, consider the unit step signal u(¢). Recall from eq.
(1.70) that u(¢) = 0 for t < 0 and u(t) = 1 for r > 0, but that its value at t = 0 is
not defined. [Note, for example, that ux(0) = O for all A, while ui(O) = % (from
Problem 1.38(b)).] The fact that u(0) is not defined is not particularly bothersome,
as long as the calculations we perform using u(¢) do not rely on a specific choice for
u(0). For example, if f(¢) is a signal that is continuous at ¢ = 0, then the value of

~+ o
J f(u(o)do
does not depend upon a choice for #(0). On the other hand, the fact that #(0) is
undefined is significant in that it means that certain calculations involving singular-
ity functions are undefined. Consider trying to define a value for the product u(#)6(z).
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To see that this cannor be defined, show that
i‘f{) [ua(Hé()] = 0,

but

lim{us 08501 = 5500

In general, we can define the product of two signals without any difficulty,
as long as the signals do not contain singularities (discontinuities, impulses, or the
other singularities introduced in Section 2.5) whose locations coincide. When the
locations do coincide, the product is undefined. As an example, show that the signal

—oc

g = J i u(T)é(t — 7dr

is identical to u(¢); that is, it is O for 7 < 0, it equals 1 for > 0, and it is undefined
fort = 0.

1.40. (a) Show that if a system is either additive or homogeneous, it has the property
that if the input is identically zero, then the output is also identically zero.

(b) Determine a system (either in continuous or discrete time) that is neither ad-
ditive nor homogeneous but which has a zero output if the input is identically
ZEr0.

(¢) From part (a), can you conclude that if the input to a linear system is zero be-
tween times #; and ¢, in continuous time or between times 7, and n, in discrete
time, then its output must also be zero between these same times? Explain your
answer.

1.41. Consider a system S with input x[x] and output y[#n] related by
ylnl = x[n}{gln] + gln — 11}.

(a) If g[n] = 1 for all n, show that S is time invariant.
(b) If g[n] = n, show that S is not time invariant.
(c) If g[n] = 1 + (—1)", show that S is time invariant.

1.42. (a) Is the following statement true or false?

The series interconnection of two linear time-invariant systems is itself a linear,
time-invariant system.

Justify your answer.
(b) Is the following statement true or false?

The series interconnection of two nonlinear systems is itself nonlinear.

Justify your answer.
(c) Consider three systems with the following input-output relationships:

x[n/2}, neven

System 1: yln] = [O nodd
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System 2: y[n] = x[n] + %x[n — 1]+ %x[n - 2],
System 3: y[n] = x[2n].

Suppose that these systems are connected in series as depicted in Figure P1.42.
Find the input-output relationship for the overall interconnected system. Is this
system linear? Is it time invariant?

X[N] ===~ System 1 »| System 2 »| System 3 j=—— y[n]

Figure P1.42

1.43. (a) Consider a time-invariant system with input x(z) and output y(¢). Show that if
x(t) is periodic with period T, then so is y(f). Show that the analogous result
also holds in discrete time.

(b) Give an example of a time-invariant system and a nonperiodic input signal x(¢)
such that the corresponding output y(¢) is periodic.

1.44. (a) Show that causality for a continuous-time linear system is equivalent to the
following statement:

For any time 7y and any input x(¢) such that x(t) = 0 for ¢ < 1, the correspond-
ing output y(#) must also be zero for ¢ < .

The analogous statement can be made for a discrete-time linear system.
(b) Find a nonlinear system that satisfies the foregoing condition but is not causal.
(¢) Find a nonlinear system that is causal but does not satisfy the condition.
(d) Show that invertibility for a discrete-time linear system is equivalent to the
following statement:

The only input that produces y[n] = 0 for all n is x[n] = O for all n.

The analogous statement is also true for a continuous-time linear system.
(e) Find a nonlinear system that satisfies the condition of part (d) but is not invert-
ible.

1.45. In Problem 1.37, we introduced the concept of correlation functions. It is often im-
portant in practice to compute the correlation function ¢y, (), where h(t) is a fixed
given signal, but where x(¢) may be any of a wide variety of signals. In this case,
what is done is to design a system S with input x(#) and output ¢y, (1).

(a) Is S linear? Is S time invariant? Is S causal? Explain your answers.
(b) Do any of your answers to part (a) change if we take as the output ¢, () rather
than ¢y, (2)?

1.46. Consider the feedback system of Figure P1.46. Assume that y[n] = 0 for n < 0.

+ e[n]
x[n]—>®—> yin] = efn —1] > yin]

Figure P1.46
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(a) Sketch the output when x[n] = 6[n].
(b) Sketch the output when x[n] = u[n].

1.47. (a) Let S denote an incrementally linear system, and let x| [#] be an arbitrary input
signal to S with corresponding output y;[n]. Consider the system illustrated in
Figure P1.47(a). Show that this system is linear and that, in fact, the overall
input-output relationship between x[n] and y[n] does not depend on the partic-
ular choice of x,[n].
(b) Use the result of part (a) to show that S can be represented in the form shown
in Figure 1.48.
(c) Which of the following systems are incrementally linear? Justify your answers,
and if a system is incrementally linear, identify the linear system L and the zero-
input response yoin] or yo(t) for the representation of the system as shown in

Figure 1.48.
(1) yln] = n+ x[n] + 2x[n + 4]
n/2, neven
.. _ (n—1)2
W M =93 —1y2+ S xikl, nodd
k=—x
+ +
x[n] S y[n]
+
(@)
X1[n] Y‘I[n]
t
t
X(t)—*é-w_()r y(t) = 937“) ——> Y (1)
(b)
cos {(wn)
‘é)ﬂ“ 2{n] = V2 n] —_lz Ul
+
x [n]

@-—»y il
>1 w[n] :xg[n] m

()

Figure P1.47
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_ ) x[n] —x[n—1]+3, ifx[0] =0

(i) yln] = { x[n] — x[n—1]1—-3, ifx[0] <O
(iv) The system depicted in Figure P1.47(b).

(v) The system depicted in Figure P1.47(c).

(d) Suppose that a particular incrementally linear system has a representation as
in Figure 1.48, with L denoting the linear system and yg[#] the zero-input re-
sponse. Show that § is time invariant if and only if L is a time-invariant system
and yy[n] is constant.

MATHEMATICAL REVIEW

The complex number z can be expressed in several ways. The Cartesian or rectangular
form for z is

Z=Xx+1jy

where j = /—1 and x and y are real numbers referred to respectively as the real part and
the imaginary part of z. As we indicated earlier, we will often use the notation

x = Refz}, y = Im{z).
The complex number z can also be represented in polar form as
z = rel?,

where r > 0 is the magnitude of z and 6 is the angle or phase of z. These quantities will
often be written as

r=1z2,8 = ¥z

The relationship between these two representations of complex numbers can be de-
termined either from Euler’s relation,
jo

e/’ = cosf + jsin0,

or by plotting z in the complex plane, as shown in Figure P1.48, in which the coordinate
axes are Re{z} along the horizontal axis and 9m{z} along the vertical axis. With respect to
this graphical representation, x and y are the Cartesian coordinates of z, and r and 6 are its
polar coordinates.

9m

Figure P1.48
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1.48.

1.49.

1.50.

1.51.

1.52.

1.53.
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Let zo be a complex number with polar coordinates (ry, ) and Cartesian coordi-
nates (xo, yo). Determine expressions for the Cartesian coordinates of the following
complex numbers in terms of x¢ and yo. Plot the points zg, z|, 22, 23, 2, and zs in
the complex plane when ry = 2 and 89 = 7/4 and when ry = 2 and 0y = 7/2.
Indicate on your plots the real and imaginary parts of each point.

@) z1 = roe /" () 2 =rg (€) z3 = rge/®*™

(d) z4 = rge/ "™ (e) z5 = ryel/bo*2™

Express each of the following complex numbers in polar form, and plot them in the
complex plane, indicating the magnitude and angle of each number:

(@) 1+ ;3 (b) -5 (¢) =5-5j
(d) 3+4j (e (1 —jff ® A+ ))°
.- . - j(613 o 143
® 3+H0-j) W) e W
@) J(1+ el ® (V3+ )22 )

(a) Using Euler’s relationship or Figure P1.48, determine expressions for x and y
in terms of r and 6.

(b) Determine expressions for r and 8 in terms of x and y.

(c¢) If we are given only r and tan 8, can we uniquely determine x and y? Explain
your answer.

Using Euler’s relation, derive the following relationships:
(a) cosf = %(eﬂ’ + /%)
(b) sinf = 5:(e/? — /%)
(¢) cos’ = %(1 + 00520)

(d) (sinf)(singp) = 5 cos(() d) — 5 cos(B +¢)
(e) sin(f + ¢) = sin 0 cos¢ + cosd smqb

Let z denote a complex variable; that is,
Z=x+jy= rel?.
The complex conjugate of 7 is
& =x—jy=re

Derive each of the following relations, where z, z;, and z, are arbitrary complex

numbers:
(a) 27" = r?
(b) £ = e/

() z+ 7" = 2QRe{z}

@) z— 27" = 2jIm{z}

@ (m+n)=27+25

®) (azi2)" f azT 2y, where a is any real number

® ) =
(h) <Re{~l} = e

=

Derive the followmg rélations, where z, z;, and z, are arbitrary complex numbers:
(@) (&) = ¢
(b) 212 + Zjz2 = 28e{z1 25} = 2Re{z] 22}
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(© |z = |z"]
@ |z122] = 21|22
(e) Re{z} = |2], Imiz} = [
® 2125 + Z 22| = 2|z122]
® (ul—2D)? =z + 2P = (al +|2)?
1.54. The relations considered in this problem are used on many occasions throughout the
book.
(a) Prove the validity of the following expression:

S L[N, a=1
Z) @ = L for any complex number & # 1 °
ne

1-a’

This is often referred to as the finite sum formula.
(b) Show that if || < 1, then

= 1
;a" = 1"a

This is often referred to as the infinite sum formula.
(¢) Show also if |a| < 1, then

St =
=" T

(d) Evaluate

assuming that |a| < 1.

1.55. Using the results from Problem 1.54, evaluate each of the following sums and ex-
press your answer in Cartesian (rectangular) form:

(a) Zzzoejamﬂ (b) ZZ,=726ij/2
© X, o)™ (@ 35 _5(3)"el ™
() > _ocos(Zn) ® =5_o(3) cos(5n)
1.56. Evaluate each of the following integrals, and express your answer in Cartesian (rect-
angular) form:
@) [y ei™dt (b) [fe/™dt
(© [, ei™dr @ [ e dr
(e) [, e " cos(r)dt (0 [, e sin(3r)dt
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2.0 INTRODUCTION
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In Section 1.6 we introduced and discussed a number of basic system properties. Two of
these, linearity and time invariance, play a fundamental role in signal and system analysis
for two major reasons. First, many physical processes possess these properties and thus
can be modeled as linear time-invariant (LTI) systems. In addition, LTI systems can be
analyzed in considerable detail, providing both insight into their properties and a set of
powerful tools that form the core of signal and system analysis.

A principal objective of this book is to develop an understanding of these proper-
ties and tools and to provide an introduction to several of the very important applications
in which the tools are used. In this chapter, we begin the development by deriving and
examining a fundamental and extremely useful representation for LTI systems and by in-
troducing an important class of these systems.

One of the primary reasons LTI systems are amenable to analysis is that any such
system possesses the superposition property described in Section 1.6.6. As a consequence,
if we can represent the input to an LTI system in terms of a linear combination of a set of
basic signals, we can then use superposition to compute the output of the system in terms
of its responses to these basic signals.

As we will see in the following sections, one of the important characteristics of the
unit impulse, both in discrete time and in continuous time, is that very general signals
can be represented as linear combinations of delayed impulses. This fact, together with
the properties of superposition and time invariance, will allow us to develop a complete
characterization of any LTI system in terms of its response to a unit impulse. Such a
representation, referred to as the convolution sum in the discrete-time case and the convo-
lution integral in continuous time, provides considerable analytical convenience in dealing
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with LTI systems. Following our development of the convolution sum and the convolution
integral we use these characterizations to examine some of the other properties of LTI sys-
tems. We then consider the class of continuous-time systems described by linear constant-
coefficient differential equations and its discrete-time counterpart, the class of systems
described by linear constant-coefficient difference equations. We will return to examine
these two very important classes of systems on a number of occasions in subsequent chap-
ters. Finally, we will take another look at the continuous-time unit impulse function and
a number of other signals that are closely related to it in order to provide some additional
insight into these idealized signals and, in particular, to their use and interpretation in the
context of analyzing LTI systems.

2.1 DISCRETE-TIME LTI SYSTEMS: THE CONVOLUTION SUM

2.1.1 The Representation of Discrete-Time Signals in Terms
of Impulses

The key idea in visualizing how the discrete-time unit impulse can be used to construct
any discrete-time signal is to think of a discrete-time signal as a sequence of individual im-
pulses. To see how this intuitive picture can be turned into a mathematical representation,
consider the signal x[n] depicted in Figure 2.1(a). In the remaining parts of this figure,
we have depicted five time-shifted, scaled unit impulse sequences, where the scaling on
each impulse equals the value of x[n] at the particular instant the unit sample occurs. For
example,

A[=118[n + 1] = { =1, n=-1

0, n#*-—-1"
0, n=0
[018[n] ={g[] (e

4y _ | x[1, m=1
x[116[n — 1] = {O, nel
Therefore, the sum of the five sequences in the figure equals x[n] for —2 = n = 2. More
generally, by including additional shifted, scaled impulses, we can write

x[n] = ...+ x[=3]6[n + 3] + x[—2]6[n + 2] + x[—1]86[n + 1] + x[0]6[n]

2.1
+ x[116[n — 1] + x[2]6[n — 2] + x[3]6[n — 3] + .... D

For any value of n, only one of the terms on the right-hand side of eq. (2.1) is nonzero, and
the scaling associated with that term is precisely x[n]. Writing this summation in a more
compact form, we have

+%

x[n] = > x[k18[n — kI. 2.2)

k=—=

This corresponds to the representation of an arbitrary sequence as a linear combination of
shifted unit impulses 6[n — k], where the weights in this linear combination are x[k]. As
an example, consider x[n] = u[n], the unit step. In this case, since u[k] = O for k <0
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x[—2] 3[n + 2]

-4-3-2-1 01 2 3 4 n

(o)

x[=1]3[n + 1]

x[0] 8[n]

-4-3-2-1 01 2 3 4 n
(d

x[1] 3[n—1]

—4-3-2-1 01 2 3 4 n
(€

x[2] 3[n—2]

~4-3-2-1 0 1

(f) sum of shifted impulses.

Chap. 2

Figure 2.1  Decomposition of a
discrete-time signal into a weighted
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and u[k] = 1for k = 0, eq. (2.2) becomes
+x
uln] = > 8ln — kI,
k=0

which is identical to the expression we derived in Section 1.4. [See eq. (1.67).]

Equation (2.2) is called the sifting property of the discrete-time unit impulse. Be-
cause the sequence &[n — k] is nonzero only when k = n, the summation on the right-
hand side of eq. (2.2) “sifts” through the sequence of values x[k] and preserves only the
value corresponding to k = n. In the next subsection, we will exploit this representa-
tion of discrete-time signals in order to develop the convolution-sum representation for a
discrete-time LTI system.

2.1.2 The Discrete-Time Unit Impulse Response and the Convolution-
Sum Representation of LTI Systems

The importance of the sifting property of eqgs. (2.1) and (2.2) lies in the fact that it repre-
sents x[n] as a superposition of scaled versions of a very simple set of elementary functions,
namely, shifted unit impulses 6[n — k], each of which is nonzero (with value 1) at a single
point in time specified by the corresponding value of k. The response of a linear system
to x[n] will be the superposition of the scaled responses of the system to each of these
shifted impulses. Moreover, the property of time invariance tells us that the responses of a
time-invariant system to the time-shifted unit impulses are simply time-shifted versions of
one another. The convolution-sum representation for discrete-time systems that are both
linear and time invariant results from putting these two basic facts together.

More specifically, consider the response of a linear (but possibly time-varying) sys-
tem to an arbitrary input x[z#]. We can represent the input through eq. (2.2) as a linear
combination of shifted unit impulses. Let #;[n] denote the response of the linear system
to the shifted unit impulse 6[n — k]. Then, from the superposition property for a linear
system [eqgs. (1.123) and (1.124)], the response y[#] of the linear system to the input x[n]
in eq. (2.2) is simply the weighted linear combination of these basic responses. That is,
with the input x[n] to a linear system expressed in the form of eq. (2.2), the output y[n]
can be expressed as

+

yinl = > x{klh[nl. (2.3)

k=—x

Thus, according to eq. (2.3), if we know the response of a linear system to the set of
shifted unit impulses, we can construct the response to an arbitrary input. An interpreta-
tion of eq. (2.3) is illustrated in Figure 2.2. The signal x[n] is applied as the input to a
linear system whose responses h_[n], ho{n], and k,[n] to the signals 8[n + 1], 6[n], and
o[n — 1], respectively, are depicted in Figure 2.2(b). Since x[n] can be written as a linear
combination of 8[n + 1], 8[n], and 6[n — 1], superposition allows us to write the response
to x[n] as a linear combination of the responses to the individual shifted impulses. The
individual shifted and scaled impulses that constitute x[z] are illustrated on the left-hand
side of Figure 2.2(c), while the responses to these component signals are pictured on the
right-hand side. In Figure 2.2(d) we have depicted the actual input x[#], which is the sum
of the components on the left side of Figure 2.2(c) and the actual output y[r], which, by
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x[n]

h_y[n] ho [n]

Figure 2.2 Graphical interpretation of the response of a discrete-time linear
system as expressed in eq. (2.3).

superposition, is the sum of the components on the right side of Figure 2.2(c). Thus, the
response at time #n of a linear system is simply the superposition of the responses due to
the input value at each point in time.

In general, of course, the responses /4 [n] need not be related to each other for differ-
ent values of k. However, if the linear system is also time invariant, then these responses
to time-shifted unit impulses are all time-shifted versions of each other. Specifically, since
S[n — k] is a time-shifted version of 6[n], the response 4 ,[n] is a time-shifted version of
hg[n]; i.e.,

hiln] = holn — kJ. 2.4

For notational convenience, we will drop the subscript on hg[n] and define the unit impulse
(sample) response

hln] = hy[n]. 2.5)

That is, hfn] is the output of the LTI system when 6[n] is the input. Then for an LTI system.
eq. (2.3) becomes

+

yInl = > x{klhln — k). (2.6)

k=-—-=

This result is referred to as the convolution sum or superposition sum, and the oper-
ation on the right-hand side of eq. (2.6) is known as the convolution of the sequences x[]
and h[n]. We will represent the operation of convolution symbolically as

yln] = x[n] = hnl]. .7)
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x[—1]3[n +1] X[=1]h_4[n]

x[0] 8[n] x[0] ho[n]
'}

x[1] 3[n—1] x[1] hy[n]

x[n] yin]

Figure 2.2 Continued

Note that eq. (2.6) expresses the response of an LTI system to an arbitrary input in
terms of the system’s response to the unit impulse. From this, we see that an LTI system
is completely characterized by its response to a single signal, namely, its response to the
unit impulse.

The interpretation of eq. (2.6) is similar to the one we gave for eq. (2.3), where, in the
case of an LTI system, the response due to the input x[k] applied at time k is x[k]h[n — k];
i.e., it is a shifted and scaled version (an “echo”) of h[n]. As before, the actual output is
the superposition of all these responses.
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Example 2.1

Consider an LTT system with impulse response h[n] and input x[n], as illustrated in
- Figure 2.3(a). For this case, since only x[0] and x[1] are nonzero, eq. (2.6) simplifies to
the expression

y[n] = x{0]A[n — O] + x{1]h[n — 1] = 0.5h[n] + 2h[n — 1]. (2.8)
The sequences 0.5h[n] and 2k[n — 1] are the two echoes of the impulse response needed
for the superposition involved in generating y[n]. These echoes are displayed in Fig-

ure 2.3(b). By summing the two echoes for each value of n, we obtain y[n], which is
shown in Figure 2.3(c).

hin]
‘*_’;L]_L_*_'_i
0 1 2 n
2
x[n]
0.5
0 1 n
(@)
05 0.5h[n]
0 1 2 n
2 2h[n—-1]
o 1t 2 3 n
(b)
2.5
2yl
0.5
0o 1 2 3 n

Figure 2.3 (a) The impulse response h[n] of an LTI system and an input
x[n] to the system; (b) the responses or “echoes,” 0.5h{n] and 2h[n — 1], to
the nonzero values of the input, namely, x[0] = 0.5 and x[1] = 2; (c) the
overall response y[n], which is the sum of the echos in (b).
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By considering the effect of the superposition sum on each individual output sample,
we obtain another very useful way to visualize the calculation of y[n] using the convolution
sum. In particular, consider the evaluation of the output value at some specific time n. A
particularly convenient way of displaying this calculation graphically begins with the two
signals x[k] and h[n — k] viewed as functions of k. Multiplying these two functions, we
obtain a sequence g{k] = x[k]h[n — k], which, at each time k, is seen to represent the
contribution of x[k] to the output at time n. We conclude that summing all the samples
in the sequence of g[k] yields the output value at the selected time n. Thus, to calculate
y[n] for all values of n requires repeating this procedure for each value of n. Fortunately,
changing the value of # has a very simple graphical interpretation for the two signals x[£]
and h[n — k], viewed as functions of k. The following examples illustrate this and the use
of the aforementioned viewpoint in evaluating convolution sums.

Example 2.2

Let us consider again the convolution problem encountered in Example 2.1. The se-
quence x[k] is shown in Figure 2.4(a), while the sequence hA[n — k], for n fixed and
viewed as a function of k, is shown in Figure 2.4(b) for several different values of ». In
sketching these sequences, we have used the fact that h[n — k] (viewed as a function of
k with n fixed) is a time-reversed and shifted version of the impulse response A[£]. In
particular, as & increases, the argument n — k decreases, explaining the need to perform a
time reversal of i[k]. Knowing this, then in order to sketch the signal A[n — k], we need
only determine its value for some particular value of k. For example, the argument n — k
will equal O at the value & = n. Thus, if we sketch the signal A[— k], we can obtain the
signal h[n — k] simply by shifting to the right (by n) if n is positive or to the left if n is
negative. The result for our example for values of n < 0,n = 0,1,2,3, and n > 3 are
shown in Figure 2.4(b).

Having sketched x[k] and A[n — k] for any particular value of n, we multiply
these two signals and sum over all values of k. For our example, for n < 0, we see from
Figure 2.4 that x[k]h[n — k] = O for all &, since the nonzero values of x[k] and h[n — k]
do not overlap. Consequently, y[n] = 0 for n < 0. For n = 0, since the product of the
sequence x[k] with the sequence A[0 — k] has only one nonzero sample with the value
0.5, we conclude that

%

y[0] = > x{k]h[0 - k] = 0.5. (2.9)

k=—-=

The product of the sequence x[k] with the sequence i[1 — k] has two nonzero samples,
which may be summed to obtain

o

y[1] = Z x[k1A[1 — k] = 0.5+ 2.0 = 2.5. (2.10)
P—
Similarly,
y[2] = Z x[k]h[2 — k] = 0.5+ 2.0 = 2.5, 2.11)
k=—=%

and
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x[K]
05
0 1 k
(@)

1

I I I h{n-K}, n<0

n-2 n-1 n 0 k
111

2 10 o k

111 e

o 1 o k

111 e

o 1 2 K

Tp e

T 1 2 3 K

hin—k], n>3

. [ 11

n-2n-1 n Kk

[}
¢
=Y

(b)
Figure 2.4 Interpretation of eq. (2.6) for the signals A[n] and x[n] in Fig-
ure 2.3; (a) the signal x[k] and (b) the signal h[n — k] (as a function of k
with n fixed) for several values of n (n < 0; n = 0,1, 2, 3; n > 3). Each
of these signals is obtained by reflection and shifting of the unit impulse re-
sponse h[k]. The response y[n] for each value of n is obtained by multiplying
the signals x[k] and h[n — k] in (a) and (b) and then summing the products
over all values of k. The calculation for this example is carried out in detail in
Example 2.2.

x

yi3]1 = z x[k]h[3 — k] = 2.0. (2.12)

K= =

Finally, for n > 3, the product x[k]h[n — k] is zero for all k, from which we conclude
that y[n] = O for n > 3. The resulting output values agree with those obtained in Exam-
ple 2.1.
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Example 2.3

Consider an input x[n] and a unit impulse response h[n] given by
x[n] = a’u[n],
h[n] = u[n],

with 0 < a < 1. These signals are illustrated in Figure 2.5. Also, to help us in visualizing
and calculating the convolution of the signals, in Figure 2.6 we have depicted the signal
x[k] followed by A[— k], h{—1— k], and A[1 — k] (thatis, Aln— k] forn = 0, —1, and +1)
and, finally, A[n — k] for an arbitrary positive value of n and an arbitrary negative value
of n. From this figure, we note that for n < 0, there is no overlap between the nonzero
points in x[k] and A[n — k]. Thus, for n < 0, x[k]h[n — k] = O for all values of k, and
hence, from eq. (2.6), we see that y[n] = 0,n < 0. Forn = 0,

Kk 0<k=n
—kl=1% .
*KIhln = &] {O, otherwise

x[n] = «"u[n]

(o)

Figure 2.5 The signals x[n] and h[n] in Example 2.3.
Thus, forn = 0,
yinl = > o,
k=0

and using the result of Problem 1.54 we can write this as

n P 1-— Cln+1
}’[n] = Za = ﬁ forn = 0. (213)
k=0
Thus, for all n,
1 — an+l
yln] = (—1 — )u[n],

The signal y[n] is sketched in Figure 2.7.
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x[K] = o"u[K]

Figure 2.6  Graphical interpretation of the calculation of the convolution
sum for Example 2.3.

Chap. 2
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1 —otn +1
yln] = (—) uln]
1-a

Figure 2.7 Qutput for Example 2.3.

The operation of convolution is sometimes described in terms of “sliding” the se-
quence A[n — k] past x[k]. For example, suppose we have evaluated y[n] for some partic-
ular value of n, say, n = ng. That is, we have sketched the signal h[ng — k], multiplied it
by the signal x[k], and summed the result over all values of k. To evaluate y[n] at the next
value of n—i.e., n = ng + 1—we need to sketch the signal A[(ny + 1) — k]. However, we
can do this simply by taking the signal #[rny — k] and shifting it to the right by one point.
For each successive value of n, we continue this process of shifting #[n — k] to the right
by one point, multiplying by x[k], and summing the result over k.

Example 2.4

As a further example, consider the two sequences

1, 0=n=4
0, otherwise

x[n] = [
and

hin] = a’, 0=n=6
0, otherwise

These signals are depicted in Figure 2.8 for a positive value of @ > 1. In order to calculate
the convolution of the two signals, it is convenient to consider five separate intervals for
n. This is illustrated in Figure 2.9.

Interval 1. For n < 0, there is no overlap between the nonzero portions of x[k] and
h[n — k], and consequently, y[n] = O.

Interval 2. For0 = n = 4,

ko 0=k=n
kKlhin — k] ={ % > .
*[kIhln = &] {0, otherwise
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x[n]

012345 n
(@

0123456 7 n
(b)

Figure 2.8 The signals to be convolved in Example 2.4.

Thus, in this interval,
ylnl = > a" X (2.14)

We can evaluate this sum using the finite sum formula, eq. (2.13). Specifically, changing
~ the variable of summation in eq. (2.14) from k to r = n — k, we obtain

n_ , 1 - an+l

o = S - L
r=0

Interval 3. Forn>4butn—6 =0(e.,4<n =6),

n—k < k<4
K — k= & 0 :
*[klhln = &] {O, otherwise

Thus, in this interval,
4
yinl = > ok (2.15)
k=0

Once again, we can use the geometric sum formula in eq. (2.13) to evaluate eq. (2.15).
Specifically, factoring out the constant factor of a” from the summation in eq. (2.15)
yields

5 _
"1 ;(a*l) _ al 4_an+l

4
i =a"> @) =«
k=0 1

(2.16)

—a ' 11—«
Interval4. Forn>6butn—6 < 4 (i.e,for6 < n =< 10),

n—k _
LT PR



x[K]

Figure 2.9 Graphical interpretation of the convolution performed in
Example 2.4.
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so that

4
yinl= >«
k=n-6

n—k

We can again use eq. (2.13) to evaluate this summation. Letting » = k—n+ 6, we obtain

10— 10— — —
n o 6 n o ()1 —a” 11 a’ 4 _ a7
yln] = E a =« E (™) =« - = .
l-a l -«
r=0 r=0

Interval 5. For n — 6 > 4, or equivalently, n > 10, there is no overlap between the
nonzero portions of x[k] and A[n — k], and hence,

y[n] = 0.
Summarizing, then, we obtain
0 n<0
n+1
! a*’ 0=n=4
l—-«
n-4 _ . n+l
i ={ & %  4<n=6,
-«
n—4 _ 7
2 T2 6<n=10
l -«
0, 10<n

1 y[n]

L

Figure 2.10 Result of performing the convolution in Example 2.4.

6

Example 2.5

Consider an LTI system with input x[r] and unit impulse response h[n] specified as
follows:

x[n] = 2"u[—n), 2.17)
h[n] = u[n]. (2.18)
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1
1 K
2 x[K] = 2°u[—K]
1 1 1 [
6 8 4
IR B | -

4

|
N

|
-
o
x

® 11
I hin—k]
n L 4 =k=
(@
2 ¢ q q [
yln]
1
1
2
1 1
eyl |
-9 ¢ 1
-3 -2 -1 0 1 2 3 n
(b)

Figure 2.11 (a) The sequences x[k] and h[n— k] for the convolution prob-
lem considered in Example 2.5; (b) the resulting output signal y[n].

The sequences x[k] and A[n — k] are plotted as functions of & in Figure 2.11(a). Note that
x[k] 1s zero for k > 0 and h[n — k] is zero for k > n. We also observe that, regardless of
the value of n, the sequence x[k]h[n — k] always has nonzero samples along the k-axis.
When n = 0, x[k]h[rn — k] has nonzero samples in the interval & = 0. It follows that,
forn = 0,

0

0
ylnl = > x[klhfn— k] = > 2~ (2.19)

k=—x k=—=

To evaluate the infinite sum in eq. (2.19), we may use the infinite sum formula,

>ak = L, 0<|a<1. (2.20)
l—«
k=0
Changing the variable of summation in eq. (2.19) from & to r = —k, we obtain
0 x 1 k 1
2k = =) = —— =2 21
kzﬁ( %(2) - (72 (22D

Thus, y[n] takes on a constant value of 2 for n = 0.
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When n < 0, x[k]h{n — k] has nonzero samples for k = n. It follows that, for

n <0,
yinl = > x[klhln — k] = > 2% (2.22)
k=—% k=—=
By performing a change of variable / = —k and then m = | + n, we can again make

use of the infinite sum formula, eq. (2.20), to evaluate the sum in eq. (2.22). The result
is the following for n < 0:

Ea 1 ! k4 1 m-n 1 -n = 1 m
vinl = > (5) = z<§) = (5) Z<§> =22=2"0 (223

l=-n m=0 m=0

The complete sequence of y[n] is sketched in Figure 2.11(b).

These examples illustrate the usefulness of visualizing the calculation of the con-
volution sum graphically. Moreover, in addition to providing a useful way in which to
calculate the response of an LTI system, the convolution sum also provides an extremely
useful representation for LTI systems that allows us to examine their properties in great
detail. In particular, in Section 2.3 we will describe some of the properties of convolution
and will also examine some of the system properties introduced in the previous chapter in
order to see how these properties can be characterized for LTI systems.

2.2 CONTINUOUS-TIME LTI SYSTEMS: THE CONVOLUTION INTEGRAL

In analogy with the results derived and discussed in the preceding section, the goal of this
section is to obtain a complete characterization of a continuous-time LTI system in terms
of its unit impulse response. In discrete time, the key to our developing the convolution
sum was the sifting property of the discrete-time unit impulse—that is, the mathematical
representation of a signal as the superposition of scaled and shifted unit impulse functions.
Intuitively, then, we can think of the discrete-time system as responding to a sequence of
individual impulses. In continuous time, of course, we do not have a discrete sequence of
input values. Nevertheless, as we discussed in Section 1.4.2, if we think of the unit im-
pulse as the idealization of a pulse which is so short that its duration is inconsequential for
any real, physical system, we can develop a representation for arbitrary continuous-time
signals in terms of these idealized pulses with vanishingly small duration, or equivalently,
impulses. This representation is developed in the next subsection, and, following that, we
will proceed very much as in Section 2.1 to develop the convolution integral representation
for continuous-time LTT systems.

2.2.1 The Representation of Continuous-Time Signals in Terms
of Impulses

To develop the continuous-time counterpart of the discrete-time sifting property in
eq. (2.2), we begin by considering a pulse or “staircase” approximation, X(t), to a
continuous-time signal x(¢), as illustrated in Figure 2.12(a). In a manner similar to that
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x(1)

(@)

X(—24)3,(t + 2A)A

x(2A)J__|
-2A -A t
(b)
X(—A)S,(t + A)A
x(=4)
~A O t
()
x(0)3,(HA
x(0)
0 A t
(d)
X(A)3,(t—A)A
x(A)
A24 t

Figure 2.12 Staircase approxima-
(€) tion to a continuous-time signal.
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employed in the discrete-time case, this approximation can be expressed as a linear com-
bination of delayed pulses, as illustrated in Figure 2.12(a)—(e). If we define

1
Sa(r) =4 & 0=t< A, (2.24)

0, otherwise

then, since Ad(?) has unit amplitude, we have the expression

() = > x(kA)Sa(r — kAA. (2.25)

k=—=

From Figure 2.12, we see that, as in the discrete-time case [eq. (2.2)], for any value of ¢,
only one term in the summation on the right-hand side of eq. (2.25) is nonzero.

As we let A approach 0, the approximation £(r) becomes better and better, and in the
limit equals x(¢). Therefore,

+%

x(t) = lim > x(kD)Sa(r — kA)A. (2.26)

Also, as A — 0, the summation in eq. (2.26) approaches an integral. This can be seen by
considering the graphical interpretation of the equation, illustrated in Figure 2.13. Here,
we have illustrated the signals x(7), 6o(¢t — 7), and their product. We have also indicated
a shaded region whose area approaches the area under x(7)éA(f — 7) as A — 0. Note that
the shaded region has an area equal to x(mA) where t — A < mA < t. Furthermore, for
this value of ¢, only the term with & = m is nonzero in the summation in eq. (2.26), and
thus, the right-hand side of this equation also equals x(mA). Consequently, it follows from
eq. (2.26) and from the preceding argument that x(#) equals the limit as A — 0 of the area
under x(7)8a(t — 7). Moreover, from eq. (1.74), we know that the limit as A — 0 of 8()
is the unit impulse function 6(f). Consequently,

x(t) = f i x(T)6(@t — T)dr. 2.27)

—x

As in discrete time, we refer to eq. (2.27) as the sifting property of the continuous-time
impulse. We note that, for the specific example of x(r) = u(t), eq. (2.27) becomes

u(t) = J : u(t)é(t — r)dt = fm o(t — 1)dr, (2.28)
0

—

since u(t) = Ofor T < 0and u(7) = 1 for 7 > 0. Equation (2.28) is identical to eq. (1.75),
derived in Section 1.4.2.

Once again, eq. (2.27) should be viewed as an idealization in the sense that, for
A “small enough,” the approximation of x(¢) in eq. (2.25) is essentially exact for any
practical purpose. Equation (2.27) then simply represents an idealization of eq. (2.25) by
taking A to be vanishingly small. Note also that we could have derived eq. (2.27) directly
by using several of the basic properties of the unit impulse that we derived in Section 1.4.2.
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X(7)

BA(t‘ ’T)

Bl=

/ x(mAa) « 1&
mA l
%%
t—A t T
-+
Figure 2.13 Graphical interpreta-
© tion of eq. (2.26).

Specifically, as illustrated in Figure 2.14(b), the signal 6(r — 7) (viewed as a function of
7 with ¢ fixed) is a unit impulse located at 7 = z. Thus, as shown in Figure 2.14(c), the
signal x(7)8(t — 7) (once again viewed as a function of 7) equals x(#)6(r — 7) [i.e., itis a
scaled impulse at 7 = ¢ with an area equal to the value of x(¢)]. Consequently, the integral
of this signal from 7 = —oto 7 = +o equals x(¢); that is,

“+oc

x(H)6(t — TdT = x(t)f o — ndT = x(1).

—oc

+oc

jm x(T)o(t — TydT = J

—oc —o0

Although this derivation follows directly from Section 1.4.2, we have included the deriva-
tion given in eqs. (2.24)—(2.27) to stress the similarities with the discrete-time case and,

in particular, to emphasize the interpretation of eq. (2.27) as representing the signal x(r)
as a “sum” (more precisely, an integral) of weighted, shifted impulses.
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t T
(b)
X(7)8(t—7) = x(t)d(t—7) ()
Figure 2.14 (a) Arbitrary signal
x(7); (b) impulse &(t— 7) as a function
t +  of = with ¢ fixed; (c) product of these
© two signals.

2.2.2 The Continuous-Time Unit Impulse Response and the
Convolution Integral Representation of LTI Systems

Asin the discrete-time case, the representation developed in the preceding section provides
us with a way in which to view an arbitrary continuous-time signal as the superposition of
scaled and shifted pulses. In particular, the approximate representation in eq. (2.25) repre-
sents the signal () as a sum of scaled and shifted versions of the basic pulse signal §(7).
Consequently, the response y(¢) of a linear system to this signal will be the superposition
of the responses to the scaled and shifted versions of 4(t). Specifically, let us define h NG
as the response of an LTI system to the input 64(r — kA). Then, from eq. (2.25) and the
superposition property, for continuous-time linear systems, we see that

+%

$) = > x(kA)ha(nA. (2.29)

k= —=

The interpretation of eq. (2.29) is similar to that for eq. (2.3) in discrete time. In
particular, consider Figure 2.15, which is the continuous-time counterpart of Figure 2.2. In
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Figure 2.15 Graphical interpreta-
tion of the response of a continuous-
time linear system as expressed in
eqgs. (2.29) and (2.30).
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Figure 2.15(a) we have depicted the input x(¢) and its approximation %(¢), while in Figure
2.15(b)—(d), we have shown the responses of the system to three of the weighted pulses in
the expression for &(¢). Then the output j(¢) corresponding to %(¢) is the superposition of
all of these responses, as indicated in Figure 2.15(e).

What remains, then, is to consider what happens as A becomes vanishingly small—
i.e.,as A — 0. In particular, with x(¢) as expressed in eq. (2.26), X(¢) becomes an increas-
ingly good approximation to x(z), and in fact, the two coincide as A — 0. Consequently,
the response to X(t), namely, $(¢) in eq. (2.29), must converge to y(t), the response to
the actual input x(r), as illustrated in Figure 2.15(f). Furthermore, as we have said, for A
“small enough,” the duration of the pulse 8, (r — kA) is of no significance, in that, as far as
the system is concerned, the response to this pulse is essentially the same as the response
to a unit impulse at the same point in time. That is, since the pulse 84 (¢ — kA) corresponds
to a shifted unit impulse as A — 0, the response /;4(f) to this input pulse becomes the
response to an impulse in the limit. Therefore, if we let h;(r) denote the response at time ¢
to a unit impulse 6(f — 7) located at time 7, then

+ >

¥y = lim > x(kA)aa(DA. (2.30)

k=—=

As A — 0, the summation on the right-hand side becomes an integral, as can be seen
graphically in Figure 2.16. Specifically, in Figure 2.16 the shaded rectangle represents one
term in the summation on the right-hand side of eq. (2.30) and as A — 0 the summation
approaches the area under x(7)h(t) viewed as a function of 7. Therefore,

y(t) = J ’ x(T)h-(1)d. (2.31)

—%

The interpretation of eq. (2.31) is analogous to the one for eq. (2.29). As we showed
in Section 2.2.1, any input x(¢) can be represented as

x(t) = J x(7)o(t — 7)dr.

x(9)h, (1)

Shaded area = x(kA)h, 4 ()A

/XN Figure 2.16 Graphical illustration
ka  (k+1)a of egs. (2.30) and (2.31).
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That is, we can intuitively think of x(¢) as a “sum” of weighted shifted impulses, where
the weight on the impulse 8(¢ — 7) is x(7)d 7. With this interpretation, eq. (2.31) represents
the superposition of the responses to each of these inputs, and by linearity, the weight
on the response A.(t) to the shifted impulse 6(+ — 7) is also x(7)d .

Equation (2.31) represents the general form of the response of a linear system in
continuous time. If, in addition to being linear, the system is also time invariant, then
h.(t) = ho(t — 7); i.e., the response of an LTI system to the unit impulse (¢ — 7), which
is shifted by 7 seconds from the origin, is a similarly shifted version of the response to the
unit impulse function 8(¢). Again, for notational convenience, we will drop the subscript
and define the unit impulse response h(t) as

h(t) = hy(t); (2.32)

i.e., h(¢) is the response to 8(¢). In this case, eq. (2.31) becomes

v = JH x(T)h(t — T)dT. (2.33)

-

Equation (2.33), referred to as the convolution integral or the superposition integral,
is the continuous-time counterpart of the convolution sum of eq. (2.6) and corresponds
to the representation of a continuous-time LTI system in terms of its response to a unit
impulse. The convolution of two signals x(¢) and A(r) will be represented symbolically as

¥(1) = x(1) * h(r). (2.34)

While we have chosen to use the same symbol * to denote both discrete-time and
continuous-time convolution, the context will generally be sufficient to distinguish the
two cases.

As in discrete time, we see that a continuous-time LTI system is completely char-
acterized by its impulse response—i.e., by its response to a single elementary signal, the
unit impulse &(f). In the next section, we explore the implications of this as we examine
a number of the properties of convolution and of LTI systems in both continuous time and
discrete time.

The procedure for evaluating the convolution integral is quite similar to that for its
discrete-time counterpart, the convolution sum. Specifically, in eq. (2.33) we see that, for
any value of ¢, the output y(r) is a weighted integral of the input, where the weight on
x(7) is h(t — 7). To evaluate this integral for a specific value of ¢, we first obtain the signal
h(t — 1) (regarded as a function of 7 with ¢ fixed) from h(7) by a reflection about the origin
and a shift to the right by ¢ if # > 0 or a shift to the left by |¢] for + < 0. We next multiply
together the signals x(7) and A(t — 7), and y(¢) is obtained by integrating the resulting
product from 7 = —o to T = +oc. To illustrate the evaluation of the convolution integral,
let us consider several examples.
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Example 2.6
Let x(¢) be the input to an LTI system with unit impulse response A(t), where
x(t) = e “u(®), a>0
and
h(t) = u(2).

In Figure 2.17, we have depicted the functions h(7), x(7), and h(t — 7) for a negative
value of t and for a positive value of 7. From this figure, we see that for r < 0, the product
of x(7) and h(r — 7) is zero, and consequently, y(f) is zero. For ¢ > 0,

_ _ e‘[rr’ Oo<r<t
XDkt = 7) = [ 0, otherwise

h(r)
1
0 T
x(1)
1
0 T
h{t—n)
1
t<0
t 0 T
h{t—)
t>0
0 t T

Figure 2.17 Calculation of the convolution integral for Example 2.6.
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From this expression, we can compute y(¢t) for ¢ > 0:

1

! 1
) = J' e dr = ——e 7
y o a .

= 1(1 — e ),
a
Thus, for all ¢, y(¢) is
1 _
y@) = E(l — e Nu(r),

which is shown in Figure 2.18.

0 t

Figure 2.18 Response of the system in Example 2.6 with impulse re-
sponse h(t) = u(t) to the input x(t) = e~ u(t).

Example 2.7

Consider the convolution of the following two signals:

X(t) = 1, 0<r<T
! 0, otherwise ’

(4 o<i<or
h() = {O, otherwise

As in Example 2.4 for discrete-time convolution, it is convenient to consider the evalu-
ation of y(¢) in separate intervals. In Figure 2.19, we have sketched x(7) and have illus-
trated h(t—7) in each of the intervals of interest. For # < O and for¢t > 37, x(7)h(t—71) =
0 for all values of r, and consequently, y(f) = 0. For the other intervals, the product
x(7)h(t — 7) 1s as indicated in Figure 2.20. Thus, for these three intervals, the integration
can be carried out graphically, with the result that

0, t<0

2, 0<t<T
y(1) =< Tt =112 T<t<2T ,

—1P+Tt+3T2, 2T <t <3T

0, 3T <t

which is depicted in Figure 2.21.



2T
I\ N
2T
o<t<T

2T
T<t<2T

2T
I\ 2T <t< 3T

t-2T7
h{t—7)
2T
R t>3T
o / t
t—2T

Figure 2.19 Signals x(7) and h(t — 7) for different values of f for
Example 2.7.

100
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x(T)hit—1)

0<t<T

t T<t<2T

2T
t=T h 2T <t < 3T

t-2T
©

Figure 2.20 Product x(7)h(t — =) for Example 2.7 for the three ranges of
values of t for which this product is not identically zero. (See Figure 2.19.)

y®)

1 1
0 T 2T 3T t

Figure 2.21 Signal y(t) = x(t) = h(t) for Example 2.7.

Example 2.8
Let y(¢) denote the convolution of the following two signals:
x(t) = eu(—1), (2.35)
h(t) = u(t — 3). (2.36)

The signals x(7) and h(t — 7) are plotted as functions of 7 in Figure 2.22(a). We first
observe that these two signals have regions of nonzero overlap, regardless of the value
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0 T
h(t—1)
1
t-3 0 T
(@
y(®)
1
0 3 t
(b)

Figure 2.22 The convolution problem considered in Example 2.8.

of t. When r — 3 = 0, the product of x(7) and A(t — 7) is nonzero for —= <7 <t -3,
and the convolution integral becomes

-3
(1) = J eTdT = %e“"". (2.37)

-7

Forr—3 = 0, the product x(7)A(¢— 1) is nonzero for —= < 1 < (), so that the convolution
integral is

. (2.38)

N =

0
v(t) = J eTdr =

The resulting signal y(r) is plotted in Figure 2.22(b).

As these examples and those presented in Section 2.1 illustrate, the graphical in-
terpretation of continuous-time and discrete-time convolution is of considerable value in
visualizing the evaluation of convolution integrals and sums.
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2.3 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS

In the preceding two sections, we developed the extremely important representations
of continuous-time and discrete-time LTI systems in terms of their unit impulse re-
sponses. In discrete time the representation takes the form of the convolution sum, while
its continuous-time counterpart is the convolution integral, both of which we repeat here
for convenience:

ylnl = > x[klh[n — k] = x[n] * h[n] (2.39)
k=—x
y(@) = J ” x(T)h(t — 7ydT = x(@) * h(t) (2.40)

As we have pointed out, one consequence of these representations is that the charac-
teristics of an LTI system are completely determined by its impulse response. It is impor-
tant to emphasize that this property holds in general only for LTI systems. In particular, as
illustrated in the following example, the unit impulse response of a nonlinear system does
not completely characterize the behavior of the system.

Example 2.9
Consider a discrete-time system with unit impulse response

1, n=01

hin] = {O, otherwise (2.41)

If the system is LTI, then eq. (2.41) completely determines its input-output behavior. In
particular, by substituting eq. (2.41) into the convolution sum, eq. (2.39), we find the
following explicit equation describing how the input and output of this LTI system are
related:

yIn] = x[n] + x[n — 1]. (2.42)

On the other hand, there are many nonlinear systems with the same response—i.e., that
given in eq. (2.41)—to the input 6[#n]. For example, both of the following systems have
this property:

yln] = (x[n] + x[n — 1])%,
y[n] = max(x[n], x[n — 1]).

Consequently, if the system is nonlinear it is not completely characterized by the impulse
response in eq. (2.41).

The preceding example illustrates the fact that LTI systems have a number of prop-
erties not possessed by other systems, beginning with the very special representations that
they have in terms of convolution sums and integrals. In the remainder of this section, we
explore some of the most basic and important of these properties.
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2.3.1 The Commutative Property

A basic property of convolution in both continuous and discrete time is that it is a commu-
tative operation. That is, in discrete time

x[nl * h[n] = hln]* x[n] = Z h(k]x[n — k], (2.43)
k=—

and in continuous time

+=%

x(t) * h(t) = h(t) * x(t) = J h(T)x(t — 7)dT. (2.44)

— %

These expressions can be verified in a straightforward manner by means of a substitution
of variables in eqs. (2.39) and (2.40). For example, in the discrete-time case, if we let
r = n — kor, equivalently, k = n — r, eq. (2.39) becomes

7 s

x[nl*hln] = > x[klhln — kI = > xln—rlhlr] = hin]* x[n].  (2.45)

k= —=% r=—

With this substitution of variables, the roles of x[n] and h[#n] are interchanged. According
to eq. (2.45), the output of an LTI system with input x[x] and unit impulse response h[n]
is identical to the output of an LTI system with input A[#] and unit impulse response x[#].
For example, we could have calculated the convolution in Example 2.4 by first reflecting
and shifting x[], then multiplying the signals x[n — k] and h[k], and finally summing the
products for all values of k.

Similarly, eq. (2.44) can be verified by a change of variables, and the implications of
this result in continuous time are the same: The output of an LTI system with input x(¢) and
unit impulse response A(¢) is identical to the output of an LTI system with input A(¢) and
unit impulse response x(¢). Thus, we could have calculated the convolution in Example 2.7
by reflecting and shifting x(r), multiplying the signals x(¢ — 7) and A(7), and integrating
over —= < 17 < +=, In specific cases, one of the two forms for computing convolutions
[i.e., eq. (2.39) or (2.43) in discrete time and eq. (2.40) or (2.44) in continuous time] may
be easier to visualize, but both forms always result in the same answer.

2.3.2 The Distributive Property

Another basic property of convolution is the distributive property. Specifically, convolution
distributes over addition, so that in discrete time

x[n] * (hy[n] + hal[n]) = x[n] * by [n] + x[n] * hy[n], (2.46)
and in continuous time
x(t) * [ (1) + ha(D)] = x(t) * by (1) + x(1) * ha(1). 2.47)

This property can be verified in a straightforward manner.



Sec. 2.3 Properties of Linear Time-Invariant Systems 105

Y
=

x(t) Cor—w

Y

X(t) | (1) + hp(t) —— (1) Figure 2.23 Interpretation of the
distributive property of convolution
for a parallel interconnection of LTI
() systems.

The distributive property has a useful interpretation in terms of system interconnec-
tions. Consider two continuous-time LTI systems in parallel, as indicated in Figure 2.23(a).
The systems shown in the block diagram are LTI systems with the indicated unit impulse
responses. This pictorial representation is a particularly convenient way in which to denote
LTI systems in block diagrams, and it also reemphasizes the fact that the impulse response
of an LTI system completely characterizes its behavior.

The two systems, with impulse responses £,(¢) and A,(t), have identical inputs, and
their outputs are added. Since

yi(®) = x(t) = hy(t)

and
y2() = x(1) * hy(1),
the system of Figure 2.23(a) has output
Y0 = x@) * by (1) + x(t) * (), (2.48)
corresponding to the right-hand side of eq. (2.47). The system of Figure 2.23(b) has output
y(0) = x(@) * [ @) + ()], (2.49)

corresponding to the left-hand side of eq. (2.47). Applying eq. (2.47) to eq. (2.49) and
comparing the result with eq. (2.48), we see that the systems in Figures 2.23(a) and (b)
are identical.

There is an identical interpretation in discrete time, in which each of the signals
in Figure 2.23 is replaced by a discrete-time counterpart (i.e., x(z2), h(t), ho(t), y1(2),
v2(), and y(¢) are replaced by x[n], hi[n], hy[n], y;[n], y2[#n], and y[n], respectively). In
summary, then, by virtue of the distributive property of convolution, a parallel combina-
tion of LTI systems can be replaced by a single LTI system whose unit impulse response
is the sum of the individual unit impulse responses in the parallel combination.
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Also, as a consequence of both the commutative and distributive properties, we have
[x1[n] + x2[n]] * h[n] = x\[n] * h(n] + x2[n] * h[n] (2.50)
and
[x1(8) + x2(D] * (1) = x1(1) * h(t) + x2(1) * h(1), (2.51)
which simply state that the response of an LTI system to the sum of two inputs must equal
the sum of the responses to these signals individually.

As illustrated in the next example, the distributive property of convolution can also
be exploited to break a complicated convolution into several simpler ones.

Example 2.10

Let y[n] denote the convolution of the following two sequences:
x[n] = (%) uln] + 2"u[—n}, (2.52)

hin] = uln). (2.53)
Note that the sequence x[r] is nonzero along the entire time axis. Direct evaluation of
such a convolution is somewhat tedious. Instead, we may use the distributive property to
express y[n] as the sum of the results of two simpler convolution problems. In particular,
if we let x1[n] = (1/2)"u[n] and x,{n] = 2"u[—n], it follows that

yln} = (x1[n] + x2[n]) * hin]. (2.54)
L Using the distributive property of convolution, we may rewrite eq. (2.54) as
yin] = yiln] + ya[n], (2.55)
where
yiln} = xi[n] * hln] (2.56)
and
y2ln] = xa[n] * hin]. (2.57)

The convolution in eq. (2.56) for y;[n] can be obtained from Example 2.3 (with a =
1/2), while y,[n] was evaluated in Example 2.5. Their sum is y[n], which is shown in
Figure 2.24.

yin]

012345867 n

.
.
.
(53  ENE

Figure 2.24 The signal y[n] = x[n] = h{n] for Example 2.10.
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2.3.3 The Associative Property

Another important and useful property of convolution is that it is associative. That is, in
discrete time

x[n] * (hy[n] * ha[n]) = (x[n] * hy[n]) * hy[n], (2.58)
and in continuous time
x(t) * [y (1) * ha(D)] = [x(2) * hy(£)] * hy(2). (2.59)

This property is proven by straightforward manipulations of the summations and integrals
involved. Examples verifying it are given in Problem 2.43.
As a consequence of the associative property, the expressions

yln] = x[n]* hi[n] * hy[n] (2.60)

and

y(#) = x(1) * by (2) * hy(1) (2.61)

are unambiguous. That is, according to eqs. (2.58) and (2.59), it does not matter in which
order we convolve these signals.

An interpretation of the associative property is illustrated for discrete-time systems
in Figures 2.25(a) and (b). In Figure 2.25(a),

yln] = wln] * hy[n]
(x[n] * hy[n]) * hy[n].

It

In Figure 2.25(b),

x[n] * h[n]
x[n] * (hy[n] * ha[n]).

yln]

According to the associative property, the series interconnection of the two systems in
Figure 2.25(a) is equivalent to the single system in Figure 2.25(b). This can be generalized
to an arbitrary number of LTI systems in cascade, and the analogous interpretation and
conclusion also hold in continuous time.

By using the commutative property together with the associative property, we find
another very important property of LTI systems. Specifically, from Figures 2.25(a) and
(b), we can conclude that the impulse response of the cascade of two LTI systems is the
convolution of their individual impulse responses. Since convolution is commutative, we
can compute this convolution of /[n] and k;[#] in either order. Thus, Figures 2.25(b) and
(c) are equivalent, and from the associative property, these are in turn equivalent to the
system of Figure 2.25(d), which we note is a cascade combination of two systems as in
Figure 2.25(a), but with the order of the cascade reversed. Consequently, the unit impulse
response of a cascade of two LTI systems does not depend on the order in which they are
cascaded. In fact, this holds for an arbitrary number of LTI systems in cascade: The order
in which they are cascaded does not matter as far as the overall system impulse response
is concerned. The same conclusions hold in continuous time as well.
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x[n] > hy[n] > hy[n] s y[n]

x{n] ———{ hin] = hy[n] »holn] s y[n]

(b)

X[n}=——— hin] = hy[n] <hy [n] [—>yn]

(c)

x[n] —>| h,[n] > hyn] > y[n] Figure 2.25 Associative property of
convolution and the implication of this
and the commutative property for the

@ series interconnection of LTI systems.

It is important to emphasize that the behavior of LTI systems in cascade—and, in
particular, the fact that the overall system response does not depend upon the order of the
systems in the cascade—is very special to such systems. In contrast, the order in which
nonlinear systems are cascaded cannot be changed, in general, without changing the over-
all response. For instance, if we have two memoryless systems, one being multiplication
by 2 and the other squaring the input, then if we multiply first and square second, we obtain

ylnl = 4x*[n]
However, if we multiply by 2 after squaring, we have
y[n] = 2x%[n].

Thus, being able to interchange the order of systems in a cascade is a characteristic par-
ticular to LTI systems. In fact, as shown in Problem 2.51, we need both linearity and time
invariance in order for this property to be true in general.

2.3.4 LTI Systems with and without Memory

As specified in Section 1.6.1, a system is memoryless if its output at any time depends
only on the value of the input at that same time. From eq. (2.39), we see that the only
way that this can be true for a discrete-time LTI system is if 4[n] = Ofor n # 0. In this case
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the impulse response has the form

h[n] = Ké[n], (2.62)
where K = h[0] is a constant, and the convolution sum reduces to the relation

ylnl = Kx[n]. (2.63)

If a discrete-time LTI system has an impulse response A[x] that is not identically zero for
n # 0, then the system has memory. An example of an LTI system with memory is the
system given by eq. (2.42). The impulse response for this system, given in eq. (2.41), is
nonzero forn = 1.

From eq. (2.40), we can deduce similar properties for continuous-time LTI systems
with and without memory. In particular, a continuous-time LTI system is memoryless if
h(t) = 0 for ¢t # 0, and such a memoryless LTI system has the form

y(t) = Kx(1) (2.64)
for some constant K and has the impulse response
h(r) = K&(1). (2.65)

Note that if K = 1 in egs. (2.62) and (2.65), then these systems become identity
systems, with output equal to the input and with unit impulse response equal to the unit
impulse. In this case, the convolution sum and integral formulas imply that

x[n] = x[n] * &[n]
and
x(t) = x(t) * 6(p),

which reduce to the sifting properties of the discrete-time and continuous-time unit im-
pulses:

+x%

x[n] = > x[k18[n — k]

k=—o

x

x(t) = J i x(T)6(t — T)dT.

2.3.5 Invertibility of LTI Systems

Consider a continuous-time LTI system with impulse response A(¢). Based on the discus-
sion in Section 1.6.2, this system is invertible only if an inverse system exists that, when
connected in series with the original system, produces an output equal to the input to the
first system. Furthermore, if an LTI system is invertible, then it has an LTI inverse. (See
Problem 2.50.) Therefore, we have the picture shown in Figure 2.26. We are given a sys-
tem with impulse response A(f). The inverse system, with impulse response 4, (¢), results
in w(f) = x(t)—such that the series interconnection in Figure 2.26(a) is identical to the
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X(t) m-|  h(t) y(t)% hy(t) - wit) =x(t)
(@
Figure 2.26 Concept of an inverse
X(t) - |IdlENtity SYStEML_______ 1) system for continuous-time LTI sys-
() tems. The system with impulse re-
sponse hy(t) is the inverse of the
system with impulse response h(t) if
() h(t) * hy(t) = 8(t).

identity system in Figure 2.26(b). Since the overall impulse response in Figure 2.26(a) is
h(t) * h|(t), we have the condition that A, (f) must satisfy for it to be the impulse response
of the inverse system, namely,

h(t) = hy(t) = O(t). (2.66)

Similarly, in discrete time, the impulse response /,[n] of the inverse system for an LTI
system with impulse response A[n] must satisfy

h[n] * hy[n] = 8[n]. (2.67)

The following two examples illustrate invertibility and the construction of an inverse
system.

Example 2.11

Consider the LTI system consisting of a pure time shift
¥(1) = x(t — 19). (2.68)

Such a system is a delay if 1, > 0 and an advance if 1y < 0. For example, if 7, > 0, then
the output at time ¢ equals the value of the input at the earlier time ¢ — #y. If #, = 0. the
system in eq. (2.68) is the identity system and thus is memoryless. For any other value
of 1y, this system has memory, as it responds to the value of the input at a time other than
the current time.

The impulse response for the system can be obtained from eq. (2.68) by taking the
input equal to 6(1), i.e.,

h(t) = 6(t — ty). (2.69)
Therefore,
x(t — ty) = x(#) *6(t — ty). (2.70)

That is, the convolution of a signal with a shifted impulse simply shifts the signal.
To recover the input from the output, i.e., to invert the system, all that is required is
to shift the output back. The system with this compensating time shift is then the inverse
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system. That is, if we take
hi(t) = (¢ + 1p),
then
h(®) * hi(t) = 8(t — ty) *6(t + ty) = 6(2).

Similarly, a pure time shift in discrete time has the unit impulse response 8[n — ng],
so that convolving a signal with a shifted impulse is the same as shifting the signal.
Furthermore, the inverse of the LTI system with impulse response 8[n — ng] is the LTI
system that shifts the signal in the opposite direction by the same amount—i.e., the LTI
system with impulse response 8[n + ng].

Example 2.12

Consider an LTI system with impulse response
h[n] = u[n]. (2.71)

Using the convolution sum, we can calculate the response of this system to an arbitrary
input:

+o0

yln] = > x[Kluln - kI. (2.72)

k=—x

Since u[n — k]is O forn — k < Oand 1 forn — k = 0, eq. (2.72) becomes

n

yinl = > x[kl. (2.73)

k=-—c

That is, this system, which we first encountered in Section 1.6.1 [see eq. (1.92)], is a
summer or accumulator that computes the running sum of all the values of the input
up to the present time. As we saw in Section 1.6.2, such a system is invertible, and its
inverse, as given by eq. (1.99), is

y[nl = x[n] — x[n — 1], 2.74)

which is simply a first difference operation. Choosing x[n] = 8[n], we find that the
impulse response of the inverse system is

hi[n] = 8[n] — 6[n — 1]. (2.75)

As a check that A[n] in eq. (2.71) and A[n] in eq. (2.75) are indeed the impulse re-
sponses of LTI systems that are inverses of each other, we can verify eq. (2.67) by direct
calculation:

h[n] = hi[n] = u[n] ={8[n] — 8[n — 11}
uln] * 8[n] — u[n] *6[n — 1]
uln] —uln — 1]

é[n].

(2.76)
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2.3.6 Causality for LTI Systems

In Section 1.6.3, we introduced the property of causality: The output of a causal system
depends only on the present and past values of the input to the system. By using the con-
volution sum and integral, we can relate this property to a corresponding property of the
impulse response of an LTI system. Specifically, in order for a discrete-time LTI system to
be causal, y[x#] must not depend on x[4] for & > n. From eq. (2.39), we see that for this to
be true, all of the coefficients i[n — k] that multiply values of x[k] for k > n must be zero.
This then requires that the impulse response of a causal discrete-time LTI system satisfy
the condition

h[n] =0 forn<O. 2.77)

According to eq. (2.77), the impulse response of a causal LTI system must be zero before
the impulse occurs, which is consistent with the intuitive concept of causality. More gener-
ally, as shown in Problem 1.44, causality for a linear system is equivalent to the condition
of initial rest; i.e., if the input to a causal system is O up to some point in time, then the
output must also be O up to that time. It is important to emphasize that the equivalence
of causality and the condition of initial rest applies only to linear systems. For example,
as discussed in Section 1.6.6, the system y[n] = 2x[n] + 3 is not linear. However, it is
causal and, in fact, memoryless. On the other hand, if x[n] = 0, y[n] = 3 # 0, so it does
not satisfy the condition of initial rest.

For a causal discrete-time LTI system, the condition in eq. (2.77) implies that the
convolution sum representation in eq. (2.39) becomes

H

yinl = > xlklhln — k), (2.78)

k=—=
and the alternative equivalent form, eq. (2.43), becomes
vlnl = > hk)xn - k. (2.79)
k=0
Similarly, a continuous-time LTI system is causal if
h(t) = 0 forr <0, (2.80)

and in this case the convolution integral is given by

t z
y(t) = J x(TYh(t — T)dT = f h(m)x(t — 1)dT. (2.81)

0

Both the accumulator (h[n] = u[n]) and its inverse (h[n] = 8[n] — 6[n — 1)), de-
scribed in Example 2.12, satisfy eq. (2.77) and therefore are causal. The pure time shift
with impulse response A(t) = &(t —1,) is causal for ¢, = 0 (when the time shift is a delay),
but is noncausal for #y << O (in which case the time shift is an advance, so that the output
anticipates future values of the input).
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Finally, while causality is a property of systems, it is common terminology to refer to
a signal as being causal if it is zero for n < 0 or t < 0. The motivation for this terminology
comes from eqs. (2.77) and (2.80): Causality of an LTI system is equivalent to its impulse
response being a causal signal.

2.3.7 Stability for LTI Systems

Recall from Section 1.6.4 that a system is stable if every bounded input produces a
bounded output. In order to determine conditions under which LTI systems are stable,
consider an input x[n] that is bounded in magnitude:

|x[n]] < B forall n. (2.82)

Suppose that we apply this input to an LTI system with unit impulse response 4[n]. Then,
using the convolution sum, we obtain an expression for the magnitude of the output:

> hlklx[n — k]

k=—o

ly[n]] = ) (2.83)

Since the magnitude of the sum of a set of numbers is no larger than the sum of the mag-
nitudes of the numbers, it follows from eq. (2.83) that

ylnll = > |RIK]|x[n — ]| (2.84)

k=—x

From eq. (2.82), |x[n — k]| < B for all values of k and n. Together with eq. (2.84), this
implies that

+oo
lyln]l = B > |h[k]| foralln. (2.85)
k=—ox

Fromeq. (2.85), we can conclude that if the impulse response is absolutely summable,
that is, if

> k)| < o, (2.86)

k=—w

then y[n] is bounded in magnitude, and hence, the system is stable. Therefore, eq. (2.86) is
a sufficient condition to guarantee the stability of a discrete-time LTI system. In fact, this
condition is also a necessary condition, since, as shown in Problem 2.49, if eq. (2.86) is
not satisfied, there are bounded inputs that result in unbounded outputs. Thus, the stability
of a discrete-time LTI system is completely equivalent to eq. (2.86).

In continuous time, we obtain an analogous characterization of stability in terms of
the impulse response of an LTI system. Specifically, if |x(z)| < B for all z, then, in analogy
with egs. (2.83)—(2.85), it follows that
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ly()| =

J i h(T)x(t — )dT

A

f IhDIx(t - 7ldr

A

Bf . |h(T)|dT.

—o0

Therefore, the system is stable if the impulse response is absolutely integrable, i.e., if

f ()l < . 2.87)

—

As in discrete time, if eq. (2.87) is not satisfied, there are bounded inputs that produce
unbounded outputs; therefore, the stability of a continuous-time LTI system is equivalent
to eq. (2.87). The use of eqs (2.86) and (2.87) to test for stability is illustrated in the next
two examples.

Example 2.13

Consider a system that is a pure time shift in either continuous time or discrete time.
Then, in discrete time

+o0 +oo

> Jhinll = > |8l —noll = 1, (2.88)
while in continuous time
4 +x
[ Ih(r)|dr = f 15(r — to)ld = 1, (2.89)

and we conclude that both of these systems are stable. This should not be surprising,
since if a signal is bounded in magnitude, so is any time-shifted version of that signal.

Now consider the accumulator described in Example 2.12. As we discussed in
Section 1.6.4, this is an unstable system, since, if we apply a constant input to an accu-
mulator, the output grows without bound. That this system is unstable can also be seen
from the fact that its impulse response u[#] is not absolutely summable:

% x

Z luln]| = Zu[n] = oo,

n=-» n=0

Similarly, consider the integrator, the continuous-time counterpart of the accumu-
lator:

) = J " xrydr. (2.90)

This is an unstable system for precisely the same reason as that given for the accumula-
tor; i.e., a constant input gives rise to an output that grows without bound. The impulse
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response for the integrator can be found by letting x(z) = 8(¢), in which case
i
h(t) = J S(T)dT = u(t)
and

+x +x
j lu(r)|dT = f dT = oo,
0

—x

Since the impulse response is not absolutely integrable, the system is not stable.

2.3.8 The Unit Step Response of an LTI System

Up to now, we have seen that the representation of an LTI system in terms of its unit
impulse response allows us to obtain very explicit characterizations of system properties.
Specifically, since A[n] or h(t) completely determines the behavior of an LTI system, we
have been able to relate system properties such as stability and causality to properties of
the impulse response.

There is another signal that is also used quite often in describing the behavior of
LTI systems: the unit step response, s[n] or s(t), corresponding to the output when x[n] =
u[n] or x(t) = u(r). We will find it useful on occasion to refer to the step response, and
therefore, it is worthwhile relating it to the impulse response. From the convolution-sum
representation, the step response of a discrete-time LTI system is the convolution of the
unit step with the impulse response; that is,

s[n] = u[n] * hln].

However, by the commutative property of convolution, s{n] = h[n] * u[n], and therefore,
s[n] can be viewed as the response to the input A[n] of a discrete-time LTI system with
unit impulse response u[n]. As we have seen in Example 2.12, u[n] is the unit impulse
response of the accumulator. Therefore,

s[n] = i hlk]. (2.91)

k=—x

From this equation and from Example 2.12, it is clear that A[n] can be recovered from 5[]
using the relation

h[n] = s[n] — sfn — 1]. 2.92)

That is, the step response of a discrete-time LTI system is the running sum of its impulse
response [eq. (2.91)]. Conversely, the impulse response of a discrete-time LTI system is
the first difference of its step response [eq. (2.92)].

Similarly, in continuous time, the step response of an LTI system with impulse re-
sponse A(t) is given by s(f) = u(t) * h(t), which also equals the response of an integra-
tor [with impulse response u(t)] to the input A(z). That is, the unit step response of a
continuous-time LTI system is the running integral of its impulse response, or

s(t) = Jr h(T)dT, (2.93)
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and from eq. (2.93), the unit impulse response is the first derivative of the unit step re-
sponse,' or
ds(t
h(t) = stt) _ s'(0). (2.94)
dt
Therefore, in both continuous and discrete time, the unit step response can also be used to
characterize an LTI system, since we can calculate the unit impulse response from it. In
Problem 2.45, expressions analogous to the convolution sum and convolution integral are
derived for the representations of an LTI system in terms of its unit step response.

2.4 CAUSAL LTI SYSTEMS DESCRIBED BY DIFFERENTIAL
AND DIFFERENCE EQUATIONS

An extremely important class of continuous-time systems is that for which the input and
output are related through a linear constant-coefficient differential equation. Equations of
this type arise in the description of a wide variety of systems and physical phenomena. For
example, as we illustrated in Chapter 1, the response of the RC circuit in Figure 1.1 and
the motion of a vehicle subject to acceleration inputs and frictional forces, as depicted in
Figure 1.2, can both be described through linear constant-coefficient differential equations.
Similar differential equations arise in the description of mechanical systems containing
restoring and damping forces, in the kinetics of chemical reactions, and in many other
contexts as well.

Correspondingly, an important class of discrete-time systems is that for which the in-
put and output are related through a linear constant-coefficient difference equation. Equa-
tions of this type are used to describe the sequential behavior of many different processes.
For instance, in Example 1.10 we saw how difference equations arise in describing the
accumulation of savings in a bank account, and in Example 1.11 we saw how they can
be used to describe a digital simulation of a continuous-time system described by a dif-
ferential equation. Difference equations also arise quite frequently in the specification of
discrete-time systems designed to perform particular operations on the input signal. For
example, the system that calculates the difference between successive input values, as in
eq. (1.99), and the system described by eq. (1.104) that computes the average value of the
input over an interval are described by difference equations.

Throughout this book, there will be many occasions in which we will consider and
examine systems described by linear constant-coefficient differential and difference equa-
tions. In this section we take a first look at these systems to introduce some of the basic
ideas involved in solving differential and difference equations and to uncover and explore
some of the properties of systems described by such equations. In subsequent chapters, we
develop additional tools for the analysis of signals and systems that will add considerably
both to our ability to analyze systems described by such equations and to our understanding
of their characteristics and behavior.

'Throughout this book, we will use both the notations indicated in eq. (2.94) to denote first derivatives.
Analogous notation will also be used for higher derivatives.
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2.4.1 Linear Constant-Coefficient Differential Equations

To introduce some of the important ideas concerning systems specified by linear constant-
coefficient differential equations, let us consider a first-order differential equation as in eq.
(1.85), viz.,

% +2y(t) = x(1), (2.95)

where y(#) denotes the output of the system and x(¢) is the input. For example, comparing
eq. (2.95) to the differential equation (1.84) for the velocity of a vehicle subject to applied
and frictional forces, we see that eq. (2.95) would correspond exactly to this system if
y(¢) were identified with the vehicle’s velocity v(¢), if x(¢) were taken as the applied force
f (1), and if the parameters in eq. (1.84) were normalized in units such that b/m = 2 and
/m = 1.

A very important point about differential equations such as eq. (2.95) is that they
provide an implicit specification of the system. That is, they describe a relationship be-
tween the input and the output, rather than an explicit expression for the system output
as a function of the input. In order to obtain an explicit expression, we must solve the
differential equation. To find a solution, we need more information than that provided by
the differential equation alone. For example, to determine the speed of an automobile at
the end of a 10-second interval when it has been subjected to a constant acceleration of
1 m/sec? for 10 seconds, we would also need to know how fast the vehicle was moving at
the szart of the interval. Similarly, if we are told that a constant source voltage of 1 volt is
applied to the RC circuit in Figure 1.1 for 10 seconds, we cannot determine what the ca-
pacitor voltage is at the end of that interval without also knowing what the initial capacitor
voltage is.

More generally, to solve a differential equation, we must specify one or more auxil-
iary conditions, and once these are specified, we can then, in principle, obtain an explicit
expression for the output in terms of the input. In other words, a differential equation such
as eq. (2.95) describes a constraint between the input and the output of a system, but to
characterize the system completely, we must also specify auxiliary conditions. Different
choices for these auxiliary conditions then lead to different relationships between the in-
put and the output. For the most part, in this book we will focus on the use of differential
equations to describe causal LTI systems, and for such systems the auxiliary conditions
take a particular, simple form. To illustrate this and to uncover some of the basic properties
of the solutions to differential equations, let us take a look at the solution of eq. (2.95) for
a specific input signal x(r).2

2Qur discussion of the solution of linear constant-coefficient differential equations is brief, since we as-
sume that the reader has some familiarity with this material. For review, we recommend a text on the solution of
ordinary differential equations, such as Ordinary Differential Equations (3rd ed.), by G. Birkhoff and G.-C. Rota
(New York: John Wiley and Sons, 1978), or Elementary Differential Equations (3rd ed.), by W.E. Boyce and
R.C. DiPrima (New York: John Wiley and Sons, 1977). There are also numerous texts that discuss differential
equations in the context of circuit theory. See, for example, Basic Circuit Theory, by L.O. Chua, C.A. Desoer,
and E.S. Kuh (New York: McGraw-Hill Book Company, 1987). As mentioned in the text, in the following
chapters we present other very useful methods for solving linear differential equations that will be sufficient for
our purposes. In addition, a number of exercises involving the solution of differential equations are included in
the problems at the end of the chapter.
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Example 2.14
Consider the solution of eq. (2.95) when the input signal is
x(1) = Ke'u(r), (2.96)

where K is a real number.
The complete solution to eq. (2.96) consists of the sum of a particular solution,
v,(t), and a homogeneous solution, y,(t), i.c.,

(@) = yp(t) + yu(?), 2.97)

where the particular solution satisfies eq. (2.95) and y,(¢) is a solution of the homoge-
neous differential equation

dy() _
s 2y(t) = 0. (2.98)

A common method for finding the particular solution for an exponential input signal as
in eq. (2.96) is to look for a so-called forced response—i.e., a signal of the same form
as the input. With regard to eq. (2.95), since x(r) = Ke* for t > 0, we hypothesize a
solution for r > 0 of the form

yp(t) = Ye, (2.99)

where Y is a number that we must determine. Substituting eqs. (2.96) and (2.99) into
eq. (2.95) for t > 0 yields

3YeY +2YeY = Ke'l. (2.100)

Canceling the factor e* from both sides of eq. (2.100), we obtain

3Y +2Y = K, (2.101)
or
y=X (2.102)
5
so that
yplt) = ?e", t>0. (2.103)

In order to determine y;(r), we hypothesize a solution of the form
() = Ae*. (2.104)
Substituting this into eq. (2.98) gives
Ase’ + 2Ae" = Ae"(s+2) = 0. (2.105)

From this equation, we see that we must take s = —2 and that Ae™* is a solution to eq.
(2.98) for any choice of A. Utilizing this fact and eq. (2.103) in eq. (2.97), we find that
the solution of the differential equation for r > 0 is

y(t) = Ae ' + §e3’, t>0. (2.106)
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As noted earlier, the differential equation (2.95) by itself does not specify uniquely the
response y(f) to the input x(¢) in eq. (2.96). In particular, the constant A in eq. (2.106)
has not yet been determined. In order for the value of A to be determined, we need to
specify an auxiliary condition in addition to the differential equation (2.95). As explored
in Problem 2.34, different choices for this auxiliary condition lead to different solutions
¥(z) and, consequently, to different relationships between the input and the output. As
we have indicated, for the most part in this book we focus on differential and difference
equations used to describe systems that are LTI and causal, and in this case the auxiliary
condition takes the form of the condition of initial rest. That is, as shown in Problem 1.44,
for a causal LTI system, if x(#) = Ofor¢ < f,, then y(¢) must also equal O for r < 7. From
eq. (2.96), we see that for our example x(¢) = 0 for¢ < 0, and thus, the condition of initial
rest implies that y(¢) = 0for¢ < 0. Evaluating eq. (2.106) at# = 0 and setting y(0) = 0

yields
K
= A+ —
0 5
or
K
Thus, for t > 0,
y) = g[ﬁ - e‘z’}, (2.107)

while for z < 0, y(t) = 0, because of the condition of initial rest. Combining these two
- cases, we obtain the full solution

y(@) = % [e“ - e‘z’]u(t). (2.108)

Example 2.14 illustrates several very important points concerning linear constant-
coefficient differential equations and the systems they represent. First, the response to
an input x(¢) will generally consist of the sum of a particular solution to the differential
equation and a homogeneous solution—i.e., a solution to the differential equation with the
input set to zero. The homogeneous solution is often referred to as the natural response
of the system. The natural responses of simple electrical circuits and mechanical systems
are explored in Problems 2.61 and 2.62.

In Example 2.14 we also saw that, in order to determine completely the relation-
ship between the input and the output of a system described by a differential equation
such as eq. (2.95), we must specify auxiliary conditions. An implication of this fact,
which is illustrated in Problem 2.34, is that different choices of auxiliary conditions lead
to different relationships between the input and the output. As we illustrated in the ex-
ample, for the most part we will use the condition of initial rest for systems described
by differential equations. In the example, since the input was O for ¢ < 0, the condition
of initial rest implied the initial condition y(0) = 0. As we have stated, and as illustrated in
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Problem 2.33, under the condition of initial rest the system described by eq. (2.95) is LTI
and causal.’ For example, if we multiply the input in eq. (2.96) by 2, the resulting output
would be twice the output in eq. (2.108).

It is important to emphasize that the condition of initial rest does not specify a zero
initial condition at a fixed point in time, but rather adjusts this point in time so that the
response is zero until the input becomes nonzero. Thus, if x(z) = 0 for ¢t = ¢, for the
causal LTI system described by eq. (2.95), then y(t) = O for t = t,, and we would use
the initial condition y(#y) = O to solve for the output for r > 7. As a physical example,
consider again the circuit in Figure 1.1, also discussed in Example 1.8. Initial rest for this
example corresponds to the statement that, until we connect a nonzero voltage source to the
circuit, the capacitor voltage is zero. Thus, if we begin to use the circuit at noon today, the
initial capacitor voltage as we connect the voltage source at noon today is zero. Similarly,
if we begin to use the circuit at noon tomorrow instead, the initial capacitor voltage as we
connect the voltage source at noon tomorrow is zero.

This example also provides us with some intuition as to why the condition of initial
rest makes a system described by a linear constant-coefficient differential equation time
invariant. For example, if we perform an experiment on the circuit, starting from initial
rest, then, assuming that the coefficients R and C don’t change over time, we would expect
to get the same results whether we ran the experiment today or tomorrow. That is, if we
perform identical experiments on the two days, where the circuit starts from initial rest at
noon on each day, then we would expect to see identical responses—i.e., responses that
are simply time-shifted by one day with respect to each other.

While we have used the first-order differential equation (2.95) as the vehicle for the
discussion of these issues, the same ideas extend directly to systems described by higher
order differential equations. A general Nth-order linear constant-coefficient differential
equation is given by

N k M k

d*y(t) d*x(t)

> a—— = > bi— (2.109)
— = dik = 0 dtt

The order refers to the highest derivative of the output y(?) appearing in the equation. In

the case when N = 0, eq. (2.109) reduces to

1 & dkx(r)
N =—> b——. 2.110
o =~ kzo o (2.110)
In this case, y(¢) is an explicit function of the input x(¢) and its derivatives. For N = 1,
eq. (2.109) specifies the output implicitly in terms of the input. In this case, the analysis
of the equation proceeds just as in our discussion of the first-order differential equation in
Example 2.14. The solution y(¢) consists of two parts—a particular solution to eq. (2.109)

3In fact, as is also shown in Problem 2.34, if the initial condition for eq. (2.95) is nonzero, the resulting
system is incrementally linear. That is, the overall response can be viewed, much as in Figure 1.48, as the
superposition of the response to the initial conditions alone (with input set to 0) and the response to the input
with an initial condition of O (i.e., the response of the causal LTI system described by eq. (2.95)).
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plus a solution to the homogeneous differential equation

N k
S0 g, 2.111)

The solutions to this equation are referred to as the natural responses of the system.

As in the first-order case, the differential equation (2.109) does not completely spec-
ify the output in terms of the input, and we need to identify auxiliary conditions to deter-
mine completely the input-output relationship for the system. Once again, different choices
for these auxiliary conditions result in different input-output relationships, but for the most
part, in this book we will use the condition of initial rest when dealing with systems de-
scribed by differential equations. That is, if x(f) = O for t =1y, we assume that y(#) = 0
for t =1y, and therefore, the response for ¢ > #; can be calculated from the differential
equation (2.109) with the initial conditions
dy(to) _ dN"ly () _

y () =

Under the condition of initial rest, the system described by eq. (2.109) is causal and LTI
Given the initial conditions in eq. (2.112), the output y(¢) can, in principle, be determined
by solving the differential equation in the manner used in Example 2.14 and further illus-
trated in several problems at the end of the chapter. However, in Chapters 4 and 9 we will
develop some tools for the analysis of continuous-time LTI systems that greatly facilitate
the solution of differential equations and, in particular, provide us with powerful methods
for analyzing and characterizing the properties of systems described by such equations.

2.4.2 Linear Constant-Coefficient Difference Equations

The discrete-time counterpart of eq. (2.109) is the Nth-order linear constant-coefficient
difference equation

N M
> apyln—kl = > bex[n — k. (2.113)
k=0 k=0

An equation of this type can be solved in a manner exactly analogous to that for differential
equations. (See Problem 2.32.)* Specifically, the solution y[n] can be written as the sum
of a particular solution to eq. (2.113) and a solution to the homogeneous equation

N
> ayln—k =0 (2.114)
k=0

“For a detailed treatment of the methods for solving linear constant-coefficient difference equations,
see Finite Difference Equations, by H. Levy and F. Lessman (New York: Macmillan, Inc., 1961), or Finite
Difference Equations and Simulations (Englewood Cliffs, NJ: Prentice-Hall, 1968) by F. B. Hildebrand. In
Chapter 6, we present another method for solving difference equations that greatly facilitates the analysis of
linear time-invariant systems that are so described. In addition, we refer the reader to the problems at the end
of this chapter that deal with the solution of difference equations.
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The solutions to this homogeneous equation are often referred to as the natural responses
of the system described by eq. (2.113).

As in the continuous-time case, eq. (2.113) does not completely specify the output
in terms of the input. To do this, we must also specify some auxiliary conditions. While
there are many possible choices for auxiliary conditions, leading to different input-output
relationships, we will focus for the most part on the condition of initial rest—i.e., if x[n] =
0 for n < ny, then y[n] = 0 for n < ng as well. With initial rest, the system described by
eq. (2.113) is LTI and causal.

Although all of these properties can be developed following an approach that di-
rectly parallels our discussion for differential equations, the discrete-time case offers an
alternative path. This stems from the observation that eq. (2.113) can be rearranged in the
form

M N
yinl = — {Zbkx[n — k= > ayln - k]] . (2.115)
a0 | 30 k=1

Equation (2.115) directly expresses the output at time » in terms of previous values of the
input and output. From this, we can immediately see the need for auxiliary conditions. In
order to calculate y[n], we need to know y[n— 1], ..., yln — N]. Therefore, if we are given
the input for all n and a set of auxiliary conditions such as y[—N], y[—N + 1}, ..., y[—1],
eq. (2.115) can be solved for successive values of y[n].

An equation of the form of eq. (2.113) or eq. (2.115) is called a recursive equation,
since it specifies a recursive procedure for determining the output in terms of the input and
previous outputs. In the special case when N = 0, eq. (2.115) reduces to

M
yln] = Z(Z—’O‘)x[n — k). (2.116)

k=0

This is the discrete-time counterpart of the continuous-time system given in eq. (2.110).
Here, y[n] is an explicit function of the present and previous values of the input. For this
reason, eq. (2.116) is often called a nonrecursive equation, since we do not recursively
use previously computed values of the output to compute the present value of the output.
Therefore, just as in the case of the system given in eq. (2.110), we do not need auxiliary
conditions in order to determine y[n]. Furthermore, eq. (2.116) describes an LTI system,
and by direct computation, the impulse response of this system is found to be

bn
hin] = { o 0=n=M 2.117)
0, otherwise

That is, eq. (2.116) is nothing more than the convolution sum. Note that the impulse re-
sponse for it has finite duration; that is, it is nonzero only over a finite time interval. Because
of this property, the system specified by eq. (2.116) is often called a finite impulse response
(FIR) system.

Although we do not require auxiliary conditions for the case of N = 0, such condi-
tions are needed for the recursive case when N = 1. To illustrate the solution of such an
equation, and to gain some insight into the behavior and properties of recursive difference
equations, let us examine the following simple example:
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Example 2.15

Consider the difference equation
1
y[n] — Ey[n - 1] = x[n]. (2.118)
Eq. (2.118) can also be expressed in the form
1
yln] = x[n] + iy[n - 1], (2.119)

highlighting the fact that we need the previous value of the output, y[n — 1], to calculate
the current value. Thus, to begin the recursion, we need an initial condition.

For example, suppose that we impose the condition of initial rest and consider the
input

x[n] = Ké[n]. (2.120)

In this case, since x[rn] = 0 for n = —1, the condition of initial rest implies that y[n] =
0 for n = —1, so that we have as an initial condition y[—1] = 0. Starting from this
initial condition, we can solve for successive values of y[n] for n = 0 as follows:

y[0] = x[0] + %y[*l] =K, (2.121)

y[1] = x[1] + %y[O] = %K, (2.122)
pin = (3]

y[2] = x[2] + Sy[1] = |5 | K, (2.123)
2 2
1 1 n

yln] = x[n] + iy[n -1] = (5) K. (2.124)

Since the system specified by eq. (2.118) and the condition of initial rest is LTI, its input-
output behavior is completely characterized by its impulse response. Setting K = 1, we
see that the impulse response for the system considered in this example is

hln] = (;) u[n). (2.125)

Note that the causal LTI system in Example 2.15 has an impulse response of infinite
duration. In fact, if N = 1 in eq. (2.113), so that the difference equation is recursive, it
is usually the case that the LTI system corresponding to this equation together with the
condition of initial rest will have an impulse response of infinite duration. Such systems
are commonly referred to as infinite impulse response (IIR) systems.

As we have indicated, for the most part we will use recursive difference equations in
the context of describing and analyzing systems that are linear, time-invariant, and causal,
and consequently, we will usually make the assumption of initial rest. In Chapters 5
and 10 we will develop tools for the analysis of discrete-time systems that will provide us
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with very useful and efficient methods for solving linear constant-coefficient difference
equations and for analyzing the properties of the systems that they describe.

2.4.3 Block Diagram Representations of First-Order Systems
Described by Differential and Difference Equations

An important property of systems described by linear constant-coefficient difference and
differential equations is that they can be represented in very simple and natural ways
in terms of block diagram interconnections of elementary operations. This is significant
for a number of reasons. One is that it provides a pictorial representation which can add
to our understanding of the behavior and properties of these systems. In addition, such
representations can be of considerable value for the simulation or implementation of the
systems. For example, the block diagram representation to be introduced in this section
for continuous-time systems is the basis for early analog computer simulations of systems
described by differential equations, and it can also be directly translated into a program
for the simulation of such a system on a digital computer. In addition, the corresponding
representation for discrete-time difference equations suggests simple and efficient ways
in which the systems that the equations describe can be implemented in digital hardware.
In this section, we illustrate the basic ideas behind these block diagram representations
by constructing them for the causal first-order systems introduced in Examples 1.8-1.11.
In Problems 2.57-2.60 and Chapters 9 and 10, we consider block diagrams for systems
described by other, more complex differential and difference equations.

We begin with the discrete-time case and, in particular, the causal system described
by the first-order difference equation

vln] + ay[n — 1] = bx[n]. (2.126)

To develop a block diagram representation of this system, note that the evaluation of
eq. (2.126) requires three basic operations: addition, multiplication by a coefficient, and
delay (to capture the relationship between y[n] and y[n — 1]). Thus, let us define three
basic network elements, as indicated in Figure 2.27. To see how these basic elements can
be used to represent the causal system described by eq. (2.126), we rewrite this equation
in the form that directly suggests a recursive algorithm for computing successive values
of the output y[n]:

y[n] = —ayln — 1] + bx[n]. (2.127)

This algorithm is represented pictorially in Figure 2.28, which is an example of a feedback
system, since the output is fed back through a delay and a multiplication by a coefficient
and is then added to bx[n]. The presence of feedback is a direct consequence of the recur-
sive nature of eq. (2.127).

The block diagram in Figure 2.28 makes clear the required memory in this system
and the consequent need for initial conditions. In particular, a delay corresponds to a mem-
ory element, as the element must retain the previous value of its input. Thus, the initial
value of this memory element serves as a necessary initial condition for the recursive cal-
culation specified pictorially in Figure 2.28 and mathematically in eq. (2.127). Of course,
if the system described by eq. (2.126) is initially at rest, the initial value stored in the
memory element is zero.
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xo[n]
x4[n] xq[n] + xa[n]
(@)
a
x[n] o ax[n]

Figure 2.27 Basic elements for
the block diagram representation
x[n] > D == X[n—1] of the causal system described by
eq. (2.126): (a) an adder; (b) multi-
plication by a coefficient; (c) a unit

(c) delay.
> y[n]
y
]
Figure 2.28 Block diagram repre-
sentation for the causal discrete-time
' y[n—1] system described by eq. (2.126).

Consider next the causal continuous-time system described by a first-order differen-
tial equation:

—— + ay(t) = bx(t). (2.128)

dy(1)
dt

As a first attempt at defining a block diagram representation for this system, let us rewrite
it as

_ldy@ b
XD (2.129)

0 =
The right-hand side of this equation involves three basic operations: addition, multiplica-
tion by a coefficient, and differentiation. Therefore, if we define the three basic network
elements indicated in Figure 2.29, we can consider representing eq. (2.129) as an inter-
connection of these basic elements in a manner analogous to that used for the discrete-time
system described previously, resulting in the block diagram of Figure 2.30.

While the latter figure is a valid representation of the causal system described by
eq. (2.128), it is not the representation that is most frequently used or the representation
that leads directly to practical implementations, since differentiators are both difficult to
implement and extremely sensitive to errors and noise. An alternative implementation that
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a
x(t) ->- ax(t)
(b)
Figure 2.29 One possible set of
dx(t) basic elements for the block diagram
Xt)m—t D —— == representation of the continuous-time
system described by eq. (2.128):
(a) an adder; (b) multiplication by a
© coefficient; (c) a differentiator.
b/a
x(t) + > y(t)

D Figure 2.30 Block diagram
representation for the system in

eqs. (2.128) and (2.129), using adders,
—1/a dy(t) multiplications by coefficients, and

at differentiators.

is much more widely used can be obtained by first rewriting eq. (2.128) as

dy(1)
dt

= bx(t) — ay(t) (2.130)

and then integrating from —= to t. Specifically, if we assume that in the system described
by eq. (2.130) the value of y(—=) is zero, then the integral of dy(z)/dt from —= to ¢t is
precisely y(r). Consequently, we obtain the equation

t
y(t) = J [bx(T) — ay(t)] dr. (2.131)

In this form, our system can be implemented using the adder and coefficient multiplier
indicated in Figure 2.29, together with an integrator, as defined in Figure 2.31. Figure 2.32
is a block diagram representation for this system using these elements.
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t
Xt > f > I XM dT  Figure 2.31 Pictorial representation
of an integrator.

Figure 2.32 Block diagram rep-
resentation for the system in eqs.
(2.128) and (2.131), using adders,
-a multiplications by coefficients, and in-
€ tegrators.

Since integrators can be readily implemented using operational amplifiers, repre-
sentations such as that in Figure 2.32 lead directly to analog implementations, and indeed,
this is the basis for both early analog computers and modern analog computation systems.
Note that in the continuous-time case it is the integrator that represents the memory stor-
age element of the system. This is perhaps more readily seen if we consider integrating
eq. (2.130) from a finite point in time #(, resulting in the expression

1

¥ = y(to) + J [bx(T) — ay(7)| d. (2.132)

fy

Equation (2.132) makes clear the fact that the specification of y(¢) requires an initial con-
dition, namely, the value of y(#). It is precisely this value that the integrator stores at
time #g.

While we have illustrated block diagram constructions only for the simplest first-
order differential and difference equations, such block diagrams can also be developed for
higher order systems, providing both valuable intuition for and possible implementations
of these systems. Examples of block diagrams for higher order systems can be found in
Problems 2.58 and 2.60.

2.5 SINGULARITY FUNCTIONS

In this section, we take another look at the continuous-time unit impulse function in order
to gain additional intuitions about this important idealized signal and to introduce a set of
related signals known collectively as singularity functions. In particular, in Section 1.4.2
we suggested that a continuous-time unit impulse could be viewed as the idealization of a
pulse that is “short enough” so that its shape and duration is of no practical consequence—
i.e., so that as far as the response of any particular LTI system is concerned, all of the area
under the pulse can be thought of as having been applied instantaneously. In this section,
we would first like to provide a concrete example of what this means and then use the
interpretation embodied within the example to show that the key to the use of unit impulses
and other singularity functions is in the specification of how LTI systems respond to these
idealized signals; i.e., the signals are in essence defined in terms of how they behave under
convolution with other signals.
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2.5.1 The Unit Impulse as an ldealized Short Pulse

From the sifting property, eq. (2.27), the unit impulse 8(z) is the impulse response of the
identity system. That is,

x(t) = x(1) *6(1) (2.133)
for any signal x(¢). Therefore, if we take x(r) = &(r), we have
8(r) = 6(t) * 6(1). (2.134)

Equation (2.134) is a basic property of the unit impulse, and it also has a significant im-
plication for our interpretation of the unit impulse as an idealized pulse. For example, as
in Section 1.4.2, suppose that we think of 6(r) as the limiting form of a rectangular pulse.
Specifically, let 84(1) correspond to the rectangular pulse defined in Figure 1.34, and let

ralt) = 0a(1) * 8a(1). (2.135)

Then ra(t) is as sketched in Figure 2.33. If we wish to interpret 6(¢) as the limitas A — 0 of
8 (1), then, by virtue of eq. (2.134), the limitas A — 0 for r4(¢) must also be a unit impulse.
In a similar manner, we can argue that the limits as A — 0 of ry(¢) * ra(z) or ra(t) * 6a(1)
must be unit impulses, and so on. Thus, we see that for consistency, if we define the unit
impulse as the limiting form of some signal, then in fact, there is an unlimited number of
very dissimilar-looking signals, all of which behave like an impulse in the limit.

The key words in the preceding paragraph are “behave like an impulse,” where, as
we have indicated, what we mean by this is that the response of an LTI system to all of
these signals is essentially identical, as long as the pulse is “short enough,” i.e., A is “small
enough.” The following example illustrates this idea:

)

L=

Figure 2.33 The signal ry(t)
0 2 U defined in eq. (2.135).

Example 2.16

Consider the LTI system described by the first-order differential equation

dy(n)

dt

together with the condition of initial rest. Figure 2.34 depicts the response of this system
to 8 (1), ra(r), ra(t) * 8a(1), and ra(r) = ra(r) for several values of A. For A large enough,
the responses to these input signals differ noticeably. However, for A sufficiently small,
the responses are essentially indistinguishable, so that all of the input signals “behave”
in the same way. Furthermore, as suggested by the figure, the limiting form of all of these
responses is precisely e u(r). Since the limit of each of these signals as A — 0 is the
unit impulse, we conclude that e” > u(r) is the impulse response for this system.’

+2v(1) = x(0), (2.136)

*In Chapters 4 and 9, we will describe much simpler ways to determine the impulse response of causal
LTI systems described by linear constant-coefficient differential equations.



Sec. 2.5

Singularity Functions

-
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A=0.1

A=0.25
05F

i ] 0 1 —
0 1 2 0 1 2
Responses to x(t) = 3,(t) Responses to x(t) = r,(t)

@ (b)
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A=0.0025 A=0.0025
A=0.1 A=0.1
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0 1 2 0 1 2
Responses to x(t) = 3, (t)«ry(t) Responses to x(t) = ry(t)«r(t)
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0.5

0 L
1

(e

Figure 2.34 |Interpretation of a unit impulse as the idealization of a pulse
whose duration is “short enough” so that, as far as the response of an LTI
system to this pulse is concerned, the pulse can be thought of as having
been applied instantaneously: (a) responses of the causal LTI system de-
scribed by eq. (2.136) to the input 8,(f) for A = 0.25, 0.1, and 0.0025;

(b) responses of the same system to r.(f) for the same values of A; (c) re-
sponses to 8,(t)* ra(t); (d) responses to ra(t)*ra(t); (e) the impulse response
h(t) = e~?'y(t) for the system. Note that, for A = 0.25, there are noticeable
differences among the responses to these different signals; however, as A
becomes smaller, the differences diminish, and all of the responses converge
to the impulse response shown in (e).
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One important point to be emphasized is that what we mean by “A small enough”
depends on the particular LTI system to which the preceding pulses are applied. For
example, in Figure 2.35, we have illustrated the responses to these pulses for different

1 1

0.5 0.5

0 1 A 0 1 ot
0 0.1 0.2 0 0.1 0.2
Responses to x(t) = 3,(t) Responses to x(t) = ry(t)
(@) (b)
X 4=0.00025 K 4=0.00025
A=0.01
05+ A=0.025
0.5
0 1 ) 1
0 0.1 0.2 0 0.1 0.2
Responses to x(t) = 8,(t) ra(t) Responses to x(t) = ry(t)«r,(t)

(©) (d)
1

0.5

0.2

Figure 2.35 Finding a value of A that is “small enough” depends upon

the system to which we are applying inputs: (a) responses of the causal LTI
system described by eq. (2.137) to the input 8,(t) for A = 0.025, 0.01, and
0.00025; (b) responses to r4(t); (c) responses to 8a(t)*ra(t); (d) responses to
ra(t) = ra(t); (e) the impulse response h(f) = e~ u(t) for the system. Com-
paring these responses to those in Figure 2.34, we see that we need to use a
smaller value of A in this case before the duration and shape of the pulse are
of no consequence.
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values of A for the causal LTI system described by the first-order differential equation

dy(1)
dt

+ 20y(£) = x(@). (2.137)

As seen in the figure, we need a smaller value of A in this case in order for the responses
to be indistinguishable from each other and from the impulse response h(f) = e 2% u(f)
for the system. Thus, while what we mean by “A small enough” is different for these
two systems, we can find values of A small enough for both. The unit impulse is then
the idealization of a short pulse whose duration is short enough for all systems.

2.5.2 Defining the Unit Impulse through Convolution

As the preceding example illustrates, for A small enough, the signals 84(), ra(t), ra(z) *
O (1), and ra(r) * ra(z) all act like impulses when applied to an LTI system. In fact, there
are many other signals for which this is true as well. What it suggests is that we should
think of a unit impulse in terms of how an LTI system responds to it. While usually a
function or signal is defined by what it is at each value of the independent variable, the
primary importance of the unit impulse is not what it is at each value of ¢, but rather what
it does under convolution. Thus, from the point of view of linear systems analysis, we may
alternatively define the unit impulse as that signal which, when applied to an LTI system,
yields the impulse response. That is, we define 6(¢) as the signal for which

x(t) = x(t) * 6(t) (2.138)

for any x(¢). In this sense, signals, such as 6A(¢), ra(?), etc., which correspond to short
pulses with vanishingly small duration as A — 0, all behave like a unit impulse in the
limit because, if we replace &(¢) by any of these signals, then eq. (2.138) is satisfied in the
limit.

All the properties of the unit impulse that we need can be obtained from the opera-
tional definition given by eq. (2.138). For example, if we let x(z) = 1 for all 7, then

+oc

1 =x(t) = x()*6(t) = 6(t) * x(¢t) = j S(T)x(t — T)ydr

f ) o(m)dr,

—oc

so that the unit impulse has unit area.

It is sometimes useful to use another completely equivalent operational definition of
o(1). To obtain this alternative form, consider taking an arbitrary signal g(¢), reversing it
in time to obtain g(—1), and then convolving this with 8(¢). Using eq. (2.138), we obtain

400

g(—1) = g(—n*8(t) = J g(r — 1) é(r)dr,

which, for ¢ = 0, yields

+2

g(r)é(r)dr. (2.139)

50 - |



132 Linear Time-Invariant Systems Chap. 2

Therefore, the operational definition of 8(¢) given by eq. (2.138) implies eq. (2.139). On
the other hand, eq. (2.139) implies eq. (2.138). To see this, let x(¢) be a given signal, fix a
time ¢, and define

g(1) = x(t — 7).
Then, using eq. (2.139), we have

x(t) = g(0) = J Ocg(T)S(’r)dT = J ocx(t — 7)8(1)dT,

—x

which is precisely eq. (2.138). Therefore, eq. (2.139) is an equivalent operational definition
of the unit impulse. That is, the unit impulse is the signal which, when multiplied by a
signal g(¢) and then integrated from —o to +o, produces the value g(0).

Since we will be concerned principally with LTI systems, and thus with convolution,
the characterization of 8(¢) given in eq. (2.138) will be the one to which we will refer most
often. However, eq. (2.139) is useful in determining some of the other properties of the
unit impulse. For example, consider the signal f(¢) 6(¢), where f(¢) is another signal. Then,
from eq. (2.139),

f ¢ f () 8(r)dr = gO)f(O). (2.140)

On the other hand, if we consider the signal f(0) &(¢), we see that

| smr@omar = g5 @141

Comparing eqgs. (2.140) and (2.141), we find that the two signals f(z) 8(¢) and f(0) () be-
have identically when they are multiplied by any signal g(#) and then integrated from —
to +o. Consequently, using this form of the operational definition of signals, we conclude
that

fo@) = f0)a(n), (2.142)

which is a property that we derived by alternative means in Section 1.4.2. [See eq. (1.76).]

2.5.3 Unit Doublets and Other Singularity Functions

The unit impulse is one of a class of signals known as singularity functions, each of which
can be defined operationally in terms of its behavior under convolution. Consider the LTI
system for which the output is the derivative of the input, i.e.,

_dx(®)
Cdt

y(1) (2.143)
The unit impulse response of this system is the derivative of the unit impulse, which is
called the unit doublet u,(¢). From the convolution representation for LTI systems, we
have
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dx(t)
dt

= x(2) * u,(t) (2.144)

for any signal x(r). Just as eq. (2.138) serves as the operational definition of &(f), we will
take eq. (2.144) as the operational definition of u;(¢). Similarly, we can define u,(z), the
second derivative of 6(¢), as the impulse response of an LTI system that takes the second
derivative of the input, i.e.,

d*x(1)

R x(1) * up(2). (2.145)
From eq. (2.144), we see that
d*x(1) d (dx(®)
T, ( i ) = x(t) * uy(2) * u(t), (2.146)
and therefore,
uy(t) = ui(t) * up(2). (2147)

In general, u (1), k > 0, is the kth derivative of 6(¢) and thus is the impulse response of a
system that takes the kth derivative of the input. Since this system can be obtained as the
cascade of k differentiators, we have

up(t) = w0 % - % uy (t). (2.148)
\__'ﬁf_—/

k times

As with the unit impulse, each of these singularity functions has properties that can
be derived from its operational definition. For example, if we consider the constant signal
x(r) = 1, we find that

+o0

x(t) *u(t) = J u(tyx(t — vydr

—oc

_ dx@®

0 dt

JM u(r)dr,

—c

so that the unit doublet has zero area. Moreover, if we convolve the signal g(—?) with u, (),
we obtain

+x d .
[ e = nu@dr = g-nrm@ = E2 ~ —g'-n,
which, for r = 0, yields
0 = | som@ar (2.149)
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In an analogous manner, we can derive related properties of u(¢) and higher order singu-
larity functions, and several of these properties are considered in Problem 2.69.

As with the unit impulse, each of these singularity functions can be informally re-
lated to short pulses. For example, since the unit doublet is formally the derivative of the
unit impulse, we can think of the doublet as the idealization of the derivative of a short
pulse with unit area. For instance, consider the short pulse 81(¢) in Figure 1.34. This pulse
behaves like an impulse as A — 0. Consequently, we would expect its derivative to be-
have like a doublet as A — 0. As verified in Problem 2.72, dé4(t)/dt is as depicted in
Figure 2.36: It consists of a unit impulse at r = 0 with area +1/A, followed by a unit
impulse of area —1/A at+ = A, i.e.,

dés(n) _ 1
dr A

[6(r) — &(r — A)]. (2.150)

Consequently, using the fact that x(¢) * 6(t — 19) = x(1r — ty) [see eq. (2.70)], we find that

doéa(t) _ x(t) — x(r — A) _dx(n)

x> =g A di

(2.151)
where the approximation becomes increasingly accurate as A — 0. Comparing eq. (2.151)
with eq. (2.144), we see that d8,(r)/dt does indeed behave like a unit doublet as A — 0.

In addition to singularity functions that are derivatives of different orders of the unit
impulse, we can also define signals that represent successive integrals of the unit im-
pulse function. As we saw in Example 2.13, the unit step is the impulse response of an
integrator:

1
(1) :J x(t)dr.
Therefore,

u(t)

I
N
%

o(T)dr, (2.152)

L]~

Lo |

Figure 2.36 The derivative
08, (t)/dt of the short rectangular
pulse 8.(t) of Figure 1.34.
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and we also have the following operational definition of u(z):

t

x(t) *u(t) = J

x(T)dr. (2.153)

Similarly, we can define the system that consists of a cascade of two integrators. Its
impulse response is denoted by u_,(¢), which is simply the convolution of u(#), the impulse
response of one integrator, with itself:

I

Ua(t) = u(t) * u(t) = J

u(t)dr. (2.154)
Since u(?) equals O for + < 0 and equals 1 for ¢ > 0, it follows that
u_(t) = tu(t). (2.155)
This signal, which is referred to as the unit ramp function, is shown in Figure 2.37. Also,
we can obtain an operational definition for the behavior of u#_,(#) under convolution from
eqgs. (2.153) and (2.154):

x(t) * u(t) * u(t)
(Joc x(o) dO')* u(t) (2.156)

J; (f; x(o) dcr) dr.

In an analogous fashion, we can define higher order integrals of 6(¢) as the impulse
responses of cascades of integrators:

x(8) * u—(f)

Il

t

W) = w(t) e w ult) = j

u_(k_])(T)d’T. (2157)
k times )

The convolution of x(¢) with u_3(t), u—4(¢), ... generate correspondingly higher order
integrals of x(7). Also, note that the integrals in eq. (2.157) can be evaluated directly (see

u_p ()

Slope =1

t  Figure 2.37 Unit ramp function.
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Problem 2.73), as was done in eq. (2.155), to obtain

k—1

() = hu(t). (2.158)

Thus, unlike the derivatives of 6(1), the successive integrals of the unit impulse are func-
tions that can be defined for each value of ¢ [eq. (2.158)], as well as by their behavior under
convolution.

At times it will be worthwhile to use an alternative notation for 6(¢) and u(t), namely,

8(t) = up(1), (2.159)
u(t) = u_i(2). (2.160)

With this notation, u,(¢) for kK > 0 denotes the impulse response of a cascade of k differ-
entiators, ug(t) is the impulse response of the identity system, and, for k& < 0, u,(z) is the
impulse response of a cascade of |k| integrators. Furthermore, since a differentiator is the
inverse system of an integrator,

u(t) = u (1) = 6(1),
or, in our alternative notation,
u_1(t) *uy(t) = up(). (2.161)

More generally, from eqs. (2.148), (2.157), and (2.161), we see that for any integers k
and r,

u(t) * up(t) =y, (1) (2.162)

If k and r are both positive, eq. (2.162) states that a cascade of k differentiators followed by
r more differentiators yields an output that is the (k + r)th derivative of the input. Similarly,
if k is negative and r is negative, we have a cascade of |k| integrators followed by another
|r| integrators. Also, if k is negative and r is positive, we have a cascade of |k integrators
followed by r differentiators, and the overall system is equivalent to a cascade of |k + r|
integrators if K+ r < 0, a cascade of k + r differentiators if k+r > 0, or the identity system
if k + r = 0. Therefore, by defining singularity functions in terms of their behavior under
convolution, we obtain a characterization that allows us to manipulate them with relative
ease and to interpret them directly in terms of their significance for LTI systems. Since
this is our primary concern in the book, the operational definition for singularity functions
that we have given in this section will suffice for our purposes.®

6As mentioned in Chapter 1, singularity functions have been heavily studied in the field of mathematics
under the alternative names of generalized functions and distribution theory. The approach we have taken in
this section is actually closely allied in spirit with the rigorous approach taken in the references given in footnote
3 of Section 1.4.
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2.6 SUMMARY

In this chapter, we have developed important representations for LTI systems, both in dis-
crete time and in continuous time. In discrete time we derived a representation of signals
as weighted sums of shifted unit impulses, and we then used this to derive the convolution-
sum representation for the response of a discrete-time LTI system. In continuous time we
derived an analogous representation of continuous-time signals as weighted integrals of
shifted unit impulses, and we used this to derive the convolution integral representation
for continuous-time LTI systems. These representations are extremely important, as they
allow us to compute the response of an LTI system to an arbitrary input in terms of the sys-
tem’s response to a unit impulse. Moreover, in Section 2.3 the convolution sum and integral
provided us with a means of analyzing the properties of LTI systems and, in particular, of
relating LTI system properties, including causality and stability, to corresponding proper-
ties of the unit impulse response. Also, in Section 2.5 we developed an interpretation of
the continuous-time unit impulse and other related singularity functions in terms of their
behavior under convolution. This interpretation is particularly useful in the analysis of LTI
systems.

An important class of continuous-time systems consists of those described by linear
constant-coefficient differential equations. Similarly, in discrete time, linear constant-
coefficient difference equations play an equally important role. In Section 2.4, we exam-
ined simple examples of differential and difference equations and discussed some of the
properties of systems described by these types of equations. In particular, systems de-
scribed by linear constant-coefficient differential and difference equations together with
the condition of initial rest are causal and LTI. In subsequent chapters, we will develop
additional tools that greatly facilitate our ability to analyze such systems.

Chapter 2 Problems

The first section of problems belongs to the basic category, and the answers are pro-
vided in the back of the book. The remaining three sections contain problems belonging
to the basic, advanced, and extension categories, respectively.

Extension problems introduce applications, concepts, or methods beyond those pre-
sented in the text.

BASIC PROBLEMS WITH ANSWERS

2.1. Let
x[n] = 6[n]+26[n—1]1—-686[n—3] and A[n] = 28[n + 1] + 286[n — 1].

Compute and plot each of the following convolutions:
(@) yi[n] = x[n]*h[n] (b) y2[n] = x[n+ 2] = h[n]
(©) ys[n] = x[n] * hln + 2]
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2.2.

2.3.

24.

2.5.

2.6.

2.7.

Linear Time-Invariant Systems
Consider the signal
1 n—1
h[n] = (5) {uln + 31 — u[n — 10]}.

Express A and B in terms of n so that the following equation holds:

Mn-k=1G@" " A=k=B
0, elsewhere

Consider an input x[n] and a unit impulse response h[n] given by

12
x[n] = (i) uln — 2],
h[n] = u[n + 2].
Determine and plot the output y[n] = x[n] * h[n].
Compute and plot y[n] = x[n] * h[n], where

1, 3=n=38
0, otherwise

x[n] = {

|1, 4=n=15
hinl = { 0, otherwise

Let

|, 0=n=9 |1, 0=n=N
xlnl = {0, elsewhere and  Aln] = {O, elsewhere ’

Chap. 2

where N = 9 is an integer. Determine the value of N, given that y[n] = x[n] * h[n]

and
y[4] =5, y[14] = 0.

Compute and plot the convolution y[n] = x[n] * h[n], where

x[n] = <;>_ u[—n—1] and hk[n] = u[n —1].

A linear system S has the relationship

o

ylnl = > x[klgln — 2k]

k=—x

between its input x[#] and its output y[n], where g[n] = u[n] — u[n — 4].
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(a) Determine y[n] when x[n] = é[n — 1].
(b) Determine y[n] when x[n] = é[n — 2].
(c) Is SLTI?

(d) Determine y[n] when x[n] = u[n].

2.8. Determine and sketch the convolution of the following two signals:

t+1, 0=¢r=1
x(t)y=42-1 1<t=2,
0, elsewhere
h(t) = 8(t +2) +28( + ).
2.9. Let
h(t) = e¥u(—t+ 4) + e *u(t — 5).

Determine A and B such that

e 2D r <A
hit—1) =40, A<T<B.

D B<r

2.10. Suppose that

_JL 0=r=1
x(1) = {O, elsewhere

and h(t) = x(t/a), where 0 < a = 1.

(a) Determine and sketch y(¢) = x(¢) * h(2).

(b) If dy(t)/dt contains only three discontinuities, what is the value of «?
2.11. Let

x(1) = ut —3)—u(t—5) and k() = e u@).
(a) Compute y(t) = x(t) * h(?).
(b) Compute g(t) = (dx(t)/dt) * h(r).

(c¢) How is g(¢) related to y(t)?
2.12. Let

y(t)

It

e~y x > 8(t - 3k).

k=—o

Show that y(¥) = Ae™' for 0 = t < 3, and determine the value of A.
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2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

Linear Time-invariant Systems Chap. 2

Consider a discrete-time system S| with impulse response

hln] = (%) ufn)].

(a) Find the integer A such that h[{n] — Ah[n — 1] = &[n].
(b) Using the result from part (a), determine the impulse response g[n] of an LTI
system S, which is the inverse system of §|.

Which of the following impulse responses correspond(s) to stable LTI systems?

@) h() = e 17271 (b) h(t) = e ' cos(CHu(t)

Which of the following impulse responses correspond(s) to stable LTI systems?

(@) h[n] = ncos(Fnuln] (b) hy[n] = 3"u[—n + 10]

For each of the following statements, determine whether it is true or false:

(a) If x[n] = 0 for n < N, and h[n] = O for n < N,, then x[n] * h[n] = O for
n<N;+N,.

(b) If y[n] = x[n] * A[n], then y[n — 1] = x[n — 1] * h[n — 1].

(©) If y(t) = x(2) * h(r), then y(—t) = x(—1t) * h(—1).

(@) If x(t) = Ofort > T, and h(t) = O for t > T, then x(¢) * h(¢t) = O for t >
T, +T>.

Consider an LTI system whose input x(f) and output y(¢) are related by the differ-

ential equation

%y(t) +4y(r) = x(). (P2.17-1)

The system also satisfies the condition of initial rest.

(@) If x(t) = ' F30y(r), what is y(1)?

(b) Note that ®e{x(¢)} will satisfy eq. (P2.17—-1) with Re{y(¢)}. Determine the out-
put y(¢) of the LTI system if

x(t) = e "cos(3u(r).
Consider a causal LTI system whose input x[#] and output y[n] are related by the

difference equation

ylnl = A—Ily[n — 1] + x[n].

Determine y[n] if x[n] = 6[n — 1].

Consider the cascade of the following two systems S| and S,, as depicted in Figure
P2.19:

X[N] —a] S, W[n]ﬁ‘ S, > yin]

Figure P2.19




Chap. 2 Problems 141

S : causal LTI,

wln] = %w[n — 1] + x[n];
S> : causal LTI,

y[n] = ay[n — 1] + Bw[n].

The difference equation relating x[n] and y[#] is:

sl = = gyln =20+ yln = 1]+ alal

(a) Determine « and 3.
(b) Show the impulse response of the cascade connection of S} and S5.
2.20. Evaluate the following integrals:

(a) ff; uo(t) cos(t) dt
(b) ;) sin2mwn)8(t + 3)dr
(c) J_55 u(1 — tycosQmr)dr

BASIC PROBLEMS

2.21. Compute the convolution y[n] = x[n] * h[n] of the following pairs of signals:
(a) x[n] = a"uln), o
hln] = B"uln], P
(b) x[n] = hln] = a"u[n]
(¢) x[n] = (—3)"uln — 4]
hln] = 4"u[2 — n]
(d) x[n] and A[n] are as in Figure P2.21.

x[n] hin]

-1 012345 n 01234567 8910M11213141516 n
Figure P2.21

2.22. For each of the following pairs of waveforms, use the convolution integral to find the

response y(¢) of the LTI system with impulse response /(?) to the input x(¢). Sketch
your results.

x(1) = e “'u(t) : _
(a) ht) = e‘B’u(t)} (Do this both when a # B and whena = B.)
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(b) x(0) = u(®) — 2u(t — 2) + u(t — 5)
h(t) = e*u(l —t)

(c) x(¢) and h(¢) are as in Figure P2.22(a).

(d) x(#) and h(t) are as in Figure P2.22(b).

(e) x(t) and A(t) are as in Figure P2.22(c).

x(t) h(t)

One period of sin mt

x(t) h(t)

Wl

LA N
|—_3—2j_|;|2|_3|t 1 t

©

Figure P2.22

2.23. Let A(¢) be the triangular pulse shown in Figure P2.23(a), and let x(¢) be the impulse
train depicted in Figure P2.23(b). That is,

x(t) = > 8(t— kT).
k=—=

Determine and sketch y(r) = x(¢) * h(¢) for the following values of T
@T=4 MT=2 T=32 dT-=1
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h(t)

x(t)

1

(AEEREEEREEE

-2T -T 0 T 27 3T t

(b) Figure P2.23

2.24. Consider the cascade interconnection of three causal LTI systems, illustrated in Fig-
ure P2.24(a). The impulse response h,[n] is

ho[n] = uln] — uln - 2],

and the overall impulse response is as shown in Figure P2.24(b).

x(n] ——1 h;n] > hy[n] > hyln] > y[n|

@)

-101234567 n

(b) Figure P2.24

(a) Find the impulse response h;[n].
(b) Find the response of the overall system to the input

x[n] = 8[n] — é[n —1].
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2.25.

2.26.

2.27.

2.28.

2.29.

Linear Time-Invariant Systems Chap. 2

Let the signal
ylnl = x[n] * h[n],

where

x[n] = 3"u[-n— 11+ (%) u[n]

and
h[n] = (%) ufn + 3.

(a) Determine y[n] without utilizing the distributive property of convolution.
(b) Determine y[n] utilizing the distributive property of convolution.

Consider the evaluation of

ylnl = xi[n] * xa[n] * x3[n],

where x;[n] = (0.5)"u[n], x2[n] = u[n + 3], and x3[n] = &[n] — 6[n — 1].
(a) Evaluate the convolution x[n] * x;[n].

(b) Convolve the result of part (a) with x3[n] in order to evaluate y[n].

(c¢) Evaluate the convolution x;[n] * x3[n].

(d) Convolve the result of part (c) with x,[#n] in order to evaluate y[n].

We define the area under a continuous-time signal v(f) as

40
A, = f v(t) dt.

Show that if y(¢) = x(¢) * h(t), then
A, = A A

The following are the impulse responses of discrete-time LTI systems. Determine
whether each system is causal and/or stable. Justify your answers.

@) hinl = (})"uln]

(b) h[n] = (0.8)"u[n + 2]

(©) h[n] = (3)"ul-n]

(d) Aln] = (5)"u[3 — n]

() hln] = (—2)"uln] + (1.01)"u[n — 1]

(® hin] = (—3)"uln] + (L.O1Y'u[l — n]

(® hln] = n(z)"uln —1]

The following are the impulse responses of continuous-time LTI systems. Determine
whether each system is causal and/or stable. Justify your answers.

(@) h(r) = e *u(t - 2)

) h(t) = e u@B -1

(©) h(t) = e %u(t + 50)

d) @) = e*u(-1-1)
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2.30.

2.31.

2.32.

(€) h(r) = e°
®) h(@) = te 'u(r)
(g) h(t) — (Zeft _ e(t*lOO)/IOO)u(t)

Consider the first-order difference equation
y[n] + 2y[n — 1] = x[n].

Assuming the condition of initial rest (i.e., if x[n] = O for n < ng, then y[n] = 0for
n < ng), find the impulse response of a system whose input and output are related by
this difference equation. You may solve the problem by rearranging the difference
equation so as to express y[n] in terms of y[n— 1] and x[n] and generating the values
of y[0], y[+1], y[+2],... in that order.

Consider the LTI system initially at rest and described by the difference equation
yin] + 2y[n — 1] = x[n] + 2x[n — 2].

Find the response of this system to the input depicted in Figure P2.31 by solving the
difference equation recursively.

x[n]
3
2 2
1 1
-2-101234 n  Figure P2.31
Consider the difference equation
1
yln] = iy[n — 1] = x[n], (P2.32-1)
and suppose that

x[n] = (%) ul[n]. (P2.32-2)

Assume that the solution y[n] consists of the sum of a particular solution y,[n] to
eq. (P2.32-1) and a homogeneous solution y,[n] satisfying the equation

1
yulnl = 5yauln = 1] = 0.
(a) Verify that the homogeneous solution is given by

il = 4(3)

(b) Let us consider obtaining a particular solution y,[n] such that

1 1Y
yp[n] - 'Z'Yp[n —-1]1= (g) uln].
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By assuming that y,[n] is of the form B(_%)” for n = 0, and substituting this in
the above difference equation, determine the value of B.

(¢) Suppose that the LTI system described by eq. (P2.32-1) and initially at rest has
as its input the signal specified by eq. (P2.32-2). Since x[n] = 0forn <0, we
have that y[n] = 0 for n < 0. Also, from parts (a) and (b) we have that y[n]

has the form
1 n 1 1
= |+ —
ot = 4[5 ) (3]

forn = 0.In order to solve for the unknown constant A, we must specify a value
for y[n] for some n = 0. Use the condition of initial rest and egs. (P2.32-1)
and (P2.32-2) to determine y[0]. From this value determine the constant A. The
result of this calculation yields the solution to the difference equation (P2.32-1)
under the condition of initial rest, when the input is given by eq. (P2.32-2).

2.33. Consider a system whose input x(¢) and output y(¢) satisfy the first-order differential
equation

% +2y(t) = x(2). (P2.33-1)
The system also satisfies the condition of initial rest.
(a) (i) Determine the system output y;(¢) when the input is x,(t) = e u(t).
(ii) Determine the system output y,(f) when the input is x>(¢) = e u(t).
(iii) Determine the system output ys;(¢) when the input is x3(z) = aedu(t) +
Be?u(t), where @ and B are real numbers. Show that y3(t) = ay(f) +
Bya2A(D).
(iv) Now let x1(¢) and x,(¢) be arbitrary signals such that

x1(®) =0, fort <1y,
x2(t) =0, fort < 1.

Letting y;(¢) be the system output for input x| (¢), y»(¢) be the system output

for input x,(¢), and y;(¢) be the system output for x3() = ax(t) + Bx2(2),
show that

y3(t) = ay(t) + By:(b).

We may therefore conclude that the system under consideration is linear.
(b) (i) Determine the system output y,(r) when the input is x,(t) = KeXu(t).
(ii) Determine the system output y,(r) when the input is x»(t) = Ke?'~T)
u(t — T). Show that y,(¢) = y(t — T).
(iii) Now let x(¢) be an arbitrary signal such that x,(f) = 0 for < . Letting
y1(2) be the system output for input x;(¢) and y,(r) be the system output
for x,(t) = x,(t — T), show that

»@ = y@—T1).
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2.34.

2.35.

2.36.

We may therefore conclude that the system under consideration is time
invariant. In conjunction with the result derived in part (a), we conclude
that the given system is LTI Since this system satisfies the condition of
initial rest, it is causal as well.

The initial rest assumption corresponds to a zero-valued auxiliary condition being

imposed at a time determined in accordance with the input signal. In this problem

we show that if the auxiliary condition used is nonzero or if it is always applied at a

fixed time (regardless of the input signal) the corresponding system cannot be LTI.

Consider a system whose input x(¢) and output y(¢) satisfy the first-order differential

equation (P2.33-1).

(a) Given the auxiliary condition y(1) = 1, use a counterexample to show that the
system is not linear.

(b) Given the auxiliary condition y(1) = 1, use a counterexample to show that the
system is not time invariant.

(c) Given the auxiliary condition y(1) = 1, show that the system is incrementally
linear.

(d) Given the auxiliary condition y(1) = 0, show that the system is linear but not
time invariant.

(e) Given the auxiliary condition y(0) + y(4) = 0, show that the system is linear
but not time invariant.

In the previous problem we saw that application of an auxiliary condition at a fixed
time (regardless of the input signal) leads to the corresponding system being not
time-invariant. In this problem, we explore the effect of fixed auxiliary conditions on
the causality of a system. Consider a system whose input x(#) and output y(¢) satisfy
the first-order differential equation (P2.33-1). Assume that the auxiliary condition
associated with the differential equation is y(0) = 0. Determine the output of the
system for each of the following two inputs:

(a) x;(t) = 0, forall¢

(b) x(1) = {? o

Observe that if y;(f) is the output for input x,(¢) and y,(¢) is the output for input
X(1), then y;(¢) and y,(¢) are not identical for t < —1, even though x,(#) and x,(%)
are identical for << —1. Use this observation as the basis of an argument to conclude
that the given system is not causal.

Consider a discrete-time system whose input x[z] and output y[r] are related by
1
yin] = {5 |yln = 1] + x[n].

(a) Show that if this system satisfies the condition of initial rest (i.e., if x[n] = 0
for n < ny, then y[n] = 0 for n < ng), then it is linear and time invariant.

(b) Show that if this system does not satisfy the condition of initial rest, but instead
uses the auxiliary condition y[0] = 0, it is not causal. [Hint: Use an approach
similar to that used in Problem 2.35.]
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2.37.

2.38.

2.39.
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Consider a system whose input and output are related by the first-order differential
equation (P2.33-1). Assume that the system satisfies the condition of final rest [i. e.,
if x(t) = O for t > 1, then y(t) = 0 for r > 1y]. Show that this system is not causal.
[Hint: Consider two inputs to the system, x; () = 0and x3(t) = €' (u(r) — u(t — 1)),
which result in outputs y,(¢) and y,(?), respectively. Then show that y,(¢) # y.(¢)
fort < 0.]

Draw block diagram representations for causal LTI systems described by the fol-
lowing difference equations:

@) yln] = 1yln— 11+ 3x[n]

(b) y[n] = yyln — 1] + x[n — 1]

Draw block diagram representations for causal LTI systems described by the fol-
lowing differential equations:

@) y(1) = —(3)dy(t)/dt + 4x(t)
(b) dy(t)/dt + 3y(t) = x(t)

ADVANCED PROBLEMS

2.40.

241.

2.42.

(a) Consider an LTI system with input and output related through the equation
!
() = J e ""Tx(r —2)dr.

What is the impulse response A(#) for this system?
(b) Determine the response of the system when the input x(¢) is as shown in Figure
P2.40.

X(t)

-1 2 t  Figure P2.40
Consider the signal
x[n] = a"u[n].

(a) Sketch the signal g[n] = x[n] — ax[n — 1].
(b) Use the result of part (a) in conjunction with properties of convolution in order
to determine a sequence h[n] such that

x[n] * h[n] = G)” {uln + 2] — u[n — 2]}

Suppose that the signal
x(t) = u(t +0.5) — u(t — 0.5
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is convolved with the signal
h(t) = e/,
(a) Determine a value of wg which ensures that
y(0) =0,

where y(z) = x(t) * h(t).

(b) Is your answer to the previous part unique?

2.43. One of the important properties of convolution, in both continuous and discrete time,
is the associativity property. In this problem, we will check and illustrate this prop-
erty.

(a) Prove the equality

[x(0) * h(1)] * g(1) = x(1) * [A(1) * g(2)] (P2.43-1)
by showing that both sides of eq. (P2.43-1) equal
f mJ i x(Mh(o)g(t — 7 —o)dtdo.

(b) Consider two LTI systems with the unit sample responses 4;[n] and A;[n]

shown in Figure P2.43(a). These two systems are cascaded as shown in Figure
P2.43(b). Let x[n] = u[n].

1 hyln] = (- )"uln]

haln] = ufn] + 3 uln—1]

xn) ——- hy[n] > hyln] > yin]

Figure P2.43
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(c)

2.44. (a)

(b)

(©

(@)
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(i) Compute y[n] by first computing w{n] = x[r]* h,{n] and then computing
v[n] = w[n] * hy[n]; that is, y[n] = [x[n] * h [n]} * hs[n].

(i) Now find y[n] by first convolving h;[n] and h;[n] to obtain g[n]
h([n] * hy[n] and then convolving x[n] with g[n] to obtain y[n]
x[n] * [hy[n] * hay[n]].

The answers to (i) and (ii) should be identical, illustrating the associativity prop-

erty of discrete-time convolution.

Consider the cascade of two LTI systems as in Figure P2.43(b), where in this

case

I

hi[n] = sin8n
and

hy[n] = a"uln), lal <1,
and where the input is

x[n] = 6[n] — ab[n — 1].

Determine the output y[n]. (Hint: The use of the associative and commutative
properties of convolution should greatly facilitate the solution.)

If
x(t) =0, |f| > T,
and
h(t) =0, |t| > T,
then
x(t)* h(t) = 0, |t| > T

for some positive number T3. Express T in terms of T and T5.

A discrete-time LTI system has input x[x], impulse response /4[n], and output

yln]. If A[n] is known to be zero everywhere outside the interval Ny = n =

Ny and x[n] is known to be zero everywhere outside the interval N = n <

N, then the output y[n] is constrained to be zero everywhere, except on some

interval Ny =< n < Ns.

(i) Determine N4 and N5 in terms of Ny, Ny, N>, and N;.

(ii) If the interval Ny = n < N; is of length M, N = n =< Nj is of length
M, and Ny = n = Ns is of length M,, express M, in terms of M,
and M ..

Consider a discrete-time LTI system with the property that if the input x[n] = 0

for all n = 10, then the output y[r] = O for all n = 15. What condition must

h[n], the impulse response of the system, satisfy for this to be true?

Consider an LTI system with impulse response in Figure P2.44. Over what in-

terval must we know x(¢) in order to determine y(0)?
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1 J1

-2 -1 6 t Figure P2.44

2.45. (a) Show that if the response of an LTI system to x(¢) is the output y(¢), then the
response of the system to

dx(t)

0=

is y'(?). Do this problem in three different ways:
(i) Directly from the properties of linearity and time invariance and the fact

that
v e x(1) = x(t — h)
0 = fim ZE—E

(i1) By differentiating the convolution integral.
(iii) By examining the system in Figure P2.45.

X() ———l Uy ()

Y

ht) =yt

Figure P2.45

(b) Demonstrate the validity of the following relationships:
@) y'() = x(0) *h'(1)
(i) y@) = (L x(mdr) = h'(t) = [ [x'(7)* h(D)ldT = X'(t) * (| h(T)dT)
[Hint: These are easily done using block diagrams as in (iii) of part (a) and the
fact that u () * u_(z) = 6(1).]

(c) An LTI system has the response y(t) = sinwgf to input x(t) = e u(?). Use
the result of part (a) to aid in determining the impulse response of this system.

(d) Let s(¢) be the unit step response of a continuous-time LTI system. Use part (b)
to deduce that the response y(¢) to the input x(z) is

“+%
y() = f x'(t) = s(t — 7)dT. (P2.45-1)

—%

Show also that

—x

x(t) = f i X'(Tu(t — 7)dr. (P2.45-2)
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(e) Useeq. (P2.45-1) to determine the response of an LTI system with step response
s(t) = (e =27 + ()
to the input x(r) = e'u(?).

(f) Let s[n] be the unit step response of a discrete-time LTI system. What are the
discrete-time counterparts of eqs. (P2.45-1) and (P2.45-2)?

2.46. Consider an LTI system S and a signal x(¢) = 2¢ 3u@t — 1. If
x(1) — y(1)
and

dx(t)

= =3y(t) + e 2u(r),

determine the impulse response A(t) of S.

2.47. We are given a certain linear time-invariant system with impulse response h(¢). We
are told that when the input is xq(¢) the output is yy(¢), which is sketched in Figure
P2.47. We are then given the following set of inputs to linear time-invariant systems
with the indicated impulse responses:

Input x(t) Impulse response h(t)
(@) x(1) = 2xo(1) h(t) = ho(1)
(b) x(1) = xo(t) — xo(t —2) h(r) = ho()
(© x() = xo(t = 2) h(t) = ho(t + 1)
(d) x(t) = xo(=1) h(t) = ho(1)
(e) x(1) = xo(—1) h(t) = ho(—1)
® x(@) = xu(0) h(t) = hy(1)

[Here x((t) and hy(r) denote the first derivatives of xo(f) and ho(?), respectively.]

0 2 t  Figure P2.47

In each of these cases, determine whether or not we have enough information
to determine the output y(f) when the input is x(z) and the system has impulse re-
sponse A(?). If it is possible to determine y(¢), provide an accurate sketch of it with
numerical values clearly indicated on the graph.
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2.48.

2.49.

Determine whether each of the following statements concerning LTI systems is true

or false. Justify your answers.

(a) If A(¢) is the impulse response of an LTI system and 4(¢) is periodic and nonzero,
the system is unstable.

(b) The inverse of a causal LTI system is always causal.

(c) If |h[n]] = K for each n, where K is a given number, then the LTI system with
h[n] as its impulse response is stable.

(d) If a discrete-time LTI system has an impulse response h[n] of finite duration,
the system is stable.

(e) If an LTI system is causal, it is stable.

(f) The cascade of a noncausal LTI system with a causal one is necessarily non-
causal.

(g) A continuous-time LTI system is stable if and only if its step response s(¢) is
absolutely integrable—that is, if and only if

JM ls()| dt < <.

—%

(h) A discrete-time LTI system is causal if and only if its step response s[#] is zero
for n < 0.

In the text, we showed that if A[n] is absolutely summable, i.e., if

> |hlk]| < e,

k=—=x

then the LTI system with impulse response /[#] is stable. This means that absolute
summability is a sufficient condition for stability. In this problem, we shall show
that it is also a necessary condition. Consider an LTI system with impulse response
h[n] that is not absolutely summable; that is,

S hlk)| = .

=%

(a) Suppose that the input to this system is

[n] {0, ifh[-n] =0
X\n| = h[—n] . _ .
\h[—r:]l’ if A([—n] %0

Does this input signal represent a bounded input? If so, what is the smallest
number B such that

|x[n]| = B for all n?
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(b) Calculate the output at n = O for this particular choice of input. Does the re-
sult prove the contention that absolute summability is a necessary condition for
stability?

(¢) In a similar fashion, show that a continuous-time LTI system is stable if and
only if its impulse response is absolutely integrable.

Consider the cascade of two systems shown in Figure P2.50. The first system, A, is
known to be LTI The second system, B, is known to be the inverse of system A. Let
v1(t) denote the response of system A to x|(¢), and let y,(r) denote the response of
system A to x;(f).

LTI y) | system

X(t) =——=- System > — X(1)

2.51.

A Figure P2.50

(a) What is the response of system B to the input ay;(¢) + by,(¢), where a and b are
constants?
(b) What is the response of system B to the input y,(r — 7)?

In the text, we saw that the overall input-output relationship of the cascade of two

LTI systems does not depend on the order in which they are cascaded. This fact,

known as the commutativity property, depends on both the linearity and the time

invariance of both systems. In this problem, we illustrate the point.

(a) Consider two discrete-time systems A and B, where system A is an LTI system
with unit sample response h[n] = (1/2)"u[n]. System B, on the other hand, is
linear but time varying. Specifically, if the input to system B is w[n], its output
is

z[n] = nwnl.

Show that the commutativity property does not hold for these two systems
by computing the impulse responses of the cascade combinations in Figures
P2.51(a) and P2.51(b), respectively.

x[n] —p{System »| Systemf . y[n] x[n] ——-|System System . y[n}

Y

Figure P2.51

(b) Suppose that we replace system B in each of the interconnected systems of
Figure P2.51 by the system with the following relationship between its input
wln] and output z[n]:

z[n} = wln] + 2.

Repeat the calculations of part (a) in this case.
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2.52. Consider a discrete-time LTI system with unit sample response

h[n] = (n + Da"u[n],

where |a| < 1. Show that the step response of this system is

1 a n a n
s[n] = [(a ~1)y - e 1)20: + = l)(n + Do ]u[n].

(Hint: Note that

2.53. (a)

(b)

N N+1

. d
(k+ Da* = — > ot

Consider the homogeneous differential equation

N k
d .
a2 E’) - 0. (P2.53-1)
=" di
Show that if s is a solution of the equation
N
pis) = > ais* =0, (P2.53-2)
k=0

then Ae™ is a solution of eq. (P2.53-1), where A is an arbitrary complex con-
stant.

The polynomial p(s) in eq. (P2.53-2) can be factored in terms of its roots
S1,...,8-as

p(s) = an(s — s1)7' (s — $2)°2... (s — 5,)7",

where the s; are the distinct solutions of eq. (P2.53-2) and the o; are their
multiplicities—that is, the number of times each root appears as a solution of
the equation. Note that

o +oy+...+0, =N.

In general, if o; > 1, then not only is Ae*’ a solution of eq. (P2.53-1),
but so is At/e*’, as long as j is an integer greater than or equal to zero and less
than or equal to o; — 1. To illustrate this, show that if o; = 2, then Aze®’ is a
solution of eq. (P2.53-1). [Hint: Show that if s is an arbitrary complex number,
then

N dk Ate’!
D (Ate™) (A)

T = Aplsye” + AL ”

Yt.]

k=0
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2.54. (a)

(b)
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Thus, the most general solution of eq. (P2.53-1) is

rooi—1

S5 ape

i=1 j=

where the A;; are arbitrary complex constants.

Solve the following homogeneous differential equations with the specified aux-
iliary conditions:

(i) L0+ 390 4 2y(r) = 0, (0) = 0, y'(0) =2

dr?

(i1) & ‘“’ + 3‘[‘(” +2y() =0, y0) =1, y'(0) = —

(iii) "(,-‘(2” + 300 L 2y(r) = 0, y0) = 0, y'(0) =0

(iv) 2 + 2500 + y(0) = 0, y(©O) = 1, y(©O) =

(v) L0 L — D ) = 0, 30) = 1, YO) = 1, y'(0) = ~
(vi) "d;“’ + 2490 4 5y(1) = 0, ¥0) = 1, y'(0) =1

Consider the homogeneous difference equation
> ayln—k =0, (P2.54-1)
k=0
Show that if z is a solution of the equation
N
> az k=0, (P2.54-2)
k=0

then Az is a solution of eq. (P2.54-1), where A is an arbitrary constant.

As it is more convenient for the moment to work with polynomials that have
only nonnegative powers of z, consider the equation obtained by multiplying
both sides of eq. (P2.54-2) by z":

N
p) = > @ F =0 (P2.54-3)

The polynomial p(z) can be factored as
p(2) = ap(z—z))"" ... (2 — z)",

where the z), .. ., z, are the distinct roots of p(z).
Show that if y[n] = nz""!, then

S astn— 4 = POy
k=0

Use this fact to show that if ; = 2, then both Az} and Bnz!'~! are solutions of
eq. (P2.54-1), where A and B are arbitrary complex constants. More generally,
one can use this same procedure to show that if o; > 1, then
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2.55.

!
n. n—r

ri(n —r)!

is a solution of eq. (P2.54-1)forr = 0, 1,...,0; — 1.7
(c) Solve the following homogeneous difference equations with the specified aux-

iliary conditions:

Q) ylnl + 2yln— 11+ Lyln =21 = 0; y[0] = 1, y[~1] = —6

(i) y[n] = 2yln =11+ yln —2] = 0; y[0] = 1, y[1] = O

i) y[n] = 2yln — 1]+ yln — 2] = 0; y[0] = 1, y[10] = 21

(v) il — L2yln — 1]+ Lyln =21 = 0; y[0] = 0, y[~1] = 1
In the text we described one method for solving linear constant-coefficient difference
equations, and another method for doing this was illustrated in Problem 2.30. If the
assumption of initial rest is made so that the system described by the difference
equation is LTI and causal, then, in principle, we can determine the unit impulse
response /[n] using either of these procedures. In Chapter 5, we describe another
method that allows us to determine A[n] in a more elegant way. In this problem we
describe yet another approach, which basically shows that A[n] can be determined

by solving the homogeneous equation with appropriate initial conditions.
(a) Consider the system initially at rest and described by the equation

yln] ~ %y[n =11 = x[n]. (P2.55-1)

Assuming that x[rn] = &[n], what is y[0]? What equation does h[n] satisfy
for n = 1, and with what auxiliary condition? Solve this equation to obtain
a closed-form expression for A[n].

(b) Consider next the LTI system initially at rest and described by the difference
equation

y[n] — %y[n — 1] = x[n] + 2x[n —1]. (P2.35-2)

This system is depicted in Figure P2.55(a) as a cascade of two LTI systems that
are initially at rest. Because of the properties of LTI systems, we can reverse
the order of the systems in the cascade to obtain an alternative representation
of the same overall system, as illustrated in Figure P2.55(b). From this fact,
use the result of part (a) to determine the impulse response for the system de-
scribed by eq. (P2.55-2).

(c) Consider again the system of part (a), with A[n] denoting its impulse response.
Show, by verifying that eq. (P2.55-3) satisfies the difference equation (P2.55-
1), that the response y[n] to an arbitrary input x[#] is in fact given by the con-
volution sum

ylnl = > hln — mlx[m]. (P2.55-3)

m=—x

"Here, we are using factorial notation—thatis, k! = k(k — 1)(k — 2)...(2)(1), where0!isdefinedtobe 1.
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(d)

(e)

®
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il ] 2ln] = ¥l + 2x01) ] yin) Syn=1=zn] |—> yl]
(@)
; wiln]

X[N] =1 w[n] — zw[n—1] = x[n] > y[n] = w[n] + 2w[n—1] j=——3 y[n]

(b)

Figure P2.55

Consider the LTI system initially at rest and described by the difference equa-
tion

N
> awyln — k] = x[n). (P2.55-4)
k=0

Assuming that ay # 0, what is y[0] if x[n] = 6[n]? Using this result, specify
the homogeneous equation and initial conditions that the impulse response of
the system must satisfy.

Consider next the causal LTI system described by the difference equation

N M
> ayyln— k] = > byx[n — k. (P2.55-5)
k=0 k=0

Express the impulse response of this system in terms of that for the LTI system
described by eq. (P2.55-4).

There is an alternative method for determining the impulse response of the LTI
system described by eq. (P2.55-5). Specifically, given the condition of initial
rest, i.e., in this case, y[—-N] = y[-N + 1] = ... = y[-1] = 0, solve eq.
(P2.55-5) recursively when x[n] = &6[r] in order to determine y[0], ..., y[M].
What equation does A[n] satisfy for n = M? What are the appropriate initial
conditions for this equation?

Using either of the methods outlined in parts (d) and (e), find the impulse re-
sponses of the causal LTI systems described by the following equations:

() ylnl = yln = 2] = x[n]

(1) y[n] = yln —2] = x[n] + 2x[n — 1]

(i) y[n] — y[n — 2] = 2x[n] — 3x[n — 4}

(iv) ylnl — (/3/2)y[n — 11+ $y[n — 2] = x[n]

2.56. In this problem, we consider a procedure that is the continuous-time counterpart of
the technique developed in Problem 2.55. Again, we will see that the problem of
determining the impulse response A(¢) for ¢ > O for an LTI system initially at rest
and described by a linear constant-coefficient differential equation reduces to the
problem of solving the homogeneous equation with appropriate initial conditions.
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Consider the LTI system initially at rest and described by the differential equa-
tion

% + 2y(r) = x(2). (P2.56-1)

Suppose that x(#) = 8(¢). In order to determine the value of y(t) immediately
after the application of the unit impulse, consider integrating eq. (P2.56-1) from
t =0 tot = 0" (i.e, from “just before” to “just after” the application of the
impulse). This yields

0+ ot
yOH) = y07) +2 J y(r)dt = J §(nydr = 1. (P2.56-2)
- 0

0

Since the system is initially at rest and x(t) = Oforz < 0, y(0™) = 0. To satisfy
eq. (P2.56-2) we must have y(0*) = 1. Thus, since x(¢) = 0 for t > 0, the
impulse response of our system is the solution of the homogeneous differential
equation

dy() _

with initial condition
y(0*) = 1L

Solve this differential equation to obtain the impulse response A(t) for the sys-
tem. Check your result by showing that

y() = J i h(t — T)x(7)dt

satisfies eq. (P2.56—1) for any input x(¢).
To generalize the preceding argument, consider an LTI system initially at rest
and described by the differential equation

N dk ,
;)ak d’tf) = x() (P2.56-3)

with x(¢) = 6(t). Assume the condition of initial rest, which, since x(¢) = 0 for
t < 0, implies that

N-1

) = Q )y = = d—_y ) = —
o) = 2oy == Ho =0 (P256-4)

Integrate both sides of eq. (P2.56-3) once from ¢+ = 0~ to t = 0, and use
eq. (P2.56—4) and an argument similar to that used in part (a) to show that the
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resulting equation is satisfied with
d dN 2
y09) = 200 = = 550 =0 (P256-50)
and
dV Yy 1
T - (() ) = = (P2.56-5b)

Consequently, the system’s impulse response for ¢+ > 0 can be obtained by solv-
ing the homogeneous equation

ﬁ d*y(n _
% dr*

with initial conditions given by eqs. (P2.56-5).

Consider now the causal LTI system described by the differential equation
N k M k
d"y() d"x(1)
= b . P2.56-6
gu Ak gj KTk ( )

Express the impulse response of this system in terms of that for the system of
part (b). (Hint: Examine Figure P2.56.)

N k w(t) M gk
X(t) = I a, d V\L(t) = x(t) > yit) = 3 by d V\:((t) —a ()
k=0 dt k=0 dt .
Figure P2.56
(d) Apply the procedures outlined in parts (b) and (c) to find the impulse responses
for the LTI systems initially at rest and described by the following differential
equations
(i) 0 4380 42y = x(r)
( ) (/ \(1 + 2(1‘\1(11‘) + 2y(t) — x(t)
(e) Use the results of parts (b) and (c) to deduce that if M = N in eq. (P2.56-6),
then the impulse response A(t) will contain singularity terms concentrated at
t = 0. In particular, h(t) will contain a term of the form
M-N
Z a1, (f),
r=0
where the «, are constants and the u,(¢) are the singularity functions defined in
Section 2.5.
(f) Find the impulse responses of the causal LTI systems described by the following

differential equations:

(1)
(i)

d\(l)

+2y(1) = 380 4 x(r)

(] _\(1) 5(1\(1) +6 ([) — Jd3 d ()

ar

+ 28500 4 gdx0  3x)
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2.57.

2.58.

Consider a causal LTI system S whose input x[n] and output y[n] are related by the
difference equation

yln} = —ayln — 1] + bpx[n] + by x[n — 1].

(a) Verify that S may be considered a cascade connection of two causal LTI systems
S| and S, with the following input-output relationship:

Sy ynl = boxi[n] + brxi[n— 1],
Sy i yo[n] = —ays[n — 1] + xz[nl.

(b) Draw a block diagram representation of S;.

(c) Draw a block diagram representation of S».

(d) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S| followed by the block diagram representation
of Sz .

(e) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S, followed by the block diagram representation
of S| .

(f) Show that the two unit-delay elements in the block diagram representation of S
obtained in part () may be collapsed into one unit-delay element. The result-
ing block diagram is referred to as a Direct Form Il realization of S, while the
block diagrams obtained in parts (d) and (e) are referred to as Direct Form I
realizations of S.

Consider a causal LTI system S whose input x[n] and output y[n] are related by the
difference equation

2y[n] — y[n — 1] + y[n — 3] = x[n] — Sx[n — 4].

(a) Verify that S may be considered a cascade connection of two causal LTI systems
S and S, with the following input-output relationship:

Sy :2yy[n] = xi[n] — 5xi[n — 4],
1 1
Sy yoln] = §>’z[n Y Eyz[n — 3]+ xz[n].

(b) Draw a block diagram representation of S;.

(¢) Draw a block diagram representation of S».

(d) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S| followed by the block diagram representation
of S».

(e) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S, followed by the block diagram representation
of S] .

(f) Show that the four delay elements in the block diagram representation of §
obtained in part (¢) may be collapsed to three. The resulting block diagram
is referred to as a Direct Form II realization of S, while the block diagrams
obtained in parts (d) and (e) are referred to as Direct Form I realizations of S.
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2.60.
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Consider a causal LTI system S whose input x(¢) and output y(r) are related by the
differential equation

dy(t) dx(t
a]% + apy(t) = byx(1) + by 2(, )~

(a) Show that

t

x(t)dr,

!
V(1) = AJ WrydT + Bx(t) + CJ

and express the constants A, B, and C in terms of the constants ay, ay, by,
and b,.

(b) Show that S may be considered a cascade connection of the following two causal
LTI systems:

I
S :ivi(®) = Bxy(0) + CJ x(1)dr,

1
S>iya(t) = AJ vaAT)dT + x2(1).

—%

(c) Draw a block diagram representation of S;.

(d) Draw a block diagram representation of S-.

(e) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S; followed by the block diagram representation
of S-.

(f) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S» followed by the block diagram of representa-
tion S] .

(g) Show that the two integrators in your answer to part (f) may be collapsed into
one. The resulting block diagram is referred to as a Direct Form II realization
of S, while the block diagrams obtained in parts (e) and (f) are referred to as
Direct Form I realizations of S.

Consider a causal LTI system S whose input x(¢) and output y(¢) are related by the
differential equation
d>y(t) dy)
Cgr TG

dx(r) b d* x(1)

+ apy(t) = box(t) + by di IR

(a) Show that

! i T
¥(t) = AJ wrydr + BJ' (J y(a)da) dr

—% —%

! ! T
+ Cx(t) + DJ x(1)dT + EJ U x(tr)do) dr,

-
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and express the constants A, B, C, D, and E in terms of the constants ay, ay, a2,
b(), b], and bg.

(b) Show that S may be considered a cascade connection of the following two causal
LTI systems:

1 1 T
S;:)’|(I)=Cx1(t)+DJ JC](T)dT—*-E[ (f x|((r)do-)d7,

1 ! T
Sy ya(t) = AJ yo(T)dT + BJ U yz(a)do) dr + x5(1).

(¢) Draw a block diagram representation of S;.

(d) Draw a block diagram representation of S.

(e) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of §; followed by the block diagram representation
of S-.

(f) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S, followed by the block diagram representation
of S] .

(g) Show that the four integrators in your answer to part (f) may be collapsed into
two. The resulting block diagram is referred to as a Direct Form Il realization
of S, while the block diagrams obtained in parts (e) and (f) are referred to as
Direct Form I realizations of S.

EXTENSION PROBLEMS

2.61. (a) In the circuit shown in Figure P2.61(a), x(¢) is the input voltage. The voltage
¥(t) across the capacitor is considered to be the system output.

=

@ Figure P2.61a

(i) Determine the differential equation relating x(t) and y(z).

(i1) Show that the homogeneous solution of the differential equation from part
(i) has the form K;e/®'" + Kye/®'. Specify the values of w| and w>.

(iii) Show that, since the voltage and current are restricted to be real, the natural
response of the system is sinusoidal.
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(b) In the circuit shown in Figure P2.61(b), x(?) is the input voltage. The voltage
¥(t) across the capacitor is considered to be the system output.

x(t) QjD o1 F== y()

(b) Figure P2.61b

(i) Determine the differential equation relating x(¢) and y(t).
(ii) Show that the natural response of this system has the form Ke ™, and spec-
ify the value of a.
(c) In the circuit shown in Figure P2.61(c), x(t) is the input voltage. The voltage
y(#) across the capacitor is considered to be the system output.

X
=
(D)
/

1|
oll
|
la
iy
<
=

© Figure P2.61c

(i) Determine the differential equation relating x(¢) and y(¢).

(i) Show that the homogeneous solution of the differential equation from part
(i) has the form e~ “{K e/ + Ke >}, and specify the value of a.

(iii) Show that, since the voltage and current are restricted to be real, the natural
response of the system is a decaying sinusoid.

2.62. (a) In the mechanical system shown in Figure P2.62(a), the force x(¢) applied to
the mass represents the input, while the displacement y(f) of the mass repre-
sents the output. Determine the differential equation relating x(¢) and y(z). Show
that the natural response of this system is periodic.

(b) Consider Figure P2.62(b), in which the force x(¢) is the input and the velocity
¥(t) is the output. The mass of the car is m, while the coefficient of kinetic fric-
tion is p. Show that the natural response of this system decays with increasing
time.

(c) Inthe mechanical system shown in Figure P2.62(c), the force x(¢) applied to the
mass represents the input, while the displacement y(z) of the mass represents
the output.
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\

K =2N/m

m = 1,000 Kg

|
\

K = Spring constant = 2 N/m
K m = Mass = 1 Kg
b = Damping constant = 2 N-s/m

Figure P2.62

(i) Determine the differential equation relating x(¢) and y(z).

(i1} Show that the homogeneous solution of the differential equation from part
(i) has the form e~ “{Ke/! + K,e~/'}, and specify the value of a.

(iii) Show that, since the force and displacement are restricted to be real, the
natural response of the system is a decaying sinusoid.
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2.63.

2.64.

Linear Time-invariant Systems Chap. 2

A $100,000 mortgage is to be retired by equal monthly payments of D dollars. In-
terest, compounded monthly, is charged at the rate of 12% per annum on the unpaid
balance; for example, after the first month, the total debt equals

0.12

$100,000 + (W

)$ 100,000 = $101,000.

The problem is to determine D such that after a specified time the mortgage is paid

in full, leaving a net balance of zero.

(a) To set up the problem, let y[n] denote the unpaid balance after the nth monthly
payment. Assume that the principal is borrowed in month 0 and monthly pay-
ments begin in month 1. Show that y[n] satisfies the difference equation

yin] —yyin—1}=-D n=1 (P2.63-1)
with initial condition
y[01 = $100,000,

where 7 is a constant. Determine vy.
(b) Solve the difference equation of part (a) to determine

y[n] forn = 0.

(Hint: The particular solution of eq. (P2.63-1) is a constant Y. Find the value
of Y, and express y[n] for n = 1 as the sum of particular and homogeneous
solutions. Determine the unknown constant in the homogeneous solution by
directly calculating y[1] from eq. (P2.63—1) and comparing it to your solution.)

(c) If the mortgage is to be retired in 30 years after 360 monthly payments of D
dollars, determine the appropriate value of D.

(d) What is the total payment to the bank over the 30-year period?

(e) Why do banks make loans?

One important use of inverse systems is in situations in which one wishes to remove
distortions of some type. A good example of this is the problem of removing echoes
from acoustic signals. For example, if an auditorium has a perceptible echo, then
an initial acoustic impulse will be followed by attenuated versions of the sound at
regularly spaced intervals. Consequently, an often-used model for this phenomenon
is an LTI system with an impulse response consisting of a train of impulses, i.e.,

h(t) = i hyd(t — kT). (P2.64-1)
k=0

Here the echoes occur T seconds apart, and &, represents the gain factor on the kth

echo resulting from an initial acoustic impulse.

(a) Suppose that x(f) represents the original acoustic signal (the music produced
by an orchestra, for example) and that y(t) = x(z) * h(z) is the actual signal that
is heard if no processing is done to remove the echoes. In order to remove the
distortion introduced by the echoes, assume that a microphone is used to sense
y(#) and that the resulting signal is transduced into an electrical signal. We will
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also use y(f) to denote this signal, as it represents the electrical equivalent of
the acoustic signal, and we can go from one to the other via acoustic-electrical
conversion systems.

The important point to note is that the system with impulse response given
by eq. (P2.64-1) is invertible. Therefore, we can find an LTI system with im-
pulse response g(t) such that

y(1) * g(1) = x(n),

and thus, by processing the electrical signal y(¢) in this fashion and then con-
verting back to an acoustic signal, we can remove the troublesome echoes.
The required impulse response g(¢) is also an impulse train:

g(t) = > gid(t — KT).
k=0

Determine the algebraic equations that the successive g; must satisfy, and solve
these equations for go, £, and g, in terms of Ay.

(b) Suppose that iy = 1, by = 1/2, and h; = O for all i = 2. What is g(¢) in this

case?

(¢) A good model for the generation of echoes is illustrated in Figure P2.64. Hence,

x(t)

(d)

each successive echo represents a fed-back version of y(#), delayed by T sec-
onds and scaled by «. Typically, 0 < a < 1, as successive echoes are attenu-
ated.

> /-6—\ > y(t)
l O“ Delay | ¢

T

Figure P2.64

(i) What is the impulse response of this system? (Assume initial rest, i.e.,
y() = O0fort <Oif x(z) = 0fort <0.)
(i) Show that the system is stable if 0 < o < 1 and unstable if ¢ > 1.
(ii1) What is g(#) in this case? Construct a realization of the inverse system
using adders, coefficient multipliers, and T-second delay elements.

Although we have phrased the preceding discussion in terms of continuous-time
systems because of the application we have been considering, the same general
ideas hold in discrete time. That is, the LTI system with impulse response

hin] = > hdln — kN1
k=0

is invertible and has as its inverse an LTI system with impulse response

L

gln] = > g8ln — kN).

k=0
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It is not difficult to check that the g, satisfy the same algebraic equations as in
part (a).
Consider now the discrete-time LTT system with impulse response

hin] = > 8[n— kN].

k=—=

This system is not invertible. Find two inputs that produce the same output.

2.65. In Problem 1.45, we introduced and examined some of the basic properties of cor-
relation functions for continuous-time signals. The discrete-time counterpart of the
correlation function has essentially the same properties as those in continuous time,
and both are extremely important in numerous applications (as is discussed in Prob-
lems 2.66 and 2.67). In this problem, we introduce the discrete-time correlation
function and examine several more of its properties.

Let x[n] and y[n] be two real-valued discrete-time signals. The autocorrela-
tion functions ¢.x[n] and ¢,,[n] of x[n] and y[n], respectively, are defined by the
expressions

+oc

Guln) = > x{m+ nlx[m]

and
dyyln) = > ylm + nly[ml,

and the cross-correlation functions are given by

+

buy[n]l = > xim + nlyim]
and
¢byx[n] = Z ylm + n]x[m].

As in continuous time, these functions possess certain symmetry properties. Specif-

ically, ¢.x[n] and ¢,,[n] are even functions, while ¢.,[n] = ¢,.[—n].

(a) Compute the autocorrelation sequences for the signals x[n], x2[n], x3[n], and
x4[n] depicted in Figure P2.65.

(b) Compute the cross-correlation sequences

¢)x,-xj[n]; i?é j; lr] = 1’ 2) 31 4)

for x;[n], i = 1,2, 3,4, as shown in Figure P2.65.

(¢) Let x[n] be the input to an LTI system with unit sample response h[n], and let the
corresponding output be y[n]. Find expressions for ¢,,{n] and ¢,,[n] in terms
of ¢.«[n] and h[n]. Show how ¢,,[n] and ¢,,[n] can be viewed as the output
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1 Xy [n]

0123 n

X3 [n]

-1 01 n
Figure P2.65

of LTI systems with ¢,,[n] as the input. (Do this by explicitly specifying the
impulse response of each of the two systems.)

(d) Let A[n] = x,[n] in Figure P2.65, and let y[n] be the output of the LTI system
with impulse response A[n] when the input x[n] also equals x|[n]. Calculate
¢xv[n] and ¢, [n] using the results of part (c).

2.66. Let h(t), ha(1), and hs(1), as sketched in Figure P2.66, be the impulse responses
of three LTT systems. These three signals are known as Walsh functions and are of
considerable practical importance because they can be easily generated by digital
logic circuitry and because multiplication by each of them can be implemented in a
simple fashion by a polarity-reversing switch.

hy () ha(t) ha(t)

1 [—| 1 1 j
. | | 1 1
2| 3| 4| t 1 2] 3 4]t i 2 3] 4t

-1 -1 -1F

Figure P2.66

-

(a) Determine and sketch a choice for x;(¢), a continuous-time signal with the fol-
lowing properties:
(1) x;(¢) s real.
@11) x;(t) = Oforr <.
(iii) |x1(n)| = 1fort = 0.
(1v) y1(1) = x(¢) * h(z) is as large as possible at r = 4.

(b) Repeat part (a) for x(¢) and x3(¢) by making y>(r) = x2(f) * hp(t) and y3(r) =
x3(2) * hs(¢) each as large as possible at t = 4.

(¢) What is the value of

Yij(®) = xi{(t)*hj(t), i # j
attimetr = 4fori, j = 1,2,3?



170 Linear Time-Invariant Systems Chap. 2

The system with impulse response £;(t) is known as the matched filter
for the signal x;(r) because the impulse response is tuned to x;(¢) in order to
produce the maximum output signal. In the next problem, we relate the concept
of a matched filter to that of the correlation function for continuous-time signals.

2.67. The cross-correlation function between two continuous-time real signals x(¢) and
y(t) is

+oc

b () = J x(t + 7)y(r)dr. (P2.67-1)

—%

The autocorrelation function of a signal x(¢) is obtained by setting y(t) = x(¢) in
eq. (P2.67-1):
+or

Gr(t) = J x(t + T)x(7)dr.

—0oc

(a) Compute the autocorrelation function for each of the two signals x;(¢) and x,(t)
depicted in Figure P2.67(a).

x() %a(t)

-

@

Xolt) x4(t)

(b) Figure P2.67

(b) Let x(t) be a given signal, and assume that x(¢) is of finite duration—i.e., that
x(t) = Ofort <Oand¢ > T. Find the impulse response of an LTI system so
that ¢, (t — T) is the output if x(¢) is the input.

(c) The system determined in part (b) is a matched filter for the signal x(). That
this definition of a matched filter is identical to the one introduced in Problem
2.66 can be seen from the following:
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Let x(#) be as in part (b), and let y(¢) denote the response to x(¢) of an
LTI system with real impulse response /i(f). Assume that A(f) = O for r <0
and for r > T. Show that the choice for A(¢) that maximizes y(T'), subject to the
constraint that

T
f W (t)dt = M, a fixed positive number, (P2.67-2)
0

is a scalar multiple of the impulse response determined in part (b). [Hint:
Schwartz’s inequality states that

a b 172 b 12
f u(tv()dt = U uz(t)dt} “ vz(t)dtl
b a a

for any two signals u(¢) and v(¢). Use this to obtain a bound on y(T).]

(d) The constraint given by eq. (P2.67-2) simply provides a scaling to the impulse
response, as increasing M merely changes the scalar multiplier mentioned in
part (c). Thus, we see that the particular choice for A(#) in parts (b) and (c) is
matched to the signal x(¢) to produce maximum output. This is an extremely
important property in a number of applications, as we will now indicate.

In communication problems, one often wishes to transmit one of a small
number of possible pieces of information. For example, if a complex message
is encoded into a sequence of binary digits, we can imagine a system that trans-
mits the information bit by bit. Each bit can then be transmitted by sending one
signal, say, xo(?) , if the bit is a 0, or a different signal x;(¢) if a 1 is to be com-
municated. In this case, the receiving system for these signals must be capable
of recognizing whether x((#) or x,(¢) has been received. Intuitively, what makes
sense is to have two systems in the receiver, one tuned to x,(¢) and one tuned
to x;(¢), where, by “tuned,” we mean that the system gives a large output after
the signal to which it is tuned is received. The property of producing a large
output when a particular signal is received is exactly what the matched filter
possesses.

In practice, there is always distortion and interference in the transmission
and reception processes. Consequently, we want to maximize the difference be-
tween the response of a matched filter to the input to which it is matched and
the response of the filter to one of the other signals that can be transmitted. To
illustrate this point, consider the two signals xy(#) and x;(¢) depicted in Fig-
ure P2.67(b). Let Ly denote the matched filter for x((¢), and let L; denote the
matched filter for x(¢).

(i) Sketch the responses of L to xg(¢) and x(¢). Do the same for L;.

(i) Compare the values of these responses at ¢ = 4. How might you modify
xo() so that the receiver would have an even easier job of distinguishing
between xo(¢) and x(¢) in that the response of L to x;(t) and L; to xy(7)
would both be zero att = 4?

2.68. Another application in which matched filters and correlation functions play an im-
portant role is radar systems. The underlying principle of radar is that an electro-
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magnetic pulse transmitted at a target will be reflected by the target and will subse-
quently return to the sender with a delay proportional to the distance to the target.
Ideally, the received signal will simply be a shifted and possibly scaled version of
the original transmitted signal.

Let p(z) be the original pulse that is sent out. Show that

¢13p(0) = ml?‘xqbpp(t)-

That s, ¢,,,(0) is the largest value taken by ¢,,,(¢). Use this equation to deduce that,
if the waveform that comes back to the sender is

x(t) = ap(t — ),

where « is a positive constant, then
¢.¥p(t0) = mlax d)xp(t)-

(Hint: Use Schwartz’s inequality.)

Thus, the way in which simple radar ranging systems work is based on using a
matched filter for the transmitted waveform p(7) and noting the time at which the
output of this system reaches its maximum value.

In Section 2.5, we characterized the unit doublet through the equation

+

x(t) *u(t) = f x(t — Duy(v)drt = x'(t) (P2.69-1)

—x

for any signal x(#). From this equation, we derived the relationship

f wg(T)un(T)dT = —g'(0). (P2.69-2)

(a) Show that eq. (P2.69-2) is an equivalent characterization of u;(¢) by showing
that eq. (P2.69-2) implies eq. (P2.69-1). [Hint: Fix ¢, and define the signal
g(m) = x(t — 7).]

Thus, we have seen that characterizing the unit impulse or unit doublet
by how it behaves under convolution is equivalent to characterizing how it be-
haves under integration when multiplied by an arbitrary signal g(¢). In fact, as
indicated in Section 2.5, the equivalence of these operational definitions holds
for all signals and, in particular, for all singularity functions.

(b) Let f(¢) be a given signal. Show that

fOu®) = fOu () = f(0)8(n)

by showing that both functions have the same operational definitions.
(c) What is the value of

Jm x(Dux(t)dT?

Find an expression for f(#)u»(¢) analogous to that in part (b) for f(#)u;(?).
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2.70. In analogy with continuous-time singularity functions, we can define a set of
discrete-time signals. Specifically, let

u_([n] = uln],

uoln) = 8[n],
and
uy[n] = 8[n] — 8[n — 1],
and define
ug[n] = wi[n] * ul[nJ,* oxuyn], >0
k times
and
upln] = \u_l[n] *y_q[n]*---* u_l[n]/ k<O.
|4 times
Note that
x[n] *8[n] = x[n],
x[n] * uln] = i x[m],
and
x[n]*wuy[n] = x[n] — x[n — 1],
(a) What is

%

Z x[m]uy[m]?

m=ow

(b) Show that

x[nJui[n] = x[0]us[n] — [x[1] = x[0]]6[~ — 1]
= x[1ui[n] = [x[1] — x[0]]8[~].

(c) Sketch the signals uy[n] and uz[n].
(d) Sketch u_»[n] and u_;3[n].
(e) Show that, in general, for £ > 0,
(—D"k!
uplnl = ————[uln] —uln — k—1]1. (P2.70-1)
nl(k — n)!
(Hint: Use induction. From part (c), it is evident that u[n] satisfies eq.
(P2.70-1) for k = 2 and 3. Then, assuming that eq. (P2.70-1) satisfies u,[n],
write uy.([n] in terms of u;[n], and show that the equation also satisfies
Ug1ln].)
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(f) Show that, in general, for & > 0,

_(nt k-1
(Hint: Again, use induction. Note that
u_kenlnl —u—anln — 1] = u_y[nl. (P2.70-3)

Then, assuming that eq. (P2.70-2) is valid for u_,[n], use eq. (P2.70-3) to show
that eq. (P2.70-2) is valid for u_,,[n] as well.)

2.71. In this chapter, we have used several properties and ideas that greatly facilitate the
analysis of LTI systems. Among these are two that we wish to examine a bit more
closely. As we will see, in certain very special cases one must be careful in using
these properties, which otherwise hold without qualification.

(a) One of the basic and most important properties of convolution (in both contin-
uous and discrete time) is associativity. That is, if x(¢), h(¢), and g(¢) are three
signals, then

x(0) * [g(1) * h(D)] = [x(2) * ()] * h(t) = [x(2) * h(1)] * g(1). (P2.71-1)

This relationship holds as long as all three expressions are well defined and
finite. As that is usually the case in practice, we will in general use the asso-
ciativity property without comments or assumptions. However, there are some
cases in which it does not hold. For example, consider the system depicted in
Figure P2.71, with A(t) = u;(¢) and g(r) = u(r). Compute the response of this
system to the input

x(t) = 1forall ¢.

X() == gt) [—~ h) —> ¥V

Figure P2.71

Do this in the three different ways suggested by eq. (P2.71-1) and by the figure:

(1) By first convolving the two impulse responses and then convolving the result
with x(1).

(ii) By first convolving x(#) with u;(¢) and then convolving the result with u(z).

(iii) By first convolving x(#) with u(t) and then convolving the result with u, (¢).
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Repeat part (a) for
x(t) = e’
and

h(t)y = e "u(®),
g(t) = ui(t) + 8(2).

x[n] = (%) ,

h[n] = e) uln],

Do the same for

1
gln] = 6[n] — 58['1 - 1]

Thus, in general, the associativity property of convolution holds if and
only if the three expressions in eq. (P2.71-1) make sense (i.e., if and only if
their interpretations in terms of LTI systems are meaningful). For example, in
part (a) differentiating a constant and then integrating makes sense, but the
process of integrating the constant from ¢t = —o and then differentiating does
not, and it is only in such cases that associativity breaks down.

Closely related to the foregoing discussion is an issue involving inverse
systems. Consider the LTI system with impulse response A(f) = u(f). As we
saw in part (a), there are inputs—specifically, x(#) = nonzero constant—for
which the output of this system is infinite, and thus, it is meaningless to consider
the question of inverting such outputs to recover the input. However, if we limit
ourselves to inputs that do yield finite outputs, that is, inputs which satisfy

< oo, (P2.71-2)

Jl x(T)dTt

—o00

then the system is invertible, and the LTI system with impulse response u;(t)
is its inverse.
Show that the LTI system with impulse response u(¢) is not invertible. (Hint:
Find two different inputs that both yield zero output for all time.) However,
show that the system is invertible if we limit ourselves to inputs that satisfy eq.
(P2.71--2). [Hint: In Problem 1.44, we showed that an LTI system is invertible
if no input other than x(¢#) = 0 yields an output that is zero for all time; are
there two inputs x(z) that satisfy eq. (P2.71-2) and that yield identically zero
responses when convolved with u;(¢)7]
What we have illustrated in this problem is the following:
(1) If x(2), h(?), and g(¢) are three signals, and if x(¢) * g(¢), x(¢) * h(t), and
h(t) = g(t) are all well defined and finite, then the associativity property, eq.
(P2.71-1), holds.
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(2) Let A(t) be the impulse response of an LTI system, and suppose that the
impulse response g(¢) of a second system has the property

h(t) * g(t) = 8(1). (P2.71-3)

Then, from (1), for all inputs x(¢) for which x(¢) * h(t) and x(¢) = g(¢) are
both well defined and finite, the two cascades of systems depicted in Fig-
ure P2.71 act as the identity system, and thus, the two LTI systems can
be regarded as inverses of one another. For example, if h(#) = u(f) and
g(®) = u;(1), then, as long as we restrict ourselves to inputs satisfying eq.
(P2.71-2), we can regard these two systems as inverses.

Therefore, we see that the associativity property of eq. (P2.71-1) and the definition
of LTI inverses as given in eq. (P2.71-3) are valid, as long as all convolutions that are
involved are finite. As this is certainly the case in any realistic problem, we will in
general use these properties without comment or qualification. Note that, although
we have phrased most of our discussion in terms of continuous-time signals and
systems, the same points can also be made in discrete time [as should be evident
from part (c)].

2.72. Let 6a(f) denote the rectangular pulse of height % for 0 <t = A. Verify that

d 1
77080 = {[8() = 8(t = B)}.

2.73. Show by induction that
k-1

() = (k’—_mu(t) fork = 1,2,3...
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FOURIER SERIES
REPRESENTATION OF
PERIODIC SIGNALS

3.0 INTRODUCTION

The representation and analysis of LTI systems through the convolution sum as developed
in Chapter 2 is based on representing signals as linear combinations of shifted impulses.
In this and the following two chapters, we explore an alternative representation for signals
and LTI systems. As in Chapter 2, the starting point for our discussion is the development
of a representation of signals as linear combinations of a set of basic signals. For this
alternative representation we use complex exponentials. The resulting representations are
known as the continuous-time and discrete-time Fourier series and transform. As we will
see, these can be used to construct broad and useful classes of signals.

We then proceed as we did in Chapter 2. That is, because of the superposition prop-
erty, the response of an LTI system to any input consisting of a linear combination of basic
signals is the same linear combination of the individual responses to each of the basic sig-
nals. In Chapter 2, these responses were all shifted versions of the unit impulse response,
leading to the convolution sum or integral. As we will find in the current chapter, the re-
sponse of an LTI system to a complex exponential also has a particularly simple form,
which then provides us with another convenient representation for LTI systems and with
another way in which to analyze these systems and gain insight into their properties.

In this chapter, we focus on the representation of continuous-time and discrete-time
periodic signals referred to as the Fourier series. In Chapters 4 and 5, we extend the anal-
ysis to the Fourier transform representation of broad classes of aperiodic, finite energy
signals. Together, these representations provide one of the most powerful and important
sets of tools and insights for analyzing, designing, and understanding signals and LTI sys-
tems, and we devote considerable attention in this and subsequent chapters to exploring
the uses of Fourier methods.

177
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We begin in the next section with a brief historical perspective in order to provide
some insight into the concepts and issues that we develop in more detail in the sections
and chapters that follow.

3.1 A HISTORICAL PERSPECTIVE .

The development of Fourier analysis has a long history involving a great many individ-
uals and the investigation of many different physical phenomena.' The concept of using
“trigonometric sums”—that is, sums of harmonically related sines and cosines or periodic
complex exponentials—to describe periodic phenomena goes back at least as far as the
Babylonians, who used ideas of this type in order to predict astronomical events.” The
modern history of the subject begins in 1748 with L. Euler, who examined the motion of
a vibrating string. In Figure 3.1, we have indicated the first few of what are known as
the “normal modes” of such a string. If we consider the vertical deflection f(z, x) of the
string at time ¢ and at a distance x along the string, then for any fixed instant of time, the
normal modes are harmonically related sinusoidal functions of x. What Euler noted was
that if the configuration of a vibrating string at some point in time is a linear combination
of these normal modes, so is the configuration at any subsequent time. Furthermore, Euler
showed that one could calculate the coefficients for the linear combination at the later time
in a very straightforward manner from the coefficients at the earlier time. In doing this,
Euler performed the same type of calculation as we will in the next section in deriving
one of the properties of trigonometric sums that make them so useful for the analysis of
LTI systems. Specifically, we will see that if the input to an LTI system is expressed as a
linear combination of periodic complex exponentials or sinusoids, the output can also be
expressed in this form, with coefficients that are related in a straightforward way to those
of the input.

The property described in the preceding paragraph would not be particularly useful,
unless it were true that a large class of interesting functions could be represented by linear
combinations of complex exponentials. In the midd!le of the 18th century, this point was the
subject of heated debate. In 1753, D. Bernoulli argued on physical grounds that all physi-
cal motions of a string could be represented by linear combinations of normal modes, but
he did not pursue this mathematically, and his ideas were not widely accepted. In fact, Eu-
ler himself discarded trigonometric series, and in 1759 J. L. Lagrange strongly criticized
the use of trigonometric series in the examination of vibrating strings. His criticism was
based on his own belief that it was impossible to represent signals with corners (i.e., with
discontinuous slopes) using trigonometric series. Since such a configuration arises from

' The historical material in this chapter was taken from the following references: I. Grattan-Guiness,
Joseph Fourier, 1768—1830 (Cambridge, MA: The MIT Press, 1972); G. F. Simmons, Differential Equations:
With Applications and Historical Notes (New York: McGraw-Hill Book Company, 1972); C. Lanczos, Dis-
course on Fourier Series (London: Oliver and Boyd, 1966); R. E. Edwards, Fourier Series: A Modern Intro-
duction (New York: Springer-Verlag, 2nd ed., 1970); and A. D. Aleksandrov, A. N. Kolmogerov, and M. A.
Lavrent’ev, Mathematics: Its Content, Methods, and Meaning, trans. S. H. Gould, Vol. 11; trans. K. Hirsch, Vol.
I1T (Cambridge, MA: The MIT Press, 1969). Of these, Grattan-Guiness’ work offers the most complete account
of Fourier’s life and contributions. Other references are cited in several places in the chapter.

> H. Dym and H. P. McKean, Fourier Series and Integrals (New York: Academic Press, 1972). This
text and the book of Simmons cited in footnote 1 also contain discussions of the vibrating-string problem and
its role in the development of Fourier analysis.
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} X Position along
the string

b ———
S

Vertical deflection
f(t,x)

Figure 3.1 Normal modes of a vi-
brating string. (Solid lines indicate the
configuration of each of these modes
at some fixed instant of time, t.)

the plucking of a string (i.e., pulling it taut and then releasing it), Lagrange argued that
trigonometric series were of very limited use.

It was in this somewhat hostile and skeptical environment that Jean Baptiste Joseph
Fourier (Figure 3.2) presented his ideas half a century later. Fourier was born on March

Figure 3.2 Jean Baptiste Joseph
Fourier [picture from J. B. J. Fourier,
Oeuvres de Fourier, Vol. 1l (Paris:
Gauthier-Villars et Fils, 1980)].
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21, 1768, in Auxerre, France, and by the time of his entrance into the controversy con-
cerning trigonometric series, he had already had a lifetime of experiences. His many
contributions—in particular, those concerned with the series and transform that carry his
name—are made even more impressive by the circumstances under which he worked.
His revolutionary discoveries, although not completely appreciated during his own life-
time, have had a major impact on the development of mathematics and have been and still
are of great importance in an extremely wide range of scientific and engineering disci-
plines.

In addition to his studies in mathematics, Fourier led an active political life. In fact,
during the years that followed the French Revolution, his activities almost led to his down-
fall, as he narrowly avoided the guillotine on two separate occasions. Subsequently, Fourier
became an associate of Napoleon Bonaparte, accompanied him on his expeditions to Egypt
(during which time Fourier collected the information he would use later as the basis for
his treatises on Egyptology), and in 1802 was appointed by Bonaparte to the position of
prefect of a region of France centered in Grenoble. It was there, while serving as prefect,
that Fourier developed his ideas on trigonometric series.

The physical motivation for Fourier’s work was the phenomenon of heat propaga-
tion and diffusion. This in itself was a significant step in that most previous research in
mathematical physics had dealt with rational and celestial mechanics. By 1807, Fourier
had completed a work, Fourier had found series of harmonically related sinusoids to be
useful in representing the temperature distribution through a body. In addition, he claimed
that “any” periodic signal could be represented by such a series. While his treatment of
this topic was significant, many of the basic ideas behind it had been discovered by oth-
ers. Also, Fourier’s mathematical arguments were still imprecise, and it remained for P. L.
Dirichlet in 1829 to provide precise conditions under which a periodic signal could be rep-
resented by a Fourier series.” Thus, Fourier did not actually contribute to the mathematical
theory of Fourier series. However, he did have the clear insight to see the potential for this
series representation, and it was to a great extent his work and his claims that spurred much
of the subsequent work on Fourier series. In addition, Fourier took this type of representa-
tion one very large step farther than any of his predecessors: He obtained a representation
for aperiodic signals—not as weighted sums of harmonically related sinusoids—but as
weighted integrals of sinusoids that are not all harmonically related. It is this extension
from Fourier series to the Fourier integral or transform that is the focus of Chapters 4 and 5.
Like the Fourier series, the Fourier transform remains one of the most powerful tools for
the analysis of LTI systems.

Four distinguished mathematicians and scientists were appointed to examine the
1807 paper of Fourier. Three of the four—S. F. Lacroix, G. Monge, and P. S. de Laplace—
were in favor of publication of the paper, but the fourth, J. L. Lagrange, remained adamant
in rejecting trigonometric series, as he had done 50 years earlier. Because of Lagrange’s
vehement objections, Fourier’s paper never appeared. After several other attempts to have
his work accepted and published by the Institut de France, Fourier undertook the writing of
another version of his work, which appeared as the text Théorie analytique de la chaleur.*

*Both S. D. Poisson and A. L. Cauchy had obtained results about the convergence of Fourier series before
1829, but Dirichlet’s work represented such a significant extension of their results that he is usually credited
with being the first to consider Fourier series convergence in a rigorous fashion.

*See J. B. J. Fourier, The Analytical Theory of Heat, trans. A. Freeman (New York: Dover, 1955).
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This book was published in 1822, 15 years after Fourier had first presented his results to
the Institut.

Toward the end of his life Fourier received some of the recognition he deserved,
but the most significant tribute to him has been the enormous impact of his work on so
many disciplines within the fields of mathematics, science, and engineering. The theory
of integration, point-set topology, and eigenfunction expansions are just a few examples
of topics in mathematics that have their roots in the analysis of Fourier series and inte-
grals.5 Furthermore, in addition to the original studies of vibration and heat diffusion, there
are numerous other problems in science and engineering in which sinusoidal signals, and
therefore Fourier series and transforms, play an important role. For example, sinusoidal
signals arise naturally in describing the motion of the planets and the periodic behavior of
the earth’s climate. Alternating-current sources generate sinusoidal voltages and currents,
and, as we will see, the tools of Fourier analysis enable us to analyze the response of an
LTI system, such as a circuit, to such sinusoidal inputs. Also, as illustrated in Figure 3.3,
waves in the ocean consist of the linear combination of sinusoidal waves with different
spatial periods or wavelengths. Signals transmitted by radio and television stations are si-
nusoidal in nature as well, and as a quick perusal of any text on Fourier analysis will show,
the range of applications in which sinusoidal signals arise and in which the tools of Fourier
analysis are useful extends far beyond these few examples.

800ft — — — — ~~ — — — 7 150t
Wavelength 150 ft 500 ft
- — == == Wavelenght 500 ft
- - =+ —Wavelength 800 ft

Figure 3.3  Ship encountering the superposition of three wave trains, each with a
different spatial period. When these waves reinforce one another, a very large wave
can result. In more severe seas, a giant wave indicated by the dotted line could result.
Whether such a reinforcement occurs at any location depends upon the relative phases
of the components that are superposed. [Adapted from an illustration by P. Mion in
“Nightmare Waves Are All Too Real to Deepwater Sailors,” by P. Britton, Smithsonian
8 (February 1978), pp. 64-65].

While many of the applications in the preceding paragraph, as well as the original
work of Fourier and his contemporaries on problems of mathematical physics, focus on
phenomena in continuous time, the tools of Fourier analysis for discrete-time signals and
systems have their own distinct historical roots and equally rich set of applications. In par-
ticular, discrete-time concepts and methods are fundamental to the discipline of numerical
analysis. Formulas for the processing of discrete sets of data points to produce numerical
approximations for interpolation, integration, and differentiation were being investigated
as early as the time of Newton in the 1600s. In addition, the problem of predicting
the motion of a heavenly body, given a sequence of observations of the body, spurred the

*For more on the impact of Fourier’s work on mathematics, see W. A. Coppel, “J. B. Fourier—on the
occasion of His Two Hundredth Birthday,” American Mathematical Monthly, 76 (1969), 468-83.
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investigation of harmonic time series in the 18th and 19th centuries by eminent scientists
and mathematicians, including Gauss, and thus provided a second setting in which much
of the initial work was done on discrete-time signals and systems.

In the mid-1960s an algorithm, now known as the fast Fourier transform, or FFT, was
introduced. This algorithm, which was independently discovered by Cooley and Tukey in
1965, also has a considerable history and can, in fact, be found in Gauss’ notebooks.®
What made its modern discovery so important was the fact that the FFT proved to be
perfectly suited for efficient digital implementation, and it reduced the time required to
compute transforms by orders of magnitude. With this tool, many interesting but previ-
ously impractical ideas utilizing the discrete-time Fourier series and transform suddenly
became practical, and the development of discrete-time signal and system analysis tech-
niques moved forward at an accelerated pace.

What has emerged out of this long history is a powerful and cohesive framework for
the analysis of continuous-time and discrete-time signals and systems and an extraordinar-
ily broad array of existing and potential applications. In this and the following chapters,
we will develop the basic tools of that framework and examine some of its important im-
plications.

3.2 THE RESPONSE OF LTI SYSTEMS TO COMPLEX EXPONENTIALS

As we indicated in Section 3.0, it is advantageous in the study of LTI systems to represent
signals as linear combinations of basic signals that possess the following two properties:

1. The set of basic signals can be used to construct a broad and useful class of signals.

2. The response of an LTI system to each signal should be simple enough in structure
to provide us with a convenient representation for the response of the system to
any signal constructed as a linear combination of the basic signals.

Much of the importance of Fourier analysis results from the fact that both of these prop-
erties are provided by the set of complex exponential signals in continuous and discrete
time—i.e., signals of the form ¥ in continuous time and z” in discrete time, where s and
z are complex numbers. In subsequent sections of this and the following two chapters,
we will examine the first property in some detail. In this section, we focus on the second
property and, in this way, provide motivation for the use of Fourier series and transforms
in the analysis of LTT systems.

The importance of complex exponentials in the study of LTI systems stems from the
fact that the response of an LTI system to a complex exponential input is the same complex
exponential with only a change in amplitude; that is,

continuous time: ¢e* — H(s)e", 3.
discrete time: 7" — H(z)Z", (3.2)

where the complex amplitude factor H(s) or H(z) will in general be a function of the
complex variable s or z. A signal for which the system output is a (possibly complex)

*M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the History of the Fast Fourier Trans-
form,” The IEEE ASSP Magazine I (1984), pp. 14-21.
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constant times the input is referred to as an eigenfunction of the system, and the amplitude
factor is referred to as the system’s eigenvalue.

To show that complex exponentials are indeed eigenfunctions of LTI systems, let us
consider a continuous-time LTI system with impulse response A(¢). For an input x(z), we
can determine the output through the use of the convolution integral, so that with x(z) = e*

y() = f . h()x(t — 7)dr
’:’m 3.3)
= J h(r)e’"" dr.

—x

Expressing ¢~ as e’e %7, and noting that ¢* can be moved outside the integral, we see
that eq. (3.3) becomes

+o0

y(t) = e J h(T)e " dr. (3.4

—o0

Assuming that the integral on the right-hand side of eq. (3.4) converges, the response to
e is of the form

y(t) = H(s)e", (3.5)

where H(s) is a complex constant whose value depends on s and which is related to the
system impulse response by

+o0

H(s) = J h(t)e 7 drT. 3.6)

—o0

Hence, we have shown that complex exponentials are eigenfunctions of LTI systems. The
constant H(s) for a specific value of s is then the eigenvalue associated with the eigen-
function e*.

In an exactly parallel manner, we can show that complex exponential sequences are
eigenfunctions of discrete-time LTI systems. That is, suppose that an LTI system with
impulse response A[n] has as its input the sequence

x[n] = 7%, 3.7

where z is a complex number. Then the output of the system can be determined from the
convolution sum as

Zx hlk]x[n — k]

yln] =
k= (3.8)
= > Akl F =" > hlklz~
k=—x k=—x

From this expression, we see that if the input x[n] is the complex exponential given by
eq. (3.7), then, assuming that the summation on the right-hand side of eq. (3.8) converges,
the output is the same complex exponential multiplied by a constant that depends on the
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value of z. That is,

yln] = H(2)Z", (3.9)
where
H(z) = > hlKz™ (3.10)
k=—x

Consequently, as in the continuous-time case, complex exponentials are eigenfunctions of
discrete-time LTI systems. The constant H(z) for a specified value of z is the eigenvalue
associated with the eigenfunction z".

For the analysis of LTI systems, the usefulness of decomposing more general signals
in terms of eigenfunctions can be seen from an example. Let x(¢) correspond to a linear
combination of three complex exponentials; that is,

st Sat

x(t) = a1’V + are? + aze’, (3.11)
From the eigenfunction property, the response to each separately is
are’' — a H(s))e',
a e —s arH(sy)e™,
aze® —> a3H(s3)e™,
and from the superposition property the response to the sum is the sum of the responses,
so that

y(t) = alH(sl)e“’ + azH(sz)eW + a3H(S3)€S3t. (3.12)

More generally, in continuous time, eq. (3.5), together with the superposition property,
implies that the representation of signals as a linear combination of complex exponentials
leads to a convenient expression for the response of an LTI system. Specifically, if the
input to a continuous-time LTI system is represented as a linear combination of complex
exponentials, that is, if

x(t) = Zake“"’, (3.13)
3

then the output will be

YO = > arH(spe. (3.14)
k

In an exactly analogous manner, if the input to a discrete-time LTT system is represented
as a linear combination of complex exponentials, that is, if

x[n] = > a2}, (3.15)
k

then the output will be

ylnl = > aH(z)z; (3.16)
k
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In other words, for both continuous time and discrete time, if the input to an LTI
system is represented as a linear combination of complex exponentials, then the output
can also be represented as a linear combination of the same complex exponential signals.
Each coefficient in this representation of the output is obtained as the product of the corre-
sponding coefficient ¢, of the input and the system’s eigenvalue H{s;) or H(z;) associated
with the eigenfunction ¢’ or z{, respectively. It was precisely this fact that Euler discov-
ered for the problem of the vibrating string, that Gauss and others used in the analysis
of time series, and that motivated Fourier and others after him to consider the question
of how broad a class of signals could be represented as a linear combination of complex
exponentials. In the next few sections we examine this question for periodic signals, first
in continuous time and then in discrete time, and in Chapters 4 and 5 we consider the
extension of these representations to aperiodic signals. Although in general, the variables
s and z in egs. (3.1)—(3.16) may be arbitrary complex numbers, Fourier analysis involves
restricting our attention to particular forms for these variables. In particular, in continuous
time we focus on purely imaginary values of s—i.e., s = jo—and thus, we consider only
complex exponentials of the form e/, Similarly, in discrete time we restrict the range
of values of z to those of unit magnitude—i.e., 7 = ¢/“—so that we focus on complex
exponentials of the form e/¢".

Example 3.1

As an illustration of eqs. (3.5) and (3.6), consider an LTI system for which the input x(¢)
and output y(r) are related by a time shift of 3, i.e.,

y(t) = x(t — 3). (3.17)

If the input to this system is the complex exponential signal x(f) = e/*, then, from
eq. (3.17),

V(1) = e/ = ¢TI0, (3.18)

Equation (3.18) is in the form of eq. (3.5), as we would expect, since e/ is an eigen-
function. The associated eigenvalue is H(j2) = e /®. It is straightforward to confirm
eq. (3.6) for this example. Specifically, from eq. (3.17), the impulse response of the sys-
tem is h(r) = 6(+ — 3). Substituting into eq. (3.6), we obtain

+%

H(s) = J <8(’T — e Tdr = eV,

so that H(j2) = e /.
As a second example, in this case illustrating eqs. (3.11) and (3.12), consider the
input signal x(t) = cos(4t) + cos(77). From eq. (3.17), y(t) will of course be

¥(1) = cos(4(r — 3)) + cos(7(t — 3)). (3.19)

To see that this will also result from eq. (3.12), we first expand x(¢) using Euler’s relation:

x(r) = %e-’“" + %e”“’ + %e-”’ + 17 (3.20)

1
From egs. (3.11) and (3.12),

(1) = %e—jlzem + %emze—r,’m + %e—jzleﬂ; + %eﬁ.e,ﬂ,’
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or

1) = %ej4<z—3> + %efﬂ(r—n + %eﬂ(z—S) + %e—ﬂ(z—S)

= cos(4(r — 3)) + cos(7(t — 3)).

For this simple example, multiplication of each periodic exponential component of
x(r)—for example, e/*—by the corresponding cigenvalue—e.g., H(j4) = e /'>—
effectively causes the input component to shift in time by 3. Obviously, in this case
we can determine y(7) in eq. (3.19) by inspection rather than by employing egs. (3.11)
and (3.12). However, as we will see, the general property embodied in eqs. (3.11)
and (3.12) not only allows us to calculate the responses of more complex LTI systems,
but also provides the basis for the frequency domain representation and analysis of LTI
systems.

3.3 FOURIER SERIES REPRESENTATION OF CONTINUOUS-TIME
PERIODIC SIGNALS

3.3.1 Linear Combinations of Harmonically Related
Complex Exponentials
As defined in Chapter 1, a signal is periodic if, for some positive value of 7,
x(t) = x(t +T) forallz (3.21)

The fundamental period of x(¢) is the minimum positive, nonzero value of T for which
eq. (3.21) is satisfied, and the value wy = 2#/T is referred to as the fundamental fre-
quency.

In Chapter 1 we also introduced two basic periodic signals, the sinusoidal signal

x(t) = coswyt (3.22)
and the periodic complex exponential
x(1) = e/, (3.23)

Both of these signals are periodic with fundamental frequency w( and fundamental period
T = 27m/w. Associated with the signal in eq. (3.23) is the set of harmonically related
complex exponentials

bu(r) = e/t = T =0, 21, 22, (3.24)

Each of these signals has a fundamental frequency that is a multiple of w(, and therefore,
each is periodic with period T (although for |k| = 2, the fundamental period of ¢ (¢) is a
fraction of T). Thus, a linear combination of harmonically related complex exponentials
of the form

+x +
x(t) = Z akejkw“t _ Z akejk(Z‘lT/T)t (3.25)

k=—u k= —o
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is also periodic with period 7. In eq. (3.25), the term for kK = O is a constant. The terms for
k = +1 and k = —1 both have fundamental frequency equal to w¢ and are collectively
referred to as the fundamental components or the first harmonic components. The two
terms for £k = +2 and k = —2 are periodic with half the period (or, equivalently, twice
the frequency) of the fundamental components and are referred to as the second harmonic
components. More generally, the components for k = +N and k = —N are referred to as
the Nth harmonic components.

The representation of a periodic signal in the form of eq. (3.25) is referred to as the
Fourier series representation. Before developing the properties of this representation, let
us consider an example.

Example 3.2

Consider a periodic signal x(¢), with fundamental frequency 27r, that is expressed in the
form of eq. (3.25) as

+3
Xty = > ael™, (3.26)
k=-3
where
ag = 1
a = a = l
I — 4-1 = 4
a = a = 1
2 = 42 = 2’
—a, =L
a; = d-3 = 3.

Rewriting eq. (3.26) and collecting each of the harmonic components which have the
same fundamental frequency, we obtain

v . 1 . )
X(l) =1+ %(6'/27” + e-,/27ﬂ)+ E(614771 + e—j47rt)

(3.27)
+ l(ejﬁﬂ" + efjﬁm)-
3
Equivalently, using Euler’s relation, we can write x(¢) in the form
1 2
x(t) =1+ 5 cos 27t + cos 4t + 3 cos 677L. (3.28)

In Figure 3.4, we illustrate graphically how the signal x(t) is built up from its harmonic
components.



188 Fourier Series Representation of Periodic Signals Chap. 3

Xo(t) =1
1
X4(t) = % cos 2wt Xolt) + x4 (1)
1 t
= cos 4wt Xo(t) + x¢({1) + Xolt)
x3{t) = £ cos 6mt X(1) = Xolt) + x4{1) +x%(1) + x5(t)

Wm t

Figure 3.4 Construction of the signal x(f) in Example 3.2 as a linear com-
bination of harmonically related sinusoidal S|gnals.

Equation (3.28) is an example of an alternative form for the Fourier series of real
periodic signals. Specifically, suppose that x(¢) is real and can be represented in the form
of eq. (3.25). Then, since x"(1) = x(f), we obtain

x_(t) — Z af *[I\(z)q)l

k=—=%
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Replacing k£ by —k in the summation, we have
42 '
x(1) = z a* et
k=—=
which, by comparison with eq. (3.25), requires that a; = a”,, or equivalently, that
ay = a—y. (3.29)

Note that this is the case in Example 3.2, where the a,’s are in fact real and a; = a_;.
To derive the alternative forms of the Fourier series, we first rearrange the summation
in eq. (3.25) as

x(t) = ap + Z[akejk‘”“’ + a_pe Sk,
k=1
Substituting a; for a_; from eq. (3.29), we obtain
ga; q
x(t) = ap + Z[ake-’k”’"’ + aje ke,
k=1

Since the two terms inside the summation are complex conjugates of each other, this can
be expressed as

x(t) = ap + Z 2Refay e/ 0. (3.30)
k=1
If a, is expressed in polar form as
a, = Akeje*,

then eq. (3.30) becomes

x(t) = ap + Z 2&@{Ak€j(kw”’+o")}.

k=1

That is,

x(t) = ag + 2> Agcos(kwot + 05). 3.31)

k=1

Equation (3.31) is one commonly encountered form for the Fourier series of real periodic
signals in continuous time. Another form is obtained by writing a, in rectangular form as

ay = By + jCy,
where B; and C; are both real. With this expression for ay, eq. (3.30) takes the form
x(t) = ag + 2> [Bycos kwgt — Cy sin kwor). (3.32)
k=1

In Example 3.2 the a;’s are all real, so that a; = A; = By, and therefore, both represen-
tations, eqgs. (3.31) and (3.32), reduce to the same form, eq. (3.28).
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Thus, for real periodic functions, the Fourier series in terms of complex exponentials,
as given in eq. (3.25), is mathematically equivalent to either of the two forms in egs. (3.31)
and (3.32) that use trigonometric functions. Although the latter two are common forms for
Fourier series,” the complex exponential form of eq. (3.25) is particularly convenient for
our purposes, so we will use that form almost exclusively.

Equation (3.29) illustrates one of many properties associated with Fourier series.
These properties are often quite useful in gaining insight and for computational purposes,
and in Section 3.5 we collect together the most important of them. The derivation of several
of them is considered in problems at the end of the chapter. In Section 4.3, we also will
develop the majority of the properties within the broader context of the Fourier transform.

3.3.2 Determination of the Fourier Series Representation
of a Continuous-time Periodic Signal

Assuming that a given periodic signal can be represented with the series of eq. (3.25), we
need a procedure for determining the coefficients a;. Multiplying both sides of eq. (3.25)
by e /"’ we obtain

+7
x(1)e” Jnwer _ Z akejkw(,te*jnw”t‘ (333)
hk=—x
Integrating both sides from Oto T = 27/wy, we have
T 4=

T
J X(I)é’i'/—”w”’dl — j E akejkw()tefjmuul dr.
0

0 k=—=

Here, T is the fundamental period of x(¢), and consequently, we are integrating over one
period. Interchanging the order of integration and summation yields

) o

T + T
J x(De " dr = > ay U e/“'"’w“'dr]. (3.34)
( " 0

The evaluation of the bracketed integral is straightforward. Rewriting this integral using
Euler’s formula, we obtain

T T T
J eth—ment gy — J cos(k — mwotdt + jj sin(k — n)wot dt. (3.35)

0 0 0
For k # n, cos(k—n)wyt and sin(k — n)wt are periodic sinusoids with fundamental period
(T/lk — n|). Therefore, in eq. (3.35), we are integrating over an interval (of length T) that
is an integral number of periods of these signals. Since the integral may be viewed as
measuring the total area under the functions over the interval, we see that for £ # n, both
of the integrals on the right-hand side of eq. (3.35) are zero. For k = n, the integrand on
the left-hand side of eq. (3.35) equals 1, and thus, the integral equals 7. In sum, we then

have
T T, k=n
Jlk—mywgyt - » =
L ¢ di [ 0, k#n’

’In fact, in his original work, Fourier used the sine-cosine form of the Fourier series given in eq. (3.32).
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and consequently, the right-hand side of eq. (3.34) reduces to T a,. Therefore,

r
=t J x(t)e” " g, (3.36)
T Jo

which provides the equation for determining the coefficients. Furthermore, note that in
evaluating eq. (3.35), the only fact that we used concerning the interval of integration
was that we were integrating over an interval of length 7', which is an integral number of
periods of cos(k — n)wet and sin(k — n)wgt. Therefore, we will obtain the same result if we
integrate over any interval of length 7. That is, if we denote integration over any interval
of length 7 by |, we have

Jlk—n)wy! — T, k=n
L ¢ dt { 0, k#n’

and consequently,

a, = l J x(p)e™ /"t gy, 3.37)
T Jr
To summarize, if x(f) has a Fourier series representation [i.e., if it can be expressed
as a linear combination of harmonically related complex exponentials in the form of eq.
(3.25)], then the coefficients are given by eq. (3.37). This pair of equations, then, defines
the Fourier series of a periodic continuous-time signal:

+ % +=
X0 = > agelt = >0 aelt T, (3.38)
k=—x k=—=
a = % L x(nye™ ket dr = % f x(n)e AT dy, (3.39)
T

Here, we have written equivalent expressions for the Fourier series in terms of the fun-
damnetal frequency w and the fundamental period 7. Equation (3.38) is referred to as
the synthesis equation and eq. (3.39) as the analysis equation. The set of coefficients {a;}
are often called the Fourier series coefficients or the spectral coefficients of x(1).® These
complex coefficients measure the portion of the signal x(r) that is at each harmonic of the
fundamental component. The coefficient ag is the dc or constant component of x(¢) and is
given by eq. (3.39) with £ = 0. That is,

ap = %jr x(1) dt, (3.40)

which is simply the average value of x() over one period.
Equations (3.38) and (3.39) were known to both Euler and Lagrange in the mid-
dle of the 18th century. However, they discarded this line of analysis without having

*The term “spectral coefficient” is derived from problems such as the spectroscopic decomposition of
light into spectral lines (i.e., into its elementary components at different frequencies). The intensity of any line in
such a decomposition is a direct measure of the fraction of the total light energy at the frequency corresponding
to the line.
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examined the question of how large a class of periodic signals could, in fact, be represented
in such a fashion. Before we turn to this question in the next section, let us illustrate the
continuous-time Fourier series by means of a few examples.

Example 3.3
Consider the signal
X(t) = sinw(,t,

whose fundamental frequency is w,. One approach to determining the Fourier series
coefficients for this signal is to apply eq. (3.39). For this simple case, however, it is
easier to expand the sinusoidal signal as a linear combination of complex exponentials
and identify the Fourier series coefficients by inspection. Specifically, we can express
Sinwg! as

. 1 1,
Sinwyt = T(}“u“/ - —¢ j(o()l.

2j
Comparing the right-hand sides of this equation and eq. (3.38), we obtain

1 i
a, = z— a- = _Tj.

a;, =0, k# +lor — 1.

Example 3.4
Let

. T
x(t) = | + sinwyt + 2 coswyl + €os (Zw()t + Z)

which has fundamental frequency w,. As with Example 3.3, we can again expand x(#)
directly in terms of complex exponentials, so that

x() =1+ iljlejw“’ — ¢ ./'“)n’] + [e./wn’ +e /‘"(l’] + %[e./(z‘”o”‘ﬂ/‘” +e /'(Zwl)'*”/"’]_
Collecting terms, we obtain

1 : 1 : 1 . 1 . 5
x() = 1 + (1 + i;>€_lw()l + (1 o Z)e Jogl 4 (56"/(”/4’>€‘,'w”’ + (_2_()*](11/4))671_%,1.

Thus, the Fourier series coefficients for this example are

ay =

L,
a =<l+2j
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In Figure 3.5, we show a bar graph of the magnitude and phase of a;.
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Figure 3.5 Plots of the magnitude and phase of the Fourier coefficients of
the signal considered in Example 3.4.

Example 3.5

The periodic square wave, sketched in Figure 3.6 and defined over one period as

oL =T
x(r) = [O, T, < m TP (3.41)

is a signal that we will encounter a number of times throughout this book. This signal is
periodic with fundamental period 7 and fundamental frequency wy = 27/T.

To determine the Fourier series coefficients for x(r), we use eq. (3.39). Because
of the symmetry of x(¢) about + = 0, it is convenient to choose —7/2 = ¢ < T/2 as the

-2T

Figure 3.6 Periodic square wave.

t

N

|
ToT T
2
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interval over which the integration is performed, although any interval of length T is
equally valid and thus will lead to the same result. Using these limits of integration and
substituting from eq. (3.41), we have first, for k = 0,

Lh 2T,
ay = Tfle dt = T (342)

As mentioned previously, ap is interpreted to be the average value of x(¢), which in this
case equals the fraction of each period during which x(r) = 1. For k # 0, we obtain

1 i j kewgyt 1 kot h
ap = = e I = — ———e /kN ,
TT f—r, JkawoT -7,
which we may rewrite as
2 elkwoTi — o= jkoyT)
= ) 3.43
“k kon[ 2j (3.43)

Noting that the term in brackets is sin kw7, we can express the coefficients a; as

_ 2Sin(kw()T1) _ sin(konl)

k .
kwoT km #0 (344)

ak
where we have used the fact that wyT = 2.

Figure 3.7 is a bar graph of the Fourier series coefficients for this example. In
particular, the coefficients are plotted for a fixed value of 7 and several values of 7.
For this specific example, the Fourier coefficients are real, and consequently, they can
be depicted graphically with only a single graph. More generally, of course, the Fourier
coefficients are complex, so that two graphs, corresponding to the real and imaginary
parts, or magnitude and phase, of each coefficient, would be required. For T = 4T}, x(r)
is a square wave that is unity for half the period and zero for half the period. In this case,
woT = 7/2, and from eq. (3.44),

= Snmki2) o, (3.45)
kar
while
-1 (3.46)
ayg = 3 B

From eq. (3.45), a; = 0 for k even and nonzero. Also, sin(7k/2) alternates between =+ 1
for successive odd values of k. Therefore,

1
ay = a-, = P

1
a3 = a-3 = ‘g,

1
as = a-s5 = 5o
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Figure 3.7 Plots of the scaled Fourier series coefficients 7z, for the pe-
riodic square wave with T, fixed and for several values of T: (a) T = 4T;;
(b) T = 8Ty; (¢) T = 16T;. The coefficients are regularly spaced samples of
the envelope (2sin wT;)/w, where the spacing between samples, 27/T, de-
creases as 7T increases.

3.4 CONVERGENCE OF THE FOURIER SERIES

Although Euler and Lagrange would have been happy with the results of Examples 3.3
and 3.4, they would have objected to Example 3.5, since x(¢) is discontinuous while each
of its harmonic components is continuous. Fourier, on the other hand, considered the same
example and maintained that the Fourier series representation of the square wave is valid.
In fact, Fourier maintained that any periodic signal could be represented by a Fourier
series. Although this is not quite true, it is true that Fourier series can be used to represent an
extremely large class of periodic signals, including the square wave and all other periodic
signals with which we will be concerned in this book and which are of interest in practice.
To gain an understanding of the square-wave example and, more generally, of the
question of the validity of Fourier series representations, let us examine the problem of
approximating a given periodic signal x(¢) by a linear combination of a finite number of
harmonically related complex exponentials—that is, by a finite series of the form
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N
an(t) = Z agelke, (3.47)
k=—N

Let en(#) denote the approximation error; that is,

+N
en(t) = x(t) — xn(t) = x(2) — Z agelk’. (3.48)

K=—N

In order to determine how good any particular approximation is, we need to specify a
quantitative measure of the size of the approximation error. The criterion that we will use
is the energy in the error over one period:

Ey = J lex (D dt. (3.49)
T

As shown in Problem 3.66, the particular choice for the coefficients in eq. (3.47) that
minimize the energy in the error is

ap = 1 J x(H)e kot gy, (3.50)
T Jr

Comparing eqs. (3.50) and (3.39), we see that eq. (3.50) is identical to the expression used
to determine the Fourier series coefficients. Thus, if x(¢) has a Fourier series representa-
tion, the best approximation using only a finite number of harmonically related complex
exponentials is obtained by truncating the Fourier series to the desired number of terms.
As N increases, new terms are added and Ey decreases. If, in fact, x(¢) has a Fourier series
representation, then the limit of Ey as N — « is zero.

Let us turn now to the question of when a periodic signal x(¢) does in fact have a
Fourier series representation. Of course, for any signal, we can attempt to obtain a set of
Fourier coefficients through the use of eq. (3.39). However, in some cases, the integral
in eq. (3.39) may diverge; that is, the value obtained for some of the a; may be infinite.
Moreover, even if all of the coefficients obtained from eq. (3.39) are finite, when these
coefficients are substituted into the synthesis equation (3.38), the resulting infinite series
may not converge to the original signal x(z).

Fortunately, there are no convergence difficulties for large classes of periodic signals.
For example, every continuous periodic signal has a Fourier series representation for which
the energy Ex in the approximation error approaches 0 as N goes to . This is also true
for many discontinuous signals. Since we will find it very useful to include discontinuous
signals such as square waves in our discussions, it is worthwhile to investigate the issue
of convergence in a bit more detail. Specifically, there are two somewhat different classes
of conditions that a periodic signal can satisfy to guarantee that it can be represented by a
Fourier series. In discussing these, we will not attempt to provide a complete mathematical
justification; more rigorous treatments can be found in many texts on Fourier analysis.’

°See, for example, R. V. Churchill, Fourier Series and Boundary Value Problems, 3rd ed. (New York:
McGraw-Hill Book Company, 1978); W. Kaplan, Operational Methods for Linear Systems (Reading, MA:
Addison-Wesley Publishing Company, 1962); and the book by Dym and McKean referenced in footnote 2 of
this chapter.
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One class of periodic signals that are representable through the Fourier series is those
signals which have finite energy over a single period, i.e., signals for which

J |x(n)|* dt < . (3.51)
T

When this condition is satisfied, we are guaranteed that the coefficients a; obtained from
eq. (3.39) are finite. Furthermore, let xx(¢) be the approximation to x(z) obtained by using
these coefficients for |k| = N:

+N

v = > agel*. (3.52)
k=-N

Then we are guaranteed that the energy Ex in the approximation error, as defined in
eq. (3.49), converges to 0 as we add more and more terms, i.e., as N — o, That is, if
we define

+x
et) = x(t) = > agel*, (3.53)

k=—x

then
J le()|>dt = 0. (3.54)
T

As we will see in an example at the end of this section, eq. (3.54) does not imply that the
signal x(¢) and its Fourier series representation

+x )
> apeltn (3.55)

k=—x

are equal at every value of 7. What it does say is that there is no energy in their difference.
The type of convergence guaranteed when x(f) has finite energy over a single pe-
riod is quite useful. In this case eq. (3.54) states that the difference between x(f) and its
Fourier series representation has zero energy. Since physical systems respond to signal en-
ergy, from this perspective x(¢) and its Fourier series representation are indistinguishable.
Because most of the periodic signals that we consider do have finite energy over a single
period, they have Fourier series representations. Moreover, an alternative set of conditions,
developed by P. L. Dirichlet and also satisfied by essentially all of the signals with which
we will be concerned, guarantees that x(r) equals its Fourier series representation, except
at isolated values of ¢ for which x(7) is discontinuous. At these values, the infinite series
of eq. (3.55) converges to the average of the values on either side of the discontinuity.
The Dirichlet conditions are as follows:

Condition 1. Over any period, x(t) must be absolutely integrable; that is,

J |x(5)| dt < oo, ' (3.56)
T
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As with square integrability, this guarantees that each coefficient a; will be finite, since
1 ) 1
la] = T J'T |x(He™ T*ot| dt = T L |x(1)| dt.
So if
f [x(®)|dt < =,
T

then
lax| < .

A periodic signal that violates the first Dirichlet condition is
1
x(t) = p O<t=1;
that is, x(r) is periodic with period 1. This signal is illustrated in Figure 3.8(a).

Condition 2. In any finite interval of time, x(¢) is of bounded variation; that is, there
are no more than a finite number of maxima and minima during any single period of the
signal.

An example of a function that meets Condition 1 but not Condition 2 is

x(t) = sin (2777> O<t =1, (3.57)
as illustrated in Figure 3.8(b). For this function, which is periodic with T = 1,

1
J |x(@)| dt < 1.
0
The function has, however, an infinite number of maxima and minima in the interval.

Condition 3. In any finite interval of time, there are only a finite number of discontinu-
ities. Furthermore, each of these discontinuities is finite.

An example of a function that violates Condition 3 is illustrated in Figure 3.8(c). The
signal, of period T = 8§, is composed of an infinite number of sections, each of which is
half the height and half the width of the previous section. Thus, the area under one period of
the function is clearly less than 8. However, there are an infinite number of discontinuities
in each period, thereby violating Condition 3.

As can be seen from the examples given in Figure 3.8, signals that do not satisfy
the Dirichlet conditions are generally pathological in nature and consequently do not
typically arise in practical contexts. For this reason, the question of the convergence of
Fourier series will not play a particularly significant role in the remainder of the book. For
a periodic signal that has no discontinuities, the Fourier series representation converges
and equals the original signal at every value of . For a periodic signal with a finite number
of discontinuities in each period, the Fourier series representation equals the signal every-
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Figure 3.8 Signals that violate the

Dirichlet conditions: (a) the signal

Xx(t) = 1tfor0 <t = 1, aperi
x(t) odic signal with period 1 (this signal
violates the first Dirichiet condition);
(b) the periodic signal of eq. (3.57),
which violates the second Dirichlet
condition; (c) a signal periodic with
— 1 period 8 that violates the third Dirichlet
condition [for 0 =< f < 8, the value of

‘ 11 x{t) decreases by a factor of 2 when-
l H L‘-L l ever the distance from ¢ to 8
TE decreases by a factor of 2; that is,
8 16 1 X()=1,0=1t<4 x(t) =12,
4 =t<B x(f)=1/4,6 =t <7,
(© x(t) =1/8, 7 = t <75, etc.].

where except at the isolated points of discontinuity, at which the series converges to the
average value of the signal on either side of the discontinuity. In this case the difference
between the original signal and its Fourier series representation contains no energy, and
consequently, the two signals can be thought of as being the same for all practical pur-
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poses. Specifically, since the signals differ only at isolated points, the integrals of both
signals over any interval are identical. For this reason, the two signals behave identically
under convolution and consequently are identical from the standpoint of the analysis of
LTI systems.

To gain some additional understanding of sow the Fourier series converges for a
periodic signal with discontinuities, let us return to the example of a square wave. In
particular, in 1898,'Y an American physicist, Albert Michelson, constructed a harmonic
analyzer, a device that, for any periodic signal x(7), would compute the truncated Fourier
series approximation of eq. (3.52) for values of N up to 80. Michelson tested his device on
many functions, with the expected result that xy(¢) looked very much like x(¢). However,
when he tried the square wave, he obtained an important and, to him, very surprising re-
sult. Michelson was concerned about the behavior he observed and thought that his device
might have had a defect. He wrote about the problem to the famous mathematical physicist
Josiah Gibbs, who investigated it and reported his explanation in 1899.

What Michelson had observed is illustrated in Figure 3.9, where we have shown
xp/(t) for several values of N for x(¢), a symmetric square wave (I = 4T}). In each case,
the partial sum is superimposed on the original square wave. Since the square wave satis-
fies the Dirichlet conditions, the limit as N — o of xx(¢) at the discontinuities should be
the average value of the discontinuity. We see from the figure that this is in fact the case,
since for any N, xy(f) has exactly that value at the discontinuities. Furthermore, for any
other value of ¢, say, t = t;, we are guaranteed that

;\I/LHL xn(t) = x(ty).

Therefore, the squared error in the Fourier series representation of the square wave has
zero area, as in eqs. (3.53) and (3.54).

For this example, the interesting effect that Michelson observed is that the behavior
of the partial sum in the vicinity of the discontinuity exhibits ripples and that the peak am-
plitude of these ripples does not seem to decrease with increasing N. Gibbs showed that
these are in fact the case. Specifically, for a discontinuity of unity height, the partial sum
exhibits a maximum value of 1.09 (i.e., an overshoot of 9% of the height of the discon-
tinuity), no matter how large N becomes. One must be careful to interpret this correctly,
however. As stated before, for any fixed value of ¢, say, t = t,, the partial sums will con-
verge to the correct value, and at the discontinuity they will converge to one-half the sum
of the values of the signal on either side of the discontinuity. However, the closer ¢, is cho-
sen to the point of discontinuity, the larger N must be in order to reduce the error below a
specified amount. Thus, as N increases, the ripples in the partial sums become compressed
toward the discontinuity, but for any finite value of N, the peak amplitude of the ripples
remains constant. This behavior has come to be known as the Gibbs phenomenon. The im-
plication is that the truncated Fourier series approximation xx(f) of a discontinuous signal
x(¢) will in general exhibit high-frequency ripples and overshoot x(f) near the disconti-
nuities. If such an approximation is used in practice, a large enough value of N should
be chosen so as to guarantee that the total energy in these ripples is insignificant. In the
limit, of course, we know that the energy in the approximation error vanishes and that the
Fourier series representation of a discontinuous signal such as the square wave converges.

10The historical information used in this example is taken from the book by Lanczos referenced in foot-
note 1 of this chapter.
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Figure 3.9 Convergence of the Fourier series representation of a square
wave: an illustration of the Gibbs phenomenon. Here, we have depicted the
finite series approximation xy(t) = Lf w de’ot for several values of M.
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3.5 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

As mentioned earlier, Fourier series representations possess a number of important prop-
erties that are useful for developing conceptual insights into such representations, and they
can also help to reduce the complexity of the evaluation of the Fourier series of many sig-
nals. In Table 3.1 we have summarized these properties, several of which are considered
in the problems at the end of this chapter. In Chapter 4, in which we develop the Fourier
transform, we will see that most of these properties can be deduced from corresponding
properties of the continuous-time Fourier transform. Consequently we limit ourselves here
to the discussion of several of these properties to illustrate how they may be derived, in-
terpreted, and used.

Throughout the following discussion of selected properties from Table 3.1, we will
find it convenient to use a shorthand notation to indicate the relationship between a peri-
odic signal and its Fourier series coefficients. Specifically, suppose that x(¢) is a periodic
signal with period T and fundamental frequency wy = 27/T. Then if the Fourier series
coefficients of x(r) are denoted by a,, we will use the notation

Fs
x(1) > ay

to signify the pairing of a periodic signal with its Fourier series coefficients.

3.5.1 Linearity

Let x(r) and y(¢) denote two periodic signals with period T and which have Fourier series
coefficients denoted by a; and by, respectively. That is,

g8
x(t) «— ay,

55
y(t) < by

Since x(¢) and y(f) have the same period 7, it easily follows that any linear combination
of the two signals will also be periodic with period T. Furthermore, the Fourier series
coefficients ¢, of the linear combination of x(¢) and y(r), z(r) = Ax(t) + By(t), are given
by the same linear combination of the Fourier series coefficients for x(r) and y(¢). That is,

.
A1) = Ax(1) + By(t) < ¢, = Aag + Bby. (3.58)

The proof of this follows directly from the application of eq. (3.39). We also note that
the linearity property is easily extended to a linear combination of an arbitrary number of
signals with period 7.

3.5.2 Time Shifting

When a time shift is applied to a periodic signal x(#), the period T of the signal is preserved.
The Fourier series coefficients by of the resulting signal y(r) = x(f — ty) may be expressed
as

1 ”
bk = —J x(t — f())eiﬂ\w“ldf. (3.59)
T T
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Letting 7 = ¢ — t, in the integral, and noting that the new variable 7 will also range over
an interval of duration T, we obtain

1 . ) 1 ,
_ = Jkoo(T+19) — L, jkooty - —jkowot
T L x(T)e dr = ¢ T L x(T)e dr (3.60)

- e—jkwotnak — e*jk(27T/T)t,,ak,
where g, is the kth Fourier series coefficient of x(¢). That is, if

F$
x(t) «— ay,

then

A _ _;
x(t —19) «— e ./kwomak = ¢ ]k(27T/T)loak_

One consequence of this property is that, when a periodic signal is shifted in time, the
magnitudes of its Fourier series coefficients remain unaltered. That is, |by| = |ay].

3.5.3 Time Reversal

The period T of a periodic signal x(#) also remains unchanged when the signal undergoes
time reversal. To determine the Fourier series coefficients of y(¢) = x(—1), let us consider
the effect of time reversal on the synthesis equation (3.38):

x(=1) = > ae T (3.61)

k=—x

Making the substitution k¥ = —m, we obtain
YO = x(=0) = > a_p,emmT (3.62)

We observe that the right-hand side of this equation has the form of a Fourier series syn-
thesis equation for x(—¢), where the Fourier series coefficients by are

by = a_;. (3.63)
That is, if
x(t) <£—> aj,
then

HRY
x(—t) «— a_y.

In other words time reversal applied to a continuous-time signal results in a time reversal
of the corresponding sequence of Fourier series coefficients. An interesting consequence
of the time-reversal property is that if x(¢) is even—that is, if x(—t) = x(z)—then its
Fourier series coefficients are also even—i.e., a_; = a,. Similarly, if x(¢) is odd, so that
x(—1) = —x(1), then so are its Fourier series coefficients—i.e., a_; = —ay.
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3.5.4 Time Scaling

Time scaling is an operation that in general changes the period of the underlying signal.
Specifically, if x(t) is periodic with period T and fundamental frequency wy = 2#/T,
then x(at), where « is a positive real number, is periodic with period T/« and fundamen-
tal frequency aw,. Since the time-scaling operation applies directly to each of the har-
monic components of x(¢), we may easily conclude that the Fourier coefficients for each
of those components remain the same. That is, if x(¢) has the Fourier series representation
in eq. (3.38), then

+]_
X(at) — E ake_/k(aw“)i

k=—=

is the Fourier series representation of x(«t). We emphasize that, while the Fourier coef-
ficients have not changed, the Fourier series representation has changed because of the
change in the fundamental frequency.

3.5.5 Multiplication
Suppose that x(¢) and y(r) are both periodic with period T and that

FS
x(t) «— ay,

s
w(t) «— by.

Since the product x(#)¥(t) is also periodic with period T, we can expand it in a Fourier
series with Fourier series coefficients /. expressed in terms of those for x(¢) and y(¢). The
result is

%

X([)y(l‘) (57_§> hy = Z a/b/\;/. (364)

= —-=

One way to derive this relationship (see Problem 3.46) is to multiply the Fourier series
representations of x(¢) and y(7) and to note that the kth harmonic component in the product
will have a coefficient which is the sum of terms of the form a;b;_,;. Observe that the sum
on the right-hand side of eq. (3.64) may be interpreted as the discrete-time convolution of
the sequence representing the Fourier coefficients of x(f) and the sequence representing
the Fourier coefficients of y(¢).

3.5.6 Conjugation and Conjugate Symmetry

Taking the complex conjugate of a periodic signal x(¢) has the effect of complex conjuga-
tion and time reversal on the corresponding Fourier series coefficients. That is, if

FS
x(1) < ay,

then

N
xX(t) «—— da-,. (3.65)
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This property is easily proved by applying complex conjugation to both sides of eq. (3.38)
and replacing the summation variable by its negative.

Some interesting consequences of this property may be derived for x(¢) real—that
is, when x(#) = x*(z). In particular, in this case, we see from eq. (3.65) that the Fourier
series coefficients will be conjugate symmetric, i.e.,

a_, = aj, (3.66)

as we previously saw in eq. (3.29). This in turn implies various symmetry properties (listed
in Table 3.1) for the magnitudes, phases, real parts, and imaginary parts of the Fourier
series coefficients of real signals. For example, from eq. (3.66), we see that if x(¢) is real,
then aq is real and

|ak| = |a—k|-

Also, if x(?) is real and even, then, from Section 3.5.3, a; = a_;. However, from eq. (3.66)
we see that a; = a_y, so that a; = aj. That is, if x(¢) is real and even, then so are its
Fourier series coefficients. Similarly, it can be shown that if x(¢) is real and odd, then its
Fourier series coefficients are purely imaginary and odd. Thus, for example, ap = 0if x(¢)
is real and odd. This and the other symmetry properties of the Fourier series are examined
further in Problem 3.42.

3.5.7 Parseval’s Relation for Continuous-Time Periodic Signals

As shown in Problem 3.46, Parseval’s relation for continuous-time periodic signals is

1 5 i
7| opdr = S ey

k=—x

2 (3.67)

where the a, are the Fourier series coefficients of x(#) and T is the period of the signal.
Note that the left-hand side of eq. (3.67) is the average power (i.e., energy per unit
time) in one period of the periodic signal x(¢). Also,

1 .
_ }akejkwot
T )7

so that |a;|* is the average power in the kth harmonic component of x(¢). Thus, what Par-
seval’s relation states is that the total average power in a periodic signal equals the sum of
the average powers in all of its harmonic components.

2

2 1
di = L a2t = |ag?

, (3.68)

3.5.8 Summary of Properties of the Continuous-Time
Fourier Series

In Table 3.1, we summarize these and other important properties of continuous-time
Fourier series.

3.5.9 Examples

Fourier series properties, such as those listed in Table 3.1, may be used to circumvent some
of the algebra involved in determining the Fourier coefficients of a given signal. In the next
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TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property Section Periodic Signal Fourier Series Coefficients
x(t) | Periodic with period T and a,
¥(1) | fundamental frequency wo = 27/T b,
Linearity 35.1 Ax(t) + By(t) Aa; + Bb;
Time Shifting 352 x(t — to) age It = g, g7 Ik
Frequency Shifting e/Ment = GIMCTIT () Aoy
Conjugation 3.5.6 x(@® a,
Time Reversal 353 x(—1) a—g
Time Scaling 354 x(at), @ > 0 (periodic with period T/a) a;
Periodic Convolution f x(T)y(t — T)dT Ta,b,
T
+o
Multiplication 355 )y > abiy
I=—=
. L dx(t ; L2
Differentiation Z(t) Jkwoay = Jk—Tzak
Inteeration J ! X0 dt (finite valued and 1 1
— g = ——
g D eriodic only if ag = 0) Tkag ) T \ ki) [
a, =a,
Refary = Rela_i}
Conjugate Symmetry for 35.6 x(1) real 9mia,} = —9Imla_;}
Real Signals la = lai
{ak = —<a>k
Real and Even Signals 356 x(t) real and even a; real and even
Real and Odd Signals 3.5.6 x(t) real and odd a; purely imaginary and odd
Even-Odd Decomposition {xe(t) = &{x(D)} [x(r) real] Re{a}
of Real Signals xo(1) = Od{x(n} [x(r) real] j9miar}

Parseval’s Relation for Periodic Signals

%L ROPdr = > laif

=—

three examples, we illustrate this. The last example in this section then demonstrates how
properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g(¢) with a fundamental period of 4, shown in Figure 3.10. We
could determine the Fourier series representation of g(f) directly from the analysis equa-
tion (3.39). Instead, we will use the relationship of g(¢) to the symmetric periodic square
wave x(f) in Example 3.5. Referring to that example, we see that, with T = 4 and
T =1,

gt = x(t — 1) — 1/2. (3.69)
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Figure 3.10 Periodic signal for Example 3.6.

The time-shift property in Table 3.1 indicates that, if the Fourier Series coefficients of
x(r) are denoted by ay, the Fourier coefficients of x(t — 1) may be expressed as

by = age 2, (3.70)

- The Fourier coefficients of the dc offset in g(r)—i.e., the term —1/2 on the right-hand
side of eq. (3.69)—are given by

0, fork#0
o = [ or 371

1 _ .

3 fork =0

- Applying the linearity property in Table 3.1, we conclude that the coefficients for g(r)
may be expressed as

fork =0’

are %2 for k # 0
dy = ]
ap — 3,

where each a; may now be replaced by the corresponding expression from egs. (3.45)
and (3.46), yielding

k

. 3.72
0, fork =0 ( )

[ SiN(mk/2) o= jkwi2 - for k # 0
dk = Tr

Example 3.7

~ Consider the triangular wave signal x(f) with period T = 4 and fundamental frequency
- wo = 7/2 shown in Figure 3.11. The derivative of this signal is the signal g(¢) in Exam-

x(t)

-2 2 t

Figure 3.11 Triangular wave signal in Example 3.7.



208

Fourier Series Representation of Periodic Signals Chap. 3

ple 3.6. Denoting the Fourier coefficients of g(r) by d; and those of x(#) by ¢, we see
that the differentiation property in Table 3.1 indicates that

dy = jk(m/2)ey. (3.73)

This equation can be used to express e; in terms of d;, except when k = 0. Specifically,
from eq. (3.72),

2d; 2sin(mk/2) _n
e = —— = e IATe

i # (. 3.74
Jka Jlk)? k=0 (3.74)

For k = 0, ¢y can be determined by finding the area under one period of x(¢) and dividing
by the length of the period:

Example 3.8

Let us examine some properties of the Fourier series representation of a periodic train of
impulses, or impulse train. This signal and its representation in terms of complex expo-
nentials will play an important role when we discuss the topic of sampling in Chapter 7.
The impulse train with period T may be expressed as

x0 = S8 kT, (3.75)
k= =

it is illustrated in Figure 3.12(a). To determine the Fourier series coefficients «y, we use
eq. (3.39) and select the interval of integration to be —7/2 < ¢ < T/2, avoiding the
placement of impulses at the integration limits. Within this interval, x(¢) is the same as

é(1), a}gd it followsthat

LT k2T 1
= - ~ fk2 = =
ay Tj o(He dt 7 (3.76)

=72

In other words, all the Fourier series coefficients of the impulse train are identical. These
coefficients are also real valued and even (with respect to the index k). This is to be
expected, since, according to Table 3.1, any real and even signal (such as our impulse
train) should have real and even Fourier coefficients.

The impulse train also has a straightforward relationship to square-wave signals
such as g(¢) in Figure 3.6, which we repeat in Figure 3.12(b). The derivative of g(t) is
the signal g(z) illustrated in Figure 3.12(c). We may interpret g(¢) as the difference of
two shifted versions of the impulse train x(r). That is,

g(t) = x(t + T — x(t = Ty). (3.77)

Using the properties of Fourier series, we can now compute the Fourier series coeffi-
cients of g(¢) and g(r) without any further direct evaluation of the Fourier series analysis
equation. First, from the time-shifting and linearity properties, we see from eq. (3.77)
that the Fourier series coefficients b, of g(r) may be expressed in terms of the Fourier
series coefficients a; of x(z); that is,

by = eMfoohg, — e ThooTig,
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x(t)
1 | T
@
a(t)
~N
1
1 1 1 1
-T -T72 -T T /2 T t
(b)

a@)

©

Figure 3.12 (a) Periodic train of impulses; (b) periodic square wave;
(c) derivative of the periodic square wave in (b).

where wy = 27/T. Using eq. (3.76), we then have

2 sin(kwoT})
—

by = %[ejkonl — e iko0T1] =
Finally, since g(¢) is the derivative of g(f), we can use the differentiation property in
Table 3.1 to write
by = jkwocy, (3.78)
where the ¢, are the Fourier series coefficients of g(¢). Thus,

bk _ 2_] sin(kaTl) _ sin(konl)

- jkwo JkawoT ki k70, (3.79)

Ck
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where we have used the fact that wgT = 2. Note that eq. (3.79) is valid for k # 0,
since we cannot solve for ¢( from eq. (3.78) with k£ = 0. However, since ¢ is just the

average value of g(f) over one period, we can determine it by inspection from Figure
3.12(b):

Co = —. (3.80)

Egs. (3.80) and (3.79) are identical to eqgs. (3.42) and (3.44), respectively, for the Fourier
series coefficients of the square wave derived in Example 3.5.

The next example is chosen to illustrate the use of many of the properties in
Table 3.1.

Example 3.9

Suppose we are given the following facts about a signal x(7):

x(t) is a real signal.

. x(7) is periodic with period T = 4, and it has Fourier series coefficients ay.
. a; = 0for |k| > 1.

. The signal with Fourier coefficients b, = ¢ /"%2aq_; is odd.

3 [ x0Pdr = 172,

N b W=

Let us show that this information is sufficient to determine the signal x(¢) to within a
sign factor. According to Fact 3, x(¢) has at most three nonzero Fourier series coefficients
ag: ag, ay, and a_;. Then, since x(¢) has fundamental frequency wg = 27/4 = 7/2, it
follows that

j — 7 i
x(t) = ag + ale”"z +a_ e _;m/,_‘

Since x(r) is real (Fact 1), we can use the symmetry properties in Table 3.1 to conclude
that ag is real and a; = a*_,. Consequently,

x(®) = ap + a1/ 4 (a,e/™?Y = ay + 2Rela e’ ™. (3.81)

Let us now determine the signal corresponding to the Fourier coefficients b, given
in Fact 4. Using the time-reversal property from Table 3.1, we note that a - corresponds
to the signal x(—1). Also, the time-shift property in the table indicates that multiplication
of the kth Fourier coefficient by e /¥72 = ¢~ /&0 corresponds to the underlyjng signal
being shifted by 1 to the right (i.e., having ¢ replaced by t — 1). We conclude that the
coefficients b, correspond to the signal x(—(t — 1)) = x(—¢ + 1), which, according to
Fact 4, must be odd. Since x(¢) is real, x(—¢ + 1) must also be real. From Table 3.1,
it then follows that the Fourier coefficients of x(—7 + 1) must be purely imaginary and

odd. Thus, by = Oand b_; = —b,. Since time-reversal and time-shift operations cannot
change the average power per period, Fact 5 holds even if x(r) is replaced by x(—t + 1).
That is,

H |x(—1 + DPdt = 1/2. (3.82)
4
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We can now use Parseval’s relation to conclude that
B> + b F = 1/2. (3.83)

Substituting b; = —b_, in this equation, we obtain |b;| = 1/2. Since b, is also known
to be purely imaginary, it must be either j/2 or — j/2.

Now we can translate these conditions on by and b, into equivalent statements on
ao and a;. First, since by = 0, Fact 4 implies that ay = 0. With £ = 1, this condition
implies that a; = e /™?b_; = —jb_ = jb,. Thus, if we take b, = j/2, then a; =
—1/2, and therefore, from eq. (3.81), x(t) = — cos(7r1/2). Alternatively, if we take b, =
—j/2, then a; = 1/2, and therefore, x(t) = cos(t/2).

3.6 FOURIER SERIES REPRESENTATION OF DISCRETE-TIME
PERIODIC SIGNALS

In this section, we consider the Fourier series representation of discrete-time periodic sig-
nals. While the discussion closely parallels that of Section 3.3, there are some important
differences. In particular, the Fourier series representation of a discrete-time periodic sig-
nal is a finite series, as opposed to the infinite series representation required for continuous-

s time periodic signals. As a consequence, there are no mathematical issues of convergence
such as those discussed in Section 3.4.

3.6.1 Linear Combinations of Harmonically Related Complex
Exponentials

As defined in Chapter 1, a discrete-time signal x[n] is periodic with period N if
x[n] = x[n + N]. (3.84)

The fundamental period is the smallest positive integer N for which eq. (3.84) holds, and
wo = 27/N is the fundamental frequency. For example, the complex exponential ¢/™/N)n
is periodic with period N. Furthermore, the set of all discrete-time complex exponential
signals that are periodic with period N is given by

Piln] = elkoon = KCTINI o — 0, 21, %2, ... (3.85)

All of these signals have fundamental frequencies that are multiples of 277/N and thus are
harmonically related.

As mentioned in Section 1.3.3, there are only N distinct signals in the set given
by eq. (3.85). This is a consequence of the fact that discrete-time complex exponen-
tials which differ in frequency by a multiple of 27 are identical. Specifically, ¢o[n] =
¢énlnl, di[n] = dyy1ln], and, in general,

biln] = brirnvlnl. (3.86)

That is, when k is changed by any integer multiple of N, the identical sequence is gener-
ated. This differs from the situation in continuous time in which the signals ¢, (f) defined
in eq. (3.24) are all different from one another.
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We now wish to consider the representation of more general periodic sequences in
terms of linear combinations of the sequences ¢,[n] in eq. (3.85). Such a linear combina-
tion has the form

x[n] = Zakd)k[n] — Zakejkwon — zakejk(lw/N)n‘ (3.87)
k k k

Since the sequences ¢,[n] are distinct only over a range of N successive values of k, the
summation in eq. (3.87) need only include terms over this range. Thus, the summation is
on k, as k varies over a range of N successive integers, beginning with any value of k. We
indicate this by expressing the limits of the summation as k = (N). That is,

x[nl = D apdylnl = > a0 = > gt (3.88)

k=(N) k=(N) k=(N)

For example, k could take on the values k = 0,1,...,N—1l,ork =3,4,..., N+ 2. In
either case, by virtue of eq. (3.86), exactly the same set of complex exponential sequences
appears in the summation on the right-hand side of eq. (3.88). Equation (3.88) is referred
to as the discrete-time Fourier series and the coefficients a; as the Fourier series coeffi-
cients.

3.6.2 Determination of the Fourier Series Representation
of a Periodic Signal

Suppose now that we are given a sequence x[n] that is periodic with fundamental period
N. We would like to determine whether a representation of x[x] in the form of eq. (3.88)
exists and, if so, what the values of the coefficients a; are. This question can be phrased in
terms of finding a solution to a set of linear equations. Specifically, if we evaluate eq. (3.88)
for N successive values of n corresponding to one period of x[n], we obtain

0] = > a
k=(N)

x[l] — akejZﬂ'k/N’
k%/) (3.89)

x[N - 1] = Z akej211k(N—l)/N'
K=(N)

Thus, eq. (3.89) represents a set of N linear equations for the N unknown coefficients ay
as k ranges over a set of N successive integers. It can be shown that this set of equations
is linearly independent and consequently can be solved to obtain the coefficients a; in
terms of the given values of x[n]. In Problem 3.32, we consider an example in which the
Fourier series coefficients are obtained by explicitly solving the set of N equations given
in eq. (3.89). However, by following steps parallel to those used in continuous time, it is
possible to obtain a closed-form expression for the coefficients a; in terms of the values
of the sequence x[n].
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The basis for this result is the fact, shown in Problem 3.54, that

Z pIk@mINm _ N, k=0 %N, £2N,... (3.90)

0, otherwise ) )

n=(N)

Equation (3.90) states that the sum over one period of the values of a periodic complex
exponential is zero, unless that complex exponential is a constant.

Now consider the Fourier series representation of eq. (3.88). Multiplying both sides
by e /7C7N)n and summing over N terms, we obtain

Z x[n]evjr(%rlN)n — Z Z akej(k—r)(Zﬂ'/N)n_ (3.91)

n=(N) n=(N) k=(N)

Interchanging the order of summation on the right-hand side, we have

Z x[n]e—jr(Zﬂ'/N)n — Z a Z ej(k—r)(27T/N)n_ (392)

n=(N) k=(N)  n=(N)

From the identity in eq. (3.90), the innermost sum on 7 on the right-hand side of eq. (3.92)
is zero, unless k — r is zero or an integer multiple of N. Therefore, if we choose values for
r over the same range as that over which k varies in the outer summation, the innermost
sum on the right-hand side of eq. (3.92) equals N if £k = r and 0 if k¥ # r. The right-hand
side of eq. (3.92) then reduces to Na,, and we have

1 .
ar = — > x[n]e /TN, (3.93)
N <
n=(N)
This provides a closed-form expression for obtaining the Fourier series coefficients,
and we have the discrete-time Fourier series pair:

x[n] = Z akefkwon _ Z akejk(zﬂ'/N)”, (3.94)
k=(N) k=(N)
1 i 1 j
@ =y 2 MmN = G > e KO (395)
n=(N) n=(N)

These equations play the same role for discrete-time periodic signals that egs. (3.38) and
(3.39) play for continuous-time periodic signals, with eq. (3.94) the synthesis equation and
eq. (3.95) the analysis equation. As in continuous time, the discrete-time Fourier series
coefficients a, are often referred to as the spectral coefficients of x[n]. These coefficients
specify a decomposition of x[n] into a sum of N harmonically related complex exponen-
tials.

Referring to eq. (3.88), we see that if we take & in the range from O to N — 1, we
have

x[n] = apdpoln] + a1di[n] + ... + an 1Py [n]. (3.96)
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Similarly, if k ranges from 1 to N, we obtain

x[n] = a1d[n] + axa[n] + ... + andy[nl]. (3.97)

From eq. (3.86), ¢o[n] = ¢n[n], and therefore, upon comparing egs. (3.96) and (3.97),
we conclude that ag = ay. Similarly, by letting k range over any set of N consecutive
integers and using eq. (3.86), we can conclude that

ay = apsNn. (398)

That is, if we consider more than N sequential values of k, the values a, repeat periodically
with period N. It is important that this fact be interpreted carefully. In particular, since there
are only N distinct complex exponentials that are periodic with period N, the discrete-
time Fourier series representation is a finite series with N terms. Therefore, if we fix the
N consecutive values of k over which we define the Fourier series in eq. (3.94), we will
obtain a set of exactly N Fourier coefficients from eq. (3.95). On the other hand, at times
it will be convenient to use different sets of N values of k, and consequently, it is useful
to regard eq. (3.94) as a sum over any arbitrary set of N successive values of k. For
this reason, it is sometimes convenient to think of a, as a sequence defined for all values
of k, but where only N successive elements in the sequence will be used in the Fourier
series representation. Furthermore, since the ¢;[n] repeat periodically with period N as
we vary k [eq. (3.86)], so must the a; [eq. (3.98)]. This viewpoint is illustrated in the next
example.

Example 3.10
Consider the signal
x[n] = sinwgn, (3.99)

which is the discrete-time counterpart of the signal x(¢) = sinwy? of Example 3.3. x[n]
is periodic only if 27r/w is an integer or a ratio of integers. For the case when 27/w, is
an integer N, that is, when

2

“ = w

x[n] is periodic with fundamental period N, and we obtain a result that is exactly analo-
gous to the continuous-time case. Expanding the signal as a sum of two complex expo-
nentials, we get

x[n] — 2ijej(Zw'/N)n _ Elje_j(ZTr/N]n' (3100)

Comparing eq. (3.100) with eq. (3.94), we see by inspection that

a =55 a1 = —53 (3.101)
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and the remaining coefficients over the interval of summation are zero. As described
previously, these coefficients repeat with period N; thus, ay. is also equal to (1/2) and
ay—, equals (—1/2). The Fourier series coefficients for this example with N = 5 are
illustrated in Figure 3.13. The fact that they repeat periodically is indicated. However,
only one period is utilized in the synthesis equation (3.94).

Figure 3.13 Fourier coefficients for x[n] = sin(2#/5)n.

Consider now the case when 27/w is a ratio of integers—that is, when

2mM
wy = ———.

N

Assuming that M and N do not have any common factors, x[n] has a fundamental period
of N. Again expanding x[n] as a sum of two complex exponentials, we have

_ 1 JMQm@IN» 1 — JMQ2m/N)n
X [n] = 2—],6 Z e s

from which we can determine by inspection that ayy = (1/2), a—y = (—1/2j), and the
remaining coefficients over one period of length N are zero. The Fourier coefficients
for this example with M = 3 and N = 5 are depicted in Figure 3.14. Again, we have
indicated the periodicity of the coefficients. For example, for N = 5, a» = a_3, which
in our example equals (—1/2 j). Note, however, that over any period of length 5 there are
only two nonzero Fourier coefficients, and therefore there are only two nonzero terms in
the synthesis equation.

12|

56|891011|13 K

p
1
3
N
0 f— N

e

D=

Figure 3.14 Fourier coefficients for x[n] = sin3(2#/5)n.
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Example 3.11

Consider the signal

x[]—1+sin2—wn+3cos2—ﬂn+co dm + T
" N N S\w*tz2)

This signal is periodic with period N, and, as in Example 3.10, we can expand x[r]
directly in terms of complex exponentials to obtain

1. . 3 . 4
x[n] =1+ 2_j[ej(21r/N)n —e ](Zﬂ/N)n] + E[e](Z‘n'/N)n + e—](Zﬂ'/N)n]
+ l[ej(41rn/N+ﬂ/2) + e—j(47rn/N+1r/2)]
3 .

Collecting terms, we find that

i x[n] -1+ (g + %)ej(z,,-/lv)n + (é _ i)e—j(Zﬂ'/N)n
J

2 2 2j
+ (% ejn/Z)ejZ(Z‘n'/N)n + (_;_'e—j‘n'/Z)e—jZ(ZﬂlN)n.

Thus the Fourier series coefficients for this example are

a0=1,
al=§+l=§—_1.j

27222
g =3_1_3_1,
T A
az=lj

5
a_2=—lj

5.

* with a; = 0 for other values of k in the interval of summation in the synthesis equa-

tion (3.94). Again, the Fourier coefficients are periodic with period N, so, for example,
ay = lLasy-1 = 2 + }j,and a,_y = 1. In Figure 3.15(a) we have plotted the real
and imaginary parts of these coefficients for N = 10, while the magnitude and phase of
the coefficients are depicted in Figure 3.15(b).

Note that in Example 3.11, a—; = aj, for all values of k. In fact, this equality holds
whenever x[n] is real. The property is identical to one that we discussed in Section 3.3 for
continuous-time periodic signals, and as in continuous time, one implication is that there
are two alternative forms for the discrete-time Fourier series of real periodic sequences.
These forms are analogous to the continuous-time Fourier series representations given in
egs. (3.31) and (3.32) and are examined in Problem 3.52. For our purposes, the exponential
form of the Fourier series, as given in eqs. (3.94) and (3.95), is particularly convenient,
and we will use it exclusively.
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Figure 3.15 (a) Real and imaginary parts of the Fourier series coefficients
in Example 3.11; (b) magnitude and phase of the same coefficients.
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Example 3.12

In this example, we consider the discrete-time periodic square wave shown in Fig-
ure 3.16. We can evaluate the Fourier series for this signal using eq. (3.95). Because
x[n] = 1 for —N; = n =< N,, it is particularly convenient to choose the length-N
interval of summation in eq. (3.95) so that it includes the range —N; = n = N,. In this
case, we can express eq. (3.95) as

1 o —jkQmIN)n
a =5 > e e, (3.102)

n=—N,

-N _N1 0 N1 N n
Figure 3.16 Discrete-time periodic square wave.

Letting m = n + N,, we observe that eq. (3.102) becomes

2N
1 )
a; = ﬁ E e JkQRmIN)im=Ny)
m=0

3.103
| o, ( )
— _ejk(Zﬂ/N)N| Z e*jk(211/N)m-
N m=0

The summation in eq. (3.103) consists of the sum of the first 2N, + 1 terms in a geometric
series, which can be evaluated using the result of Problem 1.54. This yields

_ p JK2TQN + 1IN
lejk(ZTr/N)Nl 1 — e /RmCN+D)
N

ar = 1 — g-Jk@m/n)
1 e—jk(21r/2N)[ejk277(N|+1,’2)/N _ e—ij-rr(NI+]/2)/N] (3104)
= N &~ JK2T2N) [ jK2T12N) — g jK2T2N)]
1 sin2mk(N, + 1/2)/N]
= — #0, =N, *2N, ...
N sin(mk/N) » k#0, =N, 22N,
and
+
ay = ZN‘N 1, k=0 %N, £2N,.... (3.105)

The coefficients a; for 2N| + 1 = 5 are sketched for N = 10, 20, and 40 in Figures
3.17(a), (b), and (c), respectively.

In discussing the convergence of the continuous-time Fourier series in Section 3.4,
we considered the example of a symmetric square wave and observed how the finite sum in
eq. (3.52) converged to the square wave as the number of terms approached infinity. In par-
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Figure 3.17 Fourier series coefficients for the periodic square wave of Ex-
ample 3.12; plots of Na, for 2N, + 1 = 5and (a) N = 10; (b) N = 20; and
(c) N = 40.

ticular, we observed the Gibbs phenomenon at the discontinuity, whereby, as the number
of terms increased, the ripples in the partial sum (Figure 3.9) became compressed toward
the discontinuity, with the peak amplitude of the ripples remaining constant independently
of the number of terms in the partial sum. Let us consider the analogous sequence of partial
sums for the discrete-time square wave, where, for convenience, we will assume that the
period N is odd. In Figure 3.18, we have depicted the signals

M
x[n} = Z agel*CmNm (3.106)
k=—M

for the example of Figure 3.16 with N = 9, 2N, + 1 = 5, and for several values of M.
For M = 4, the partial sum exactly equals x[n]. We see in particular that in contrast to the
continuous-time case, there are no convergence issues and there is no Gibbs phenomenon.
In fact, there are no convergence issues with the discrete-time Fourier series in general.
The reason for this stems from the fact that any discrete-time periodic sequence x[n] is
completely specified by a finite number N of parameters, namely, the values of the se-
quence over one period. The Fourier series analysis equation (3.95) simply transforms this
set of N parameters into an equivalent set—the values of the N Fourier coefficients—and
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x[n] M=1
-9 0 9 18 n
(@)
Xin] M=2
-9 0 9 18 n
(b)
x(n M=3
-9 0 9 18 n
(©
X M=4
Figure 3.18 Partial sums of egs.
(3.106) and (3.107) for the periodic
- square wave of Figure 3.16 with
o 0 9 B N N —gand2M +1=5 (a) M =1;
(d) OyM=2,(c) M=3(d)M= 4

the synthesis equation (3.94) tells us how to recover the values of the original sequence in
terms of a finite series. Thus, if N is odd and we take M = (N — 1)/2 in eq. (3.106), the
sum includes exactly N terms, and consequently, from the synthesis equations, we have
X[n] = x[n]. Similarly, if N is even and we let

M

’2’[}1] — Z ake_/k(ZW/N]n

k=-M+1

(3.107)

then with M = N/2, this sum consists of N terms, and again, we can conclude from
eq. (3.94) that 2[n] = x[n].

In contrast, a continuous-time periodic signal takes on a continuum of values over
a single period, and an infinite number of Fourier coefficients are required to represent it.
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Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(¢),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property Periodic Signal Fourier Series Coefficients
x[n] ] Periodic with period N and ay } Periodic with
y[n] ) fundamental frequency woy = 27/N b, | period N
Linearity Ax{n] + By[n] Aay; + Bb;
Time Shifting x[n — no) age TN
Frequency Shifting /MmN 1] A m
Conjugation x"[n] a,
Time Reversal x[—n] a i
! . x[n/m], if nis a multiple of m 1 viewed as periodic
Time Scaling Xmln] = . . —ai| . .
0 if n is not a multiple of m m " \with period mN

Periodic Convolution
Multiplication
First Difference

Running Sum

Conjugate Symmetry for
Real Signals

Real and Even Signals
Real and Odd Signals

Even-Odd Decomposition
of Real Signals

(periodic W’ith period mN)
> xlrlyln — 7]

r=(N)

x[n]yln]

x[n] - x[n—1]

i i finite valued and periodic only
X

= ifag = 0

x[n] real

x[n] real and even

x[n] real and odd

{ x.[n] = &4x[n]} [x[n]real]
x,[n] = Od{x[n]} [x[n] real]

Nd/(bk

Z aib

1=(N)

(1 _ e*}k(Zfr/NJ)ak

1
((1 — kTN )a"'

a, =a’,
Rela} = Refai}
Im{ay} = —9Imfa_}
lai| = la-4
La, = —<a—;
a; real and even
a; purely imaginary and odd
Gefas}
jgm{ak}

Parseval’s Relation for Periodic Signals

1 2
I > alnlP = > el

n=(N) k=(N)
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The derivations of many of these properties are very similar to those of the corresponding
properties for continuous-time Fourier series, and several such derivations are considered
in the problems at the end of the chapter. In addition, in Chapter 5 we will see that most of
the properties can be inferred from corresponding properties of the discrete-time Fourier
transform. Consequently, we limit the discussion in the following subsections to only a few
of these properties, including several that have important differences relative to those for
continuous time. We also provide examples illustrating the usefulness of various discrete-
time Fourier series properties for developing conceptual insights and helping to reduce the
complexity of the evaluation of the Fourier series of many periodic sequences.

As with continuous time, it is often convenient to use a shorthand notation to indicate
the relationship between a periodic signal and its Fourier series coefficients. Specifically,
if x[n] is a periodic signal with period N and with Fourier series coefficients denoted by
ay, then we will write

FS
x[n] «— ay.

3.7.1 Multiplication

The multiplication property of the Fourier series representation is one example of a prop-
erty that reflects the difference between continuous time and discrete time. From Table 3.1,
the product of two continuous-time signals of period T results in a periodic signal with pe-
riod T whose sequence of Fourier series coefficients is the convolution of the sequences
of Fourier series coefficients of the two signals being multiplied. In discrete time, suppose
that

FS
x[n] «— ay

and

ylnl «— by

are both periodic with period N. Then the product x[n]y[n] is also periodic with period N,
and, as shown in Problem 3.57, its Fourier coefficients, d;, are given by

Fs
x[n]y[n] «— di = Z aiby—;. (3.108)
/:UV)

Equation (3.108) is analogous to the definition of convolution, except that the summation
variable is now restricted to an interval of N consecutive samples. As shown in Problem
3.57, the summation can be taken over any set of N consecutive values of /. We refer to this
tyr= of operation as a periodic convolution between the two periodic sequences of Fourier
coefficients. The usual form of the convolution sum (where the summation variable ranges
from —oe to «) is sometimes referred to as aperiodic convolution, to distinguish it from
periodic convolution.

3.7.2 First Difference

The discrete-time parallel to the differentiation property of the continuous-time Fourier
series involves the use of the first-difference operation, which is defined as x[n] — x[n—1].
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If x[n] is periodic with period N, then so is y[n], since shifting x[n] or linearly combining
x[n] with another periodic signal whose period is N always results in a periodic signal
with period N. Also, if

§s
x[n] «— ay,

then the Fourier coefficients corresponding to the first difference of x[n] may be expressed
as

TS .
xn] — x[n — 1] s (1 = e~ I*@TN) g (3.109)

which is easily obtained by applying the time-shifting and linearity properties in Table 3.2.
A common use of this property is in situations where evaluation of the Fourier series co-
efficients is easier for the first difference than for the original sequence. (See Problem
3.31)

3.7.3 Parseval’s Relation for Discrete-Time Periodic Signals

As shown in Problem 3.57, Parseval’s relation for discrete-time periodic signals is given
by

1
v > P = > Jai, (3.110)

n=(N) k=(N)

where the a; are the Fourier series coefficients of x[n] and N is the period. As in the
continuous-time case, the left-hand side of Parseval’s relation is the average power in one
period for the periodic signal x[n]. Similarly, |a;|? is the average power in the kth harmonic
component of x[n]. Thus, once again, Parseval’s relation states that the average power in
a periodic signal equals the sum of the average powers in all of its harmonic components.
In discrete time, of course, there are only N distinct harmonic components, and since the
ay are periodic with period N, the sum on the right-hand side of eq. (3.110) can be taken
over any N consecutive values of k.

3.7.4 Examples

In this subsection, we present several examples illustrating how properties of the discrete-
time Fourier series can be used to characterize discrete-time periodic signals and to com-
pute their Fourier series representations. Specifically, Fourier series properties, such as
those listed in Table 3.2, may be used to simplify the process of determining the Fourier
series coefficients of a given signal. This involves first expressing the given signal in terms
of other signals whose Fourier series coefficients are already known or are simpler to com-
pute. Then, using Table 3.2, we can express the Fourier series coefficients of the given
signal in terms of the Fourier series coefficients of the other signals. This is illustrated in
Example 3.13. Example 3.14 then illustrates the determination of a sequence from some
partial information. In Example 3.15 we illustrate the use of the periodic convolution prop-
erty in Table 3.2.
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Example 3.13

Let us consider the problem of finding the Fourier series coefficients a, of the sequence
x[n] shown in Figure 3.19(a). This sequence has a fundamental period of 5. We observe
that x[n] may be viewed as the sum of the square wave x,[n] in Figure 3.19(b) and the
dc sequence x;[n] in Figure 3.19(c). Denoting the Fourier series coefficients of x;[n] by
b, and those of x,[n] by ¢, we use the linearity property of Table 3.2 to conclude that

ar = by + ¢k (3.111)

---H]“I{'HH‘U

(a)

L LLLLLLE LI

(c)

Figure 3.19 (a) Periodic sequence x[n] for Example 3.13 and its represen-
tation as a sum of (b} the square wave x;[n] and (c) the dc sequence x,[n].

From Example 3.12 (with Ny = 1 and N = 5), the Fourier series coefficients b, corre-
sponding to x[n] can be expressed as

1 sin(3k/5) e 4
5 Sin(arki5) for k # 0, £5, 10, ...

by = 3 . (3.112)
5 for k = 0, £5, £10,...
The sequence x[n] has only a dc value, which is captured by its zeroth Fourier
series coefficient:

4
co = %sz[n] =1 (3.113)
n=0

Since the discrete-time Fourier series coefficients are periodic, it follows that ¢, = 1
whenver k is an integer multiple of 5. The remaining coefficients of x,[n] must be zero,
because x;[n] contains only a dc component. We can now substitute the expressions for
by and ¢, into eq. (3.111) to obtain

_ 1sin(37k/5)
¥ 7 5 sin(mwk/3)

2, for k = 0, £5, +10,...

b

ay =

for k # 0, =5, £10,...
(3.114)
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Example 3.14

Suppose we are given the following facts about a sequence x[#n]:

. x[n] is periodic with period N = 6.
L0y x[n] = 2.
>, (= D"aln] = L.

. x[n] has the minimum power per period among the set of signals satisfying the
preceding three conditions.

W N

Let us determine the sequence x[n]. We denote the Fourier series coefficients of x[n] by
ax. From Fact 2, we conclude that @y = 1/3. Noting that (—1)" = e /™" = ¢~ /™03,
we see from Fact 3 that a3 = 1/6. From Parseval’s relation (see Table 3.2), the average
power in x[n] is

5
P=>lal (3.115)
k=0

Since each nonzero coefficient contributes a positive amount to P, and since the values
of ay and as are prespecified, the value of P is minimized by choosinga;, = a, = a4 =
as = 0. It then follows that

x[n] = ap + aze’™ = (1/3) + (1/6)(—1)", (3.116)
which is sketched in Figure 3.20.
x[n]

Figure 3.20 Sequence x{n] that is consistent with the properties specified
in Example 3.14.

n

Example 3.15

In this example we determine and sketch a periodic sequence, given an algebraic expres-
sion for its Fourier series coefficients. In the process, we will also exploit the periodic
convolution property (see Table 3.2) of the discrete-time Fourier series. Specifically, as
stated in the table and as shown in Problem 3.58, if x[n] and y[n] are periodic with period
N, then the signal

winl = > x[rlyln —r]

r=(N)

is also periodic with period N. Here, the summation may be taken over any set of N
consecutive values of r. Furthermore, the Fourier series coefficients of w[n] are equal to
Nayby, where a; and b, are the Fourier coefficients of x{n] and y[n], respectively.
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Suppose now that we are told that a signal w[n] is periodic with a fundamental
period of N = 7 and with Fourier series coefficients
sin*(3mk/T)

¢ = W omkdl) 3117
“ T T sinX(mkiT) (3.117)

We observe that ¢; = 7d;, where d; denotes the sequence of Fourier series coefficients

of a square wave x[n], as in Example 3.12, with Ny = 1 and N = 7. Using the periodic
convolution property, we see that

3

wln] = Z x[rix[n —r] = z x[r]x{n — 1], (3.118)

r=(7) r=-3

where, in the last equality, we have chosen to sum over the interval —3 = r = 3. Except
for the fact that the sum is limited to a finite interval, the product-and-sum method for
evaluating convolution is applicable here. In fact, we can convert eq. (3.118) to an ordi-
nary convolution by defining a signal £[#n] that equals x[n] for =3 =< n = 3 and is zero
otherwise. Then, from eq. (3.118),

3 +oo

win) = > #lrixln—r] = > &lrlxln - r].

r=-3 r=—=

That is, w[n] is the aperiodic convolution of the sequences [n] and x[r].
The sequences x[r], X[r], and x[n—r] are sketched in Figure 3.21 (a)—(c). From the
figure we can immediately calculate w[n]. In particular we see that w[0] = 3; w[—1] =
~ wll] = 2; w[-2] = w[2] = 1; and w[-3] = w[3] = 0. Since w[rn] is periodic with
period 7, we can then sketch w[#n] as shown in Figure 3.21(d).

3.8 FOURIER SERIES AND LTI SYSTEMS

In the preceding few sections, we have seen that the Fourier series representation can
be used to construct any periodic signal in discrete time and essentially all periodic
continuous-time signals of practical importance. In addition, in Section 3.2 we saw that
the response of an LTI system to a linear combination of complex exponentials takes a
particularly simple form. Specifically, in continuous time, if x(tf) = ¢ is the input to
a continuous-time LTI system, then the output is given by y(t) = H(s)e*, where, from
eq. (3.6),

—+x

H(s) = f h(m)e *"dT, (3.119)

-

in which A(t) is the impulse response of the LTI system.
Similarly, if x[n] = Z" is the input to a discrete-time LTI system, then the output is
given by y[n] = H(z)Z", where, from eq. (3.10),

H@) = > hiklz ™%, (3.120)

in which A[n] is the impulse response of the LTI system.
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x[r]

-3 -2 -1 o 1 2 3 r
(@
X1
H—G—O—Q—O—O—O—.‘—]—]—L—O—Q—O—%—Q—’—H
-1 0 1 r
(b)
x[n—n]
H—O—O—L‘LLO—O—O—O_I——I—I;O—O—O—O—[—I—v
n—7 n—1 n ntt r
(c)
3 win]
I l |2 l
RERR AR l ‘ l
-7 N —'3 -2 -1 o 1 2 3' i 7 n
(d)

Figure 3.21 (a) The square-wave sequence x[r] in Example 3.15; (b) the
sequence X[r] equal to x[r] for =3 = r < 3 and zero otherwise; (c) the
sequence x[n — rl; (d) the sequence w[n] equal to the periodic convolution of
x[n] with itself and to the aperiodic convolution of X[n] with x[n].

When s or z are general complex numbers, H(s) and H(z) are referred to as the
system functions of the corresponding systems. For continuous-time signals and systems
in this and the following chapter, we focus on the specific case in which Re{s} = 0, so that
s = jw, and consequently, e* is of the form e/, This input is a complex exponential at
frequency w. The system function of the form s = jw—i.e., H(jw) viewed as a function
of w—is referred to as the frequency response of the system and is given by

HGo) = |

“+oc

h(r)e /' ds. 3.121)



228 Fourier Series Representation of Periodic Signals Chap. 3

Similarly, for discrete-time signals and systems, we focus in this chapter and in
Chapter 5 on values of z for which |z] = 1, so that z = e/ and 2" is of the form e/“".
Then the system function H(z) for z restricted to the form z = /¢ is referred to as the
frequency response of the system and is given by

H(e!*) = > hlnle /" (3.122)

n=—o

The response of an LTI system to a complex exponential signal of the form e/’ (in
continuous time) or e/“" (in discrete time) is particularly simple to express in terms of the
frequency response of the system. Furthermore, as a result of the superposition property
for LTI systems, we can express the response of an LTI system to a linear combination
of complex exponentials with equal ease. In Chapters 4 and 5, we will see how we can
use these ideas together with continuous-time and discrete-time Fourier transforms to an-
alyze the response of LTI systems to aperiodic signals. In the remainder of this chapter,
as a first look at this important set of concepts and results, we focus on interpreting and
understanding this notion in the context of periodic signals.

Consider first the continuous-time case, and let x(¢) be a periodic signal with a
Fourier series representation given by

+ oo
x(0) = > aelt, (3.123)

k=—x

Suppose that we apply this signal as the input to an LTI system with impulse response
h(t). Then, since each of the complex exponentials in eq. (3.123) is an eigenfunction of
the system, as in eq. (3.13) with s; = jkwy, it follows that the output is

+x

YO = Z aH(jkw,)eikeot, (3.124)

k= —x

Thus, y(¢) is also periodic with the same fundamental frequency as x(¢). Furthermore, if
{a;} is the set of Fourier series coefficients for the input x(¢), then {a; H(jkwy)} is the
set of coefficients for the output y(#). That is, the effect of the LTI system is to modify
individually each of the Fourier coefficients of the input through multiplication by the
value of the frequency response at the corresponding frequency.

Example 3.16

- Suppose that the periodic signal x(¢) discussed in Example 3.2 is the input signal to an
- LTI system with impulse response

h(t) = e 'u(®).
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To calculate the Fourier series coefficients of the output y(¢), we first compute the fre-
quency response:

H(jw) =J e Te T dr
0
N P (3.125)
1+ jw 0
_ 1
T+ e

Therefore, using eqgs. (3.124) and (3.125), together with the fact that wy = 27 in this
example, we obtain

() = i bie/™, (3.126)
k=-3
with b, = a H(jk2r), so that
by = 1
w bl v M)
by = %(ﬁ) b, = %(ﬁ) (3.127)

1 1 1/ 1
s 5(1 +j677>’ b = §<1 fj677>'

Note that y(f) must be a real-valued signal, since it is the convolution of x(t) and h(r),
which are both real. This can be verified by examining eq. (3.127) and observing that
b, = b_\. Therefore, y(f) can also be expressed in either of the forms given in egs. (3.31)
and (3.32); that is,

3
¥(t) = 142> Dy cos 2kt + 6y), (3.128)
k=1
or
3
¥(t) = 142> [E; cos 2wkt — Fy sin 2mkr], (3.129)
k=1
where
b, = D,\.eﬂ’k =E+ jFy, k=12 3. (3.130)

These coefficients can be evaluated directly from eq. (3.127). For example,

1
D = |b1| = 0, = 4<b, = —tan’l(Zﬂ-),
41 + 472
1 T
B = Qb = givamy  Fr= 9 = ey
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In discrete time, the relationship between the Fourier series coefficients of the input
and output of an LTI system exactly parallels eqs. (3.123) and (3.124). Specifically, let
x[n] be a periodic signal with Fourier series representation given by

x[n] = Z akejk(Qﬂ'/N)n.

k=(N)

If we apply this signal as the input to an LTI system with impulse response h[#n], then, as
in eq. (3.16) with z; = €/*?™N) the output is

ylnl = Z akH(eﬂ’”‘/N)ejm”/N’”. (3.131)
k=(N)

Thus, y[n] is also periodic with the same period as x[#n], and the kth Fourier coefficient of
y[n] is the product of the kth Fourier coefficient of the input and the value of the frequency
response of the LTI system, H(e/>7XN), at the corresponding frequency.

Example 3.17

Consider an LTI system with impulse response h[n] = a"u[n], -1 < a < 1, and with
the input

2mn

x[n] = CO0S (T) (3132)

As in Example 3.10, x[n] can be written in Fourier series form as

x[n] — lej(Zﬂ'/N)n + lefj(ZW/N)n‘
2

2

Also, from eq. (3.122),

%

e = St = 3 faes]. s

n=0 n=0

This geometric series can be evaluated using the result of Problem 1.54, yielding

; 1
H(e"“’) = m (3134)
Using eq. (3.131), we then obtain the Fourier series for the output:
s — 2mIN QCa/N)n 2N\ — j(2m/N)n
ylnl = (e/ )e’ + 2H<e / ) i)
(3.135)

N} — NI»—*

j("rr/N)n 4 _1_ 1 e-j(lﬂ/1\’)r1
1— ae 127N 2\1 — aei2mN ’
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If we write
1 jo
[ —ae 27m "
then eq. (3.135) reduces to
2
y[n] = reos (an + 0>. (3.136)
For example, if N = 4,
1 = 1 = 1 ed(—tan” @)
1 —ae= 2 1+aj J1+a? ’

and thus,

1 mn
y[n] = ———==cos ( — tan 1(oz)).
V1+a? 2

We note that for expressions such as eqgs. (3.124) and (3.131) to make sense, the
frequency responses H(jw) and H(e/®) in egs. (3.121) and (3.122) must be well defined
and finite. As we will see in Chapters 4 and 5, this will be the case if the LTI systems
under consideration are stable. For example, the LTI system in Example 3.16, with impulse
response hA(t) = e 'u(r), is stable and has a well-defined frequency response given by
eq. (3.125). On the other hand, an LTI system with impulse response a(z) = e'u(t) is
unstable, and it is easy to check that the integral in eq. (3.121) for H(jw) diverges for
any value of w. Similarly, the LTT system in Example 3.17, with impulse response h[n] =
a"u[n), is stable for || < 1 and has frequency response given by eq. (3.134). However,
if || > 1, the system is unstable, and then the summation in eq. (3.133) diverges.

3.9 FILTERING

In a variety of applications, it is of interest to change the relative amplitudes of the fre-
quency components in a signal or perhaps eliminate some frequency components entirely,
a process referred to as filtering. Linear time-invariant systems that change the shape of the
spectrum are often referred to as frequency-shaping filters. Systems that are designed to
pass some frequencies essentially undistorted and significantly attenuate or eliminate oth-
ers are referred to as frequency-selective filters. As indicated by eqs. (3.124) and (3.131),
the Fourier series coefficients of the output of an LTI system are those of the input multi-
plied by the frequency response of the system. Consequently, filtering can be conveniently
accomplished through the use of LTI systems with an appropriately chosen frequency re-
sponse, and frequency-domain methods provide us with the ideal tools to examine this
very important class of applications. In this and the following two sections, we take a first
look at filtering through a few examples.
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3.9.1 Frequency-Shaping Filters

One application in which frequency-shaping filters are often encountered is audio sys-
tems. For example, LTI filters are typically included in such systems to permit the listener
to modify the relative amounts of low-frequency energy (bass) and high-frequency en-
ergy (treble). These filters correspond to LTI systems whose frequency responses can be
changed by manipulating the tone controls. Also, in high-fidelity audio systems, a so-called
equalizing filter is often included in the preamplifier to compensate for the frequency-
response characteristics of the speakers. Overall, these cascaded filtering stages are fre-
quently referred to as the equalizing or equalizer circuits for the audio system. Figure 3.22
illustrates the three stages of the equalizer circuits for one particular series of audio speak-
ers. In this figure, the magnitude of the frequency response for each of these stages is shown
on a log-log plot. Specifically, the magnitude is in units of 20log,, |H(jw))|, referred to as
decibels or dB. The frequency axis is labeled in Hz (i.e., w/27) along a logarithmic scale.
As will be discussed in more detail in Section 6.2.3, a logarithmic display of the magnitude
of the frequency response in this form is common and useful.

Taken together, the equalizing circuits in Figure 3.22 are designed to compensate for
the frequency response of the speakers and the room in which they are located and to allow
the listener to control the overall frequency response. In particular, since the three systems
are connected in cascade, and since each system modifies a complex exponential input
Ke/®' by multiplying it by the system frequency response at that frequency, it follows that
the overall frequency response of the cascade of the three systems is the product of the three
frequency responses. The first two filters, indicated in Figures 3.22(a) and (b), together
make up the control stage of the system, as the frequency behavior of these filters can be
adjusted by the listener. The third filter, illustrated in Figure 3.22(c), is the equalizer stage,
which has the fixed frequency response indicated. The filter in Figure 3.22(a) is a low-
frequency filter controlled by a two-position switch, to provide one of the two frequency
responses indicated. The second filter in the control stage has two continuously adjustable
slider switches to vary the frequency response within the limits indicated in Figure 3.22(b).

Another class of frequency-shaping filters often encountered is that for which the
filter output is the derivative of the filter input, i.e., y() = dx(¢)/dt. With x(¢) of the form
x(t) = e/, y(t) willbe y(t) = jwe/®!, from which it follows that the frequency response
is

H(jo) = jo. (3.137)

The frequency response characteristics of a differentiating filter are shown in Figure 3.23.
Since H(jw) is complex in general, and in this example in particular, H(jw) is frequently
displayed (as in the figure) as separate plots of |H(jw)| and <H (jw). The shape of this fre-
quency response implies that a complex exponential input e/’ will receive greater ampli-
fication for larger values of . Consequently, differentiating filters are useful in enhancing
rapid variations or transitions in a signal.

One purpose for which differentiating filters are often used is to enhance edges in
picture processing. A black-and-white picture can be thought of as a two-dimensional
“continuous-time” signal x(¢1, t;), where ¢; and ¢, are the horizontal and vertical coordi-
nates, respectively, and x(zy, #;) is the brightness of the image. If the image is repeated
periodically in the horizontal and vertical directions, then it can be represented by a two-
dimensional Fourier series (see Problem 3.70) consisting of sums of products of complex
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Figure 3.22 Magnitudes of the frequency responses of the equalizer
circuits for one particular series of audio speakers, shown on a scale of
201l0gyq |H(jw)|, which is referred to as a decibel (or dB) scale. (a) Low-
frequency filter controlled by a two-position switch; (b) upper and lower
frequency limits on a continuously adjustable shaping filter; (c) fixed
frequency response of the equalizer stage.
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Figure 3.23 Characteristics of the
= “  frequency response of a filter for which
-] 2 the output is the derivative of the in-
put.

exponentials, e/ and e/®>"2, that oscillate at possibly different frequencies in each of
the two coordinate directions. Slow variations in brightness in a particular direction are
represented by the lower harmonics in that direction. For example, consider an edge cor-
responding to a sharp transition in brightness that runs vertically in an image. Since the
brightness is constant or slowly varying along the edge, the frequency content of the edge
in the vertical direction is concentrated at low frequencies. In contrast, since there is an
abrupt variation in brightness across the edge, the frequency content of the edge in the
horizontal direction is concentrated at higher frequencies. Figure 3.24 illustrates the effect
on an image of the two-dimensional equivalent of a differentiating filter.!' Figure 3.24(a)
shows two original images and Figure 3.24(b) the result of processing those images with
the filter. Since the derivative at the edges of a picture is greater than in regions where the
brightness varies slowly with distance, the effect of the filter is to enhance the edges.

Discrete-time LTI filters also find a broad array of applications. Many of these in-
volve the use of discrete-time systems, implemented using general- or special-purpose
digital processors, to process continuous-time signals, a topic we discuss at some length in
Chapter 7. In addition, the analysis of time series information, including demographic data
and economic data sequences such as the stock market average, commonly involves the
use of discrete-time filters. Often the long-term variations (which correspond to low fre-
quencies) have a different significance than the short-term variations (which correspond to
high frequencies), and it is useful to analyze these components separately. Reshaping the
relative weighting of the components is typically accomplished using discrete-time filters.

As one example of a simple discrete-time filter, consider an LTI system that succes-
sively takes a two-point average of the input values:

yln] = %(X[n] + xfn — 1. (3.138)

''Specifically each image in Figure 3.24(b) is the magnitude of the two-dimensional gradient of its
counterpart image in Figure 3.24(a) where the magnitude of the gradient of f (x, y) is

AN | (Af Y "
dx ay ’
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Figure 3.24 Effect of a differentiating filter on an image: (a) two original images;
(b) the result of processing the original images with a differentiating filter.

In this case h[n] = %(S[n] + 6[n — 1]), and from eq. (3.122), we see that the frequency
response of the system is

H(el?) = %[1 + 711 = ¢ 197 cos(w/2). (3.139)

The magnitude of H(e/) is plotted in Figure 3.25(a), and <H(e/?) is shown in Figure
3.25(b). As discussed in Section 1.3.3, low frequencies for discrete-time complex expo-
nentials occurnearw = 0, £2m, =4, ..., and high frequenciesnearw = =, £3m, .. ..
This is a result of the fact that e/ ™2™ = ¢Jj®" g0 that in discrete time we need only con-
sider a 27 interval of values of w in order to cover a complete range of distinct discrete-
time frequencies. As a consequence, any discrete-time frequency responses H(e/“) must
be periodic with period 277, a fact that can also be deduced directly from eq. (3.122).

For the specific filter defined in eqs. (3.138) and (3.139), we see from Figure 3.25(a)
that |H (e/®)| is large for frequencies near = 0 and decreases as we increase |w| toward
m, indicating that higher frequencies are attentuated more than lower ones. For exam-
ple, if the input to this system is constant—i.e., a zero-frequency complex exponential
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[H(e)|
1
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(@
LHe")
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I Figure 3.25 (a) Magnitude and
f' B (b) phase for the frequency response
of the discrete-time LTI system
(b) yln = 172(x[n] + x[n — 1]).

x[n] = Ke/%" = K—then the output will be
ylnl = H(eOKe/*"" = K = x[n].

On the other hand, if the input is the high-frequency signal x[n] = Ke/™ = K(—1)",
then the output will be

y[n] = H(e/M)Ke/™" = 0.

Thus, this system separates out the long-term constant value of a signal from its high-
frequency fluctuations and, consequently, represents a first example of frequency-selective
filtering, a topic we look at more carefully in the next subsection.

3.9.2 Frequency-Selective Filters

Frequency-selective filters are a class of filters specifically intended to accurately or
approximately select some bands of frequencies and reject others. The use of frequency-
selective filters arises in a vdriety of situations. For example, if noise in an audio recording
is in a higher frequency band than the music or voice on the recording is, it can be
removed by frequency-seléctive filtering. Another important application of frequency-
selective filters is in communication systems. As we discuss in detail in Chapter 8, the
basis for amplitude modulation (AM) systems is the transmission of information from
many different sources simultaneously by putting the information from each channel into
a separate frequency band and extracting the individual channels or bands at the receiver
using frequency-selective filters. Frequency-selective filters for separating the individual
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channels and frequency-shaping filters (such as the equalizer illustrated in Figure 3.22)
for adjusting the quality of the tone form a major part of any home radio and television
receiver.

While frequency selectivity is not the only issue of concern in applications, its broad
importance has led to a widely accepted set of terms describing the characteristics of
frequency-selective filters. In particular, while the nature of the frequencies to be passed
by a frequency-selective filter varies considerably from application to application, several
basic types of filter are widely used and have been given names indicative of their func-
tion. For example, a lowpass filter is a filter that passes low frequencies—i.e., frequencies
around w = O0—and attenuates or rejects higher frequencies. A highpass filter is a filter
that passes high frequencies and attentuates or rejects low ones, and a bandpass filter is a
filter that passes a band of frequencies and attenuates frequencies both higher and lower
than those in the band that is passed. In each case, the cutoff frequencies are the frequen-
cies defining the boundaries between frequencies that are passed and frequencies that are
rejected—i.e., the frequencies in the passband and stopband.

Numerous questions arise in defining and assessing the quality of a frequency-
selective filter. How effective is the filter at passing frequencies in the passband? How
effective is it at attentuating frequencies in the stopband? How sharp is the transition
near the cutoff frequency—i.e., from nearly free of distortion in the passband to highly
attenuated in the stopband? Each of these questions involves a comparison of the charac-
teristics of an actual frequency-selective filter with those of a filter with idealized behavior.
Specifically, an ideal frequency-selective filter is a filter that exactly passes complex ex-
ponentials at one set of frequencies without any distortion and completely rejects signals
at all other frequencies. For example, a continuous-time ideal lowpass filter with cutoff
frequency w. is an LTI system that passes complex exponentials e/’ for values of w in the
range —w. = w = w. and rejects signals at all other frequencies. That is, the frequency
response of a continuous-time ideal lowpass filter is

L L o] = e,
H(jw) = { 0, lo|>w. ’ (3.140)

as shown in Figure 3.26.

H(jo)
1

—we 0 e w®

«—— Stopband——»|<~——Passband——>|~— Stopband—  Figure 3.26  Frequency response of
an ideal lowpass filter.

Figure 3.27(a) depicts the frequency response of an ideal continuous-time highpass
filter with cutoff frequency w., and Figure 3.27(b) illustrates an ideal continuous-time
bandpass filter with lower cutoff frequency w.; and upper cutoff frequency w.,. Note that
each of these filters is symmetric about w = 0, and thus, there appear to be two passbands
for the highpass and bandpass filters. This is a consequence of our having adopted the
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Figure 3.27 (a) Frequency re-
—w e o ® o sponse of an ideal highpass filter;
c2 c1 cl c2 .
(b) frequency response of an ideal
(b) bandpass filter.

use of the complex exponential signal e/’, rather than the sinusoidal signals sinw¢ and
cos wt, at frequency w. Since e/’ = coswt+ jsinwt and e” /' = coswt — j sinwt, both
of these complex exponentials are composed of sinusoidal signals at the same frequency w.
For this reason, we usually define ideal filters so that they have the symmetric frequency
response behavior seen in Figures 3.26 and 3.27.

In a similar fashion, we can define the corresponding set of ideal discrete-time
frequency-selective filters, the frequency responses for which are depicted in Figure 3.28.

H(ejm)
1
| L ] |
—2m - —w, 0w ™ 2w
(@)
H(e)
| | | |
-2 - s 21 o
(o)
H(el®)
: : : : i Discrete-time ideal
—om - . 2m  ® Figure 3.28 Iscrete-time 1dea

frequency-selective filters: (a) lowpass;
© (b) highpass; (c) bandpass.
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In particular, Figure 3.28(a) depicts an ideal discrete-time lowpass fiiter, Figure 3.28(b)
is an ideal highpass filter, and Figure 3.28(c) is an ideal bandpass filter. Note that, as
discussed in the preceding section, the characteristics of the continuous-time and discrete-
time ideal filters differ by virtue of the fact that, for discrete-time filters, the frequency
response H(e/®) must be periodic with period 277, with low frequencies near even multi-
ples of 7 and high frequencies near odd multiples of 7.

As we will see on numerous occasions, ideal filters are quite useful in describing ide-
alized system configurations for a variety of applications. However, they are not realizable
in practice and must be approximated. Furthermore, even if they could be realized, some of
the characteristics of ideal filters might make them undesirable for particular applications,
and a nonideal filter might in fact be preferable.

In detail, the topic of filtering encompasses many issues, including design and imple-
mentation. While we will not delve deeply into the details of filter design methodologies,
in the remainder of this chapter and the following chapters we will see a number of other
examples of both continuous-time and discrete-time filters and will develop the concepts
and techniques that form the basis of this very important engineering discipline.

3.10 EXAMPLES OF CONTINUOUS-TIME FILTERS DESCRIBED
BY DIFFERENTIAL EQUATIONS

In many applications, frequency-selective filtering is accomplished through the use of LTI
systems described by linear constant-coefficient differential or difference equations. The
reasons for this are numerous. For example, many physical systems that can be inter-
preted as performing filtering operations are characterized by differential or difference
equations. A good example of this that we will examine in Chapter 6 is an automobile
suspension system, which in part is designed to filter out high-frequency bumps and ir-
regularities in road surfaces. A second reason for the use of filters described by differen-
tial or difference equations is that they are conveniently implemented using either analog
or digital hardware. Furthermore, systems described by differential or difference equa-
tions offer an extremely broad and flexible range of designs, allowing one, for example,
to produce filters that are close to ideal or that possess other desirable characteristics. In
this and the next section, we consider several examples that illustrate the implementation
of continuous-time and discrete-time frequency-selective filters through the use of dif-
ferential and difference equations. In Chapters 4-6, we will see other examples of these
classes of filters and will gain additional insights into the properties that make them so use-
ful.

3.10.1 A Simple RC Lowpass Filter

Electrical circuits are widely used to implement continuous-time filtering operations. One
of the simplest examples of such a circuit is the first-order RC circuit depicted in Fig-
ure 3.29, where the source voltage v,(¢) is the system input. This circuit can be used to
perform either a lowpass or highpass filtering operation, depending upon what we take
as the output signal. In particular, suppose that we take the capacitor voltage v.(¢) as the
output. In this case, the output voltage is related to the input voltage through the linear
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+
Vs(t) C) C == v,

Figure 3.29 First-order RC filter.

constant-coefficient differential equation

dv.(t)

RC T

T V(1) = vi(D). (3.141)

Assuming initial rest, the system described by eq. (3.141) is LTI In order to determine
its frequency response H(jw), we note that, by definition, with input voltage v,(t) = /',
we must have the output voltage v.(t) = H(jw)e/®". If we substitute these expressions into
eq. (3.141), we obtain

RC%[H( jw)el'] + H(jw)e!" = e/, (3.142)
or
RCjwH(jw)e!” + H(jw)e!?' = &/, (3.143)

from which it follows directly that

A i .
: Jjot _ Jot
H(jw)e 1T RCio RCjwe , (3.144)
or
H(jw) = ; (3.145)
19 = Y RCjo '

The magnitude and phase of the frequency response H(jw) for this example are
shown in Figure 3.30. Note that for frequencies near w = 0, |H(jw)| = 1, while for larger
values of w (positive or negative), |[H(jw)| is considerably smaller and in fact steadily
decreases as |w| increases. Thus, this simple RC filter (with v.(¢) as output) is a nonideal
lowpass filter.

To provide a first glimpse at the trade-offs involved in filter design, let us briefly
consider the time-domain behavior of the circuit. In particular, the impulse response of the
system described by eq. (3.141) is

h(t) = %e-'/RC u(t), (3.146)
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Figure 3.30 (a) Magnitude and (b) phase plots for the frequency response
for the RC circuit of Figure 3.29 with output v,(t).

and the step response is
s@) = [1— e "*Nu@), (3.147)

both of which are plotted in Figure 3.31 (where 7 = RC). Comparing Figures 3.30 and
3.31, we see a fundamental trade-off. Specifically, suppose that we would like our filter
to pass only very low frequencies. From Figure 3.30(a), this implies that 1/RC must be
small, or equivalently, that RC is large, so that frequencies other than the low ones of
interest will be attentuated sufficiently. However, looking at Figure 3.31(b), we see that
if RC is large, then the step response will take a considerable amount of time to reach its
long-term value of 1. That is, the system responds sluggishly to the step input. Conversely,
if we wish to have a faster step response, we need a smaller value of RC, which in turn
implies that the filter will pass higher frequencies. This type of trade-off between behavior
in the frequency domain and in the time domain is typical of the issues arising in the design
and analysis of LTI systems and filters and is a subject we will look at more carefully in
Chapter 6.

3.10.2 A Simple RC Highpass Filter

As an alternative to choosing the capacitor voltage as the output in our RC circuit, we can
choose the voltage across the resistor. In this case, the differential equation relating input
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Figure 3.31 (&) Impulse response
t  of the first-order RC lowpass filter with
7 = RC; (b) step response of RC low-

g

(b) pass filter with = = RC.
and output is
dv.(1) dv(t)
(1) = . 14
RC P +v.(t) = RC T (3.148)

We can find the frequency response G(jw) of this system in exactly the same way we did
in the previous case: If vy(t) = /!, then we must have v,(t) = G(jw)e/*"; substituting
these expressions into eq. (3.148) and performing a bit of algebra, we find that

JoRC

GU®) = T3 5ere

(3.149)
The magnitude and phase of this frequency response are shown in Figure 3.32. From the
figure, we see that the system attenuates lower frequencies and passes higher frequencies—
i.e., those for which |w| >> 1/RC—with minimal attenuation. That is, this system acts as
a nonideal highpass filter.

As with the lowpass filter, the parameters of the circuit control both the frequency
response of the highpass filter and its time response characteristics. For example, consider
the step response for the filter. From Figure 3.29, we see that v,(t) = v(t) — v.(t). Thus,
if vi(t) = u(?), v.(t) must be given by eq. (3.147). Consequently, the step response of the
highpass filter is

V(1) = e "RCu(r), (3.150)

which is depicted in Figure 3.33. Consequently, as RC is increased, the response becomes
more sluggish—i.e., the step response takes a longer time to reach its long-term value
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Figure 3.32 (a) Magnitude and (b) phase plots for the frequency response
of the RC circuit of Figure 3.29 with output v,(%).

Figure 3.33 Step response of the
t  first-order RC highpass filter with
T = RC.

|

I

1
RC

of 0. From Figure 3.32, we see that increasing RC (or equivalently, decreasing 1/RC)
also affects the frequency response, specifically, it extends the passband down to lower
frequencies.

We observe from the two examples in this section that a simple RC circuit can serve
as arough approximation to a highpass or a lowpass filter, depending upon the choice of the
physical output variable. As illustrated in Problem 3.71, a simple mechanical system using
amass and a mechanical damper can also serve as a lowpass or highpass filter described by
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analogous first-order differential equations. Because of their simplicity, these examples of
electrical and mechanical filters do not have a sharp transition from passband to stopband
and, in fact, have only a single parameter (namely, RC in the electrical case) that con-
trols both the frequency response and time response behavior of the system. By designing
more complex filters, implemented using more energy storage elements (capacitances and
inductances in electrical filters and springs and damping devices in mechanical filters),
we obtain filters described by higher order differential equations. Such filters offer con-
siderably more flexibility in terms of their characteristics, allowing, for example, sharper
passband-stopband transition or more control over the trade-offs between time response
and frequency response.

3.11 EXAMPLES OF DISCRETE-TIME FILTERS DESCRIBED
BY DIFFERENCE EQUATIONS

As with their continuous-time counterparts, discrete-time filters described by linear
constant-coefficient difference equations are of considerable importance in practice. In-
deed, since they can be efficiently implemented in special- or general-purpose digital
systems, filters described by difference equations are widely used in practice. As in al-
most all aspects of signal and system analysis, when we examine discrete-time filters
described by difference equations, we find both strong similarities and important differ-
ences with the continuous-time case. In particular, discrete-time LTI systems described
by difference equations can either be recursive and have impulse responses of infinite
length (IIR systems) or be nonrecursive and have finite-length impulse responses (FIR
systems). The former are the direct counterparts of continuous-time systems described
by differential equations illustrated in the previous section, while the latter are also of
considerable practical importance in digital systems. These two classes have distinct sets
of advantages and disadvantages in terms of ease of implementation and in terms of the
order of filter or the complexity required to achieve particular design objectives. In this
section we limit ourselves to a few simple examples of recursive and nonrecursive filters,
while in Chapters 5 and 6 we develop additional tools and insights that allow us to analyze
and understand the properties of these systems in more detail.

3.11.1 First-Order Recursive Discrete-Time Filters

The discrete-time counterpart of each of the first-order filters considered in Section 3.10
is the LTI system described by the first-order difference equation

y[n] — ay[n — 1] = x[n]. (3.151)

From the eigenfunction property of complex exponential signals, we know that if x[n] =
e/®" then y[n] = H(e/®)e/*", where H(e/®) is the frequency response of the system.
Substituting into eq. (3.151), we obtain

H(e/*)e’" — aH(e/*)e/*" ™1 = ¢/, (3.152)
or

[1 — ae /°1H(e/?)e/®" = /", (3.153)
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so that

1

HE™) = T =g

(3.154)
The magnitude and phase of H(e/*) are shown in Figure 3.34(a) fora = 0.6 and in Figure
3.34(b) fora = —0.6. We observe that, for the positive value of a, the difference equation
(3.151) behaves like a lowpass filter with minimal attenuation of low frequencies near
o = 0 and increasing attenuation as we increase w toward w = . For the negative value
of a, the system is a highpass filter, passing frequencies near w = 7 and attenuating lower
frequencies. In fact, for any positive value of a < 1, the system approximates a lowpass
filter, and for any negative value of a > —1, the system approximates a highpass filter,
where |a| controls the size of the filter passband, with broader passbands as |a| is decreased.

As with the continuous-time examples, we again have a trade-off between time do-
main and frequency domain characteristics. In particular, the impulse response of the sys-
tem described by eq. (3.151) is

h[n] = a"u[n]. (3.155)

The step response s[n] = u[n] * h[n] is

n+1

s[n] = —lf_‘—au[n]. (3.156)

From these expressions, we see that |a| also controls the speed with which the impulse and
step responses approach their long-term values, with faster responses for smaller values
of |a|, and hence, for filters with smaller passbands. Just as with differential equations,
higher order recursive difference equations can be used to provide sharper filter charac-
teristics and to provide more flexibility in balancing time-domain and frequency-domain
constraints.

Finally, note from eq. (3.155) that the system described by eq. (3.151) is unstable
if |a]| = 1 and thus does not have a finite response to complex exponential inputs. As we
stated previously, Fourier-based methods and frequency domain analysis focus on systems
with finite responses to complex exponentials; hence, for examples such as eq. (3.151), we
restrict ourselves to stable systems.

3.11.2 Nonrecursive Discrete-Time Filters

The general form of an FIR nonrecursive difference equation is

M

ylnl = > byxln — kl. (3.157)

k=—N

That is, the output y[n] is a weighted average of the (N + M + 1) values of x[n] from
x[n — M] through x[n + N], with the weights given by the coefficients b,. Systems of
this form can be used to meet a broad array of filtering objectives, including frequency-
selective filtering.

One frequently used example of such a filter is a moving-average filter, where the
output y[n] for any n—say, np—is an average of values of x[#n] in the vicinity of ny. The
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basic idea is that by averaging values locally, rapid high-frequency components of the in-
put will be averaged out and lower frequency variations will be retained, corresponding to
smoothing or lowpass filtering the original sequence. A simple two-point moving-average
filter was briefly introduced in Section 3.9 [eq. (3.138)]. An only slightly more complex
example is the three-point moving-average filter, which is of the form

yln] = %(x[n =11+ x[n] + x[n + 1)), (3.158)
so that each output y[n] is the average of three consecutive input values. In this case,
h[n] = %[S[n + 114 8[n] + &[n — 1]],
and thus, from eq. (3.122), the corresponding frequency response is
H(e®) = %[ej‘” +1+e /] = %(1 +2cosw). (3.159)

The magnitude of H(e/®) is sketched in Figure 3.35. We observe that the filter has the
general characteristics of a lowpass filter, although, as with the first-order recursive filter,
it does not have a sharp transition from passband to stopband.

[H(el)]
1
3
l 1 1 | Figure 3.35 Magnitude of the fre-
—om . 0 m = on » duency response of a three-point
2 moving-average lowpass filter.

The three-point moving-average filter in eq. (3.158) has no parameters that can
be changed to adjust the effective cutoff frequency. As a generalization of this moving-
average filter, we can consider averaging over N + M + 1 neighboring points—that is,
using a difference equation of the form

M

1
y[n] = NI k;N x[n — k. (3.160)

The corresponding impulse response is a rectangular pulse (i.e., Aln] = /(N + M + 1)
for —N = n = M, and k[n] = O otherwise). The filter’s frequency response is
1 M

—_— ok, 161
N+M+1k:ZNe (3.161)

H(e-i‘”) =
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The summation in eq. (3.161) can be evaluated by performing calculations similar to those
in Example 3.12, yielding

o/ @l(N=M)/2] sinfw(M + N + 1)/2]

H(e/) = ——— ——
€)= ¥ v sin(w/2)

(3.162)

By adjusting the size, N + M + 1, of the averaging window we can vary the cutoff fre-
quency. For example, the magnitude of H(e/*) is shown in Figure 3.36 for M + N+1 = 33
andM + N +1 = 65.

IH(e")
1
-1 —/2 0 w2 ks
w
(a)
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1
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- —7/2 0 /2 ™

{b)

Figure 3.36 Magnitude of the frequency response for the lowpass moving-
average filter of eq. (3.162): @) M = N =16, (b) M = N = 32.

Nonrecursive filters can also be used to perform highpass filtering operations. To
illustrate this, again with a simple example, consider the difference equation

x[n] — x[n — 1]

5 (3.163)

yln] =

For input signals that are approximately constant, the value of y[#n] is close to zero. For
input signals that vary greatly from sample to sample, the values of y[n] can be ex-
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pected to have larger amplitude. Thus, the system described by eq. (3.163) approximates
a highpass filtering operation, attenuating slowly varying low-frequency components and
passing rapidly varying higher frequency components with little attenuation. To see this
more precisely we need to look at the system’s frequency response. In this case, A[n] =
%{8[n] — 8[n — 11}, so that direct application of eq. (3.122) yields

H(e/®) = %[1 — e 9] = jel”sin(w/2). (3.164)

In Figure 3.37 we have plotted the magnitude of H(e/?), showing that this simple
system approximates a highpass filter, albeit one with a very gradual transition from pass-
band to stopband. By considering more general nonrecursive filters, we can achieve far
sharper transitions in lowpass, highpass, and other frequency-selective filters.

w Figure 3.37 Frequency response of
w a simple highpass filter.

Note that, since the impulse response of any FIR system is of finite length (i.e.,
from eq. (3.157), h[n] = b, for =N = n = M and 0 otherwise), it is always absolutely
summable for any choices of the b,. Hence, all such filters are stable. Also, if N > 0
in eq. (3.157), the system is noncausal, since y[n] then depends on future values of the
input. In some applications, such as those involving the processing of previously recorded
signals, causality is not a necessary constraint, and thus, we are free to use filters with
N > 0. In others, such as many involving real-time processing, causality is essential, and
in such cases we must take N =< 0.

3.12 SUMMARY

In this chapter, we have introduced and developed Fourier series representations for both
continuous-time and discrete-time systems and have used these representations to take a
first look at one of the very important applications of the methods of signal and system
analysis, namely, filtering. In particular, as we discussed in Section 3.2, one of the primary
motivations for the use of Fourier series is the fact that complex exponential signals are
eigenfunctions of LTI systems. We have also seen, in Sections 3.3-3.7, that any periodic
signal of practical interest can be represented in a Fourier series—i.e., as a weighted sum
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of harmonically related complex exponentials that share a common period with the signal
being represented. In addition, we have seen that the Fourier series representation has a
number of important properties which describe how different characteristics of signals are
reflected in their Fourier series coefficients.

One of the most important properties of Fourier series is a direct consequence of the
eigenfunction property of complex exponentials. Specifically, if a periodic signal is ap-
plied to an LTI system, then the output will be periodic with the same period, and each
of the Fourier coefficients of the output is the corresponding Fourier coefficient of the
input multiplied by a complex number whose value is a function of the frequency corre-
sponding to that Fourier coefficient. This function of frequency is characteristic of the LTI
system and is referred to as the frequency response of the system. By examining the fre-
quency response, we were led directly to the idea of filtering of signals using LTI systems,
a concept that has numerous applications, including several that we have described. One
important class of applications involves the notion of frequency-selective filtering—i.e.,
the idea of using an LTI system to pass certain specified bands of frequencies and stop
or significantly attentuate others. We introduced the concept of ideal frequency-selective
filters and also gave several examples of frequency-selective filters described by linear
constant-coefficient differential or difference equations.

The purpose of this chapter has been to begin the process of developing both the
tools of Fourier analysis and an appreciation for the utility of these tools in applications. In
the chapters that follow, we continue with this agenda by developing the Fourier transform
representations for aperiodic signals in continuous and discrete time and by taking a deeper
look not only at filtering, but also at other important applications of Fourier methods.

Chapter 3 Problems '

The first section of problems belongs to the basic category and the answers are pro-
vided in the back of the book. The remaining three sections contain problems belonging
to the basic, advanced, and extension categories, respectively.

BASIC PROBLEMS WITH ANSWERS

3.1. A continuous-time periodic signal x(#) is real valued and has a fundamental period
T = 8. The nonzero Fourier series coefficients for x(¢) are

ap =a-| =2,a3 = a’ 5 = 4j.

Express x(t) in the form
x(t) = Z Ay cos(wyt + ¢dy).
k=0

3.2. A discrete-time periodic signal x[n] is real valued and has a fundamental period
N = 5. The nonzero Fourier series coefficients for x[n] are

ay=lay =a", = /™ ay = a*, = 2™,
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3.3.

34.

3.5.

3.6.

3.7.

Express x[n] in the form
x[n] = Ag+ > Agsin(@in + dp).
k=1
For the continuous-time periodic signal

x(t) = 2 + cos (2%:) + 45sin (%Tt)

determine the fundamental frequency wy and the Fourier series coefficients a; such
that

x
x(t) = Z agel*®o’.

k=—o0

Use the Fourier series analysis equation (3.39) to calculate the coefficients a; for
the continuous-time periodic signal

xX(t) = L5, 0=1<l1
1.5 1=1<2
with fundamental frequency w, = 7.
Let x;(7) be a continuous-time periodic signal with fundamental frequency w; and
Fourier coefficients ay. Given that

X = x(1 =0+ x(—1),

how is the fundamental frequency w, of x;(¢) related to w? Also, find a relationship
between the Fourier series coefficients by of x,(¢) and the coefficients a;. You may
use the properties listed in Table 3.1.

Consider three continuous-time periodic signals whose Fourier series representa-
tions are as follows:

100 PNk
xi(1) = 2(5) e/,

k=0
100 .
() = > cos(km)el s,
k=-100
100
an= > jsin(k—”)eﬂ‘%—ﬁ’.
k=-100 2

Use Fourier series properties to help answer the following questions:
(a) Which of the three signals is/are real valued?
(b) Which of the three signals is/are even?

Suppose the periodic signal x(¢) has fundamental period T and Fourier coefficients
ai. In a variety of situations, it is easier to calculate the Fourier series coefficients
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3.8.

3.9.

3.10.

3.11.

3.12.
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by for g(t) = dx(t)/dt, as opposed to calculating ay directly. Given that

2T
J x()dt = 2,
T

find an expression for a; in terms of b, and 7. You may use any of the properties
listed in Table 3.1 to help find the expression.

Suppose we are given the following information about a signal x(¢):

1. x(¢) is real and odd.

2. x(t) is periodic with period T = 2 and has Fourier coefficients ay.
3. a; = Ofor |k| > 1.

4. Hx@Pdr = 1.

Specify two different signals that satisfy these conditions.

Use the analysis equation (3.95) to evaluate the numerical values of one period of
the Fourier series coefficients of the periodic signal

x[n] = > {48[n —4m] + 88[n — 1 — 4m]}.

m=—-x

Let x[n] be areal and odd periodic signal with period N = 7 and Fourier coefficients
ay. Given that
ais = jaie = 2j,a17 = 3},
determine the values of ag, a_y, a-», and a_3.
Suppose we are given the following information about a signal x[n]:

1. x[n] is areal and even signal.
2. x[n] has period N = 10 and Fourier coefficients ay.
3. ayn = 5.

9
4. &> |x[n]* = 50.

n=0
Show that x[n] = A cos(Bn + C), and specify numerical values for the constants A,
B, and C.

Each of the two sequences x;[n] and x,[n] has a period N = 4, and the correspond-
ing Fourier series coefficients are specified as

xi[n] «— ay,  x2[n] «<— by,
where

1
a0=a3=—al=la2=1 and b0=b| =b2=b3=1.
2 2
Using the multiplication property in Table 3.1, determine the Fourier series coeffi-
cients cy for the signal g[n] = x|[n]x;[n].
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3.13.

3.14.

3.15.

Consider a continuous-time LTI system whose frequency response is

}ij)=_rch0k_””dt= o),

If the input to this system is a periodic signal

1, 0=1r<4

x(t)={—1, 4=r<8

with period T = 8, determine the corresponding system output y(r).
When the impulse train

x[n] = i 8[n — 4k]

k=—x
is the input to a particular LTI system with frequency response H(e/®), the output
of the system is found to be

[n] = cos 5—Wn+z
o= 2T )

Determine the values of H(e/*™2) for k = 0, 1, 2, and 3.
Consider a continuous-time ideal lowpass filter § whose frequency response is

I, |w| =100

H(jw) = {0’ lw| > 100 °

When the input to this filter is a signal x(#) with fundamental period 7 = /6 and
Fourier series coefficients ay, it is found that

X0 > Y1) = x(1).

For what values of k is it guaranteed that a; = 07?

3.16. Determine the output of the filter shown in Figure P3.16 for the following periodic
inputs:
@ xi[n] = (="
() xo[n] = 1 +sin(¥n+ )
x n—4k
(©) x3[n] = > (3" Tuln — 4k
H(E")
1
—2n _51 _19x — s x O n sp m 197 51 21 w
3 1 12 3 3 12 12 3

Figure P3.16
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3.17.

3.18.

3.19.

3.20.
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Consider three continuous-time systems 51, S>, and Sz whose responses to a complex
exponential input e/ are specified as

Sy et — tel
. st 50— 1
Sy i et — D)

S5 1 e — cos(51).

For each system, determine whether the given information is sufficient to conclude
that the system is definitely not LTL

Consider three discrete-time systems Sy, S», and S3 whose respective responses to
a complex exponential input /™2 are specified as

S] . ej‘n'n/2 ejﬂll/zu[n],

N .
SZ . e_/wn/_ e_/377n/2’

S?, . ej’lT}’l/2 2ej57rn/2

For each system, determine whether the given information is sufficient to conclude
that the system is definitely not LTI.

Consider a causal LT1 system implemented as the RL circuit shown in Figure P3.19.
A current source produces an input current x(¢), and the system output is considered
to be the current y(¢) flowing through the inductor.

-

AAAA
\AAAL -~

1H 1Q

Figure P3.19

(a) Find the differential equation relating x(t) and y(z).

(b) Determine the frequency response of this system by considering the output of
the system to inputs of the form x(¢) = e/’

(c) Determine the output y(¢) if x(¢) = cos(z).

Consider a causal LTI system implemented as the RLC circuit shown in Figure

P3.20. In this circuit, x(t) is the input voltage. The voltage y(t) across the capac-

itor is considered the system output.

_+_
X(t) C) = y(t)
- C=1F

— Figure P3.20
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(a) Find the differential equation relating x(¢) and y(r).

(b) Determine the frequency response of this system by considering the output of
the system to inputs of the form x(r) = e/’

(c) Determine the output y(¢) if x(r) = sin(z).

BASIC PROBLEMS

3.21. A continuous-time periodic signal x(¢) is real valued and has a fundamental period
T = 8. The nonzero Fourier series coefficients for x(¢) are specified as

a = (1*_1 = j,a5 =a-5 = 2.

Express x(t) in the form
x(t) = > Agcos(wit + ).
k=0

3.22. Determine the Fourier series representations for the following signals:
(a) Each x(#) illustrated in Figure P3.22(a)—(f).
(b) x(1) periodic with period 2 and

t

x(t)y =" for —1<t<1

x(t)

© Figure P3.22
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|
4
|
[o)]
|
w
|
N
|
R
L
=
b
PN
[&,]
ok
~

® Figure P3.22 Continued
(¢) x(t) periodic with period 4 and

| sinmt, 0=t=2
X0 =1, 2<i=4

3.23. In each of the following, we specify the Fourier series coefficients of a continuous-
time signal that is periodic with period 4. Determine the signal x(¢) in each case.
k=0
, otherwise

0,
(@) a; = {(.)k sin kar/d

(b) ap = (— l)ksmkﬂ/8 a = 1

2km ? 0 16
_ | jk |k <3
(© a [0, otherwise
|1, keven
@ a; = {2, k odd
3.24. Let
|t O0=tr=1
x(’)_{z—z, l=r=2

be a periodic signal with fundamental period T = 2 and Fourier coefficients a;.

(a) Determine the value of ay.

(b) Determine the Fourier series representation of d x(¢)/dz.

(¢) Use the result of part (b) and the differentiation property of the continuous-time
Fourier series to help determine the Fourier series coefficients of x(z).
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3.25. Consider the following three continuous-time signals with a fundamental period of
T =1/2:

x(t) = cos(4rt),
y(t) = sin(4rt),
z2(t) = x(1)y(0).

(a) Determine the Fourier series coefficients of x(r).

(b) Determine the Fourier series coefficients of y(¢).

(¢) Use the results of parts (a) and (b), along with the multiplication property of the
continuous-time Fourier series, to determine the Fourier series coefficients of
A1) = x(D)y(@).

(d) Determine the Fourier series coefficients of z(r) through direct expansion of z(f)
in trigonometric form, and compare your result with that of part (c).

3.26. Let x(¢) be a periodic signal whose Fourier series coefficients are

(2 k=0
e = j(%)“", otherwise -

Use Fourier series properties to answer the following questions:
(a) Is x(z) real?
(b) Is x(¢) even?
(¢) Isdx(t)/dt even?
3.27. A discrete-time periodic signal x[n] is real valued and has a fundamental period
N = 5. The nonzero Fourier series coefficients for x[n] are

ag = 2’a2 = aiz = 2€j7r/6, a, = at4 = e]%
Express x[#] in the form
x[n] = Ao+ > Agsin(win + bp).
k=1

3.28. Determine the Fourier series coefficients for each of the following discrete-time
periodic signals. Plot the magnitude and phase of each set of coefficients a;.
(a) Each x[n] depicted in Figure P3.28(a)—(c)
(b) x[n] = sin(27n/3) cos(mn/2)
(¢) x[n] periodic with period 4 and

x[n] = l—sinfﬁ for0 =n=3

4

(d) x[n] periodic with period 12 and

x[n] = l—sin¥ forO0 =n =11
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x[n]

Figure P3.28

3.29. In each of the following, we specify the Fourier series coefficients of a signal that
is periodic with period 8. Determine the signal x[n] in each case.

sk
_ km .3k _ =), 0=k=6
(@) a; = cos<7)+ sm(T) ®) a; = {Bl’n( 3) =1

(¢) ay as in Figure P3.29(a) (d) ay as in Figure P3.29(b)

a
NRIRITRINITRIIRIR]
i = T o0 T8 " 16

(@)

Figure P3.29

3.30. Consider the following three discrete-time signals with a fundamental period of 6:

x[n] = 1+ cos (%Tn) y[n] = sin(%’-n + %) z[n] = x[n]y[n].
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3.31.

3.32.

(a) Determine the Fourier series coefficients of x[n].

(b) Determine the Fourier series coefficients of y[n].

(c) Use the results of parts (a) and (b), along with the multiplication property of
the discrete-time Fourier series, to determine the Fourier series coefficients of
z[n] = x[n]y[n].

(d) Determine the Fourier series coefficients of z[n] through direct evaluation, and
compare your result with that of part (c).

Let

I, O
0, 8

A IA
NN

A IA

x[n] = {

be a periodic signal with fundamental period N = 10 and Fourier series coefficients
ay. Also, let

gln] = x[n] — x[n — 1].

(a) Show that g[n] has a fundamental period of 10.

(b) Determine the Fourier series coefficients of g[n].

(c) Using the Fourier series coefficients of g[n] and the First-Difference property
in Table 3.2, determine a; for k # 0.

Consider the signal x[n] depicted in Figure P3.32. This signal is periodic with period
N = 4. The signal can be expressed in terms of a discrete-time Fourier series as
3
x[n] = > ek, (P3.32-1)
k=0
x[n]

Figure P3.32

As mentioned in the text, one way to determine the Fourier series coefficients is
to treat eq. (P3.32-1) as a set of four linear equations (for n = 0, 1,2, 3) in four
unknowns (ag, a;, a,, and az).

(a) Write out these four equations explicitly, and solve them directly using any stan-
dard technique for solving four equations in four unknowns. (Be sure first to
reduce the foregoing complex exponentials to the simplest form.)

(b) Check your answer by calculating the a; directly, using the discrete-time
Fourier series analysis equation

3

Z x[n]e—jk(27/4)n'

n=0

1
ak=‘—1
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3.33. Consider a causal continuous-time LTI system whose input x(#) and output y(¢) are
related by the following differential equation:

d
770+ 40 = x0).

Find the Fourier series representation of the output y(r) for each of the following
inputs:

(@) x(t) = cos2rt

(b) x(t) = sindart + cos(6mt + w/4)

3.34. Consider a continuous-time LTI system with impulse response
h(t) = ¢ ¥,
Find the Fourier series representation of the output y(¢) for each of the following
inputs:
@ x(t) = 2,7 .8(t—n)

(b) x(r) = >, 7 _(~=1)"8(t — n)
(c) x(t) is the periodic wave depicted in Figure P3.34.

%@
-1 0T 1 ITI.I‘.'I.

-3 -2 -1 1 3 4 Figure P3.34

3.35. Consider a continuous-time LTI system S whose frequency response is

I, || =250
0, otherwise

H(jw) = {

When the input to this system is a signal x(¢) with fundamental period T = /7 and
Fourier series coefficients ay, it is found that the output y(¢) is identical to x(#).
For what values of £ is it guaranteed that ¢, = 07

3.36. Consider a causal discrete-time LTI system whose input x[r] and output y[n] are
related by the following difference equation:

yln] — %y[n =11 = x[n]

Find the Fourier series representation of the output y[n] for each of the following
inputs:

(a) x[n] = sin(2Zn)

(b) x[n] = cos(Fn) + 2cos(%n)

3.37. Consider a discrete-time LTI system with impulse response

i
hin] = (%) .
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Find the Fourier series representation of the output y[#] for each of the following
inputs:

(@) x[n] = >;__.8[n — 4k]

(b) x[n] is periodic with period 6 and

|1, n=0=1
x[nl = 0, n==>2*3

3.38. Consider a discrete-time LTI system with impulse response

1, O0=n=2
hln] =< -1, -2=n= —1.
0, otherwise

Given that the input to this system is

x[n] = > 8[n—4k],

k=—x

determine the Fourier series coefficients of the output y[n].
3.39. Consider a discrete-time LTI system S whose frequency response is

: 1, |a)! =z
joy =
HE™) =00, <] <a

Show that if the input x[n] to this system has a period N = 3, the output y[n] has
only one nonzero Fourier series coefficient per period.

ADVANCED PROBLEMS

3.40. Let x(t) be a periodic signal with fundamental period T and Fourier series coeffi-
cients a;. Derive the Fourier series coefficients of each of the following signals in
terms of ay:

(@) x(t —ty) + x(t + tp)

(b) Sv{x(1)}

(©) Relx(n)}

@

(e) x(3r — 1) [for this part, first determine the period of x(3¢ — 1)]

3.41. Suppose we are given the following information about a continuous-time periodic
signal with period 3 and Fourier coefficients a;:

1. A, = Aj42-
2. ap = a_.

3. [% x(nydr = 1.

4. [x )dt =2

. t)ydr= 2.
J-IX(

Determine x(7).
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3.42.

3.43.

3.4.
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Let x(f) be a real-valued signal with fundamental period T and Fourier series coef-

ficients ay.

(a) Show that a; = a”, and ap must be real.

(b) Show that if x(z) is even, then its Fourier series coefficients must be real and
even.

(c) Show that if x(#) is odd, then its Fourier series coefficients are imaginary and
odd and ay = 0.

(d) Show that the Fourier coefficients of the even part of x(¢) are equal to Re{a,}.

(e) Show that the Fourier coefficients of the odd part of x(¢) are equal to jIm{a,}.

(a) A continuous-time periodic signal x(¢) with period 7 is said to be odd harmonic
if, in its Fourier series representation

+x
x(t)y = > aetmy (P3.43-1)

k=—x

a; = 0 for every non-zero even integer k.
(i) Show that if x(¢) is odd harmonic, then

x(t) = —x(t + g) (P3.43-2)

(i) Show that if x() satisfies eq. (P3.43-2), then it is odd harmonic.
(b) Suppose that x(#) is an odd-harmonic periodic signal with period 2 such that

x(t)y =t forO<r<l1.

Sketch x(¢) and find its Fourier series coefficients.
(c) Analogously, to an odd-harmonic signal, we could define an even-harmonic
signal as a signal for which a; = 0 for k odd in the representation in eq. (P3.43-
1). Could T be the fundamental period for such a signal? Explain your answer.
(d) More generally, show that 7 is the fundamental period of x(¢) in eq. (P3.43-1)
if one of two things happens:
(1) Either a, or a_, is nonzero;
or
(2) There are two integers k and / that have no common factors and are such
that both a; and a; are nonzero.

Suppose we are given the following information about a signal x(z):

x(#) 1s a real signal.

x(t) is periodic with period 7 = 6 and has Fourier coefficients ay.
a, = 0fork = 0and k > 2.

x(t) = —x(t — 3).

2 x@Pdr = L.
ay is a positive real number.

AN N e

Show that x(r) = Acos(Bt + C), and determine the values of the constants A, B,
and C.
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3.45. Let x(¢) be a real periodic signal with Fourier series representation given in the
sine-cosine form of eq. (3.32); i.e.,

x(t) = ag + 2> [Bycos kwot — Cy sin kwot]. (P3.45-1)
k=1

(a) Find the exponential Fourier series representation of the even and odd parts of
x(t); that is, find the coefficients «; and B; in terms of the coefficients in eq.
(P3.45-1) so that

“+00
Sfx()} = Z a ekt

k=—o

Odx} = > Breltov.

k=—o

(b) Whatis the relationship between a; and e in part (a)? What is the relationship

between 3 and B_?
(c) Suppose that the signals x(¢) and z(¢) shown in Figure P3.45 have the sine-cosine

series representations

x(t) = ap + 2Z{Bk CcoS (-2—7;—1“)— Cy sin <27;kt)] ,

k=1

z(t) = dy + ZElEk cos(

k=1

Tk

o
w
<y
SN—
|
~y
~
2.
=
/0
S
w3
x~
-~
—

x(t)

VAN NN D

z(t)

T T T
JINIIERVEA

Figure P3.45
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Sketch the signal

- 1 2kt . [2mkt
() = ay + dy) + 2;[[&, + EEk}cos< 3 )+ Fy sm( 3 )J

3.46 In this problem, we derive two important properties of the continuous-time Fourier
series: the multiplication property and Parseval’s relation. Let x(z) and ¥(¢) both be
continuous-time periodic signals having period 7}, and with Fourier series represen-
tations given by

+ +x
X0y = > ageltv gy = > byelteo, (P3.46-1)
k=—= k=—=
x4{t)
cos 20wt
‘J‘\Iv‘l‘J‘J’\ll].‘\l{},]lw“.‘wl‘llrl“‘l‘ vls‘l‘l}\lx‘sml!\f‘lrwly“l‘uiil M‘."W,H"“\‘H}u'l"‘\u,‘
ol LT 1 T T VTP
@)
Xo(t) z(t) cos 20mt,

.~ where z{t) is as in Figure P3.22(f)

i “HHH"IH‘HHHH HHHH”HHHH! HHH]”IHH
|1 A1 ¥ 1 1 1 o1 1

Figure P3.46
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(a) Show that the Fourier series coefficients of the signal

2(t) = x@)y@) = Z L

k=—o
are given by the discrete convolution
+o0
Cy = E a,,b k—n-
n=—ow

(b) Use the result of part (a) to compute the Fourier series coefficients of the signals
x1(8), x2(t), and x3(¢) depicted in Figure P3.46.

(c) Suppose that y(¢) in eq. (P3.46-1) equals x*(#). Express the b, in the equation in
terms of a;, and use the result of part (a) to prove Parseval’s relation for periodic
signals—that is,

1 (To =
T_oJ lx@)Pde = > la

0 k=—o0
3.47 Consider the signal
x(f) = cos2t.

Since x(¢) is periodic with a fundamental period of 1, it is also periodic with a period
of N, where N is any positive integer. What are the Fourier series coefficients of x(¢)
if we regard it as a periodic signal with period 3?

3.48. Let x[n] be a periodic sequence with period N and Fourier series representation

x[n] = > age/fCmNOn, (P3.48-1)
k=<N>

The Fourier series coefficients for each of the following signals can be expressed in

terms of a; in eq. (P3.48-1). Derive the expressions.

(@) x[n — no]

(b) x[n] — x[n — 1]

(©) x[n] — x[n— %] (assume that N is even)

(d) x[n] + x[n + %] (assume that N is even; note that this signal is periodic with
period N/2)

(e) x*[—n]

) (—1)"x[n] (assume that N is even)

(g) (—1)"x[n] (assume that N is odd; note that this signal is periodic with period

2N)
w o= {7 S

3.49. Let x[n] be a periodic sequence with period N and Fourier series representation

x[n] = > ape/FCTVn, (P3.49-1)
k=<N>
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3.50.

3.51.

3.52.
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(a) Suppose that N is even and that x[n] in eq. (P3.49-1) satisfies

x[n] = —x [n + %] for all n.

Show that a; = O for all even integers k.
(b) Suppose that N is divisible by 4. Show that if

x[n] = —x[n + %’—} for all n,

then a; = 0 for every value of k that is a multiple of 4.
(c) More generally, suppose that N is divisible by an integer M. Show that if

(NIM)—1 N
x[n + r—] = (O for all n,
r=0 M

then a; = O for every value of k that is a multiple of M.

Suppose we are given the following information about a periodic signal x[n] with
period 8 and Fourier coefficients ay:

1. Ay = —Ag—4.
2. x[2n+ 1] = (=D

Sketch one period of x[n].

Let x[n] be a periodic signal with period N = 8 and Fourier series coefficients
ay = —ag—4. A signal

yln] = (———1 hl (2_1) )x[n -1]

with period N = 8 is generated. Denoting the Fourier series coefficients of y[n] by
by, find a function f[k] such that

bi = flklay.

x[n] is a real periodic signal with period N and complex Fourier series coefficients
ay. Let the Cartesian form for a; be denoted by

ay = b+ jei,

where b, and c; are both real.

(a) Show that a_; = a}. What is the relation between b; and b_;? What is the
relation between ¢, and c_;?

(b) Suppose that N is even. Show that ay, is real.
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(c) Show that x[n] can also be expressed as a trigonometric Fourier series of the
form

(N-1D2
x[n] = ap +2 Z by cos (27]7-\]](”)— Ck sin(ZWkn)
k=1 N

if N is odd or as

(N-2)12
2mkn 2mkn
; = + - +2 b — i
x[n] = (ag + ayn(—1D") k; kcos( N ) cksm< N )

if N is even.
(d) Show that if the polar form of a; is A,e/%¥, then the Fourier series representation

for x[n] can also be written as

Nz 2mkn
x[n] = a9 +2 Ay cos +6
[n] 0 ; k ( N k)

if Nis odd or as

W)~ 2mkn
x[n] = (ag + ayp (1)) + 2 Ay cos +6
[n] = (ap + anp(—1)") ; k ( N k)

if N is even.
(e) Suppose that x[n] and z[n], as depicted in Figure P3.52, have the sine-cosine

series representations

x[n]

Figure P3.52
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3
x[n] = ag + ZZI by cos (2:]{")— cj sin (27';kn )]

k=1

z[n]l =dy +2 Z[ dj cos (27;](" ) — frsin (27r7kn )] .

3
k=1
Sketch the signal

3
ylnl = ap —do + 22[ d; cos (27r7kn)+ (fi — co)sin (27771(")]‘

k=1

3.53. Let x[n] be a real periodic signal with period N and Fourier coefficients ay.
(a) Show that if N is even, at least two of the Fourier coefficients within one period
of a; are real.
(b) Show that if N is odd, at least one of the Fourier coefficients within one period
of a; is real.

3.54. Consider the function
N-1
a[k] — Z ej(27T/N)kn_
n=0

(a) Show that a[k] = N for k = 0, =N, =2N, =3N, .. ..

(b) Show that a[k] = 0 whenever £ is not an integer multiple of N. (Hint: Use the
finite sum formula.)

(c) Repeat parts (a) and (b) if

a[k] — Z ej(27T/N)kn‘

n=<N>

3.55. Let x[n] be a periodic signal with fundamental period N and Fourier series coeffi-
cients a;. In this problem, we derive the time-scaling property

< (2L n=0 =m0,
(m) 0, elsewhere

listed in Table 3.2.

(a) Show that x,,[n] has period of mN.
(b) Show that if

x[n] = v[n] + w(n],
then

Xmy[n] = vimy[n] + wim[nl.
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(c) Assuming that x[n] = /275N for some integer ko, verify that

1 m—1 .
x(m)[n] - - Z ej277(k0+lN)n/(mN)‘
1=0
That is, one complex exponential in x[n] becomes a linear combination of m
complex exponentials in x(,,[n].

(d) Using the results of parts (a), (b), and (c), show that if x[x] has the Fourier
coefficients ay, then x(,,[n] must have the Fourier coefficients %ak.

3.56. Let x[n] be a periodic signal with period N and Fourier coefficients ay.
(a) Express the Fourier coefficients b of |x[n]|? in terms of a;.
(b) If the coefficients a, are real, is it guaranteed that the coefficients b, are also
real?

3.57. (a) Let
N-1 )
x[n] = > ayelH2mNn (P3.57-1)
k=0

and

N-1
y[n] — Zbkejk(Zﬂ'/N)n

k=0
be periodic signals. Show that
N-1
x[nlyln] = > cpe/*m™NOm,
k=0

where

N-1 N-1
cp = Z aiby—; = Z ag-1b;.

1=0 1=0

(b) Generalize the result of part (a) by showing that

cp = Z aby—; = Z ax-1b;.

I=<N> I=<N>

(¢) Use the result of part (b) to find the Fourier series representation of the following
signals, where x[n] is given by eq. (P3.57-1).
() xlncos(%22)
(i) x[n]>,Z_.8[n—rN]

(iii) x[n] (Z AT [ - %D (assume that N is divisible by 3)

(d) Find the Fourier series representation for the signal x{n]y[n], where

x[n] = cos(mn/3)
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and

_ L =
yin] = 0, 4= =6

is periodic with period 12.
(e) Use the result of part (b) to show that

> x[nlylnl =N > ab_y,

n=<N> I=<N>
and from this expression, derive Parseval’s relation for discrete-time periodic
signals.
3.58. Let x[n] and y[n] be periodic signals with common period N, and let

dAnl = > xlryln—r1]

r=<N>

be their periodic convolution.

(a) Show that z[n] is also periodic with period N.

(b) Verify that if a;, by, and ¢, are the Fourier coefficients of x[n], y[n], and z[n],
respectively, then

cx = Nayby.
(c¢) Let
x[n] = sin(%—’z)
and
|1, 0=n=3
Y[”]‘{o, 4=n=7

be two signals that are periodic with period 8. Find the Fourier series represen-
tation for the periodic convolution of these signals.
(d) Repeat part (c) for the following two periodic signals that also have period 8:

s [3mn
x[n] = s1n(7), 0=n= 3’
0, 4=n=s17

y[n]=(%),0§ns7.

3.59. (a) Suppose x[n] is a periodic signal with period N. Show that the Fourier series
coefficients of the periodic signal

o0

gty = > x[k]8(t — kT)

k=—o

are periodic with period N.
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(b) Suppose that x(¢) is a periodic signal with period T and Fourier series coeffi-
cients a; with period N. Show that there must exist a periodic sequence g[n]
such that

x(@) = i glk16(t — kT/IN).

k=—o

(¢) Can a continuous periodic signal have periodic Fourier coefficients?

3.60. Consider the following pairs of signals x[n] and y[n]. For each pair, determine
whether there is a discrete-time LTI system for which y[r] is the output when the
corresponding x[n] is the input. If such a system exists, determine whether the sys-
tem is unique (i.e., whether there is more than one LTI system with the given input-
output pair). Also, determine the frequency response of an LTI system with the
desired behavior. If no such LTI system exists for a given x[n], y[n] pair, explain
why.

@ x[n] = (3,0l = ()

(b) x[n] = (3 )uln], yIn] = (3)"uln]

(©) x[n] = 3")uln], y[n] = 4"u[—n]

d) x[n] = /"8, y[n] = 2¢/78

(© xln] = eSuln], y{n] = 2e/Su[n]

(®) x[n] = j", yln] = 2/°(1 = j)

(g) x[n] = cos(mn/3),y[n] = cos(mn/3) + \/5 sin(mrn/3)
(h) x[n] and y,[n] as in Figure P3.60

(i) x[n] and y,[n] as in Figure P3.60

-12 0 12 24 n

-15 -9 -3 0 3 9 15 21 n
yo[n]

-9 0 9 18 n

Figure P3.60

3.61. As we have seen, the techniques of Fourier analysis are of value in examining
continuous-time LT systems because periodic complex exponentials are eigenfunc-
tions for LTI systems. In this problem, we wish to substantiate the following state-
ment: Although some LTI systems may have additional eigenfunctions, the complex
exponentials are the only signals that are eigenfunctions of every LTI system.
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3.62.

3.63.

3.64.
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(a) What are the eigenfunctions of the LTI system with unit impulse response
h(t) = 6(r)? What are the associated eigenvalues?

(b) Consider the LTI system with unit impulse response A(f) = 6(¢t — T). Find a
signal that is not of the form ¢*, but that is an eigenfunction of the system with
eigenvalue 1. Similarly, find the eigenfunctions with eigenvalues 1/2 and 2 that
are not complex exponentials. (Hint: You can find impulse trains that meet these
requirements.)

(c) Consider a stable LTI system with impulse response A(t) that is real and even.
Show that cos wt and sin wt are eigenfunctions of this system.

(d) Consider the LTI system with impulse response A(t) = u(t). Suppose that ¢(r) is
an eigenfunction of this system with eigenvalue A. Find the differential equation
that ¢(r) must satisfy, and solve the equation. This result, together with those
of parts (a) through (c), should prove the validity of the statement made at the
beginning of the problem.

One technique for building a dc power supply is to take an ac signal and full-wave

rectify it. That is, we put the ac signal x(¢) through a system that produces y(f) =

|x(2)| as its output.

(a) Sketch the input and output waveforms if x(¢) = cost. What are the fundamen-
tal periods of the input and output?

(b) If x(t) = cost, determine the coefficients of the Fourier series for the output
y(#).

(c) What is the amplitude of the dc component of the input signal? What is the
amplitude of the dc component of the output signal?

Suppose that a continuous-time periodic signal is the input to an LTI system. The
signal has a Fourier series representation

%

X([) — Z a\/dejk(’rr/él)ty

k=—x

where « is a real number between 0 and 1, and the frequency response of the system
is

. I, =W
H =17 .
(o) { 0, |o|>WwW
How large must W be in order for the output of the system to have at least 90% of
the average energy per period of x(1)?

As we have seen in this chapter, the concept of an eigenfunction is an extremely
important tool in the study of LTI systems. The same can be said for linear, but time-
varying, systems. Specifically, consider such a system with input x(¢) and output
y(£). We say that a signal ¢(z) is an eigenfunction of the system if

(1) — A1)

That is, if x(t) = ¢(¢t), then y(r) = A¢(r), where the complex constant A is called
the eigenvalue associated with ¢(t).
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(a) Suppose that we can represent the input x(#) to our system as a linear combina-
tion of eigenfunctions ¢, (), each of which has a corresponding eigenvalue A;;
that is,

L

x(t) = > cubi(t).

=—

Express the output y(¢) of the system in terms of {c}, {(?)}, and {A}.
(b) Consider the system characterized by the differential equation
,d?x(t)  dx(t)

dr? i dt

¥ =t .
Is this system linear? Is it time invariant?
(¢) Show that the functions

o) = t*

are eigenfunctions of the system in part (b). For each ¢,(¢), determine the cor-
responding eigenvalue A.
(d) Determine the output of the system if

x(t) = 106710 + 3¢ + %t“ + .

EXTENSION PROBLEMS

3.65. Two functions u(¢) and v(¢) are said to be orthogonal over the interval (a,b) if

b
J u(v*(t)dt = 0. (P3.65-1)

a

If, in addition,

b b
J luPde =1 = J v(n* dt,

a a

the functions are said to be normalized and hence are called orthonormal. A set of

functions {¢(?)} is called an orthogonal (orthonormal) set if each pair of functions

in the set is orthogonal (orthonormal).

(a) Consider the pairs of signals u(#) and v(t) depicted in Figure P3.65. Determine
whether each pair is orthogonal over the interval (0, 4).

(b) Are the functions sin mwot and sin nwot orthogonal over the interval (0, T),
where T = 2m/w(? Are they alsd orthonormal?

(¢) Repeat part (b) for the functions ¢,,(?) and ¢,(t), where

—_—

1 .
o) = ﬁ[cos kwot + sin kwot].
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Exponentials with
time constant = 1

N

Exponentials with
time constant = 1

v(t)

wA

(d)
Figure P3.65

(d) Show that the functions ¢¢(f) = e/*@o are orthogonal over any interval of
length T = 27/wy. Are they orthonormal?
(e) Let x(#) be an arbitrary signal, and let x,(f) and x.(¢) be, respectively, the odd

and even parts of x(z). Show that x,(¢) and x.(f) are orthogonal over the interval
(—7T,T)forany T.
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(f) Show that if {¢,(?)} is a set of orthogonal signals over the interval (q, b), then
the set {(1/ /A;)¢d,(1)}, where

b
m=fmw%n

is orthonormal.
(g) Let{;(1)} be a set of orthonormal signals on the interval (a, b), and consider a
signal of the form

x(1) = > aiito)

where the a; are complex constants. Show that

b
[RECRZEDITE

(h) Suppose that ¢(7),..., ¢n(¢) are nonzero only in the time interval 0 < ¢
= T and that they are orthonormal over this time interval. Let L; denote the
LTI system with impulse response

hi(t) = d(T — 0. (P3.65-2)

Show that if ¢ ;(¢) is applied to this system, then the output at time T is 1 if
i = jand Qif i # j. The system with impulse response given by eq. (P3.65-2)
was referred to in Problems 2.66 and 2.67 as the matched filter for the signal
di(0).

3.66. The purpose of this problem is to show that the representation of an arbitrary pe-
riodic signal by a Fourier series or, more generally, as a linear combination of any
set of orthogonal functions is computationally efficient and in fact very useful for
obtaining good approximations of signals.!?

Specifically, let {¢p;()},i = 0, =1, £2,... be a set of orthonormal functions
on the interval a = ¢t = b, and let x(¢) be a given signal. Consider the follow-
ing approximation of x(#) over the intervala =< ¢t < b:

+N

20 = D aii(o). (P3.66-1)

i=—N

Here, the 4; are (in general, complex) constants. To measure the deviation between
x(t) and the series approximation Xy(#), we consider the error ey (¢) defined as

en(t) = x(t) — En(2). (P3.66-2)

A reasonable and widely used criterion for measuring the quality of the approxima-
tion is the energy in the error signal over the interval of interest—that is, the integral

12See Problem 3.65 for the definitions of orthogonal and orthonormal functions.
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of the square of the magnitude of the error over the intervala = ¢t < b:
b
E = f len(n)|? dt. (P3.66-3)
a
(a) Show that E is minimized by choosing

b
a = j OB (1) dr. (P3.66-4)

a

[Hint: Use eqs. (P3.66-1)—(P3.66-3) to express E in terms of a;, ¢;(¢), and x(¢).
Then express a; in rectangular coordinates as a; = b; + jc¢;, and show that the
equations

JE oE
_ = = ] — —+ +
b; 0 and e 0,i=0=x1,=%2...,N
are satisfied by the a; as given by eq. (P3.66-4).]
(b) How does the result of part (a) change if

b
A = J |i(0)|* dt

and the {¢;(¢)} are orthogonal but not orthonormal?

(c) Let ¢, (1) = e/™ and choose any interval of length Ty = 27/w,. Show that
the g; that minimize E are as given in eq. (3.50).

(d) The set of Walsh functions is an often-used set of orthonormal functions. (See
Problem 2.66.) The set of five Walsh functions, ¢g(), ¢ (7), . . ., P4(2), is illus-
trated in Figure P3.66, where we have scaled time so that the ¢;(¢) are nonzero
and orthonormal over the interval 0 < ¢ < 1. Let x(¢) = sin 7r¢. Find the ap-
proximation of x(¢) of the form

4
() = > aii(h)

i=0

such that

1
J |x(t) — 2(0)|* dt
0

is minimized.
(e) Show that £y(¢) in eq. (P3.66-1) and en(?) in eq. (P3.66-2) are orthogonal if
the g; are chosen as in eq. (P3.66—4).

The results of parts (a) and (b) are extremely important in that they show
that each coefficient a; is independent of all the other a;’s, i # j. Thus, if
we add more terms to the approximation [e.g., if we compute the approxi-
mation Zx.1(#)], the coefficients of ¢;(f),i = 1,..., N, that were previously
determined will not change. In contrast to this, consider another type of se-
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$olt)
]
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(b)
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©) Figure P3.66

ries expansion, the polynomial Taylor series. The infinite Taylor series for e

ise =1+1¢+4 /2! + ..., but as we shall show, when we consider a finite
polynomial series and the error criterion of eq. (P3.66-3), we get a very different
result.

Specifically, let ¢po(t) = 1, d1(t) = t, P»(t) = 2, and so on.
() Are the ¢;(?) orthogonal over the interval 0 < ¢ < 1?
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(g

(h)
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Consider an approximation of x(t) = ¢’ over the interval 0 =< ¢ =< 1 of the form

Xo(t) = appo(t).

Find the value of a; that minimizes the energy in the error signal over the in-
terval.
We now wish to approximate ¢’ by a Taylor series using two terms—i.e.,
21(t) = ag + a;t. Find the optimum values for ay and a;. [Hint: Compute E in
terms of @y and a;, and then solve the simultaneous equations

I9E _ 0 and 9E _ 0.

ﬁao ﬁal
Note that your answer for ag has changed from its value in part (g), where there
was only one term in the series. Further, as you increase the number of terms in
the series, that coefficient and all others will continue to change. We can thus
see the advantage to be gained in expanding a function using orthogonal terms. ]

3.67 As we discussed in the text, the origins of Fourier analysis can be found in problems
of mathematical physics. In particular, the work of Fourier was motivated by his
investigation of heat diffusion. In this problem, we illustrate how the Fourier series

enter into the investigation.

13

Consider the problem of determining the temperature at a given depth beneath

the surface of the earth as a function of time, where we assume that the temperature
at the surface is a given function of time 7T'(¢) that is periodic with period 1. (The
unit of time is one year.) Let T(x, ) denote the temperature at a depth x below the
surface at time 7. This function obeys the heat diffusion equation

IT(x, 1) 1 ,3*T(x, 1)
= k1
ot 2 ax?

(P3.67-1)

with auxiliary condition

TO,t) = T(1). (P3.67-2)

Here, k is the heat diffusion constant for the earth (k > 0). Suppose that we expand
T(t) in a Fourier series:

+ ¢
T(1) = > ame/™™. (P3.67-3)

n=—x

Similarly, let us expand T'(x, t) at any given depth x in a Fourier series in t. We
obtain

+
T(x,1)= > byx)e™™ (P3.67- %)

n=-—ox

where the Fourier coefficients b,(x) depend upon the depth x.

13The problem has been adapted from A. Sommerfeld, Partial Differential Equations in Physics (R
York: Academic Press, 1949), pp 68-71. :
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Use egs. (P3.67-1)—(P3.67—4) to show that b,(x) satisfies the differential equa-
tion

d*b,(x)  4mjn
dx2 K

bn(x) (P367—53)

with auxiliary condition
b,(0) = ay. (P3.67-5b)

Since eq. (P3.67-5a) is a second-order equation, we need a second auxiliary
condition. We argue on physical grounds that, far below the earth’s surface, the
variations in temperature due to surface fluctuations should disappear. That is,

lim T'(x,t) = a constant. (P3.67-5¢)

X—x

(b) Show that the solution of egs. (P3.67-5) is

a,exp[—2mln|(1 + jHx/kl, n =0

bn ) = .
* [a,, exp[—2m|n|(1 — j)x/k], n =20

(¢) Thus, the temperature oscillations at depth x are damped and phase-shifted ver-

sions of the temperature oscillations at the surface. To see this more clearly,
let

T(t) = ag + a; sin2t

(so that a, represents the mean yearly temperature). Sketch T'(r) and T'(x, t) over

a one-year period for
[T
x =k E ,

ay = 2, and a; = 1. Note that at this depth not only are the temperature os-
cillations significantly damped, but the phase shift is such that it is warmest in
winter and coldest in summer. This is exactly the reason why vegetable cellars
are constructed!

3.68. Consider the closed contour shown in Figure P3.68. As illustrated, we can view this
curve as being traced out by the tip of a rotating vector of varying length. Let r(6)
denote the length of the vector as a function of the angle #. Then r(8) is periodic in
6 with period 27 and thus has a Fourier series representation. Let {a,} denote the
Fourier coefficients of r(6).

(a) Consider now the projection x(8) of the vector r(6) onto the x-axis, as indicated

in the figure. Determine the Fourier coefficients for x(6) in terms of the a;’s.

(b) Consider the sequence of coefficients

bk — akejkﬂ'/4.

Sketch the figure in the plane that corresponds to this set of coefficients.
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3.69.
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Figure P3.68
(c) Repeat part (b) with
bk = ak8[k]

(d) Sketch figures in the plane such that r(6) is not constant, but does have each of
the following properties:
(1) r(0)iseven.
(i1) The fundamental period of () is .
(ii1) The fundamental period of r(0) is /2.

In this problem, we consider the discrete-time counterpart of the concepts introduced
in Problems 3.65 and 3.66. In analogy with the continuous-time case, two discrete-

time signals ¢[n] and ¢,,[n] are said to be orthogonal over the interval (N, N>)
if

& An k=
z di[nl,,[n] = [ok’ ' ; n’fl’ (P3.69-1)
n=N, ’

If the value of the constants A, and A,, are both 1, then the signals are said to be
orthonormall.

(a) Consider the signals

Gulnl = 8[n—klk =0,%1,%2,... +N.

Show that these signals are orthonormal over the interval (=N, N).
(b) Show that the signals

$iln] = /FC™Nm | = 0,1,...,N -1,

are orthogonal over any interval of length N.
(c) Show thatif - ”

M
x[n] = Z‘!id’i[n].
=1
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where the ¢;[n] are orthogonal over the interval (Ny, N,), then

Nz M
> |xlnll = > laiPAs.
n=N, i=1

(d) Let ¢;[n],i = 0,1,..., M, be a set of orthogonal functions over the interval
(N1, N3), and let x[n] be a given signal. Suppose that we wish to approximate
x[n] as a linear combination of the ¢;[n]; that is,

M
£[nl = > aidiln,
i=0

where the a; are constant coefficients. Let
e[n] = x[n] — %[n],

and show that if we wish to minimize

N,
E= > len,

n=N,

then the a; are given by

1
ai = - > x[nle;Inl. (P3.69-2)

Ln=N,

[Hint: As in Problem 3.66, express E in terms of a;, ¢;[n], A;, and x[n], write
a; = b; + jc;, and show that the equations
IE IE

&fbi =0 and (7_('1 =0
are satisfied by the a; given by eq. (P3.69-2). Note that applying this result
when the ¢;[n] are as in part (b) yields eq. (3.95) for a;.]

(e) Apply the result of part (d) when the ¢;[n] are as in part (a) to determine the
coefficients a; in terms of x[n].

3.70. (a) In this problem, we consider the definition of the two-dimensional Fourier se-
ries for periodic signals with two independent variables. Specifically, consider
a signal x(ty, t,) that satisfies the equation

x(t;, ) = x(ty + Ty, t, + T»), for all 1y, t,.

This signal is periodic with period T in the #; direction and with period T in
the #, direction. Such a signal has a series representation of the form

+00 +0

x(t, 8) = Z Z Qe Mt nosn)

n=—om=-—w
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where
w] = 27T/T1, wy = 27T/T2

Find an expression for a,,, in terms of x(¢,, 12).

(b) Determine the Fourier series coefficients a,,,, for the following signals:
(1) cos(2mt; + 217)
(ii) the signal illustrated in Figure P3.70

X(t4 tp) = 1 in shaded areas and
0 elsewhere

Figure P3.70

3.71. Consider the mechanical system shown in Figure P3.71. The differential equation
relating velocity v(#) and the input force f(¢) is given by

Bv(t) + KJ w(t)dt = f(1).

v(t)

ft)

=[]
AN

Figure P3.71
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(a) Assuming that the output is f(r), the compressive force acting on the spring,
write the differential equation relating f;(¢) and f(#). Obtain the frequency re-
sponse of the system, and argue that it approximates that of a lowpass filter.

(b) Assuming that the output is f;(¢), the compressive force acting on the dash-
pot, write the differential equation relating f;(¢) and f(¢). Obtain the frequency
response of the system, and argue that it approximates that of a highpass filter.
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THE CONTINUOUS-TIME FOURIER

TRANSFORM

4.0 INTRODUCTION

284

In Chapter 3, we developed a representation of periodic signals as linear combinations of
complex exponentials. We also saw how this representation can be used in describing the
effect of L'T1 systems on signals.

In this and the following chapter, we extend these concepts to apply to signals that are
not periodic. As we will see, a rather large class of signals, including all signals with finite
energy, can also be represented through a linear combination of complex exponentials.
Whereas for periodic signals the complex exponential building blocks are harmonically
related, for aperiodic signals they are infinitesimally close in frequency, and the represen-
tation in terms of a linear combination takes the form of an integral rather than a sum. The
resulting spectrum of coefficients in this representation is called the Fourier transform, and
the synthesis integral itself, which uses these coefficients to represent the signal as a linear
combination of complex exponentials, is called the inverse Fourier transform.

The development of this representation for aperiodic signals in continuous time is
one of Fourier’s most important contributions, and our development of the Fourier trans-
form follows very closely the approach he used in his original work. In particular, Fourier
reasoned that an aperiodic signal can be viewed as a periodic signal with an infinite pe-
riod. More precisely, in the Fourier series representation of a periodic signal, as the period
increases the fundamental frequency decreases and the harmonically related components
become closer in frequency. As the period becomes infinite, the frequency components
form a continuum and the Fourier series sum becomes an integral. In the next section
we develop the Fourier series representation for continuous-time periodic signals, and
in the sections that follow we build on this foundation as we explore many of the important
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properties of the continuous-time Fourier transform that form the foundation of frequency-
domain methods for continuous-time signals and systems. In Chapter 5, we parallel this
development for discrete-time signals.

4.1 REPRESENTATION OF APERIODIC SIGNALS:
THE CONTINUOUS-TIME FOURIER TRANSFORM

4.1.1 Development of the Fourier Transform Representation
of an Aperiodic Signal

To gain some insight into the nature of the Fourier transform representation, we begin by
revisiting the Fourier series representation for the continuous-time periodic square wave
examined in Example 3.5. Specifically, over one period,

_ 1, It’ <T
X0 = {0, T, < |t < TR

and periodically repeats with period 7, as shown in Figure 4.1.
As determined in Example 3.5, the Fourier series coefficients a; for this square wave
are

_ 2sin(kwoT))

[eq. (3.44)] ag koo T

4.1)
where wo = 27r/T. In Figure 3.7, bar graphs of these coefficients were shown for a fixed
value of T and several different values of T.

An alternative way of interpreting eq. (4.1) is as samples of an envelope function,
specifically,

Ta, = 280@T . 4.2)
w w = kwg

That is, with w thought of as a continuous variable, the function (2 sin wT'|)/w represents
the envelope of Tay, and the coefficients a; are simply equally spaced samples of this
envelope. Also, for fixed T, the envelope of Ta, is independent of 7. In Figure 4.2, we
again show the Fourier series coefficients for the periodic square wave, but this time as
samples of the envelope of Tay, as specified in eq. (4.2). From the figure, we see that as

x(t)

_| 1 1 | l'

|
—2T -T I-, T, I T 2T t
2

2

Figure 4.1 A continuous-time periodic square wave.
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Figure 4.2  The Fourier series co-
efficients and their envelope for the
periodic square wave in Figure 4.1 for
several values of T (with T; fixed):
@T=4T; (D) T =8N () T =
1675.

T increases, or equivalently, as the fundamental frequency wy = 27/T decreases, the
envelope is sampled with a closer and closer spacing. As T becomes arbitrarily large,
the original periodic square wave approaches a rectangular pulse (i.e., all that remains in
the time domain is an aperiodic signal corresponding to one period of the square wave).
Also, the Fourier series coefficients, multiplied by T, become more and more closely
spaced samples of the envelope, so that in some sense (which we will specify shortly)
the set of Fourier series coefficients approaches the envelope function as T — .

This example illustrates the basic idea behind Fourier’s development of a represen-
tation for aperiodic signals. Specifically, we think of an aperiodic signal as the limit of a
periodic signal as the period becomes arbitranly large, and we examine the limiting be-
havior of the Fourier series representation for this signal. In particular, consider a signal
x(¢) that is of finite duration. That is, for some number 7y, x(f) = 0 if |¢| > T}, as illus-
trated in Figure 4.3(a). From this aperiodic signal, we can construct a periodic signal X(r)
for which x(z) is one period, as indicated in Figure 4.3(b). As we choose the period T to:
be larger, %(¢) is identical to x(f) over a longer interval, and as T — =, ¥(f) is equal to
x(t) for any finite value of ¢.

Let us now examine the effect of this on the Fourier series representation of (#)..
Rewriting eqgs. (3.38) and (3.39) here for convenience, with the integral in eq. (3.39)
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x(t)

(a)

X(

T
(b)

Figure 4.3 (a) Aperiodic signal x(f); (b) periodic signal X(t), constructed
to be equal to x(t) over one period.

carried out over the interval —T7/2 = ¢ < T/2, we have

+o0
Xt = > agelt,

k=—x

ak=_

T2 )
= J (t)e kel gy,

=772

287

4.3)

“4.4)

where wg = 27/T. Since %(t) = x(¢) for |¢t| < T/2, and also, since x(t) = 0 outside this

interval, eq. (4.4) can be rewritten as

T _ 1 [+ '
J x(t)e kel dy = —J x(t)e Tkt dy.
- T

ak=T

—oo

Therefore, defining the envelope X(jw) of Ta; as

+ oo

X(jw) = J x(H)e /'dt,

—oc

a‘» - X( kw“).
T .]

Combining eqs. (4.6) and (4.3), we can express X(¢) in terms of X(jw) as

+00
)= > 2 X(jkaoe!,
or equivalently, since 27/T = wy,

+o0
1) = 2—11; > X(jkwo)el v wy.

= —0

4.5)

(4.6)

4.7
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As T — oo, %(t) approaches x(t), and consequently, in the limit eq. (4.7) becomes a rep-
resentation of x(¢). Furthermore, wg — 0 as T — oo, and the right-hand side of eq. (4.7)
passes to an integral. This can be seen by considering the graphical interpretation of the
equation, illustrated in Figure 4.4. Each term in the summation on the right-hand side is
the area of a rectangle of height X(jkwg)e/*“v" and width wg. (Here, ¢ is regarded as fixed.)
As wy — 0, the summation converges to the integral of X(jw)e/®!. Therefore, using
the fact that ¥(#) — x(¢) as T — o, we see that eqgs. (4.7) and (4.5) respectively become

1 (*" :
x(t) = —J X(jw)e! dw (4.8)
27w
and

+o0 ]

X(jw) = J x(He /*'dt. 4.9)

X(jw)e™!
Area = X(jkwg)e 0! o
m ————————— /
—
(k + 1)og
Koo ° Figure 4.4 Graphical interpretation
0

of eq. (4.7).

Equations (4.8) and (4.9) are referred to as the Fourier transform pair, with the func-
tion X(jw) referred to as the Fourier Transform or Fourier integral of x(t) and eq. (4.8)
as the inverse Fourier transform equation. The synthesis equation (4.8) plays a role for
aperiodic signals similar to that of eq. (3.38) for periodic signals, since both represent a
signal as a linear combination of complex exponentials. For periodic signals, these com-
plex exponentials have amplitudes {a,}, as given by eq. (3.39), and occur at a discrete set
of harmonically related frequencies kwg, K = 0, =1, £2,.... For aperiodic signals, the
complex exponentials occur at a continuum of frequencies and, according to the synthesis
equation (4.8), have “amplitude” X(jw)(dw/27). In analogy with the terminology used
for the Fourier series coefficients of a periodic signal, the transform X(jw) of an aperiodic
signal x(#) is commonly referred to as the spectrum of x(¢), as it provides us with the in-
formation needed for describing x(¢) as a linear combination (specifically, an integral) of
sinusoidal signals at different frequencies.

Based on the above development, or equivalently on a comparison of eq. (4.9) and
eq. (3.39), we also note that the Fourier coefficients a; of a periodic signal %(f) can be
expressed in terms of equally spaced samples of the Fourier transform of one period of x(z).
Specifically, suppose that () is a periodic signal with period T and Fourier coefficients
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ay. Let x(¢) be a finite-duration signal that is equal to X(t) over exactly one period—say,
fors =t = s+ T for some value of s—and that is zero otherwise. Then, since eq. (3.39)
allows us to compute the Fourier coefficients of %(f) by integrating over any period,
we can write

a, = l ot 7 —Jkoot gy — Lt —jkoot 4
k=7 X(t)e t=7 x(t)e t.
$ s

Since x() is zero outside the range s =< t < s + T we can equivalently write
1(* -
a = = J:x x(f)e ket gy,
Comparing with eq. (4.9) we conclude that

, (4.10)

w = kw

1 .
ap = TX(]W)

where X(jw) is the Fourier transform of x(¢). Equation 4.10 states that the Fourier coef-
ficients of %(r) are proportional to samples of the Fourier transform of one period of X(z).
This fact, which is often of use in practice, is examined further in Problem 4.37.

4.1.2 Convergence of Fourier Transforms

Although the argument we used in deriving the Fourier transform pair assumed that x(¢)
was of arbitrary but finite duration, eqs. (4.8) and (4.9) remain valid for an extremely broad
class of signals of infinite duration. In fact, our derivation of the Fourier transform suggests
that a set of conditions like those required for the convergence of Fourier series should also
apply here, and indeed, that can be shown to be the case.! Specifically, consider X(jw)
evaluated according to eq. (4.9), and let X(¢) denote the signal obtained by using X(jw) in
the right-hand side of eq. (4.8). That is,

4o

() = % j X(jw)e' dw.

What we would like to know is when eq. (4.8) is valid [i.e., when is %(¢) a valid represen-
tation of the original signal x(¢)?]. If x(¢z) has finite energy, i.e., if it is square integrable,
so that

J ’ |x()PPdt < o, 4.11)

—

then we are guaranteed that X(jw) is finite [i.e., eq. (4.9) converges] and that, with e(¢)
denoting the error between £(¢) and x(?) [i.e., e(?) = X(¢) — x(?)],

!For a mathematically rigorous discussion of the Fourier transform and its properties and applications,
see R. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (New York: McGraw-Hill Book Com-
pany, 1986); A. Papoulis, The Fourier Integral and Its Applications (New York: McGraw-Hill Book Company,
1987); E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Oxford: Clarendon Press, 1948); and
the book by Dym and McKean referenced in footnote 2 of Chapter 3. '
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JM le(n)|*dr = 0. (4.12)

Equations (4.11) and (4.12) are the aperiodic counterparts of egs. (3.51) and (3.54) for
periodic signals. Thus, in a manner similar to that for periodic signals, if x(f) has finite
energy, then, although x(#) and its Fourier representation (¢} may differ significantly at
individual values of ¢, there is no energy in their difference.

Just as with periodic signals, there is an alternative set of conditions which are suffi-
cient to ensure that x(¢) is equal to x(¢) for any ¢ except at a discontinuity, where it is equal
to the average of the values on either side of the discontinuity. These conditions, again
referred to as the Dirichlet conditions, require that:

1. x(z) be absolutely integrable; that is,

J ’ |x(n)|dt < e. (4.13)

—%

2. x(t) have a finite number of maxima and minima within any finite interval.

3. x(¢) have a finite number of discontinuities within any finite interval. Futhermore,
each of these discontinuities must be finite.

Therefore, absolutely integrable signals that are continuous or that have a finite number of
discontinuities have Fourier transforms.

Although the two alternative sets of conditions that we have given are sufficient to
guarantee that a signal has a Fourier transform, we will see in the next section that peri-
odic signals, which are neither absolutely integrable nor square integrable over an infinite
interval, can be considered to have Fourier transforms if impulse functions are permitted
in the transform. This has the advantage that the Fourier series and Fourier transform can
be incorporated into a common framework, which we will find to be very convenient in
subsequent chapters. Before examining the point further in Section 4.2, however, let us
consider several examples of the Fourier transform.

4.1.3 Examples of Continuous-Time Fourier Transforms

Example 4.1
Consider the signal
x(t) = e “u(t) a>0.

From eq. (4.9),

©

X(jo) = f e %e It = -1 g ey
0 a+ jo

. 1
X(jw) = atjo a>0.
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Since this Fourier transform is complex valued, to plot it as a function of w, we express
X(jo) in terms of its magnitude and phase:

. _ 1 . _ -1[@
IX(]O))| = m, {X(]w) = tan (a).

Each of these components is sketched in Figure 4.5.

Note that if a is complex rather than real, then x(z) is absolutely integrable as long
as Re{a} > 0, and in this case the preceding calculation yields the same form for X(jw).
That is,

X(jo) = ——, Refa} >0,

a+ jo

®
(@)

IX(jw)

w2

N w4

: a

Y ! o

—m/4 F——
__________________ o2

Figure 4.5 Fourier transform of the signal x(t) = e~#u(t), a > 0, consid-
ered in Example 4.1.

Example 4.2
© Let

x(t) = e, a>o0.
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This signal is sketched in Figure 4.6. The Fourier transform of the signal is

+ 0 =
X(jow) = J el gmiwt gy — J e IO dr + J e Moot
0

—x -

1 1
a— jo a+ jw
2a
a’ + w?

In this case X(jw) is real, and it is illustrated in Figure 4.7.

x(t)

—

Figure 4.6 Signal x(t) = e of Example 4.2.

X{jo)
2/a

1/a

P I

—a [}

Figure 4.7 Fourier transform of the signal considered in Example 4.2 and
depicted in Figure 4.6.

Example 4.3

Now let us determine the Fourier transform of the unit impulse

x(1) = 8(2). (4.14)
Substituting into eq. (4.9) yields
+oo
X(jw) = J S(He /' dt = 1. (4.15)

That is, the unit impulse has a Fourier transform consisting of equal contributions at a//
frequencies.
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Example 4.4

Consider the rectangular pulse signal

L | <T

0, lf|>1" (4.16)

x(t) = {

as shown in Figure 4.8(a). Applying eq. (4.9), we find that the Fourier transform of this

signal is
T, . .
X(jw) = f e ot gy = ST 4.17)
-T) w
as sketched in Figure 4.8(b).
x(t)
-T, T
(a)
X(jw)
2T,
\_//\ A Fd /\\/
\-/_1[ a \/ ¢
(b)

Figure 4.8 (a) The rectangular pulse signal of Example 4.4 and (b) its
Fourier transform.

As we discussed at the beginning of this section, the signal given by eq. (4.16) can be
thought of as the limiting form of a periodic square wave as the period becomes arbitrarily
large. Therefore, we might expect that the convergence of the synthesis equation for this
signal would behave in a manner similar to that observed in Example 3.5 for the square
wave. This is, in fact, the case. Specifically, consider the inverse Fourier transform for the
rectangular pulse signal:

"~ ZM e/ dw.

£(t) = %f

-00

Then, since x(¢) is square integrable,
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+oc
J |x(r) — #(t)[* dt = 0.
Furthermore, because x(r) satisfies the Dirichlet conditions, £(f) = x(f), except at the
points of discontinuity, ¢ = *T;, where X(f) converges to 1/2, which is the average of
the values of x(¢) on both sides of the discontinuity. In addition, the convergence of x(t)
to x(¢) exhibits the Gibbs phenomenon, much as was illustrated for the periodic square
wave in Figure 3.9. Specifically, in analogy with the finite Fourier series approximation,
eq. (3.47), consider the following integral over a finite-length interval of frequencies:

o J i ZLWT' e/ dw.
2w -W w

As W — oo, this signal converges to x(f) everywhere, except at the discontinuities. More-
over, the signal exhibits ripples near the discontinuities. The peak amplitude of these rip-
ples does not decrease as W increases, although the ripples do become compressed toward
the discontinuity, and the energy in the ripples converges to zero.

Example 4.5

Consider the signal x(#) whose Fourier transform is

1, |wl<W

X(jw) = [0’ o] > W (4.18)

This transform is illustrated in Figure 4.9(a). Using the synthesis equation (4.8), we can

X(jw)
1
-W w ®
(@)
x(t)
W/n
t
—-n/W  m/W

(b)

Figure 4.9 Fourier transform pair of Example 4.5: (a) Fourier transform for
Example 4.5 and (b) the corresponding time function.
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then determine

1 (v . sin Wt
= jot o) =
x(2) 27TJ e“'dw , “4.19)

W Tt

which is depicted in Figure 4.9(b).

Comparing Figures 4.8 and 4.9 or, equivalently, eqs. (4.16) and (4.17) with eqs.
(4.18) and (4.19), we see an interesting relationship. In each case, the Fourier transform
pair consists of a function of the form (sinaf)/b6 and a rectangular pulse. However, in
Example 4.4, it is the signal x(z) that is a pulse, while in Example 4.5, it is the transform
X(jw). The special relationship that is apparent here is a direct consequence of the duality
property for Fourier transforms, which we discuss in detail in Section 4.3.6.

Functions of the form given in eqs. (4.17) and (4.19) arise frequently in Fourier
analysis and in the study of LTI systems and are referred to as sinc functions. A commonly
used precise form for the sinc function is

sin 6
770

The sinc function is plotted in Figure 4.10. Both of the signals in eqs. (4.17) and (4.19)
can be expressed in terms of the sinc function:

———2 sinwT, = 2T, sinc (w_T])
T

sinc(@) = (4.20)

w
sinWte W . (Wt)
= —sinc|{—|.
Tt T T
sinc ()
1
NS

/ L
NS 0 N2 3 ®  Figure 4.10 The sinc function.

Finally, we can gain insight into one other property of the Fourier transform by
examining Figure 4.9, which we have redrawn as Figure 4.11 for several different values
of W. From this figure, we see that as W increases, X(jw) becomes broader, while the
main peak of x(¢) at + = O becomes higher and the width of the first lobe of this sig-
nal (i.e., the part of the signal for |t| < #/W) becomes narrower. In fact, in the limit as
W — «, X(jw) = 1 for all w, and consequently, from Example 4.3, we see that x(¢) in
eq. (4.19) converges to an impulse as W — . The behavior depicted in Figure 4.11 is
an example of the inverse relationship that exists between the time and frequency domains,
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X4{t)
W1/1T
Xo(t)
W2/1T
—’IT/W1 1T/W1
t t
*"IT/Wz 1T/W2
Xi(jo) Xo(jw)
1 1
—W,y w, o —W,y W, o
(@) (b)
x3(t)
Wa/m
_’IT/W3 'Tl'/W3 t
Xa(jw)
—W; W ®
{0)
Figure 4.11 Fourier transform pair of Figure 4.9 for several different values of W.

and we can see a similar effect in Figure 4.8, where an increase in T broadens x(¢) but
makes X(jw) narrower. In Section 4.3.5, we provide an explanation of this behavior in the
context of the scaling property of the Fourier transform.

4.2 THE FOURIER TRANSFORM FOR PERIODIC SIGNALS

In the preceding section, we introduced the Fourier transform representation and gave
several examples. While our attention in that section was focused on aperiodic signals, we
can also develop Fourier transform representations for periodic signals, thus allowing us to



Sec. 4.2 The Fourier Transform for Periodic Signals 297

consider both periodic and aperiodic signals within a unified context. In fact, as we will see,
we can construct the Fourier transform of a periodic signal directly from its Fourier series
representation. The resulting transform consists of a train of impulses in the frequency
domain, with the areas of the impulses proportional to the Fourier series coefficients. This
will turn out to be a very useful representation.

To suggest the general result, let us consider a signal x(¢) with Fourier transform
X(jw) that is a single impulse of area 27 at w = wy; that is,

X(jw) = 2mé(w — wy). “4.21)

To determine the signal x(¢) for which this is the Fourier transform, we can apply the
inverse transform relation, eq. (4.8), to obtain

+oc
LJ 28 (w — wo)el dw
2

—x

x(t)
= elwol

More generally, if X(jw) is of the form of a linear combination of impulses equally spaced
in frequency, that is,

X(jw) = > 2maid(w — kw), (4.22)
k=—o

then the application of eq. (4.8) yields

+c
x(t) = > aelt. (4.23)
k=~

We see that eq. (4.23) corresponds exactly to the Fourier series representation of a periodic
signal, as specified by eq. (3.38). Thus, the Fourier transform of a periodic signal with
Fourier series coefficients {a;} can be interpreted as a train of impulses occurring at the
harmonically related frequencies and for which the area of the impulse at the kth harmonic
frequency kwg is 277 times the kth Fourier series coefficient ay.

Example 4.6

Consider again the square wave illustrated in Figure 4.1. The Fourier series coefficients
for this signal are

sin kw0T|

aiy =
wk

»

and the Fourier transform of the signal is

o .
X(jw) = > 28nkeoly ’Z"(JT‘ 8@ — ko),
k=—=
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which is sketched in Figure 4.12 for T = 4T;. In comparison with Figure 3.7(a), the
only differences are a proportionality factor of 27r and the use of impulses rather than a

bar graph.

7 \
P “~
-1~ S [ 4 P,
iy SN o ] e . . o f bV e Y
~ [ — A ~ 4
Y- AN / wg wy ,/ N w
N 4 \ ’
NYs ‘ NL”

Figure 4.12 Fourier transform of a symmetric periodic square wave.

Example 4.7
- Let

x(t) = sinwgt.

The Fourier series coefficients for this signal are

a, = 5

a;, =0, k#1 or -1
Thus, the Fourier transform is as shown in Figure 4.13(a). Similarly, for
x(t) = coswyt,

the Fourier series coefficients are

1
a = a-; = 5»

a, =0, k#1 or —1.

* The Fourier transform of this signal is depicted in Figure 4.13(b). These two transforms
will be of considerable importance when we analyze sinusoidal modulation systems in
Chapter 8.
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X(j)

T
1

X(jw)

€_>=]
pr— =

(b)

Figure 4.13 Fourier transforms of (a) x(f) = sin wyt; (b) x(f) = c0S wyl.

Example 4.8

A signal that we will find extremely useful in our analysis of sampling systems in Chap-
ter 7 is the impulse train

x(t) = i o6(t — kT),

k=—w

which is periodic with period 7, as indicated in Figure 4.14(a). The Fourier series coef-
ficients for this signal were computed in Example 3.8 and are given by

1 +T72 " 1
= — —Jkwolt = —
ak = 7 Lm 8(t)e dt T

That is, every Fourier coefficient of the periodic impulse train has the same value, 1/T.
Substituting this value for a, in eq. (4.22) yields

k=—o

Thus, the Fourier transform of a periodic impulse train in the time domain with pe-
riod T is a periodic impulse train in the frequency domain with period 27/T, as sketched
in Figure 4.14(b). Here again, we see an illustration of the inverse relationship between
the time and the frequency domains. As the spacing between the impulses in the time
domain (i.e., the period) gets longer, the spacing between the impulses in the frequency
domain (namely, the fundamental frequency) gets smaller.
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x(t)

T w

T

_4m
T

Figure 4.14 (a) Periodic impulse train; (b) its Fourier transform.

)
—1\:1 .
N
=

[FS
Y e—

o
N

4.3 PROPERTIES OF THE CONTINUOUS-TIME FOURIER TRANSFORM

In this and the following two sections, we consider a number of properties of the Fourier
transform. A detailed listing of these properties is given in Table 4.1 in Section 4.6. As was
the case for the Fourier series representation of periodic signals, these properties provide
us with a significant amount of insight into the transform and into the relationship between
the time-domain and frequency-domain descriptions of a signal. In addition, many of the
properties are often useful in reducing the complexity of the evaluation of Fourier trans-
forms or inverse transforms. Furthermore, as described in the preceding section, there is
a close relationship between the Fourier series and Fourier transform representations of a
periodic signal, and using this relationship, we can translate many of the Fourier transform
properties into corresponding Fourier series properties, which we discussed independently
in Chapter 3. (See, in particular, Section 3.5 and Table 3.1.)

Throughout the discussion in this section, we will be referring frequently to functions
of time and their Fourier transforms, and we will find it convenient to use a shorthand
notation to indicate the pairing of a signal and its transform. As developed in Section 4.1,
asignal x(¢) and its Fourier transform X(jw) are related by the Fourier transform synthesis
and analysis equations,

leq. (4.8)] (1) = - f X(jw)e dew (4.24)
21

—%

and

fc

[eq. (4.9)] X(jw) = J x(t)e /@dt. (4.25)

—%
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We will sometimes find it convenient to refer to X{ jw) with the notation F{x(r)} and
to x(t) with the notation F ~'{X(jw)}. We will also refer to x(¢) and X(jw) as a Fourier
transform pair with the notation

¥
x(1) «— X(jo).

Thus, with reference to Example 4.1,

1 — —at
a+ _](U - g{e u(t)}:

—at _ q-1 1
e "ui) =9 {a+jw]’

and

1

F
e u(t) «— —
a+ jo

4.3.1 Linearity

If
F
x(1) «— X(jow)
and
fF .
¥ «— Y(jw),
then

ax(t) + by(t) —— aX(jo) + bY(jo). (4.26)

The proof of eq. (4.26) follows directly by application of the analysis eq. (4.25) to ax(¢) +
by(t). The linearity property is easily extended to a linear combination of an arbitrary
number of signals.

4.3.2 Time Shifting
If

¥
x(t) «— X(jw),

then

X1 — 1g) — e~ IWNX(je). 4.27)
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To establish this property, consider eq. (4.24):

1 .
— . Jjot
x(1) o f_x X(jw)e!dw.

Replacing ¢ by ¢ — 1, in this equation, we obtain

“+
x(t — to) 1 J X(jw)e/*" " de

2

1+, . A
= ﬁj <e”“’"’X( jw))ef“”dw.

Recognizing this as the synthesis equation for x(t — #3), we conclude that

Flx(t — 19)} = e /" X (jw).

Chap. 4

One consequence of the time-shift property is that a signal which is shifted in time
does not have the magnitude of its Fourier transform altered. That is, if we express X(jw)

in polar form as
Fx()} = X(jo) = |X(jo)|e! X0,
then

Tt = 1)} = e/ X(jw) = [X(jo)|e/ KU enl,

Thus, the effect of a time shift on a signal is to introduce into its transform a phase shift,

namely, —wty, which is a linear function of w.

Example 4.9

To illustrate the usefulness of the Fourier transform linearity and time-shift proper-
ties, let us consider the evaluation of the Fourier transform of the signal x(r) shown in

Figure 4.15(a).
First, we observe that x(#) can be expressed as the linear combination

x(t) = %x.(r —2.5) + xa(t — 2.5),

where the signals x;(r) and x,(r) are the rectangular pulse signals shown in Figure

4.15(b) and (c). Then, using the result from Example 4.4, we obtain

2sin(3w/2)

X (jw) =

251n:)w/2) and  Xo(jw) =

Finally, using the linearity and time-shift properties of the Fourier transform yields

X(jw) = e‘ﬁ“’/z{ sin(w/2) + 2 sin(3w/2)}

w
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Figure 4.15 Decomposing a signal into the linear combination of two sim-
pler signals. (a) The signal x(t) for Example 4.9; (b) and (c) the two compo-
nent signals used to represent x(t).

4.3.3 Conjugation and Conjugate Symmetry
The conjugation property states that if

§ .
x(t) «— X(jw),

then

() o X'(— jo). (4.28)

This property follows from the evaluation of the complex conjugate of eq. (4.25):

X*(jw) = U m x(t)e 1o dt]

+o0
= f x(H)el* dt.

Replacing w by —w, we see that

X*(—jw) = J wx*(t)e'j‘”’ dt. (4.29)

—00
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Recognizing that the right-hand side of eq. (4.29) is the Fourier transform analysis equation
for x*(¢), we obtain the relation given in eq. (4.28).

The conjugation property allows us to show that if x(z) is real, then X(jw) has con-
Jugate symmetry; that is,

X(—jow) = X*(jw) [x(?) real]. (4.30)

Specifically, if x(¢) is real so that x*(¢) = x(¢), we have, from eq. (4.29),
+cc

X' (- jw) = j KDl dt = X(jo),

—0

and eq. (4.30) follows by replacing w with —w.
From Example 4.1, with x(t) = e “u(r),

X(jw) =

a+ jw

and

X(- jw) = % — X"(jo).

As one consequence of eq. (4.30), if we express X(jw) in rectangular form as
X(jo) = RefX(jw)} + jIm{X(jw)},
then if x(¢) is real,
RefX(jo)t = Re{X(— jw)}
and
InfX(jo)} = —Im{X(~ jo)}.

That is, the real part of the Fourier transform is an even function of frequency, and the
imaginary part is an odd function of frequency. Similarly, if we express X(jw) in polar
form as

X(jo) = |X(jw)|e/ XU,

then it follows from eq. (4.30) that |X(jw)| is an even function of @ and <X(jw) is an
odd function of w. Thus, when computing or displaying the Fourier transform of a real-
valued signal, the real and imaginary parts or magnitude and phase of the transform need
only be specified for positive frequencies, as the values for negative frequencies can be
determined directly from the values for @ > 0 using the relationships just derived.

As a further consequence of eq. (4.30), if x(¢) is both real and even, then X(jw) will
also be real and even. To see this, we write

X(—jw) = J ocx(t)ej‘"’dt,

—oo
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or, with the substitution 7 = —1,

X(—jw) = I Oox(—'T)e—ijdT.

Since x(—7) = x(7), we have
4o

X(—jw) = J x(t)e Idr

—%0

= X(jw).

Thus, X(jw) is an even function. This, together with eq. (4.30), also requires that
X"(jw) = X(jw) [i-e., that X(jw) is real]. Example 4.2 illustrates this property for the
real, even signal e~ In a similar manner, it can be shown that if x(t) is a real and odd
function of time, so that x(t) = —x(—1), then X(jw) is purely imaginary and odd.

Finally, as was discussed in Chapter 1, a real function x(#) can always be expressed
in terms of the sum of an even function x.(tf) = &v{x(¥)} and an odd function x,(t) =
Od{x(t)}; that is,

x(t) = x.(t) + x,(1).
From the linearity of the Fourier transform,
Ha} = FxeO} + Fxo (0},

and from the preceding discussion, F{x.(¢)} is a real function and F{x,(#)} is purely imag-
inary. Thus, we can conclude that, with x(t) real,

F
() < X(jo),
SV} < Re{X(jw)}

Odix(D)} —— jIm{X(jo)):

One use of these symmetry properties is illustrated in the following example.

Example 4.10

Consider again the Fourier transform evaluation of Example 4.2 for the signal x(r) =
e~ where a > 0. This time we will utilize the symmetry properties of the Fourier
transform to aid the evaluation process.

From Example 4.1, we have

1

F
e "u(t) — —.
a+ jw

Note that for t > 0, x(¢) equals e”“u(r), while for ¢ < 0, x(#) takes on mirror image
values. That is,
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(1) = eV = e Uut) + e“u(—1)

e u(®) + e*u(—1)
-2| 2 ]

= 28v{e " u(?r)}.

Since e~ “u(t) is real valued, the symmetry properties of the Fourier transform lead us
to conclude that

vl u(n)} < Gie[ - jw] .

It follows that

X(jw)=2(Pue{ L ]: 2a

a+ jo a2 + w?’

which is the same as the answer found in Example 4.2.

4.3.4 Differentiation and Integration

Let x(t) be a signal with Fourier transform X(jw). Then, by differentiating both sides of
the Fourier transform synthesis equation (4.24), we obtain

+ o0
d;it) = %J joX(jw)e dw.
Therefore,
dx(t) § . .
d(t) — joX(jw). 4.31)

This is a particularly important property, as it replaces the operation of differentiation in
the time domain with that of multiplication by jw in the frequency domain. We will find
the substitution to be extremely useful in our discussion in Section 4.7 on the use of Fourier
transforms for the analysis of LTI systems described by differential equations.

Since differentiation in the time domain corresponds to multiplication by jw in the
frequency domain, one might conclude that integration should involve division by je in
the frequency domain. This is indeed the case, but it is only one part of the picture. The
precise relationship is

jt x(r)dT L —J:%X(jw) + 7X(0)6(w). (4.32)

—

The impulse term on the right-hand side of eq. (4.32) reflects the dc or average value that
can result from integration.
The use of eqs. (4.31) and (4.32) is illustrated in the next two examples.
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Example 4.11

Let us determine the Fourier transform X(jw) of the unit step x(f) = u(¢), making use
of eq. (4.32) and the knowledge that
g
gty = 6(t) < G(jw) = 1.

Noting that
t
x(r) = J g(ndt

and taking the Fourier transform of both sides, we obtain

_ G(jw)

Jw

X(jw) + 7G(0)d(w),

where we have used the integration property listed in Table 4.1. Since G(jw) = 1, we
conclude that

X(jw) = L + mé(w). (4.33)
jw
Observe that we can apply the differentiation property of eq. (4.31) to recover the

transform of the impulse. That is,

du(t) ¢

8() = ar — jo []Lw +'rr3(w)] =1,

where the last equality follows from the fact that w8(w) = 0.

Example 4.12

Suppose that we wish to calculate the Fourier transform X(jw) for the signal x(¢) dis-
played in Figure 4.16(a). Rather than applying the Fourier integral directly to x(¢), we
instead consider the signal

d
8(t) = . x(0).

x(t)

L

-

]
1 ., 2|
1 1t y I ¥t
) — —

Figure 4.16 (a) A signal x(t) for which the Fourier transform is to be eval-
uated; (b) representation of the derivative of x(t) as the sum of two components.
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As illustrated in Figure 4.16(b), g(7) is the sum of a rectangular pulse and two impulses.
The Fourier transforms of each of these component signals may be determined from
Table 4.2:

G(jw) = (2 S::w>~ el —e e,

Note that G(0) = 0. Using the integration property, we obtain

X(jw) = % + 7G0)3 ().

With G(0) = 0 this becomes

. 2sinw  2cosw
X(jo) = ==~ -

jo? jo

The expression for X(jw) is purely imaginary and odd, which is consistent with the fact
that x(t) is real and odd.

4.3.5 Time and Frequency Scaling

If
F
(1) < X(jo),
then
xar) —— Lx(42) 4.34)
la|” \ a

where a is a nonzero real number. This property follows directly from the definition of
the Fourier transform—specifically,

+%0

F{x(an)} = J x(at)e 1“'dt.

—oc

Using the substitution 7 = at, we obtain

1 (% .
—J x(T)e 1V dr 4 >0

—%
>

F{x(a)} = o
_EJ x(T)e /@dr, a <0

—%

which corresponds to eq. (4.34). Thus, aside from the amplitude factor 1/|al, a linear scal-
ing in time by a factor of a corresponds to a linear scaling in frequency by a factor of 1/a,
and vice versa. Also, letting a = —1, we see from eq. (4.34) that
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X(—1) > X(— jo). (4.35)

That is, reversing a signal in time also reverses its Fourier transform.

A common illustration of eq. (4.34) is the effect on frequency content that results
when an audiotape is recorded at one speed and played back at a different speed. If the
playback speed is higher than the recording speed, corresponding to compression in time
(i.e., a > 1), then the spectrum is expanded in frequency (i.e., the audible effect is that the
playback frequencies are higher). Conversely, the signal played back will be scaled down
in frequency if the playback speed is slower than the recording speed (0 < a < 1). For
example, if a recording of the sound of a small bell ringing is played back at a reduced
speed, the result will sound like the chiming of a larger and deeper sounding bell.

The scaling property is another example of the inverse relationship between time
and frequency that we have already encountered on several occasions. For example, we
have seen that as we increase the period of a sinusoidal signal, we decrease its frequency.
Also, as we saw in Example 4.5 (see Figure 4.11), if we consider the transform

L el <Ww
X(]w) - [0’ |(1)| > W;

then as we increase W, the inverse transform of X(jw) becomes narrower and taller and
approaches an impulse as W — . Finally, in Example 4.8, we saw that the spacing in the
frequency domain between impulses in the Fourier transform of a periodic impulse train
is inversely proportional to the spacing in the time domain.

The inverse relationship between the time and frequency domains is of great im-
portance in a variety of signal and systems contexts, including filtering and filter design,
and we will encounter its consequences on numerous occasions in the remainder of the
book. In addition, the reader may very well come across the implications of this property
in studying a wide variety of other topics in science and engineering. One example is the
uncertainty principle in physics; another is illustrated in Problem 4.49.

4.3.6 Duality

By comparing the transform and inverse transform relations given in egs. (4.24) and (4.25),
we observe that these equations are similar, but not quite identical, in form. This symmetry
leads to a property of the Fourier transform referred to as duality. In Example 4.5, we
alluded to duality when we noted the relationship that exists between the Fourier transform
pairs of Examples 4.4 and 4.5. In the former example we derived the Fourier transform
pair

|y j<T B . . 2sinwT
xi(t) = {0) 1> T, — X|(jw) = — (4.36)

while in the latter we considered the pair

sin Wt
Tt

. ¥ . 1 <
x(t) = «— Xh(jw) = [ , ol <W

0 ol > W 4.37)
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X (jw)

X4(H)

Xo(jo)

-W \ ®

Figure 4.17 Relationship between the Fourier transform pairs of eqs. (4.36)
and (4.37).

The two Fourier transform pairs and the relationship between them are depicted in
Figure 4.17.

The symmetry exhibited by these two examples extends to Fourier transforms in
general. Specifically, because of the symmetry between eqs. (4.24) and (4.25), for any
transform pair, there is a dual pair with the time and frequency variables interchanged.
This is best illustrated through an example.

Example 4.13
Let us consider using duality to find the Fourier transform G(jw) of the signal

2

0= 1

In Example 4.2 we encountered a Fourier transform pair in which the Fourier transform,
as a function of w, had a form similar to that of the signal x(¢). Specifically, suppose we
consider a signal x(¢) whose Fourier transform is

XUo) = i5gr

Then, from Example 4.2,

x(t) = e e X(jo) = 2=
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The synthesis equation for this Fourier transform pair is

I - LJ‘ 2 jot
e 7 | \T7 a2 e/dw.

Multiplying this equation by 27 and replacing ¢ by —¢, we obtain

2are Il = J (1 +2 2)ef“”afw.
o )

Now, interchanging the names of the variables 7 and w, we find that

2meel= | (e @39)

-

The right-hand side of eq. (4.38) is the Fourier transform analysis equation for 2/(1 +¢?),
and thus, we conclude that
ﬂ’{ 2 ] = 2melol

1+ 2

The duality property can also be used to determine or to suggest other properties of
Fourier transforms. Specifically, if there are characteristics of a function of time that have
implications with regard to the Fourier transform, then the same characteristics associated
with a function of frequency will have dual implications in the time domain. For example,
in Section 4.3.4, we saw that differentiation in the time domain corresponds to multiplica-
tion by jw in the frequency domain. From the preceding discussion, we might then suspect
that multiplication by jt in the time domain corresponds roughly to differentiation in the
frequency domain. To determine the precise form of this dual property, we can proceed
in a fashion exactly analogous to that used in Section 4.3.4. Thus, if we differentiate the
analysis equation (4.25) with respect to w, we obtain

. +oo
d};(i“’) =J — jtx(t)e i@dt. (4.39)
That is,
: )
— jex(t) ——s d};(i‘”). (4.40)

Similarly, we can derive the dual properties of eqs. (4.27) and (4.32):

9 (1) s X(j(w — wo)) (4.41)

and

w

—%x(t) + 7x(0)8(1) s J x(m)dn. (4.42)
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4.3.7 Parseval’s Relation

If x(#) and X(jw) are a Fourier transform pair, then

+x 1 +x n
L Ix(ndt = 5 J IX(jw)lrdw. (4.43)

-

This expression, referred to as Parseval’s relation, follows from direct application of the
Fourier transform. Specifically,

f x]x(t)|2d1= f xx(t)x*(t)dt

—%

+o 1 +% .
— *ooe —jor
f x(t){rwf X'(jw)e dw}dt.

—x —%

Reversing the order of integration gives

+x 3 +%
J |x()dt = —21;{ X*(jw)U x(t)e_j“”dt]dw.

—x —%

The bracketed term is simply the Fourier transform of x(¢); thus,

= 2 1 e N
| wopde = [ xGwdo.

The term on the left-hand side of eq. (4.43) is the total energy in the signal x(¢).
Parseval’s relation says that this total energy may be determined either by computing the
energy per unit time (Jx(t)]*) and integrating over all time or by computing the energy per
unit frequency (|X(jw)|?/27) and integrating over all frequencies. For this reason, | X(jo)|*
is often referred to as the energy-density spectrum of the signal x(t). (See also Problem
4.45.) Note that Parseval’s relation for finite-energy signals is the direct counterpart of
Parseval’s relation for periodic signals (eq. 3.67), which states that the average power of
a periodic signal equals the sum of the average powers of its individual harmonic compo-
nents, which in turn are equal to the squared magnitudes of the Fourier series coefficients.

Parseval’s relation and other Fourier transform properties are often useful in deter-
mining some time domain characteristics of a signal directly from the Fourier transform.
The next example is a simple illustration of this.

Example 4.14

For each of the Fourier transforms shown in Figure 4.18, we wish to evaluate the follow-
ing time-domain expressions:

E = J ’ |x(0)|dt

d
D= —x()

t=0
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X(jw)

i
Va/2

(@)

X(jo)

_j‘/a-‘

(b)

Figure 4.18 The Fourier transforms considered in Example 4.14.

To evaluate E in the frequency domain, we may use Parseval’s relation. That is,

_ L[ C N2
E = %Lw X(jw)|*dw (4.44)

which evaluates to % for Figure 4.18(a) and to 1 for Figure 4.18(b).

To evaluate D in the frequency domain, we first use the differentiation property to
observe that

d ¥
&) = 5 x0) < joX(jw) = G(jw).
Noting that
-
=g =" f Gl (4.45)

we conclude:

%

D= j joX(jo)dw (4.46)

which evaluates to zero for figure 4.18(a) and to — for Figure 4.18(b).
@)

There are many other properties of the Fourier transform in addition to those we have
already discussed. In the next two sections, we present two specific properties that play
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particularly central roles in the study of LTI systems and their applications. The first of
these, discussed in Section 4.4, is referred to as the convolution property, which is central
to many signals and systems applications, including filtering. The second, discussed in
Section 4.5, is referred to as the multiplication property, and it provides the foundation
for our discussion of sampling in Chapter 7 and amplitude modulation in Chapter 8. In
Section 4.6, we summarize the properties of the Fourier transform.

4.4 THE CONVOLUTION PROPERTY

As we saw in Chapter 3, if a periodic signal is represented in a Fourier series—i.e., as
a linear combination of harmonically related complex exponentials, as in eq. (3.38)—
then the response of an LTI system to this input can also be represented by a Fourier
series. Because complex exponentials are eigenfunctions of LTI systems, the Fourier series
coefficients of the output are those of the input multiplied by the frequency response of
the system evaluated at the corresponding harmonic frequencies.

In this section, we extend this result to the situation in which the signals are aperiodic.
We first derive the property somewhat informally, to build on the intuition we developed for
periodic signals in Chapter 3, and then provide a brief, formal derivation starting directly
from the convolution integral.

Recall our interpretation of the Fourier transform synthesis equation as an expression
for x(¢) as a linear combination of complex exponentials. Specifically, referring back to
eq. (4.7), x(t) is expressed as the limit of a sum; that is,

+% +x
x(t) = % I X(jw)e’'dw = lim 1 Z X(jkwo)e wy.  (4.47)

— Ll)()" 2

Asdeveloped in Sections 3.2 and 3.8, the response of a linear system with impulse response
h(t) to a complex exponential e/¥*"" is H(jkwq)e/**' where

+x

H(jkwg) = J h(tye T*evidr. (4.48)

—%

We can recognize the frequency response H(jw), as defined in eq. (3.121), as the Fourier
transform of the system impulse response. In other words, the Fourier transform of the
impulse response (evaluated atw = kwy) is the complex scaling factor that the LTI system
applies to the eigenfunction e/, From superposition [see eq. (3.124)], we then have

Z X(ka“)e“wmwo—) Py Z X(jkwo)H(jkwo)e " w,

A——x

and thus, from eq. (4.47), the response of the linear system to x(¢) is

y(0) 0)1”_)()2 ZX(]kwo)H(}kwo)ejkw"'wo

(4.49)

1 (™ ;
- . : jot
o J X(jw)H(jw)e'*'dw.

—-%
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Since y(¢) and its Fourier transform Y (jw) are related by

4

1 ‘
— . jot
y(®) = J_m Y(jw)e!*'dw, (4.50)
we can identify Y(jw) from eq. (4.49), yielding

Y(jw) = X(jw)H(jw). (4.51)

As a more formal derivation, we consider the convolution integral

+oo

y() = J x(TYh(t — 7)dT. (4.52)
We desire Y(jw), which is
+oo [ oo 1
Y(jw) = F{y@)} = J U x(T)h(t — T)dT |e /*'dt. (4.53)
Interchanging the order of integration and noting that x(7) does not depend on ¢, we have
+-oc +c0 . —‘

Y(jw) = J x(7) J h(t — T)e /®'dt |dT. (4.54)

By the time-shift property, eq. (4.27), the bracketed term is e /*7H(jw). Substituting this
into eq. (4.54) yields

+o0 +o0
Y(jw) = J x(T)e /*TH(jw)dT = H(jw) f x(t)e 7°7dr. (4.55)
The integral is X(jw), and hence,
Y(jow) = H(jo)X(jw).
That is,
Y1) = h(t) * x(1) —> Y(jw) = H(jo)X(jw). (4.56)

Equation (4.56) is of major importance in signal and system analysis. As expressed
in this equation, the Fourier transform maps the convolution of two signals into the product
of their Fourier transforms. H(jw), the Fourier transform of the impulse response, is the
frequency response as defined in eq. (3.121) and captures the change in complex amplitude
of the Fourier transform of the input at each frequency w. For example, in frequency-
selective filtering we may want to have H(jw) = 1 over one range of frequencies, so that
the frequency components in this band experience little or no attenuation or change due to
the system, while over another range of frequencies we may want to have H(jw) = 0, so
that components in this range are eliminated or significantly attenuated.
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The frequency response H(jw) plays as important a role in the analysis of LTI sys-
tems as does its inverse transform, the unit impulse response. For one thing, since h(f)
completely characterizes an LTI system, then so must H(jw). In addition, many of the
properties of LTI systems can be conveniently interpreted in terms of H(jw). For exam-
ple, in Section 2.3, we saw that the impulse response of the cascade of two LTI systems
is the convolution of the impulse responses of the individual systems and that the over-
all impulse response does not depend on the order in which the systems are cascaded.
Using eq. (4.56), we can rephrase this in terms of frequency responses. As illustrated in
Figure 4.19, since the impulse response of the cascade of two LTI systems is the con-
volution of the individual impulse responses, the convolution property then implies that
the overall frequency response of the cascade of two systems is simply the product of
the individual frequency responses. From this observation, it is then clear that the overall
frequency response does not depend on the order of the cascade. '

X(t) =1 Hy(jo) > Hyljo) = y(t)

@

X(t) s H (jo0)Hp(j ) e (1)

(b)

X(t) | () > H,(jw) — yty Figure 4.19  Three equivalent LTI
systems. Here, each block represents
an LTI system with the indicated

© frequency response.

As discussed in Section 4.1.2, convergence of the Fourier transform is guaranteed
only under certain conditions, and consequently, the frequency response cannot be defined
for every LTI system. If, however, an LTI system is stable, then, as we saw in Section 2.3.7
and Problem 2.49, its impulse response is absolutely integrable; that is,

f v lh(®)|dt < o. @.57)

—%

Equation (4.57) is one of the three Dirichlet conditions that together guarantee the exis-
tence of the Fourier transform H(jw) of h(z). Thus, assuming that h(r) satisfies the other
two conditions, as essentially all signals of physical or practical significance do, we see
that a stable LTI system has a frequency response H(jw).

In using Fourier analysis to study LTI systems, we will be restricting ourselves
to systems whose impulse responses possess Fourier transforms. In order to use trans-
form techniques to examine unstable LTI systems we wil] develop a generalization of
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the continuous-time Fourier transform, the Laplace transform. We defer this discussion to
Chapter 9, and until then we will consider the many problems and practical applications
that we can analyze using the Fourier transform.

4.4.1 Examples
To illustrate the convolution property and its applications further, let us consider several
examples.
Example 4.15
Consider a continuous-time LTI system with impulse response
h(t) = 8(t — 1p). (4.58)
The frequency response of this system is the Fourier transform of /() and is given by
H{jw) = e /@b, (4.59)

Thus, for any input x(¢) with Fourier transform X ( jw), the Fourier transform of the output
is

it

Y(jw) = H(jo)X(jo) (4.60)

= e’j“”“X(jw).
This result, in fact, is consistent with the time-shift property of Section 4.3.2. Specifi-

cally, a system for which the impulse response is 8(¢ — #;) applies a time shift of 7, to the
input—that is,

(@) = x(t — t9).

Thus, the shifting property given in eq. (4.27) also yields eq. (4.60). Note that, either from
our discussion in Section 4.3.2 or directly from eq. (4.59), the frequency response of a
system that is a pure time shift has unity magnitude at all frequencies (i.e., [e"/0| = 1)
and has a phase characteristic —wfy that is a linear function of w.

Example 4.16

As a second example, let us examine a differentiator—that is, an LTI system for which
the input x(¢) and the output y(¢) are related by

_dx(t)
y(@) = ar

From the differentiation property of Section 4.3.4,
Y(jo) = joX(jw). (4.61)

Consequently, from eq. (4.56), it follows that the frequency response of a differentiator
is

H(jo) = jo. (4.62)
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Example 4.17
Consider an integrator—that is, an LTI system specified by the equation

¥(t) =f x(T)dT.

The impulse response for this system is the unit step u(r), and therefore, from Exam-
ple 4.11 and eq. (4.33), the frequency response of the system is

H(jw) = L + wo(w).
Jjow

Then using eq. (4.56), we have
Y(jw)

H(jw)X(jw)

1. s,
= j—wX(jw)+ TX(jw)d(w)

= L X(jw) + TX(0)5(),
Jjo
which is consistent with the integration property of eq. (4.32).

Example 4.18

As we discussed in Section 3.9.2, frequency-selective filtering is accomplished with an
LTI system whose frequency response H (jw) passes the desired range of frequencies and
significantly attenuates frequencies outside that range. For example, consider the ideal
lowpass filter introduced in Section 3.9.2, which has the frequency reponse illustrated in
Figure 4.20 and given by

1 |o| <o,

0 lo|> o (4.63)

H(jw) = l
Now that we have developed the Fourier transform representation, we know that the
impulse response A(t) of this ideal filter is the inverse transform of eq. (4.63). Using the
result in Example 4.5, we then have

h(t) = sin w(.ty

(4.64)

which is plotted in Figure 4.21.

H(jw)

—wg ] we w
<—Stopband ——’-— Passband —+-Stopband —

Figure 4.20 Frequency response of an ideal lowpass filter.
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T ™
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Figure 4.21 Impulse response of an ideal lowpass filter.

From Example 4.18, we can begin to see some of the issues that arise in filter design
that involve looking in both the time and frequency domains. In particular, while the ideal
lowpass filter does have perfect frequency selectivity, its impulse response has some char-
acteristics that may not be desirable. First, note that 4(z) is not zero for r < 0. Consequently,
the ideal lowpass filter is not causal, and thus, in applications requiring causal systems,
the ideal filter is not an option. Moreover, as we discuss in Chapter 6, even if causality
is not an essential constraint, the ideal filter is not easy to approximate closely, and non-
ideal filters that are more easily implemented are typically preferred. Furthermore, in some
applications (such as the automobile suspension system discussed in Section 6.7.1), oscil-
latory behavior in the impulse response of a lowpass filter may be undesirable. In such
applications the time domain characteristics of the ideal lowpass filter, as shown in Fig-
ure 4.21, may be unacceptable, implying that we may need to trade off frequency-domain
characteristics such as ideal frequency selectivity with time-domain properties.

For example, consider the LTI system with impulse response

h(t) = e "u(?). (4.65)

The frequency response of this system is

H(jw) =

PRk (4.66)

Comparing egs. (3.145) and (4.66), we see that this system can be implemented with
the simple RC circuit discussed in Section 3.10. The impulse response and the magnitude
of the frequency response are shown in Figure 4.22. While the system does not have the
strong frequency selectivity of the ideal lowpass filter, it is causal and has an impulse
response that decays monotonically, i.e., without oscillations. This filter or somewhat more
complex ones corresponding to higher order differential equations are quite frequently
preferred to ideal filters because of their causality, ease of implementation, and flexibility
in allowing trade-offs, among other design considerations such as frequency selectivity
and oscillatory behavior in the time domain. Many of these issues will be discussed in
more detail in Chapter 6.

The convolution property is often useful in evaluating the convolution integral—i.e.,
in computing the response of LTI systems. This is illustrated in the next example.
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h(t)

H(j)l

|
|
|
t—=
—
N]
|
|

—_—t - - — -

(b)

Figure 4.22 (a) Impulse response of the LTI system in eq. (4.65);
(b) magnitude of the frequency response of the system.

Example 4.19
Consider the response of an LTI system with impulse response
h(t) = e “u(t), a>0,
to the input signal
x(t) = e Pu@), b>0.

Rather than computing y(¢) = x(¢) * h(r) directly, let us transform the problem into the
frequency domain. From Example 4.1, the Fourier transforms of x(¢) and h(f) are

X(jw) =

b+ jo
and
H(je) = a+ jo’
Therefore,
Y(jo) = L 4.67)

(a+ jo)b+ jow)

To determine the output y(f), we wish to obtain the inverse transform of Y(jw).
This is most simply done by expanding Y(jw) in a partial-fraction expansion. Such
expansions are extremely useful in evaluating inverse transforms, and the general
method for performing a partial-fraction expansion is developed in the appendix. For this
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example, assuming that b # a, the partial fraction expansion for Y(jw) takes the form

A B

Y(jo) = + ,
(o) a+ jo b+ jo

(4.68)

where A and B are constants to be determined. One way to find A and B is to equate the
right-hand sides of eqs. (4.67) and (4.68), multiply both sides by (@ + jw)(b + jw), and
solve for A and B. Alternatively, in the appendix we present a more general and efficient
method for computing the coefficients in partial-fraction expansions such as eq. (4.68).
Using either of these approaches, we find that

and therefore,

1 1 1

Y(jw) = b—alatjo b+ jo|

(4.69)

The inverse transform for each of the two terms in eq. (4.69) can be recognized
by inspection. Using the linearity property of Section 4.3.1, we have

[e”u(®) — e "u(®)].

1
y() = b—a
When b = a, the partial fraction expansion of eq. (4.69) is not valid. However, with

b = a, eq. (4.67) becomes

O = T ey

Recognizing this as

1 _i[ 1
(a+jw)2—]dw a+ jo|

we can use the dual of the differentiation property, as given in eq. (4.40). Thus,

g
e "u(t) — -
a+ jo

te " u(r) <$—> ji ! = 1
do |a+ jo (a+ jo)*’

and consequently,

y(t) = te”“u(r).

Example 4.20

As another illustration of the usefulness of the convolution property, let us consider the
problem of determining the response of an ideal lowpass filter to an input signal x(¢) that
has the form of a sinc function. That is,

sinw;t
at

x(t) =

Of course, the impulse response of the ideal lowpass filter is of a similar form, namely,
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sinw .t

h(t) = p

The filter output y(#) will therefore be the convolution of two sinc functions, which, as we
"~ now show, also turns out to be a sinc function. A particularly convenient way of deriving
~ this result is to first observe that

Y(jo) = X(jo)H(jw),

where
. 1 o = w;
X -
(o) { 0 elsewhere
, 1 ol =,
H = .
(o) { 0 elsewhere
Therefore,
, 1 ol = wg
Y = )
(jw) { 0 elsewhere

. © where wy is the smaller of the two numbers w; and w.. Finally, the inverse Fourier trans-
. form of Y(jw) is given by

sinw.t .
—ti ifow, < w;
T
¥y =9 .
sinw;t .
— fw;, = w,
Tt

That is, depending upon which of w, and w; is smaller, the output is equal to either x(z)
or h(z).

4.5 THE MULTIPLICATION PROPERTY

The convolution property states that convolution in the time domain corresponds to mul-
tiplication in the frequency domain. Because of duality between the time and frequency
domains, we would expect a dual property also to hold (i.e., that multiplication in the time
domain corresponds to convolution in the frequency domain). Specifically,

1 [+
@) = s(p() ¢ R(jw) = - j S(j6)P(j(w— 6))do (4.70)

This can be shown by exploiting duality as discussed in Section 4.3.6, together with the
convolution property, or by directly using the Fourier transform relations in a manner anal-
ogous to the procedure used in deriving the convolution property.

Multiplication of one signal by another can be thought of as using one signal to scale
or modulate the amplitude of the other, and consequently, the multiplication of two sig-
nals is often referred to as amplitude modulation. For this reason, eq. (4.70) is sometimes
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referred to as the modulation property. As we shall see in Chapters 7 and 8, this property
has several very important applications. To illustrate eq. (4.70), and to suggest one of the
applications that we will discuss in subsequent chapters, let us consider several examples.

Example 4.21

Let s(r) be a signal whose spectrum S(jw) is depicted in Figure 4.23(a). Also, consider
the signal

p(t) = coswot.
Then
P(jw) = wé(w — wg) + wé(w + wy),

as sketched in Figure 4.23(b), and the spectrum R(jw) of r(t) = s(¢)p(t) is obtained by

S(jw)
A
—wq 4 ®
@)
™ P(jw) L
—_— o o "
Ro) = 5 [S(o) « P
03
A/2
! A
T —wg T T wg T w
(—wg— wg) (—wgt+ wy) (wg — ®g) (g + @)

©

Figure 4.23 Use of the multiplication property in Example 4.21: (a) the
Fourier transform of a signal s(f); (b) the Fourier transform of p(f) = coS wyt;
(c) the Fourier transform of r(t) = s(t)p(1).
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an application of eq. (4.70), yielding

R(o) = 57 [ SGOP((w = 0)d8

—00

+.

1
= 2@ = wo) + 3S(j(@ + wo)) @71)

which is sketched in Figure 4.23(c). Here we have assumed that wy > w1, so that the
two nonzero portions of R(jw) do not overlap. Clearly, the spectrum of r(t) consists of
the sum of two shifted and scaled versions of S(jw).

From eq. (4.71) and from Figure 4.23, we see that all of the information in the
signal s(¢) is preserved when we multiply this signal by a sinusoidal signal, although the
information has been shifted to higher frequencies. This fact forms the basis for sinu-
soidal amplitude modulation systems for communications. In the next example, we learn
how we can recover the original signal s(¢) from the amplitude-modulated signal r(r).

Example 4.22

Let us now consider r(r) as obtained in Example 4.21, and let

g = r(p(o),
where, again, p(f) = coswot. Then, R(jw), P(jw), and G(jw) are as shown in
Figure 4.24.
From Figure 4.24(c) and the linearity of the Fourier transform, we see that g(¢)
is the sum of (1/2)s(¢) and a signal with a spectrum that is nonzero only at higher frequen-

R(jw)
A2
A A
—Wg wq w
(@
™ P(jw) T
—wp ©) g ®
G(jw)
A/4 A/2 A/4
/I\ /i\
- 2(1.)0 Wy (O] 2(.00 w

(©

Figure 4.24 Spectra of signals considered in Example 4.22: (a) R(jw);
(b) P(jw); (c) G(jw).
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cies (centered around *2wy). Suppose then that we apply the signal g(¢) as the input to
a frequency-selective lowpass filter with frequency response H(jw) that is constant at
low frequencies (say, for |w| < @) and zero at high frequencies (for |w| > w;). Then
the output of this system will have as its spectrum H (jw)G(jw), which, because of the
particular choice of H(jw), will be a scaled replica of S(jw). Therefore, the output itself
will be a scaled version of s(¢). In Chapter 8, we expand significantly on this idea as we
develop in detail the fundamentals of amplitude modulation.

Example 4.23

Another illustration of the usefulness of the Fourier transform multiplication property is
provided by the problem of determining the Fourier transform of the signal

sin(¢) sin(#/2)
t? )

x(t) =

The key here is to recognize x(¢) as the product of two sinc functions:

x(8) = W(sin(t))(sin(t/Z))

mt Tt

Applying the multiplication property of the Fourier transform, we obtain

X(jw) = %{}f{ sin(t)] *8‘[ sin(t/Z)} '

Tt mt

Noting that the Fourier transform of each sinc function is a rectangular pulse, we can
proceed to convolve those pulses to obtain the function X(jw) displayed in Figure 4.25.

X(jw)
1/2
AT N
3 1 1 3 ®
2 2 2

Figure 4.25 The Fourier transform of x(f) in Example 4.23.

4.5.1 Frequency-Selective Filtering with Variable Center Frequency

As suggested in Examples 4.21 and 4.22 and developed more fully in Chapter 8, one of the
important applications of the multiplication property is amplitude modulation in commu-
nication systems. Another important application is in the implementation of frequency-
selective bandpass filters with tunable center frequencies that can be adjusted by the
simple turn of a dial. In a frequency-selective bandpass filter built with elements such
as resistors, operational amplifiers, and capacitors, the center frequency depends on a
number of element values, all of which must be varied simultaneously in the correct way
if the center frequency is to be adjusted directly. This is generally difficult and cumber-
some in comparison with building a filter whose characteristics are fixed. An alternative
to directly varying the filter characteristics is to use a fixed frequency-selective filter and
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shift the spectrum of the signal appropriately, using the principles of sinusoidal amplitude
modulation.

For example, consider the system shown in Figure 4.26. Here, an input signal
x(¢) is multiplied by the complex exponential signal e/“<'. The resulting signal is then
passed through a lowpass filter with cutoff frequency wy, and the output is multiplied by
e~ /o< The spectra of the signals x(¢), y(¢), w(t), and f(¢) are illustrated in Figure 4.27.

e lodt Ideal lowpass okt
filter
H(jw)
t 1 wit
x(t) > \x/ v > ()ﬁ‘ \Tf > f(t)
_(1)0 Wy

Figure 4.26 |mplementation of a bandpass filter using amplitude modula-
tion with a complex exponential carrier.

X(joo)
w
Y(jos)
1
Frequency response of |——4---
ideal lowpass filter \j
I
] Wy ¢ [}
W(jo)
~ o g ®
F(je)
/M A
]

—wg

Figure 4.27 Spectra of the signals
(-we —wg)  (—o¢+ wg) in the system of Figure 4.26.



Sec. 4.5 The Multiplication Property 327

Specifically, from either the multiplication property or the frequency-shifting property it
follows that the Fourier transform of y(z) = e/“<'x(t) is

-

Yjw) = J 80 — w ) X(w — 6)db

so that Y(jw) equals X(jw) shifted to the right by w, and frequencies in X(jw) near
® = w. have been shifted into the passband of the lowpass filter. Similarly, the Fourier
transform of f(t) = e “‘w(t) is

F(jw) = W(j(w + o)),

so that the Fourier transform of F (jw) is W (jw) shifted to the left by .. From Figure 4.27,
we observe that the overall system of Figure 4.26 is equivalent to an ideal bandpass fil-
ter with center frequency —w,. and bandwidth 2w, as illustrated in Figure 4.28. As the
frequency w,. of the complex exponential oscillator is varied, the center frequency of the
bandpass filter varies.

|

*220 ®  Figure 4.28 Bandpass filter equiva-
<%0 lent of Figure 4.26.

In the system of Figure 4.26 with x(¢) real, the signals y(¢), w(z), and f () are all
complex. If we retain only the real part of f(¢), the resulting spectrum is that shown in
Figure 4.29, and the equivalent bandpass filter passes bands of frequencies centered
around w. and —w,, as indicated in Figure 4.30. Under certain conditions, it is also possi-
ble to use sinusoidal rather than complex exponential modulation to implement the system
of the latter figure. This is explored further in Problem 4.46.

RIS

—wg ' wg ® .
Figure 4.29 Spectrum of Re{f(t)}
|‘_2w°*( |‘_2w°"| associated with Figure 4.26.
H(jw)
l+
2
| |
%% T “  Figure 4.30 Equivalent bandpass
<200 > - 2wp filter for Re{f(t)} in Figure 4.29.




328 The Continuous-Time Fourier Transform Chap. 4

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consid-
ered some of the important properties of the Fourier transform. These are summarized in
Table 4.1, in which we have also indicated the section of this chapter in which each prop-
erty has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier
transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM
Section Property Aperiodic signal Fourier transform
x(1) X(jw)
0 Y(jw)
43.1 Linearity ax(t) + by(t) aX(jw) + bY(jw)
432 Time Shifting x(t — to) e X (jw)
43.6 Frequency Shifting e/ x(f) X(jw — wo))
433 Conjugation x(1) X'(—jw)
435 Time Reversal x(—1) X(— jw)
435 Time and Frequency x(at) l—llx (]—ai)
Scaling a a
44 Convolution x(t) * y(t) X(jo)Y(jw)
. . . +o .
45 Multiplication x(1)y(1) 2‘;[ X(OY((w — 6)d6
434 Differentiation in Time % x(t) JoX(jw)
1
434 Integration J x(t)dt ;%X( jw) + wX(0)6(w)
4.3.6 Differentiation in tx(t) j i X(jw)
E dw
requency
X(jw) = X' (- jw)
Ref{X(jw)} = Re{X(— jw)}
433 Conjugate Symmetry x(t) real In{X(jo)} = —Im{X(— jo)}
for Real Signals X(jo)l = [X(— jo)|
X (jw) = —LX(- jo)
433 Symmetry for Real and  x(z) real and even X(jw) real and even
Even Signals
433 Symmetry for Real and  x(t) real and odd X(jw) purely imaginary and odd
Odd Signals
=& 1
433 Even-Odd Decompo- %) _ Ov{x(t)} (x(@) reall 3€{X(ﬂf,)}
sition for Real Sig- x,(t) = 0d{x(t)} [x(z) real] J m’{X(Jw)}
nals
43.7 Parseval’s Relation for Aperiodic Signals

JM [x(t)*dt =

1 (™
s J X ()P deo
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TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Fourier series coefficients

Signal Fourier transform (if periodic)
+ . +o0
Z agel*eot 27 Z ad(w — kwo) a;
P k=—o
. =1
elvo 278 (w — wg) @

a, = 0, otherwise

alza_|=l

€oS wot w[8(w — wy) + 8w + wg)] 2
a, = 0, otherwise

= — = 1

sin wot T —wo) — 8w +wo)] '~ T A
J ar = 0, otherwise

a=1 a=0%k#0
x() =1 27 6(w) this is the Fourier series representation for
any choice of T > 0

Periodic square wave

1, lf<T,

"= oo . .

x(t) |O, T, < = g Z MS((;) ~ kwo) woT sinc kwo T _ sin kwoT)
< k T T km

and k=—e
x(t+T) = x(t)

e 27 & 2wk 1
ana(t_nT) TkaB(w*T> a, = Tforallk

1, lf<T, 2sinwT,;

t _— J—
Olg yor, v
sin Wt . 1, |lw|<W

X(jw) = { ol —

mt 0, |w|>W

(1) 1 —
1
u(r) — + 7 é(w) —
Jjw
5t — ty) e it —
e “u(t), Refal > 0 o _
’ a+ jo
te " u(t), Rela} > 0 _ 1 —
’ (a+ jw)?

2L gmaty(p), 1

(n—1)!

Refa} >0 (a+ jo)
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Fourier analysis in our examination of signals and systems. All of the transform pairs,
except for the last one in the table, have been considered in examples in the preceding
sections. The last pair is considered in Problem 4.40. In addition, note that several of
the signals in Table 4.2 are periodic, and for these we have also listed the corresponding
Fourier series coefficients.

4.7 SYSTEMS CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT
DIFFERENTIAL EQUATIONS

As we have discussed on several occasions, a particularly important and useful class
of continuous-time LTI systems is those for which the input and output satisfy a linear
constant-coefficient differential equation of the form

N k M k
d y(t) d*x(t)
kZ:(:)ak — —gobk P (4.72)

In this section, we consider the question of determining the frequency response of
such an LTI system. Throughout the discussion we will always assume that the
frequency response of the system exists, i.e., that eq. (3.121) converges.

There are two closely related ways in which to determine the frequency response
H(jw) for an LTI system described by the differential equation (4.72). The first of these,
which relies on the fact that complex exponential signals are eigenfunctions of LTI
systems, was used in Section 3.10 in our analysis of several simple, nonideal filters.
Specifically, if x(t) = e/!, then the output must be y(r) = H(jw)e/*’. Substituting these
expressions into the differential equation (4.72) and performing some algebra, we can
then solve for H(jw). In this section we use an alternative approach to arrive at the same
answer, making use of the differentiation property, eq. (4.31), of Fourier transforms.

Consider an LTI system characterized by eq. (4.72). From the convolution property,

Y(jw) = H(jw)X(jw),
or equivalently,

Y(jw)

H(jow) = X(jw)

4.73)

where X(jw), Y(jw), and H(jw) are the Fourier transforms of the input x(¢), output (),
and impulse response A(r), respectively. Next, consider applying the Fourier transform to
both sides of eq. (4.72) to obtain

N k
[Z a? y(’)] - G[Zbkddff)]. (4.74)

k=0

From the linearity property, eq. (4.26), this becomes

N d* y(t) d*x(1)
Zakﬂ’{ Zb T — 1 4.75)

k=0
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and from the differentiation property, eq. (4.31),
N M

> a(jo)Y(jw) = > bi(jo)X(jo),

k=0 k=0
or equivalently,

N M
Y(jw) [Z ak(jw)k} = X(jo) [Z bkuw)k}.
k=0 k=0

Thus, from eq. (4.73),

. Y(jw) S obi(jw)
H = = .
V= XGo) ~ SV yarjo)k

331

(4.76)

Observe that H(jw) is thus a rational function; that is, it is a ratio of polynomials
in (jw). The coefficients of the numerator polynomial are the same coefficients as those
that appear on the right-hand side of eq. (4.72), and the coefficients of the denominator
polynomial are the same coefficients as appear on the left side of eq. (4.72). Hence, the
frequency response given in eq. (4.76) for the LTI system characterized by eq. (4.72) can

be written down directly by inspection.

The differential equation (4.72) is commonly referred to as an Nth-order differen-
tial equation, as the equation involves derivatives of the output y(¢) up through the Nth
derivative. Also, the denominator of H(jw) in eq. (4.76) is an Nth-order polynomial in

(Jo).
Example 4.24
Consider a stable LTT system characterized by the differential equation

dy(r) _
i + ay(t) = x(1),

with a > 0. From eq. (4.76), the frequency response is

H(jw) =

jo +a

“4.77)

(4.78)

Comparing this with the result of Example 4.1, we see that eq. (4.78) is the Fourier

transform of e~ u(r). The impulse response of the system is then recognized as

h(t) = e “u(r).
Example 4.25

Consider a stable LTI system that is characterized by the differential equation

d*y( dy(
dyty +4—Z(t) +3y() =

dx(t)
dt

+ 2x(1).
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From eq. (4.76), the frequency response is

(o) +2

Hio) = Gor+ 4Gw) +3°

4.79)

To determine the corresponding impulse response, we require the inverse Fourier trans-
form of H(jw). This can be found using the technique of partial-fraction expansion em-
ployed in Example 4.19 and discussed in detail in the appendix. (In particular, see Ex-
ample A.1, in which the details of the calculations for the partial-fraction expansion of
eq. (4.79) are worked out.) As a first step, we factor the denominator of the right-hand
side of eq. (4.79) into a product of lower order terms:

Jw +2

HUo) = i e + 3

(4.80)
Then, using the method of partial-fraction expansion, we find that

!
H(jo) = —~—— + —2—.
Vo)=Y Jo 3

The inverse transform of each term can be recognized from Example 4.24, with the result
that

h(t) = %e"u(r) + %e“’”u(l).

The procedure used in Example 4.25 to obtain the inverse Fourier transform is gen-

erally useful in inverting transforms that are ratios of polynomials in jw. In particular,
we can use eq. (4.76) to determine the frequency response of any LTI system described
by a linear constant-coefficient differential equation and then can calculate the impulse
response by performing a partial-fraction expansion that puts the frequency response into
a form in which the inverse transform of each term can be recognized by inspection. In
addition, if the Fourier transform X(jw) of the input to such a system is also a ratio of
polynomials in jw, then so is Y(jw) = H(jw)X(jw). In this case we can use the same
technique to solve the differential equation—that is, to find the response y(t) to the input
x(?). This is illustrated in the next example.

Example 4.26

Consider the system of Example 4.25, and suppose that the input is
x(t) = e "u(r).

Then, using eq. (4.80), we have

. L jw +2 1
HU@XG0) = | G DGw + 3>ij T 1]

Y(jw)

_ Jow +2
T (jo + )2 (jw +3) (481)
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As discussed in the appendix, in this case the partial-fraction expansion takes the form

A]] A12 AZI
w+1l (Jo+12 jo+3

Y(jw) = ; 4.82)
where A, A\, and A, are constants to be determined. In Example A.2 in the appendix,

the technique of partial-fraction expansion is used to determine these constants. The
values obtained are

1 1 1
Ay = T Ap = 5 Ay = ¥
so that
1 1 !
Y(jw)= — 4+ 2 & .
Vo) = i Gt 17 jw 3 (4.83)

Again, the inverse Fourier transform for each term in eq. (4.83) can be obtained by in-
spection. The first and third terms are of the same type that we have encountered in the
preceding two examples, while the inverse transform of the second term can be obtained
from Table 4.2 or, as was done in Example 4.19, by applying the dual of the differenti-
ation property, as given in eq. (4.40), to 1/(jw + 1). The inverse transform of eq. (4.83)
is then found to be

1
y(t) = Ze” + %te" - %e’S' u(t).

From the preceding examples, we see how the techniques of Fourier analysis allow
us to reduce problems concerning LTI systems characterized by differential equations to
straightforward algebraic problems. This important fact is illustrated further in a number
of the problems at the end of the chapter. In addition (see Chapter 6), the algebraic structure
of the rational transforms encountered in dealing with LTI systems described by differen-
tial equations greatly facilitate the analysis of their frequency-domain properties and the
development of insights into both the time-domain and frequency-domain characteristics
of this important class of systems.

4.8 SUMMARY

In this chapter, we have developed the Fourier transform representation for continous-time
signals and have examined many of the properties that make this transform so useful. In
particular, by viewing an aperiodic signal as the limit of a periodic signal as the period
becomes arbitrarily large, we derived the Fourier transform representation for aperiodic
signals from the Fourier series representation for periodic signals developed in Chapter 3.
In addition, periodic signals themselves can be represented using Fourier transforms con-
sisting of trains of impulses located at the harmonic frequencies of the periodic signal and
with areas proportional to the corresponding Fourier series coefficients.

The Fourier transform possesses a wide variety of important properties that de-
scribe how different characteristics of signals are reflected in their transforms, and in
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this chapter we have derived and examined many of these properties. Among them are
two that have particular significance for our study of signals and systems. The first is the
convolution property, which is a direct consequence of the eigenfunction property of com-
plex exponential signals and which leads to the description of an LTI system in terms
of its frequency response. This description plays a fundamental role in the frequency-
domain approach to the analysis of LTI systems, which we will continue to explore in
subsequent chapters. The second property of the Fourier transform that has extremely
important implications is the multiplication property, which provides the basis for the
frequency-domain analysis of sampling and modulation systems. We examine these sys-
tems further in Chapters 7 and 8.

We have also seen that the tools of Fourier analysis are particularly well suited to
the examination of LTI systems characterized by linear constant-coefficient differential
equations. Specifically, we have found that the frequency response for such a system can
be determined by inspection and that the technique of partial-fraction expansion can then
be used to facilitate the calculation of the impulse response of the system. In subsequent
chapters, we will find that the convenient algebraic structure of the frequency responses
of these systems allows us to gain considerable insight into their characteristics in both the
time and frequency domains.

Chapter 4 Problems

The first section of problems belongs to the basic category and the answers are pro-
vided in the back of the book. The remaining three sections contain problems belonging
to the basic, advanced, and extension categories, respectively.

BASIC PROBLEMS WITH ANSWERS

4.1. Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms
of:
(@ e 2 Dy —1)  (b) e 21
Sketch and label the magnitude of each Fourier transform.

4.2. Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms
of:
@é+1)+8¢—1) (b) %{u(—z -0+ u(t—2)}
Sketch and label the magnitude of each Fourier transform.

4.3. Determine the Fourier transform of each of the following periodic signals:
(@) sinQmt+ 7)  (b) 1+ cos(6wt + 3)

4.4. Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier
transforms of:
(@) X|(jo) =27 6(w) + 7 8(w — 4m) + 7 6(w + 4m)
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4.5.

4.6.

4.7.

4.8.

4.9.

335
2, 0=w=2
b) Xo(jw) =3 -2, -2=w<0
0, |w|>2

Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier
transform of X(jw) = |X(jw)|e/¥XU®), where

1X(jo)| = 2{u(w + 3) — u(w - 3)},

IX(jw) = —%w + .

Use your answer to determine the values of ¢ for which x(r) = 0.

Given that x(¢) has the Fourier transform X(jw), express the Fourier transforms of
the signals listed below in terms of X (jw). You may find useful the Fourier transform
properties listed in Table 4.1.

@ x()=xqA—-0+x(-1-1)

(b) x2(t) = x(3t — 6)

© x3) = Lxe—1)

For each of the following Fourier transforms, use Fourier transform properties (Table
4.1) to determine whether the corresponding time-domain signal is (i) real, imaginary,
or neither and (ii) even, odd, or neither. Do this without evaluating the inverse of any
of the given transforms.

(@ Xi(jow) = uw) — uw - 2)

(b) Xz(jw) = cos(2w)sin(5)

(©) X3(jo) = A(w)e/B®), where A(w) = (sin2w)/w and B(w) = 20 + %

@ X(jw) = X5 ()8 - X7

Consider the signal

1

0, t<_§
x()=St+3, —I=t=3
1, t>1

(a) Use the differentiation and integration properties in Table 4.1 and the Fourier
transform pair for the rectangular pulse in Table 4.2 to find a closed-form ex-
pression for X(jw).

(b) What is the Fourier transform of g(¢) = x(¢) — %?

Consider the signal

0, lt| > 1
t+DR2, —-1=r=17T

(a) With the help of Tables 4.1 and 4.2, determine the closed-form expression for
X(jw).

(b) Take the real part of your answer to part (a), and verify that it is the Fourier
transform of the even part of x(t).

(¢) What is the Fourier transform of the odd part of x(t)?

x(t) = {
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4.10.

4.11.

4.12.

4.13.

The Continuous-Time Fourier Transform Chap. 4

(a) Use Tables 4.1 and 4.2 to help determine the Fourier transform of the following

signal:
RV
() = t(smt)

Tt

(b) Use Parseval’s relation and the result of the previous part to determine the nu-

merical value of
+oo . 4
sin¢
N
—® Tt

y(®) = x(#) * h(?)

Given the relationships

and
g(®) = x(3t) * h(31),

and given that x(¢) has Fourier transform X(jw) and A(t) has Fourier transform
H(jw), use Fourier transform properties to show that g(r) has the form

g(t) = Ay(Br).
Determine the values of A and B.

Consider the Fourier transform pair

e_ltl (i) 2 .
1+ w?

(a) Use the appropriate Fourier transform properties to find the Fourier transform
of te” M,

(b) Use the result from part (a), along with the duality property, to determine the
Fourier transform of

4t
(1 +12)?

Hint: See Example 4.13.
Let x(¢) be a signal whose Fourier transform is
X(jw) = 6(w) + 8(w — m) + 6(w — 5),
and let
h() = u(t) — u(t — 2).

(a) Is x(¢) periodic?
(b) Is x(t) * h(z) periodic?
(c) Can the convolution of two aperiodic signals be periodic?
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4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

Consider a signal x(#) with Fourier transform X(jw). Suppose we are given the
following facts:
1. x(z) is real and nonnegative. v
2. T (1 + jo)X(jw)} = Ae *u(t), where A is independent of ¢.
3. |7 1X(jw)|do = 2.
Determine a closed-form expression for x(z).
Let x(¢) be a signal with Fourier transform X(jw). Suppose we are given the fol-
lowing facts:
1. x(¢) is real.
2. x(t) = 0fort = 0.
3. %fime{X(jw)}ej‘“’dw = |t|e M.
Determine a closed-form expression for x(z).
Consider the signal

o0 : kz
X => Sl?li%;‘)a(t— )

k=—o
(a) Determine g(¢) such that
sint
t) =|— ).
x(1) ( - )g( )
(b) Use the multiplication property of the Fourier transform to argue that X(jw) is
periodic. Specify X(jw) over one period.

Determine whether each of the following statements is true or false. Justify your

answers.

(a) An odd and imaginary signal always has an odd and imaginary Fourier trans-
form.

(b) The convolution of an odd Fourier transform with an even Fourier transform is
always odd.

Find the impulse response of a system with the frequency response
.2
. sin“(3w)) cos w
H(jw) = SEE@DC080
w
Consider a causal LTI system with frequency response
For a particular input x(f) this system is observed to produce the output
y(&) = e 3ult) — e Yu(r).
Determine x(¢).

Find the impulse response of the causal LTI system represented by the RLC circuit
considered in Problem 3.20. Do this by taking the inverse Fourier transform of the
circuit’s frequency response. You may use Tables 4.1 and 4.2 to help evaluate the
inverse Fourier transform.
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BASIC PROBLEMS

4.21. Compute the Fourier transform of each of the following signals:

@) [e~* coswotlu(t), a >0 (b) e 31 sin2¢
1+cosat, |t =1 -
(© x(t) = { 0 > 1 (d) Z‘k:Oalkﬁ(t —kT), la| <1
(e) [te™ sin4r]u(z) (f) [Som)[sninD]
(g) x(#) as shown in Figure P4.21(a) (h) x(¢) as shown in Figure P4.21(b)
. _ 1- t2, 0<r<1 . +o0 —Jt—2n]
@ x(@) [ 0, otherwise D 2p-we

X (t)

)7 B Y Y S I P R N
B

@ (b)

N

Figure P4.21
4.22. Determine the continuous-time signal corresponding to each of the following

transforms.
L X (jw)
1X (joo)|
1 +1
-1 1 o ®
/—3(1)
(@
X (jw)
1
-3 -2 —1

() Figure P4.22
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(@) X(jow) = 2]

(b) X(jw) = cos(4w + m/3)

(¢) X(jw) as given by the magnitude and phase plots of Figure P4.22(a)
@d) X(jw) = 2[6(w — 1) — 6(w + 1)] + 3[6(w — 27) + 8(w + 271)]
() X(jw) as in Figure P4.22(b)

4.23. Consider the signal

xXo(t) = e!, 0=t=1
0 0, elsewhere °

Determine the Fourier transform of each of the signals shown in Figure P4.23. You
should be able to do this by explicitly evaluating only the transform of x((¢) and
then using properties of the Fourier transform.

X4(t) Xa(t)
Xo(—1) Xoft) Xot)
-1
-1 0 1 t |\ 1 t
—Xo(—1 /
(@) (b)
t
o+ S o xalt)
g ‘/2‘0(‘)
=1 0 1 t 0 1 t
© (d) Figure P4.23

4.24. (a) Determine which, if any, of the real signals depicted in Figure P4.24 have
Fourier transforms that satisfy each of the following conditions:
(1) RefX(jo)} =0
(2) In{X(jw)t =0 .
(3) There exists a real & such that ¢/*“X(jw) is real
@ | X(jo)dw =0
®) |7 wX(jo)dw =0
(6) X(jw) is periodic
(b) Construct a signal that has properties (1), (4), and (5) and does not have the
others.



340 The Continuous-Time Fourier Transform Chap. 4

N AV NS

—é\'s/—'4—'3 N1 1 é\s/i 5 (\7/

AAAAN S
TRVATRVATAY
©
X (t)
14
-2
' 2t
14
(d
x(t) = e 72
(€ t
x(t) = et

® t Figure P4.24
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4.25. Let X(jw) denote the Fourier transform of the signal x(¢) depicted in Figure P4.25.
(a) Find <X (jw).
(b) Find X(j0).
(¢) Find [ X(jw)dw.
(d) Evaluate [ *, X(jow)22¢ e/2 do.
(e) Evaluate [ * |X(jw)|* dw.
(f) Sketch the inverse Fourier transform of Re{X(jw)}.
Note: You should perform all these calculations without explicitly evaluating X (jw).

x (t)

-t 0 1 2 3 t  Figure P4.25

4.26. (a) Compute the convolution of each of the following pairs of signals x(¢) and h(z)
by calculating X(jw) and H(jw), using the convolution property, and inverse
transforming.

@) x(®) = te 2u(?), h(t) = e *u(r)
(i) x() = re 2 u(r), h(t) = te”*u(r)
(iii) x(2) = e 'u(®), h(t) = e'u(—1)

(b) Suppose that x(t) = e~ ¢~2y(t—2) and h(¢) is as depicted in Figure P4.26. Ver-
ify the convolution property for this pair of signals by showing that the Fourier
transform of y(¢) = x(¢) * h(r) equals H(jw)X(jw).

h (1)

1

-1 3 t  Figure P4.26

4.27. Consider the signals
x(t) = u@@— 1) — 2u(t —2) + u(t — 3)
and

3

i) = > x(t—kD),

k=—w
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where T > 0. Let a; denote the Fourier series coefficients of %(z), and let X(jw)
denote the Fourier transform of x(z).

(a)
(b)

4.28. (a)

(b)

Determine a closed-form expression for X (jw).
Determine an expression for the Fourier coefficients a; and verify that a;, =

1y :2mk
Let x(¢) have the Fourier transform X(jw), and let p(¢) be periodic with funda-
mental frequency wq and Fourier series representation

—+c0
p) = Z a,eine,

n=—w
Determine an expression for the Fourier transform of
y() = x(®)p(2). (P4.28-1)
Suppose that X(jw) is as depicted in Figure P4.28(a). Sketch the spectrum of
¥(¢) in eq. (P4.28-1) for each of the following choices of p(¢):
i) p@) = cos(¢/2)
(ii) p(t) = cost
(iii) p(r) = cos2t
(iv) p(t) = (sint)(sin2t)
(v) p(t) = cos2t — cost
i) p(r) = >;2 8~ mn)
(vii) p(t) = > 17_,8(t — 2mn)
(Vi) p(t) = 37, 8(t — 4mn)
ix) p(t) = 372 ,8(t—2mn) = L 5= 8(t— mn)
(x) p(¢) = the periodic square wave shown in Figure P4.28(b).

X (j)

p (t)

AQN00annog-

27 37 4

o:l:l
o3

()

Figure P4.28
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4.29. A real-valued continuous-time function x(¢) has a Fourier transform X(jw) whose
magnitude and phase are as illustrated in Figure P4.29(a).

The functions x,(t), x(t), x.(¢), and x;(¢t) have Fourier transforms whose
magnitudes are identical to X(jw), but whose phase functions differ, as shown in
Figures P4.29(b)—(e). The phase functions <X,(jw) and <X,(jw) are formed by
adding a linear phase to <X(jw). The function <X, (jw) is formed by reflecting
<X(jw) about = 0, and <X,(jw) is obtained by a combination of a reflection
and an addition of a linear phase. Using the properties of Fourier transforms, deter-
mine the expressions for x,(t), x,(1), x.(t), and x4(¢) in terms of x(z).

X Gl
4 X (jw)
__________________ %
_% __________________
@
\\\\<}: X (jw)
=N w2
~
~
\\\\\
\\\ w
\\\\
~ = —
/2 L Slope =—a
\\
(b) ~~

S~ Figure P4.29
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L Xp (jw)
_ - /2
= N~ -
// // ®
Slope =b//// /////
—7/2 e
(©
L X (jow)
w2 —————————
w
——————————— —m/2
(d)
L Xqg (jor) T
w2+
_ —~—Slope =d
///’/ ®
1 —m/2
" G Figure P4.29 Continued

4.30. Suppose g(t) = x(¢) cost and the Fourier transform of the g(¢) is

R I |w| =2
Gljw) = [0, otherwise *

(a) Determine x(1).
(b) Specify the Fourier transform X, (jw) of a signal x;(¢) such that

g(t) = xy(t)cos (%t)
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4.31. (a) Show that the three LTI systems with impulse responses

hi(@®) = u(),

hy(t) = =28(t) + Se > u(?),
and

h3(t) = 2te "u(t)

all have the same response to x(¢t) = cost.
(b) Find the impulse response of another LTI system with the same response to
cost.
This problem illustrates the fact that the response to cos¢ cannot be used to
specify an LTI system uniquely.

4.32. Consider an LTI system S with impulse response

_sin(4(t — 1))

h(t) = (it — 1)
Determine the output of S for each of the following inputs:
(@) xi(r) = cos(6t + 7)

(b) x() = > 5_o(3)*sin(3kr)

_ sind(+1)
(©) x3(0) = = 55"

(d) xg(r) = (2222
4.33. The input and the output of a stable and causal LTI system are related by the dif-
ferential equation

2
ddytgf) + 6% + 8y(r) = 2x(1)

(a) Find the impulse response of this system.
(b) What is the response of this system if x(t) = te™>'u(t)?
(c) Repeat part (a) for the stable and causal LTI system described by the equation

d*x(1)
dr?

d*y(t)
dr?

+ Jidz(t’) + @) =2 —2x(1)

4.34. A causal and stable LTI system S has the frequency response

Loy Jjo +4
HUO) = = ¥ 57w
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(a) Determine a differential equation relating the input x(¢) and output y(¢) of S.
(b) Determine the impulse response A(¢) of S.
(¢) What is the output of S when the input is

x(t) = e *u(t) — te *u(t)?

4.35. In this problem, we provide examples of the effects of nonlinear changes in phase.
(a) Consider the continuous-time LTI system with frequency response

. a— jw
H(jw) = 2=

a+ jo’

where a > 0. What is the magnitude of H(jw)? What is <H (jw)? What is the
impulse response of this system?
(b) Determine the output of the system of part (a) with @ = 1 when the input is

cos(t/\/g) + cost + cos \/Et.

Roughly sketch both the input and the output.
4.36. Consider an LTI system whose response to the input

x(@) = [e7" + e ¥ u)
is
Y1) = [2¢7" — 2 *u).

(a) Find the frequency response of this system.
(b) Determine the system’s impulse response.
(c) Find the differential equation relating the input and the output of this system.

ADVANCED PROBLEMS

4.37. Consider the signal x(¢) in Figure P4.37.
(a) Find the Fourier transform X(jw) of x(¢).
(b) Sketch the signal

Ht) = x(t)x > 8(t — 4k).
k=—
(¢) Find another signal g(#) such that g(¢) is not the same as x(¢) and

X = gtyx > 8(t — 4k).

=—®
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(d) Argue that, although G(jw) is different from X(jw), G(jZ*) = X(jZ*) for all
integers k. You should not explicitly evaluate G(jw) to answer this question.

x ()

-1 0 +1 t  Figure P4.37

4.38. Let x(r) be any signal with Fourier transform X(jw). The frequency-shift property
of the Fourier transform may be stated as

. ¥
e’ x(t) «—— X(j(w — wo)).
(a) Prove the frequency-shift property by applying the frequency shift to the anal-
ysis equation

X(jw) = f x(f)e ' dt.

—oc

(b) Prove the frequency-shift property by utilizing the Fourier transform of e/’ in
conjunction with the multiplication property of the Fourier transform.

4.39. Suppose that a signal x(¢) has Fourier transform X(jw). Now consider another signal
g(t) whose shape is the same as the shape of X(jw); that is,

g = X(jo).

(a) Show that the Fourier transform G(jw) of g(¢) has the same shape as 27 x(—t);
that is, show that

G(jw) = 27x(~w).
(b) Using the fact that
F{o( + B)} = /B
in conjunction with the result from part (a), show that
Fle/BY = 277 8(w — B).

4.40. Use properties of the Fourier transform to show by induction that the Fourier trans-
form of

n—1

4 —at
X(t) = me u(t), a> O,



348

441.

4.42.

4.43.

The Continuous-Time Fourier Transform Chap. 4

is
_
(a+ jo)y

In this problem, we derive the multiplication property of the continuous-time Fourier
transform. Let x(¢) and y(¢) be two continuous-time signals with Fourier transforms
X(jw) and Y(jw), respectively. Also, let g(#) denote the inverse Fourier transform
of 5-{X(jw) * Y(jw)}

(a) Show that

T )

1 (" 1 (*~ .
g@) = 2—7T-J X(j@)[z—J Y(j(w — 0))e’* dw | d6.

(b) Show that

2

1 J i Y(j(w — 0))e/* da = e/ y(p).

(c) Combine the results of parts (a) and (b) to conclude that
g = x(0)y(r).
Let
g1() = {[cos(won)]x()} * h(r)  and  g2(1) = {[sin(woD)]x(D)} * h(2),

where

x(t) — Z akejklo()t

k=—ox

is a real-valued periodic signal and A(z) is the impulse response of a stable LTI
system.
(a) Specify a value for w, and any necessary constraints on H(jw) to ensure that

g1(t) = Relas} and &2() = Im{as}.

(b) Give an example of h(f) such that H(jw) satisfies the constraints you specified
in part (a).
Let
g() = x(f)cos’t * Lnt
Tt

Assuming that x(¢) is real and X(jw) = O for |w| = 1, show that there exists an
LTI system S such that

x(H) —> g(0).
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4.44.

4.45.

The output y(¥) of a causal LTI system is related to the input x(¢) by the equation

% + 10y(?) = j . x(T)z(t — T)dT — x(1),

where z(t) = e 'u(t) + 38().
(a) Find the frequency response H(jw) = Y(jw)/X(jw) of this system.
(b) Determine the impulse response of the system.

In the discussion in Section 4.3.7 of Parseval’s relation for continuous-time signals,
we saw that

4 +oo
j O dr = - j X(joo)P do.

e 21 ) o

This says that the total energy of the signal can be obtained by integrating |X(jw)[?
over all frequencies. Now consider a real-valued signal x(¢) processed by the ideal
bandpass filter H(jw) shown in Figure P4.45. Express the energy in the output sig-
nal y(¢) as an integration over frequency of [X(jw)|?. For A sufficiently small so that
|X(jw)| is approximately constant over a frequency interval of width A, show that
the energy in the output y(¢) of the bandpass filter is approximately proportional to
AlX(jwo)l*.

On the basis of the foregoing result, A|X(jwo)|? is proportional to the energy
in the signal in a bandwidth A around the frequency wj. For this reason, |X(jw)[? is
often referred to as the energy-density spectrum of the signal x(¢).

X(t) =3 H(jw) F—>y(t)

H(joo)
—faf— 1 |8
~Wo @o @ Figure P4.45
4.46. In Section 4.5.1, we discussed the use of amplitude modulation with a complex

exponential carrier to implement a bandpass filter. The specific system was shown
in Figure 4.26, and if only the real part of f(#) is retained, the equivalent bandpass
filter is that shown in Figure 4.30.

In Figure P4.46, we indicate an implementation of a bandpass filter using
sinusoidal modulation and lowpass filters. Show that the output y(#) of the sys-
tem is identical to that which would be obtained by retaining only ®e{ f(¢)} in Fig-
ure 4.26.
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cos w.t
| Hi(joo)
x(t) —1 CO—v0)
LG i) —>®—f
sin wct
Hy(joo)
1
~wo wo w Figure P4.46

4.47. An important property of the frequency response H(jw) of a continuous-time LTI
system with a real, causal impulse response A(¢) is that H(jw) is completely spec-
ified by its real part, Re{H(jw)}. The current problem is concerned with deriving
and examining some of the implications of this property, which is generally referred
to as real-part sufficiency.

(a) Prove the property of real-part sufficiency by examining the signal A, (t), which
is the even part of A(¢). What is the Fourier transform of A.(¢)? Indicate how
h(t) can be recovered from h.(z).

(b) If the real part of the frequency response of a causal system is

Re{H(jw)} = cosw,

what is A(z)?

(c) Show that A(r) can be recovered from h,(z), the odd part of h(t), for every
value of ¢ except + = 0. Note that if A(f) does not contain any singularities
[6(8), uy (1), ur(t), etc.] at t = 0, then the frequency response

4o

H(jw) = J h(t)e /! dt

will not change if A(r) is set to some arbitrary finite value at the single point
t = 0. Thus, in this case, show that H(jw) is also completely specified by its
imaginary part.
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EXTENSION PROBLEMS

4.48. Let us consider a system with a real and causal impulse response A(t) that does not
have any singularities at # = 0. In Problem 4.47, we saw that either the real or the
imaginary part of H(jw) completely determines H(jw). In this problem we derive
an explicit relationship between Hg(jw) and H;(jw), the real and imaginary parts
of H(jw).

(a)

(b)

(0

To begin, note that since A(¢) is causal,
() = h(Du(?), (P4.48-1)

except perhaps at ¢+ = 0. Now, since A(f) contains no singularities at ¢t = 0, the
Fourier transforms of both sides of eq. (P4.48—1) must be identical. Use this
fact, together with the multiplication property, to show that

1 +oc H(i
H(jw) = — J HUD 4. (P4.48-2)
JT - @ — M
Use eq. (P4.48-2) to determine an expression for Hg(jw) in terms of H;(jw)
and one for H;(jw) in terms of Hz(jw).
The operation

(1) = ij IR (P4.48-3)
T ) I —T

is called the Hilbert transform. We have just seen that the real and imaginary
parts of the transform of a real, causal impulse response () can be determined
from one another using the Hilbert transform.

Now consider eq. (P4.48-3), and regard y(r) as the output of an LTI system
with input x(¢). Show that the frequency response of this system is

.y _ | =) ©=0

What is the Hilbert transform of the signal x(¢) = cos 3¢?

4.49. Let H(jw) be the frequency response of a continuous-time LTI system, and suppose
that H(jw) is real, even, and positive. Also, assume that

max{H (jw)} = H(0).

(a) Show that:

(i) The impulse response, A(?), is real.
(i) max{[h(D)f} = ().

Hint: If f(t, ) is a complex function of two variables, then

—%

+ 0 +aoc
j ft,w)dw SJ' lf(t, w)|do.




352

The Gontinuous-Time Fourier Transform Chap. 4

(b) One important concept in system analysis is the bandwidth of an LTI system.

There are many different mathematical ways in which to define bandwidth,
but they are related to the qualitative and intuitive idea that a system with fre-
quency response G(jw) essentially “stops” signals of the form e/* for values of
o where G(jw) vanishes or is small and “passes” those complex exponentials
in the band of frequency where G(jw) is not small. The width of this band is the
bandwidth. These ideas will be made much clearer in Chapter 6, but for now we
will consider a special definition of bandwidth for those systems with frequency
responses that have the properties specified previously for H(jw). Specifically,
one definition of the bandwidth B,, of such a system is the width of the rect-
angle of height H(j0) that has an area equal to the area under H(jw). This is
illustrated in Figure P4.49(a). Note that since H(j0) = max,, H(jw), the fre-
quencies within the band indicated in the figure are those for which H(jw) is
largest. The exact choice of the width in the figure is, of course, a bit arbitrary,
but we have chosen one definition that allows us to compare different systems
and to make precise a very important relationship between time and frequency.
What is the bandwidth of the system with frequency response

1, |(1)|<W‘7

H(jw) = {0, o] > W

Area of rectangle =
area under H(jw)

(a) Figure P4.49a

(c) Find an expression for the bandwidth B,, in terms of H(jw).
(d) Let s(¢) denote the step response of the system set out in part (a). An important

measure of the speed of response of a system is the rise time, which, like the
bandwidth, has a qualitative definition, leading to many possible mathematical
definitions, one of which we will use. Intuitively, the rise time of a system is a
measure of how fast the step response rises from zero to its final value,

s(®) = tll—l;lolc s(D).

Thus, the smaller the rise time, the faster is the response of the system. For the
system under consideration in this problem, we will define the rise time as

)
r h(0)’
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Since
s'(t) = h(@),

and also because of the property that £(0) = max, h(?), t, is the time it would
take to go from zero to s(c) while maintaining the maximum rate of change of
s(t). This is illustrated in Figure P4.49(b).

Find an expression for ¢, in terms of H(jw).

s(t)

S(O¢)7(—\—/—W
|
|
|
|
N TN ]

FONNT N i
"tr“

(b) Figure P4.49b

(e) Combine the results of parts (c) and (d) to show that
B,t, = 2. (P4.49-1)

Thus, we cannot independently specify both the rise time and the bandwidth of
our system. For example, eq. (P4.49-1) implies that, if we want a fast system (z,
small), the system must have a large bandwidth. This is a fundamental trade-off
that is of central importance in many problems of system design.

4.50. In Problems 1.45 and 2.67, we defined and examined several of the properties and
uses of correlation functions. In the current problem, we examine the properties of
such functions in the frequency domain. Let x(¢) and y(¢) be two real signals. Then
the cross-correlation function of x(7) and y(¢) is defined as

+x
bu) = | ety
Similarly, we can define ¢, (1), ¢..(¢), and ¢,,(1). [The last two of these are called
the autocorrelation functions of the signals x() and y(t), respectively.] Let ®,,(jw),
P, (jw), P, (jw), and D,,(jw) denote the Fourier transforms of ¢, (1), ¢y, (1),
dxx(1), and ¢,,(1), respectively.
(a) What is the relationship between ®,,(jw) and ®@,,(jw)?
(b) Find an expression for ®,,(jw) in terms of X(jw) and Y (jw).
(c) Show that ®,,(jw) is real and nonnegative for every w.
(d) Suppose now that x(¢) is the input to an LTI system with a real-valued impulse
response and with frequency response H(jw) and that y(¢) is the output. Find
expressions for ®,,(jw) and ®,,(jw) in terms of P,,(jw) and H(jw).
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(e) Let x(7) be as is illustrated in Figure P4.50, and let the LTI system impulse
response be A(t) = e~ “u(t), a > 0. Compute ®,,(jw), P,,(jw), and ®,,(jw)
using the results of parts (a)—(d).

(f) Suppose that we are given the following Fourier transform of a function ¢(¢):
) ? + 100
P(jo) = w?+25°

Find the impulse responses of two causal, stable LT1 systems that have autocor-
relation functions equal to ¢(#). Which one of these has a causal, stable inverse?

x(t)

0 1 't Figure P4.50

4.51. (a) Consider two LTI systems with impulse responses A(f) and g(t), respectively,
and suppose that these systems are inverses of one another. Suppose also that the
systems have frequency responses denoted by H(jw) and G(jw), respectively.
What is the relationship between H(jw) and G(jw)?

(b) Consider the continuous-time LTI system with frequency response

v L 2<lwl <3
H(jw) = {O, otherwise -

(i) Is it possible to find an input x(¢) to this system such that the output is as
depicted in Figure P4.50? If so, find x(¢). If not, explain why not.
(ii) Is this system invertible? Explain your answer.

(¢) Consider an auditorium with an echo problem. As discussed in Problem 2.64,
we can model the acoustics of the auditorium as an LTI system with an im-
pulse response consisting of an impulse train, with the kth impulse in the train
corresponding to the kth echo. Suppose that in this particular case the impulse
response is

h(ty = > e ¥ 8(t — kT),

k=0

where the factor e~ *T represents the attenuation of the kth echo.

In order to make a high-quality recording from the stage, the effect of the
echoes must be removed by performing some processing of the sounds sensed
by the recording equipment. In Problem 2.64, we used convolutional techniques
to consider one example of the design of such a processor (for a different acous-
tic model). In the current problem, we will use frequency-domain techniques.
Specifically, let G(jw) denote the frequency response of the LTI system to be
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4.52.

)

(e)

used to process the sensed acoustic signal. Choose G(jw) so that the echoes are
completely removed and the resulting signal is a faithful reproduction of the
original stage sounds.

Find the differential equation for the inverse of the system with impulse re-
sponse

h(t) = 26() + u; (0.

Consider the LTI system initially at rest and described by the differential equa-
tion
d*y() dy(t) d*x(1) dx(t)
- = + .
in +6 o + 9y(2) an +3 ar 2x(t)

The inverse of this system is also initially at rest and described by a differen-
tial equation. Find the differential equation describing the inverse, and find the
impulse responses A(t) and g(¢) of the original system and its inverse.

Inverse systems frequently find application in problems involving imperfect mea-
suring devices. For example, consider a device for measuring the temperature of a
liquid. It is often reasonable to model such a device as an LTI system that, because
of the response characteristics of the measuring element (e.g., the mercury in a ther-
mometer), does not respond instantaneously to temperature changes. In particular,
assume that the response of this device to a unit step in temperature is

(a)

(b)

()

s(t) = (1 — e u(). (P4.52-1)

Design a compensatory system that, when provided with the output of the mea-
suring device, produces an output equal to the instantaneous temperature of the
liquid.

One of the problems that often arises in using inverse systems as compensators
for measuring devices is that gross inaccuracies in the indicated temperature
may occur if the actual output of the measuring device produces errors due to
small, erratic phenomena in the device. Since there always are such sources
of error in real systems, one must take them into account. To illustrate this,
consider a measuring device whose overall output can be modeled as the sum
of the response of the measuring device characterized by eq. (P4.52-1) and
an interfering “noise” signal n(¢). Such a model is depicted in Figure P4.52(a),
where we have also included the inverse system of part (a), which now has as its
input the overall output of the measuring device. Suppose that n(f) = sinwt.
What is the contribution of n(¢) to the output of the inverse system, and how
does this output change as w is increased?

The issue raised in part (b) is an important one in many applications of LTI
system analysis. Specifically, we are confronted with the fundamental trade-
off between the speed of response of the system and the ability of the system
to attenuate high-frequency interference. In part (b) we saw that this trade-
off implied that, by attempting to speed up the response of a measuring device
(by means of an inverse system), we produced a system that would also amplify
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Actual measuring device

asuring devi o LT model
=] measuring device (
L] sth=0-e"Auw e
|

Perfect measuring Compensating
|
st) = uft) system

|
|
—|>| device
|
|

Figure P4.52

corrupting sinusoidal signals. To illustrate this concept further, consider a mea-
suring device that responds instantaneously to changes in temperature, but that
also is corrupted by noise. The response of such a system can be modeled, as
depicted in Figure P4.52(b), as the sum of the response of a perfect measuring
device and a corrupting signal n(f). Suppose that we wish to design a compen-
satory system that will slow down the response to actual temperature variations,
but also will attenuate the noise n(t). Let the impulse response of this system
be

h(t) = ae “u(t).

Choose a so that the overall system of Figure P4.52(b) responds as quickly
as possible to a step change in temperature, subject to the constraint that the
amplitude of the portion of the output due to the noise n(f) = sin 6t is no larger
than 1/4.

4.53. As mentioned in the text, the techniques of Fourier analysis can be extended to

signals having two independent variables. As their one-dimensional counterparts do
in some applications, these techniques play an important role in other applications,
such as image processing. In this problem, we introduce some of the elementary
ideas of two-dimensional Fourier analysis.

Let x(#), ;) be a signal that depends upon two independent variables #; and
t>. The two-dimensional Fourier transform of x(t, t;) is defined as

4% 4o
X(jw, jwy) = J J x(1, fz)e"j(‘“"‘“":'z)dn dt.

—0c —

(a) Show that this double integral can be performed as two successive one-
dimensional Fourier transforms, first in #; with #, regarded as fixed and then
in t;.
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(b) Use the result of part (a) to determine the inverse transform—that is, an expres-
sion for x(t1, ;) in terms of X(jw), jwy).
(c) Determine the two-dimensional Fourier transforms of the following signals:
@ x(t1, ) = e 122t — Du2 — 1)
(i) x(t1, 1) = { el i 1< =land-1=p =<1
0, otherwise
(i) x(ty, 1) = [ el if0 =1, = lor0 = 1, = 1 (or both)
0, otherwise
(iv) x(#y, ) as depicted in Figure P4.53.
v) e In+l-lh-n

t

x(ty, t)) =1 in shaded area
and 0 outside

Figure P4.53

(d) Determine the signal x(#, ;) whose two-dimensional Fourier transform is

2T
4+ jw

X(joi, jw2) = O(w2 — 2wy).

(e) Let x(t1, ;) and h(f;, ;) be two signals with two-dimensional Fourier trans-
forms X(jw, jw,) and H(jwi, jw,), respectively. Determine the transforms
of the following signals in terms of X(jw), jw2) and H(jw,, jw3):

O xt — T, —T)
(ii) x(aty, bt»)
(i) y(t, ) = [ [ 1) x(r, mh(ty — 11,1 = m)dmd T
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In Chapter 4, we introduced the continuous-time Fourier transform and developed the
many characteristics of that transform which make the methods of Fourier analysis of
such great value in analyzing and understanding the properties of continuous-time signals
and systems. In the current chapter, we complete our development of the basic tools of
Fourier analysis by introducing and examining the discrete-time Fourier transform.

In our discussion of Fourier series in Chapter 3, we saw that there are many similari-
ties and strong parallels in analyzing continuous-time and discrete-time signals. However,
there are also important differences. For example, as we saw in Section 3.6, the Fourier
series representation of a discrete-time periodic signal is a finife series, as opposed to the
infinite series representation required for continuous-time periodic signals. As we will see
in this chapter, there are corresponding differences between continuous-time and discrete-
time Fourier transforms.

In the remainder of the chapter, we take advantage of the similarities between
continuous-time and discrete-time Fourier analysis by following a strategy essentially
identical to that used in Chapter 4. In particular, we begin by extending the Fourier se-
ries description of periodic signals in order to develop a Fourier transform representation
for discrete-time aperiodic signals, and we follow with an analysis of the properties and
characteristics of the discrete-time Fourier transform that parallels that given in Chap-
ter 4. By doing this, we not only will enhance our understanding of the basic concepts of
Fourier analysis that are common to both continuous and discrete time, but also will con-
trast their differences in order to deepen our understanding of the distinct characteristics
of each.
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5.1 REPRESENTATION OF APERIODIC SIGNALS:
THE DISCRETE-TIME FOURIER TRANSFORM

5.1.1 Development of the Discrete-Time Fourier Transform

In Section 4.1 [eq. (4.2) and Figure 4.2], we saw that the Fourier series coefficients for a
continuous-time periodic square wave can be viewed as samples of an envelope function
and that, as the period of the square wave increases, these samples become more and
more finely spaced. This property suggested representing an aperiodic signal x(¢) by first
constructing a periodic signal x(#) that equaled x(¢) over one period. Then, as this period
approached infinity, X(r) was equal to x(¢) over larger and larger intervals of time, and the
Fourier series representation for ¥(#) converged to the Fourier transform representation for
x(2). In this section, we apply an analogous procedure to discrete-time signals in order to
develop the Fourier transform representation for discrete-time aperiodic sequences.

Consider a general sequence x[#] that is of finite duration. That is, for some integers
Nj and N,, x[n] = Ooutside therange —N; = n =< N,. A signal of this type is illustrated
in Figure 5.1(a). From this aperiodic signal, we can construct a periodic sequence X[n] for
which x[n] is one period, as illustrated in Figure 5.1(b). As we choose the period N to be
larger, ¥[n] is identical to x[n] over a longer interval, and as N — o, ¥[n] = x[n] for any
finite value of n.

Let us now examine the Fourier series representation of ¥[n]. Specifically, from eqs.
(3.94) and (3.95), we have

#[n] = Z akejk(zw/zv),,z, (5.1
k={(N)
x[n]
-N; 0 N, n

Figure 5.1 (a) Finite-duration signal x[n]; (b) periodic signal X[n] con-
structed to be equal to x[n] over one period.
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1 .
ap =+ > X[n]e /MM, (5.2)
N n=(N)

Since x[n] = X[n] over a period that includes the interval —N| = n = N,, it is
convenient to choose the interval of summation in eq. (5.2) to include this interval, so that
X[n] can be replaced by x[r] in the summation. Therefore,

N> +=

— 1 —jkQmINn _ 1 —jkQ2m/N)n
a, = N Z x[nle™/ =N Z x[n)e” KT (5.3)

n=—N, n=-x

where in the second equality in eq. (5.3) we have used the fact that x[n} is zero outside
the interval —N; < n =< N,. Defining the function
. e .
X(e™®) = > x{nle”ion, (5.4)

n=-—x

we see that the coefficients a; are proportional to samples of X(e/?), i.e.,
1 .
a; = NX(e’k“’"), (5.5)

where wy = 27/N is the spacing of the samples in the frequency domain. Combining egs.
(5.1) and (5.5) yields

n) = > %X(efk“’”)ej’“""”. (5.6)
k=(N)
Since wp = 27/N, or equivalently, I/N = wo/27, eq. (5.6) can be rewritten as

_ 1
2T

x[n] > X(elkenyeltenngy, (5.7)

k=(N)

As with eq. (4.7), as N increases wy decreases, and as N — « eq. (5.7) passes to
an integral. To see this more clearly, consider X(e/®)e/" as sketched in Figure 5.2. From

X(e]w) émn

X(ej kmo) ejk(non
|

Figure 5.2 Graphical interpretation
of eq. (5.7).

-
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eq. (5.4), X(e/*) is seen to be periodic in w with period 277, and so is e/”. Thus, the product
X(e/®)e/™ will also be periodic. As depicted in the figure, each term in the summation
in eq. (5.7) represents the area of a rectangle of height X(e/k*0)e/“0" and width wq. As
wo — 0, the summation becomes an integral. Furthermore, since the summation is carried
out over N consecutive intervals of width wy = 27/N, the total interval of integration will
always have a width of 27r. Therefore, as N — o, ¥[n] = x[n], and eq. (5.7) becomes

x[n] = LJ X(e/)el" dw,
277 2

where, since X (e/)e/" is periodic with period 277, the interval of integration can be taken
as any interval of length 27r. Thus, we have the following pair of equations:

x[n] = %f X(e/)e/" dw, (5.8)
2
+oc
X(e/®) = Z x[n]e /. 5.9

Equations (5.8) and (5.9) are the discrete-time counterparts of egs. (4.8) and (4.9).
The function X(e/®) is referred to as the discrete-time Fourier transform and the pair of
equations as the discrete-time Fourier transform pair. Equation (5.8) is the synthesis equa-
tion, eq. (5.9) the analysis equation. Our derivation of these equations indicates how an
aperiodic sequence can be thought of as a linear combination of complex exponentials.
In particular, the synthesis equation is in effect a representation of x[n] as a linear com-
bination of complex exponentials infinitesimally close in frequency and with amplitudes
X(e/*)(dw/21r). For this reason, as in continuous time, the Fourier transform X(e/®) will
often be referred to as the spectrum of x[n], because it provides us with the information
on how x[n] is composed of complex exponentials at different frequencies.

Note also that, as in continuous time, our derivation of the discrete-time Fourier
transform provides us with an important relationship between discrete-time Fourier series
and transforms. In particular, the Fourier coefficients a; of a periodic signal %[n] can be
expressed in terms of equally spaced samples of the Fourier transform of a finite-duration,
aperiodic signal x[n] that is equal to X[n] over one period and is zero otherwise. This fact
is of considerable importance in practical signal processing and Fourier analysis, and we
look at it further in Problem 5.41.

As our derivation indicates, the discrete-time Fourier transform shares many sim-
ilarities with the continuous-time case. The major differences between the two are the
periodicity of the discrete-time transform X(e/®) and the finite interval of integration in
the synthesis equation. Both of these stem from a fact that we have noted several times be-
fore: Discrete-time complex exponentials that differ in frequency by a multiple of 27 are
identical. In Section 3.6 we saw that, for periodic discrete-time signals, the implications
of this statement are that the Fourier series coefficients are periodic and that the Fourier
series representation is a finite sum. For aperiodic signals, the analogous implications are
that X(e/*) is periodic (with period 277) and that the synthesis equation involves an inte-
gration only over a frequency interval that produces distinct complex exponentials (i.e.,
any interval of length 27r). In Section 1.3.3, we noted one further consequence of the pe-
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riodicity of e/" as a function of w: @ = 0 and @ = 27 yield the same signal. Signals
at frequencies near these values or any other even multiple of 7 are slowly varying and
therefore are all appropriately thought of as low-frequency signals. Similarly, the high
frequencies in discrete time are the values of w near odd multiples of 7. Thus, the signal
x1[n] shown in Figure 5.3(a) with Fourier transform depicted in Figure 5.3(b) varies more
slowly than the signal x;[#n] in Figure 5.3(c) whose transform is shown in Figure 5.3(d).

X4(e")
x4[n]
0 n -2 -w 0 = 27 ®
(@ (b)
Xo(e/)
Xo[n]
N i ] 1 ] 1 1
0 n -2 - 0 @ 27 )

(© @
Figure 5.3 (a) Discrete-time signal x[n]. (b) Fourier transform of x[n].
Note that X;(e/*) is concentrated near » = 0, +27, =4, .... () Discrete-

time signal x,[n]. (d) Fourier transform of x[n]. Note that X(e/*) is concen-
trated near w = xw, 37, ....

5.1.2 Examples of Discrete-Time Fourier Transforms

To illustrate the discrete-time Fourier transform, let us consider several examples.

Example 5.1

Consider the signal

x[n] = a"u[n), la| < 1.
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In this case,

X(e™*) = i a"ulnle "

n=-w

£ ] 1
= E —joy 7
n:O(ae ) 1—aee .

The magnitude and phase of X(e/?) are shown in Figure 5.4(a) for @ > 0 and in Fig-
ure 5.4(b) for a < 0. Note that all of these functions are periodic in @ with period 27r.

x|

£ X(E)

tan™' @1 — 7\

—217\/—11 0 Ly 211'\ ®

—tan ' (@1 — 8
(@
[X(e)]
i
i+a /\_
_1-
1 | 1-a | |
—2m —r 0 ™ 21 w
X X

tan™' (Ja)iv1 ~ az)\__

/

,‘217 —ar 0 11’\/21T ®

(b;\ —tan~" (jal//1 — a?)

Figure 5.4 Magnitude and phase of the Fourier transform of Example 5.1
for () a>0and (b) a < 0.
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Example 5.2
Let
x[n] = a", la] < 1.
This signal is sketched for 0 < a < 1 in Figure 5.5(a). Its Fourier transform is obtained

from eq. (5.9):

+%x
X(ejw) — Z a\n|e—jwn

n=-—%

k3 —1
— E anefjwn+ z a‘"e"f“"‘.
n=0

n=-x%

x[n]

yF -

()

X(e)
(1+a)/(1-a) n

(1—a)/(1+a)

Figure 5.5 (a) Signal x[n] = a" of Example 5.2 and (b) its Fourier trans-
form (0 <a<1).
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Making the substitution of variables m = —n in the second summation, we obtain

X(e/®) = i(ae‘j‘“)" + i(aej‘”)’".

n=0 m=1

Both of these summations are infinite geometric series that we can evaluate in closed
form, yielding

1 aejm
1—age o 1-—ael®
2

X(e/?)

1—a
1 —2acosw + a?’

In this case, X(e/*) is real and is illustrated in Figure 5.5(b), again for 0 < a < 1.

Example 5.3
Consider the rectangular pulse
_[L Il =N
-x[n] - {O, |n| > N] » (510)
which is illustrated in Figure 5.6(a) for N| = 2. In this case,
Ny
Xy = > etiom, (.11)
n=—N;
x[n]
1
_N1 0 N1 n
(@
X(€")

5

N\ A\ A\
EIVALVANRVERVECE

(b)

Figure 5.6 (a) Rectangular pulse signal of Example 5.3 for Ny = 2 and
(b) its Fourier transform.
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Using calculations similar to those employed in obtaining eq. (3.104) in Example 3.12,
we can write

sinw(Nl + 1)

2

X™) =~

(5.12)
This Fourier transform is sketched in Figure 5.6(b) for N = 2. The function ineq. (5.12)
is the discrete-time counterpart of the sinc function, which appears in the Fourier trans-
form of the continuous-time rectangular pulse (see Example 4.4). An important differ-
ence between these two functions is that the function in eq. (5.12) is periodic with period
27, whereas the sinc function is aperiodic.

5.1.3 Convergence Issues Associated
with the Discrete-Time Fourier Transform

Although the argument we used to derive the discrete-time Fourier transform in Sec-
tion 5.1.1 was constructed assuming that x[n] was of arbitrary but finite duration, eqgs.
(5.8) and (5.9) remain valid for an extremely broad class of signals with infinite duration
(such as the signals in Examples 5.1 and 5.2). In this case, however, we again must con-
sider the question of convergence of the infinite summation in the analysis equation (5.9).
The conditions on x[r] that guarantee the convergence of this sum are direct counterparts
of the convergence conditions for the continuous-time Fourier transform.! Specifically,
eq. (5.9) will converge either if x[n] is absolutely summable, that is,

> Ixlnl < (5.13)

n=-x

or if the sequence has finite energy, that is,

> xfn) < . (5.14)

n=-x

In contrast to the situation for the analysis equation (5.9), there are generally no
convergence issues associated with the synthesis equation (5.8), since the integral in this
equation is over a finite interval of integration. This is very much the same situation as
for the discrete-time Fourier series synthesis equation (3.94), which involves a finite sum
and consequently has no issues of convergence associated with it either. In particular,
if we approximate an aperiodic signal x[n] by an integral of complex exponentials with
frequencies taken over the interval |w| = W, i.e.,

w
%[n] = % J WX(ej‘")ej“’" dow, (5.15)

!For discussions of the convergence issues associated with the discrete-time Fourier transform, see A. V.
Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1989), and L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing (Englewood Cliffs,
NI: Prentice-Hall, Inc., 1975).
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then X[n] = x[n] for W = 7. Thus, much as in Figure 3.18, we would expect not to see
any behavior like the Gibbs phenomenon in evaluating the discrete-time Fourier transform
synthesis equation. This is illustrated in the following example.

Example 5.4
Let x[n] be the unit impulse; that is,
x[n] = 8[n].
In this case the analysis equation (5.9) is easily evaluated, yielding
X(e®)y = 1.

In other words, just as in continuous time, the unit impulse has a Fourier transform repre-
sentation consisting of equal contributions at all frequencies. If we then apply eq. (5.15)
to this example, we obtain

W .
i) = L J eon d = SAWn (5.16)
27 ) _w mn

This is plotted in Figure 5.7 for several values of W. As can be seen, the frequency of the
oscillations in the approximation increases as W is increased, which is similar to what we
observed in the continuous-time case. On the other hand, in contrast to the continuous-
time case, the amplitude of these oscillations decreases relative to the magnitude of X[0]
as W is increased, and the oscillations disappear entirely for W = .

5.2 THE FOURIER TRANSFORM FOR PERIODIC SIGNALS

As in the continuous-time case, discrete-time periodic signals can be incorporated within
the framework of the discrete-time Fourier transform by interpreting the transform of a
periodic signal as an impulse train in the frequency domain. To derive the form of this
representation, consider the signal

x[n] = e/@o, (5.17)

In continuous time, we saw that the Fourier transform of ¢/’ can be interpreted as an
impulse at @ = wq. Therefore, we might expect the same type of transform to result for
the discrete-time signal of eq. (5.17). However, the discrete-time Fourier transform must
be periodic in w with period 27r. This then suggests that the Fourier transform of x[r] in
eq. (5.17) should have impulses at wg, wg * 27, wg = 44r, and so on. In fact, the Fourier
transform of x[#n] is the impulse train

“+o
X(e/®) = > 2mb(w — wo — 2mD), (5.18)

|=—»
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x[n] W = /4 ;[”] W = 3n/8
1 8
4 S
0 n 0 n
(a) (b)
X[n] W = 3n/4
x[n] W = w/2 5
1 4
2
0 n . &3 I 0 I L . ’ n
() (@
x[n] W = 77/8 X
7 19 W=m
G |

$3Jof1® n 0 n
(e) )

Figure 5.7 Approximation to the unit sample obtained as in eq. (5.16) using complex
exponentials with frequencies (o] = W: (@) W = #/4; (b) W = 3#/8; (c) W = w/2;
(d) W = 3n/4; (&) W = 7x/8; (f) W = =. Note that for W = =, X[n] = &[n].
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which is illustrated in Figure 5.8. In order to check the validity of this expression, we must
evaluate its inverse transform. Substituting eq. (5.18) into the synthesis equation (5.8), we
find that

1 o 1 e )
L Jjoy ,jon - 2 — -2 Jon i
= Lw X(e)e!"dw P Lw IZZ'M 78w — wg me!"dw

X(e)

2m

(wg — 4m)

Figure 5.8 Fourier transform of
(wg — 2m) g (wg + 2m) (wg + 4m) x[n] = gl

Note that any interval of length 27 includes exactly one impulse in the summation given
in eq. (5.18). Therefore, if the interval of integration chosen includes the impulse located
at wg + 27rr, then

_1_ X(ejw)ejwn do = ej((ug+27rr)n — ejwon.
2@ 21

Now consider a periodic sequence x[n] with period N and with the Fourier series
representation

x[n] = > agelmNm, (5.19)
k=(N)

In this case, the Fourier transform is

+o0
X(e/®) = Z 27Tak8<w - %), (5.20)
k=—o0

so that the Fourier transform of a periodic signal can be directly constructed from its
Fourier coefficients.

To verify that eq. (5.20) is in fact correct, note that x{#] in eq. (5.19) is a linear
combination of signals of the form in eq. (5.17), and thus the Fourier transform of x[n]
must be a linear combination of transforms of the form of eq. (5.18). In particular, suppose
that we choose the interval of summation ineq. (5.19)as k = 0,1,..., N — 1, so that

x[n] = ag + a; /NN 4 g, 722N

5.21
4+ -+ aN_lej(N—l)(Zﬂ/N)n. ( )
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Thus, x[n] is a linear combination of signals, as in eq. (5.17), with wg = 0, 27/N,
4m/N,...,(N — 1)27/N. The resulting Fourier transform is illustrated in Figure 5.9.
In Figure 5.9(a), we have depicted the Fourier transform of the first term on the right-hand
side of eq. (5.21): The Fourier transform of the constant signal ag = age/*" is a periodic
impulse train, as in eq. (5.18), with wy, = 0 and a scaling of 27ra( on each of the impulses.
Moreover, from Chapter 4 we know that the Fourier series coefficients a; are periodic
with period N, so that 27ray = 2may = 2wra—y. In Figure 5.9(b) we have illustrated the
Fourier transform of the second term in eq. (5.21), where we have again used eq. (5.18),

21‘1’30 = 2’1Ta_N 211'30 211'30 = 2’1TaN
2w 0 2w ®
@
2may = 2ma_y 41 2may 2may = 2may 4 1
-N+1) 2% (2_“) ( 2m ©
(( ) N ) N (N +1) <
(b)
((fN—n?l) (-2—") (N-1) 2T
N N N
\ { { °
2may_q = 27a_y _ 4 2may_qy = 2wa_4 2may _ 4
(©
2ma_y 27a, 2may
2ma Ny 2may 2may 1
—2m 0 2% ]
2ma_yN _ 4 2ma_q 2may _ 4

(d)

Figure 5.9 Fourier transform of a discrete-time periodic signal: (a) Fourier transform
of the first term on the right-hand side of eq. (5.21); (b) Fourier transform of the sec-
ond term in eq. (5.21); (c) Fourier transform of the last term in eq. (5.21); (d) Fourier
transform of x[n] in eq (5.21).
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in this case for a;e/™M" and the fact that 27a; = 2may,| = 2ma_y.,. Similarly,
Figure 5.9(c) depicts the final term. Finally, Figure 5.9(d) depicts the entire expression
for X(e/®). Note that because of the periodicity of the ay, X(e/“) can be interpreted as
a train of impulses occurring at multiples of the fundamental frequency 27/N, with the
area of the impulse located at w = 27k/N being 2ma,, which is exactly what is stated in
eq. (5.20).

Example 5.5
Consider the periodic signal

1 . 1 _.
x[n] = coswon = ie""ﬂ” + Ee"“'o", with wy = 27—7 5.22)

5

From eq. (5.18), we can immediately write

+oo +o
X(e/®) = Z 778((0 - 2?77 — 27rl>+ Z 776(«) + 2?77 - 2771). (5.23)

l=-= |=—

That is,
. 27 2
X(e/w)zws(u—?+w8w+?, -T <<, (5.24)

and X(e’*) repeats periodically with a period of 277, as illustrated in Figure 5.10.

X(e')

Pt ot Pt

—-2m —wg 0 o 2m ®
(—2m—wg) (—27+twg) (Rm—wg) (2m+og)

Figure 5.10 Discrete-time Fourier transform of x[n] = c0S wyn.

Example 5.6

The discrete-time counterpart of the periodic impulse train of Example 4.8 is the se-
quence

x[n] = i 8[n — kN], (5.25)

k=—=

- as sketched in Figure 5.11(a). The Fourier series coefficients for this signal can be cal-
culated directly from eq. (3.95):

a = ﬁ Z x[n]e—jk(ZﬂlN)n.
n=(N)
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Choosing the interval of summationas 0 < n < N — 1, we have

1

U = 5 (5.26)

Using egs. (5.26) and (5.20), we can then represent the Fourier transform of the signal
as

, 2 <= 2wk
joy — 2% _ e
X(e") = = ,Zxa(w N ) (5.27)
which is illustrated in Figure 5.11(b).
X[n]
—OMJ—MM—;[’WWLWQ]—M
-N 0 N 2N n
(@)
X(e/)
27/N
2m ®

Figure 5.11 (a) Discrete-time periodic impulse train; (b) its Fourier
transform.

5.3 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

As with the continuous-time Fourier transform, a variety of properties of the discrete-time
Fourier transform provide further insight into the transform and, in addition, are often
useful in reducing the complexity in the evaluation of transforms and inverse transforms.
In this and the following two sections we consider these properties, and in Table 5.1 we
present a concise summary of them. By comparing this table with Table 4.1, we can
get a clear picture of some of the similarities and differences between continuous-time
and discrete-time Fourier transform properties. When the derivation or interpretation of
a discrete-time Fourier transform property is essentially identical to its continuous-time
counterpart, we will simply state the property. Also, because of the close relationship
between the Fourier series and the Fourier transform, many of the transform properties
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translate directly into corresponding properties for the discrete-time Fourier series, which
we summarized in Table 3.2 and briefly discussed in Section 3.7.

In the following discussions, it will be convenient to adopt notation similar to that
used in Section 4.3 to indicate the pairing of a signal and its transform. That is,

X(e/) = F{x[nl},
x[n] = F X ()},

F .
x[n] «<— X(&’“).

5.3.1 Periodicity of the Discrete-Time Fourier Transform

As we discussed in Section 5.1, the discrete-time Fourier transform is always periodic in
w with period 27; i.e.,

X(e/@t?™y = X(e/®). (5.28)

This is in contrast to the continuous-time Fourier transform, which in general is not peri-
odic.

5.3.2 Linearity of the Fourier Transform

If
F .
xi[n] «— Xi(e’®)
and
F .
x3[n] «— X,(e’®),
then

axi[n] + bxo[n] < aX,(e®) + bXy(e®). (5.29)

5.3.3 Time Shifting and Frequency Shifting
If

§ .
x[n] «— X(e/*),

then

F . .
x[n — ng] «— e /9" X () (5.30)
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and

. F ;
e/ x[n] «— X(e/@700). (5:31)

Equation (5.30) can be obtained by direct substitution of x[n — ng] into the analysis equa-
tion (5.9), while eq. (5.31) is derived by substituting X(e/“~“)) into the synthesis equa-
tion (5.8).

As a consequence of the periodicity and frequency-shifting properties of the discrete-
time Fourier transform, there exists a special relationship between ideal lowpass and ideal
highpass discrete-time filters. This is illustrated in the next example.

Example 5.7

In Figure 5.12(a) we have depicted the frequency response Hy,(e/“) of a lowpass filter
with cutoff frequency w., while in Figure 5.12(b) we have displayed H,(e/“~™)—that
is, the frequency response Hi,(e/*) shifted by one-half period, i.e., by . Since high
frequencies in discrete time are concentrated near 7 (and other odd multiples of 7r), the
filter in Figure 5.12(b) is an ideal highpass filter with cutoff frequency 7 — w,. That is,

Hup(e/) = Hip(e/“™™). (5.32)

As we can see from eq. (3.122), and as we will discuss again in Section 5.4, the
frequency response of an LTI system is the Fourier transform of the impulse response
of the system. Thus, if Ay,[n] and hny[n] respectively denote the impulse responses of

Hlp(ém)

T T T T
—-2m - \ T 2w ®
—(m—ay) (m—og)

()

Figure 5.12 (a) Frequency response of a lowpass filter; (b) frequency re-
sponse of a highpass filter obtained by shifting the frequency response in (a)
by w = w corresponding to one-half period.
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Figure 5.12, eq. (5.32) and the frequency-shifting property imply that
the lowpass and highpass filters in
hupln] = €™ hyp[n] (5.33)

= (—1)"hyp[n]. (5.34)

5.3.4 Conjugation and Conjugate Symmetry
If

§ .
x[n] «— X(e’*),

then

Xl o X*(e™ ), (5.35)

Also, if x[n] is real valued, its transform X(e/®) is conjugate symmetric. That is,

X(e/?) = X*(e77°) [x[n]real]. (5.36)

From this, it follows that Be{X(e/*)} is an even function of w and 9m{X(e/*)} is an odd
function of w. Similarly, the magnitude of X(e/®) is an even function and the phase angle
is an odd function. Furthermore,

Sv{xlnl} <> Re{X(e/)}

and

Od{x(n]} —— jImiX(ei®))

where &v and Od denote the even and odd parts, respectively, of x[n]. For example, if x[n]
is real and even, its Fourier transform is also real and even. Example 5.2 illustrates this
symmetry for x[n] = al.

5.3.5 Differencing and Accumulation

In this subsection, we consider the discrete-time counterpart of integration—that is,
accumulation—and its inverse, first differencing. Let x[n] be a signal with Fourier trans-
form X(e/®). Then, from the linearity and time-shifting properties, the Fourier transform
pair for the first-difference signal x[n] — x[n — 1] is given by

x[n] — x[n — 1] <i> (1 — e /*)X(e/®). (5.37)
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Next, consider the signal

n

ylnl = > xlml. (5.38)

m=—c

Since y[n] — y[n — 1] = x[n], we might conclude that the transform of y[rn] should be
related to the transform of x[n] by division by (1 — e~ /¢). This is partly correct, but as
with the continuous-time integration property given by eq. (4.32), there is more involved.
The precise relationship is

i xm] s 1—_16__1.;;(((31‘") + mX(e) Zw 8w —2mk). | (5.39)

m=—x k=—o

The impulse train on the right-hand side of eq. (5.39) reflects the dc or average value that
can result from summation.

Example 5.8

Let us derive the Fourier transform X(e/“) of the unit step x[n] = u[n] by making use
of the accumulation property and the knowledge that

gln] = 8[n] —— G(e/) = 1.

From Section 1.4.1 we know that the unit step is the running sum of the unit impulse.
That is,

x[n] = > glm].

Taking the Fourier transform of both sides and using accumulation yields

1

mG(ef"") + wG(e’) i 8(w — 2mk)

k=-—x

X(e)

L R > 8w — 2mk).

1—eJo

=—

5.3.6 Time Reversal

Let x[n] be a signal with spectrum X(e/®), and consider the transform Y(e/?) of y[n] =
x[—n]. From eq. (5.9),

+ +x
Y(e/®) = Z y[nle /e = Z x[—nle e, (5.40)
Substituting m = —n into eq. (5.40), we obtain
+00
Y(ei) = > x[mle /O™ = X(e ). (5.41)

m=—»
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That is,

x[—n] PN X(e /®). (5.42)

5.3.7 Time Expansion

Because of the discrete nature of the time index for discrete-time signals, the relation be-
tween time and frequency scaling in discrete time takes on a somewhat different form from
its continuous-time counterpart. Specifically, in Section 4.3.5 we derived the continuous-
time property

xar) < |1 X (’;" ) (5.43)

However, if we try to define the signal x[an], we run into difficulties if a is not an integer.
Therefore, we cannot slow down the signal by choosing a < 1. On the other hand, if we
let a be an integer other than +1—for example, if we consider x[2n]—we do not merely
speed up the original signal. That is, since # can take on only integer values, the signal
x[2n] consists of the even samples of x[n] alone.

There is a result that does closely parallel eq. (5.43), however. Let k be a positive
integer, and define the signal

x[n/k], if nis a multiple of &

Xaoln] = { 0, if n is not a multiple of k. (5.44)

As illustrated in Figure 5.13 for k = 3, x(y)[n] is obtained from x[rn] by placing k—1 zeros
between successive values of the original signal. Intuitively, we can think of x([n] as a
slowed-down version of x[n]. Since x(y)[n] equals O unless 7 is a multiple of &, i.e., unless
n = rk, we see that the Fourier transform of x(y)[n] is given by

+00

+20
X(k)(ef‘”) = Z x(k)[n]e_/“’” = Z x(k)[rk]e_f‘”k.

n=-—x y=—0o

x[n]

Al

—202 n

Figure 5.13 The signal x;)[n] ob-
tained from x[n] by inserting two zeros
between successive values of the
original signal.
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Furthermore, since x()[rk] = x[r], we find that

+x
X(e/”) = Z x[rle ko = x(eike),
That is,
J ”
Xalal < X(e7). (5.45)

Note that as the signal is spread out and slowed down in time by taking k > 1,
its Fourier transform is compressed. For example, since X(e/?) is periodic with period
21, X(e/*®) is periodic with period 27/k. This property is illustrated in Figure 5.14 for a
rectangular pulse.

x[n] X(ei®)

0 n
X)n] Xp(€) = X&)
1
0 n
X@in]
91
0 n ®
tV UtV ViV Vi
- 1y I el
3 3

Figure 5.14 Inverse relationship between the time and frequency domains: As k in-
creases, X [n] spreads out while its transform is compressed.
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Example 5.9

As an illustration of the usefulness of the time-expansion property in determining
Fourier transforms, let us consider the sequence x[n] displayed in Figure 5.15(a). This
sequence can be related to the simpler sequence y[n] depicted in Figure 5.15(b). In

particular
x[n] = yylnl + 2y@)[n — 1],
where
_ [ y[n/2], ifniseven
yorlnl [ 0, if nis odd

and y@)[n — 1] represents y[n] shifted one unit to the right. The signals y)[n] and
2y@)[n — 1] are depicted in Figures 5.15(c) and (d), respectively.

Next, note that y[n] = g[n — 2], where g[n] is a rectangular pulse as considered
in Example 5.3 (with N; = 2) and as depicted in Figure 5.6(a). Consequently, from
Example 5.3 and the time-shifting property, we see that

- 20 SID(5w/2)

Ye™) = e ™ en)

1 y[n]
01 2 345 6 7 8 9 n
(b)
yaln]
1
01 2 3 45 6 7 8 9 n
()
2ypn—1]
2
0 1 2 3 4 5 6 7 8 9 n

(@

Figure 5.15 (a) The signal x[n] in Example 5.9; (b) the signal y[n]; (c)
the signal y»[n] obtained by inserting one zero between successive values of
y[n]; and (d) the signal 2y;,[n — 1].
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Using the time-expansion property, we then obtain
~ 4w sin(Sw)
sin{fw) ’

5
yoln] «— e

and using the linearity and time-shifting properties, we get

sin(Sw)
sin(w)

¥ -Js
2yoyn = 1] > 2e7 7

Combining these two results, we have
sin{w)

X(e/®) = e (] + 2e jw)(sin(Sw)).

5.3.8 Differentiation in Frequency

Again, let

F .
x[n] «— X(&’®).

If we use the definition of X(e/) in the analysis equation (5.9) and differentiate both sides,
we obtain

dX(e/® R .
(;w ) _ Z —jnx{nle™/“".

n=—-x

The right-hand side of this equation is the Fourier transform of — jrnx[n}. Therefore, mul-
tiplying both sides by j, we see that

5 dX(e
nxfn] s j4XED) (5.46)
dw
The usefulness of this property will be illustrated in Example 5.13 in Section 5.4.
5.3.9 Parseval’s Relation
If x[n] and X(e/*) are a Fourier transform pair, then
+ 1 )
> P = 5- | xer)Pdo. (5.47)
n=-x 2m 2m

We note that this is similar to eq. (4.43), and the derivation proceeds in a similar man-
ner. The quantity on the left-hand side of eq. (5.47) is the total energy in the signal x[n], and
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Parseval’s relation states that this energy can also be determined by integrating the energy
per unit frequency, |X(e/¢)|?/2m, over a full 27 interval of distinct discrete-time frequen-
cies. In analogy with the continuous-time case, |X(e/?)|? is referred to as the energy-density
spectrum of the signal x[n]. Note also that eq. (5.47) is the counterpart for aperiodic sig-
nals of Parseval’s relation, eq. (3.110), for periodic signals, which equates the average
power in a periodic signal with the sum of the average powers of its individual harmonic
components.

Given the Fourier transform of a sequence, it is possible to use Fourier transform
properties to determine whether a particular sequence has a number of different properties.
To illustrate this idea, we present the following example.

Example 5.10

Consider the sequence x[n] whose Fourier transform X(e/®) is depicted for —7 =
w = 7 in Figure 5.16. We wish to determine whether or not, in the time domain, x[n]
is periodic, real, even, and/or of finite energy.

IX(e")]
31
2
—+— t ®
- _n o ™
2 (@) 2
IX(e)
2w +
‘LSIOpe of 2
m L2
+ —2m

)

Figure 5.16 Magnitude and phase of the Fourier transform for Exam-
ple 5.10.
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Accordingly, we note first that periodicity in the time domain implies that the
Fourier transform is zero, except possibly for impulses located at various integer multi-
ples of the fundamental frequency. This is not true for X(e/®). We conclude, then, that
x[n] is not periodic.

Next, from the symmetry properties for Fourier transforms, we know that a real-
valued sequence must have a Fourier transform of even magnitude and a phase function

- that is odd. This is true for the given |X(e/*)| and ¥<X(e/*). We thus conclude that x[n]
is real.

Third, if x[n] is an even function, then, by the symmetry properties for real signals,
X(e/*) must be real and even. However, since X(e/*) = |X(e/?)le™/?*, X(e/*) is not a
real-valued function. Consequently, x[#] is not even.

Finally, to test for the finite-energy property, we may use Parseval’s relation,

x 1 4
2 _ - Jwy2
,,Z,_ |x[n]| 3o Lﬁ |X(e’) dw.
It is clear from Figure 5.16 that integrating |X(e/*)?> from — to 7 will yield a finite
quantity. We conclude that x[n] has finite energy.

In the next few sections, we consider several additional properties. The first two of these
are the convolution and multiplication properties, similar to those discussed in Sections
4.4 and 4.5. The third is the property of duality, which is examined in Section 5.7, where
we consider not only duality in the discrete-time domain, but also the duality that exists
between the continuous-time and discrete-time domains.

5.4 THE CONVOLUTION PROPERTY

In Section 4.4, we discussed the importance of the continuous-time Fourier transform with
regard to its effect on the operation of convolution and its use in dealing with continuous-
time LTI systems. An identical relation applies in discrete time, and this is one of the
principal reasons that the discrete-time Fourier transform is of such great value in repre-
senting and analyzing discrete-time LTI systems. Specifically, if x[n], A[n], and y[n] are
the input, impulse response, and output, respectively, of an LTI system, so that

yln] = x[n] * hn],
then

Y(e/?) = X(e/*)H(e/®), (5.48)

where X(e/®), H(e/”), and Y(e/®) are the Fourier transforms of x[n], h[n], and y[n], re-
spectively. Furthermore, comparing eqs. (3.122) and (5.9), we see that the frequency re-
sponse of a discrete-time LTI system, as first defined in Section 3.8, is the Fourier transform
of the impulse response of the system.

The derivation of eq. (5.48) exactly parallels that carried out in Section 4.4. In par-
ticular, as in continuous time, the Fourier synthesis equation (5.8) for x[r] can be inter-
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preted as a decomposition of x[n] into a linear combination of complex exponentials with
infinitesimal amplitudes proportional to X(e/“). Each of these exponentials is an eigen-
function of the system. In Chapter 3, we used this fact to show that the Fourier series
coefficients of the response of an LTI system to a periodic input are simply the Fourier
coefficients of the input multiplied by the system’s frequency response evaluated at the
corresponding harmonic frequencies. The convolution property (5.48) represents the ex-
tension of this result to aperiodic inputs and outputs by using the Fourier transform rather
than the Fourier series.

As in continuous time, eq. (5.48) maps the convolution of two signals to the simple
algebraic operation of multiplying their Fourier transforms, a fact that both facilitates the
analysis of signals and systems and adds significantly to our understanding of the way in
which an LTI system responds to the input signals that are applied to it. In particular, from
eq. (5.48), we see that the frequency response H(e/®) captures the change in complex
amplitude of the Fourier transform of the input at each frequency . Thus, in frequency-
selective filtering, for example, we want H(e/®) =~ 1 over the range of frequencies cor-
responding to the desired passband and H(e/®) = 0 over the band of frequencies to be
eliminated or significantly attenuated.

5.4.1 Examples

To illustrate the convolution property, along with a number of other properties, we consider
several examples in this section.

Example 5.11
Consider an LTI system with impulse response
hln] = 6[n — ngl.
The frequency response is
4o
H(el®) = Z 8[n — ngle /" = e~iom0,
n=—ox

Thus, for any input x[n] with Fourier transform X(e’/®), the Fourier transform of the
output is

Y(el®) = e @m0 X(e/®). (5.49)

We note that, for this example, y[n] = x[n — ng] and eq. (5.49) is consistent with the
time-shifting property. Note also that the frequency response H(e/?) = e /™ of a pure
time shift has unity magnitude at all frequencies and a phase characteristic —wn, that is
linear with frequency.

Example 5.12

Consider the discrete-time ideal lowpass filter introduced in Section 3.9.2. This sys-
tem has the frequency response H(e’?) illustrated in Figure 5.17(a). Since the impulse
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response and frequency response of an LTI system are a Fourier transform pair, we can

determine the impulse response of the ideal lowpass filter from the frequency response

using the Fourier transform synthesis equation (5.8). In particular, using —7 <= 0w = 7
_ as the interval of integration in that equation, we see from Figure 5.17(a) that

Hinl = - f H(e®)e"dw = - J " elde

27 )_ 27 )_
Tl e (5.50)
_ sinw.n
T an
which is shown in Figure 5.17(b).
H(Ee™)
1
] ] | |
-2 - —wg 0  wy T 2r o
(@)
h[n]
0 n

(b)

Figure 5.17 (a) Frequency response of a discrete-time ideal lowpass filter;
(b) impulse response of the ideal lowpass filter.

In Figure 5.17, we come across many of the same issues that surfaced with the
continuous-time ideal lowpass filter in Example 4.18. First, since h[n] is not zero for
n < 0, the ideal lowpass filter is not causal. Second, even if causality is not an important is-
sue, there are other reasons, including ease of implementation and preferable time domain
characteristics, that nonideal filters are generally used to perform frequency-selective fil-
tering. In particular, the impulse response of the ideal lowpass filter in Figure 5.17(b) is
oscillatory, a characteristic that is undesirable in some applications. In such cases, a trade-
off between frequency-domain objectives such as frequency selectivity and time-domain
properties such as nonoscillatory behavior must be made. In Chapter 6, we will discuss
these and related ideas in more detail.

As the following example illustrates, the convolution property can also be of value
in facilitating the calculation of convolution sums.
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Example 5.13
Consider an LTI system with impulse response
hln] = «"u[n),
with |a| < 1, and suppose that the input to this system is
x[n] = B"uln],

with |8| < 1. Evaluating the Fourier transforms of 4[n] and x[n], we have

1 —ae e
and
X(e'®) = ;_ (5.52)
1-Be i’
so that
Y(e/®) = H(e/*)X(e/®) = ! (5.53)

(1 —ae i@)(1 — Be @)

As with Example 4.19 , determining the inverse transform of ¥(e/) is most easily
done by expanding Y(e/®) by the method of partial fractions. Specifically, Y(e/?) is a
ratio of polynomials in powers of e/, and we would like to express this as a sum of
simpler terms of this type so that we can find the inverse transform of each term by
inspection (together, perhaps, with the use of the frequency differentiation property of
Section 5.3.8). The general algebraic procedure for rational transforms is described in
the appendix. For this example, if @ # B, the partial fraction expansion of Y(e/?) is of
the form

A B

joy —
G 1—ae /o * 1— Bejo’

(5.54)

Equating the right-hand sides of eqs (5.53) and (5.54), we find that

_ - ___B
A—a_B, B = a—F
Therefore, from Example 5.1 and the linearity property, we can obtain the inverse trans-
form of eq. (5.54) by inspection:

B

a"uln] — ———— B"uln]

-B a-p (5.55)

= 1 @ uln) - B ufnll.

a—p

For a = B, the partial-fraction expansion in eq. (5.54) is not valid. However, in this
case,

yln]

. 1 2
Y = (T) :
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which can be expressed as
dw \1 — ae

Y(el) = éej‘“ d (é) (5.56)

As in Example 4.19, we can use the frequency differentiation property, eq. (5.46),
together with the Fourier transform pair

a"uln] <i> A——l‘—‘—‘,*,
1 —ae/®

Jdw\T=ae i |

To account for the factor e/, we use the time-shifting property to obtain

n+l 3 . jwi 1
(n+ Da" uln+ 1] «— je do\T"aedo )

and finally, accounting for the factor 1/«, in eq. (5.56), we obtain
yln] = (n + Da"uln + 1]. (5.57)

It is worth noting that, although the right-hand side is multiplied by a step that begins
atn = —1, the sequence (n + 1)au[n + 1] is still zero prior to n = 0, since the factor
n + 1is zero at n = —1. Thus, we can alternatively express y[n] as

y[n] = (n + Da’uln]. (5.58)

As illustrated in the next example, the convolution property, along with other Fourier
transform properties, is often useful in analyzing system interconnections.

Example 5.14

Consider the system shown in Figure 5.18(a) with input x[n] and output y[n]. The LTI
- systems with frequency response H,,(e/*) are ideal lowpass filters with cutoff frequency
_ /4 and unity gain in the passband.
Let us first consider the top path in Figure 5.18(a). The Fourier transform of the
signal w;[n] can be obtained by noting that (—1)" = /™ so that w[n] = e/™x[n].
Using the frequency-shifting property, we then obtain

Wi(e®) = X(e/“ ™).
The convolution property yields

Wa(el) = Hiple™)X(e/@ ™)

Since ws[n] = e/™w,[n], we can again apply the frequency-shifting property to obtain

Wi (e/?) = Wa(e/“™™)
- Hlp(ej(“’_"))X(ej(‘"_ZW))‘
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; éwdn]! H|p(ejw)‘ wo[n] wa[n|

X[} =— ylnl

: H Ip (eju))

wy[n]

@

HE)

- _3w

|
_ 3w ;’m_'z[r ®
4 4

n
(®)

Figure 5.18 (a) System interconnection for Example 5.14; (b) the overall
frequency response for this system.

Since discrete-time Fourier transforms are always periodic with period 27,
Wi(e™) = Hip(e/™™)X(e’).

Applying the convolution property to the lower path, we get

Wa(e’) = H,(e")X(e™).
From the linearity property of the Fourier transform, we obtain

Y(e'?) = Wi (e’) + Wa(e’®)

= [H;p(e/“™™) + Hp(e/)]X(e®).

Consequently, the overall system in Figure 5.18(a) has the frequency response
H(e™) = [Hip(e"“™™) + Hyp(e'))

which is shown in Figure 5.18(b).

As we saw in Example 5.7, H;,(e/@~™) is the frequency response of an ideal
highpass filter. Thus, the overall system passes both low and high frequencies and stops
frequencies between these two passbands. That is, the filter has what is often referred to
as an ideal bandstop characteristic, where the stopband is the region 7/4 < |w| < 3/4.

It is important to note that, as in continuous time, not every discrete-time LTI system
has a frequency response. For example, the LTI system with impulse response A[n] =
2"u[n] does not have a finite response to sinusoidal inputs, which is reflected in the fact
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that the Fourier transform analysis equation for A[n] diverges. However, if an LTI system
is stable, then, from Section 2.3.7, its impulse response is absolutely summable; that is,

+oo

> |hln]| < . (5.59)

n=—w

Therefore, the frequency response always converges for stable systems. In using Fourier
methods, we will be restricting ourselves to systems with impulse responses that have well-
defined Fourier transforms. In Chapter 10, we will introduce an extension of the Fourier
transform referred to as the z-transform that will allow us to use transform techniques for
LTI systems for which the frequency response does not converge.

5.5 THE MULTIPLICATION PROPERTY

In Section 4.5, we introduced the multiplication property for continuous-time signals and
indicated some of its applications through several examples. An analogous property exists
for discrete-time signals and plays a similar role in applications. In this section, we derive
this result directly and give an example of its use. In Chapters 7 and 8, we will use the
multiplication property in the context of our discussions of sampling and communications.

Consider y[n] equal to the product of x|[n] and x[n], with Y(e/®), X;(e/®), and
X,(e/?) denoting the corresponding Fourier transforms. Then

Y(e/*) = i ylnle /" = i xi[n]xz[n]e” /",
or since
x1[n] = % Lw X1(e’*)e’?de, (5.60)
it follows that
Y(e!®) = i xz[n]{zlq—r L X,(ef")ef""da} e en, (5.61)
il .

Interchanging the order of summation and integration, we obtain

Y@ = 5 L X1<ef”>[z Xz[n]e_j(w_")"]df). 5.6

n=-—x

The bracketed summation is X,(e/~9), and consequently, eq. (5.62) becomes

V) = 5 f Xi(e/)Xx(e/@0)do. (5.63)

2
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Equation (5.63) corresponds to a periodic convolution of X;(e/“) and X,(e/®), and the
integral in this equation can be evaluated over any interval of length 27r. The usual form
of convolution (in which the integral ranges from —o to +) is often referred to as ape-
riodic convolution to distinguish it from periodic convolution. The mechanics of periodic
convolution are most easily illustrated through an example.

Example 5.15

Consider the problem of finding the Fourier transform X(e/*) of a signal x[n] which is
the product of two other signals; that is,

x[n] = xi[n]xz[n],

where
sin(37n/4)
xiln] = ———
mh
and
sin(n/2)
xp[n] = ——=.
mn

From the multiplication property given in eq. (5.63), we know that X(e/*) is the periodic
convolution of X;(e/“) and X,(e/?), where the integral in eq. (5.63) can be taken over
any interval of length 27r. Choosing the interval —7r < 6 < 7, we obtain

X(e?) = 517?[_" Xi(e”)Xa(e/“™?)d0. (5.64)

Equation (5.64) resembles aperiodic convolution, except for the fact that the inte-
gration is limited to the interval —7 < 6 = 7. However, we can convert the equation
into an ordinary convolution by defining

Xi(e™) = [Xl(ej“’) for —m <w =
0 otherwise

Then, replacing X;(e/?) in eq. (5.64) by X,(e/?), and using the fact that X, (e/®) is zero
for | 8 |> , we see that

X(e!®) % J X1(e’)X, (e’ )d0

= ij Xi1(e’)Xa(e/“~9)d6.
27 )

Thus, X(e/) is 1/27 times the aperiodic convolution of the rectangular pulse Xi(e/®)
and the periodic square wave X»(e/®), both of which are shown in Figure 5.19. The result
of this convolution is the Fourier transform X(e’/®) shown in Figure 5.20.
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X1 (€)

—27 -5 % 4 2m [
Xp ()
1
=] L |
—2m —%‘E 37‘"- 2w ®

Figure 5.19 5(1(e/i°) representing one period of X;(e/*), and Xy(e’). The
linear convolution of X;(e) and X;(¢*) corresponds to the periodic convolu-
tion of Xi{e**) and X;(e*).

X(e')
1
2
.
L ne A 1 1 1 1 1
- _3n _m _m nx @ 3m 9w ®
4 2 4 4 2 4

Figure 5.20 Result of the periodic convolution in Example 5.15.

5.6 TABLES OF FOURIER TRANSFORM PROPERTIES
AND BASIC FOURIER TRANSFORM PAIRS

In Table 5.1, we summarize a number of important properties of the discrete-time Fourier
transform and indicate the section of the text in which each is discussed. In Table 5.2, we
summarize some of the basic and most important discrete-time Fourier transform pairs.
Many of these have been derived in examples in the chapter.

5.7 DUALITY

In considering the continuous-time Fourier transform, we observed a symmetry or duality
between the analysis equation (4.9) and the synthesis equation (4.8). No corresponding
duality exists between the analysis equation (5.9) and the synthesis equation (5.8) for the
discrete-time Fourier transform. However, there is a duality in the discrete-time Fourier
series equations (3.94) and (3.95), which we develop in Section 5.7.1. In addition, there is
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TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM
Section  Property Aperiodic Signal Fourier Transform
x[n] X(ef‘")} periodic with
y[n] Y(e/*)) period 27
5.3.2 Linearity ax[n] + by[n] aX(e’®) + bY(e’*)
5.33 Time Shifting x[n — ngy] e om0 X (el
53.3 Frequency Shifting 0" x[n] X(e/ w0y
534 Conjugation x'[n] X (e 1*)
53.6 Time Reversal x[—nl X(e @)
. . x[n/k], if n = multiple of k "
53.7 Time Expansion xwlnl = [ 0 £ multi}l:le of k X(e*)
5.4 Convolution x[n]* y[n} X(e’)Y(e!*)
5.5 Multiplication x[n]y[n} flq_rJ' XY (e 9)de
535 Differencing in Time x[n] — x[n — 1] (1 — e ™ )X(e’)
: § 1 "
535 Accumulation ‘Zi x[k] T X(@)
+7X(e’) Z 8w — 2mk)
k=—x
Jjw
538 Differentiation in Frequency  nx[n] ,dX;z) )
X(e®) = X*(e™ /)
Re{X(e/)} = Re{X(e )}
534 Conjugate Symmetry for x[n] real Imi{X(e/?)} = —Im{X(e @)}
Real Signals |X(e!)| = |X(e™ /)|
LX(e) = —4X(e )
53.4 Symmetry for Real, Even x[n] real an even X(e/*) real and even
Signals
534 Symmetry for Real, Odd x[n] real and odd X(e’*) purely imaginary and
Signals odd
5.3.4 Even-odd Decomposition x.[n] = &{x[n]} [x[n] real} Re{X(e/)}
of Real Signals x,[n] = 0d{x[n]} [x[n] real] JImiX (e}
5.39 Parseval’s Relation for Aperiodic Signals

n=-=

1
2

> xlnlf = —J IX(e")'dw

a duality relationship between the discrete-time Fourier transform and the continuous-time
Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a, of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence a; in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-
quence ay, are the values of (1/N)x[—n] (i.e., are proportional to the values of the original



TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal Fourier Transform Fourier Series Coefficients (if periodic)
: = 27k
Z ayel*eniNn 2 Z apd (w - T) ay
k=(N) K=o
@ o =3¢
) i I, k=mm=Nm=2N,...
e/won 27 Z 8w — wy — 2wl a, = . m "
[——% 0, otherwise
(b) 32 irrational 3> The signal is aperiodic
@ wy ="
i 1 _
coswon T Z{S(w —wo —27l) + 8(w + wy — 2m)} a =1{7 k=xmzmzN,zm=2N,...
== 0, otherwise
(b) %11 irrational > The signal is aperiodic
@ wy =
. 3. k=rrzNrx2n,. .
sinwon % > {80 ~ wy = 271) = 8(w + wp — 271} a = —,lj, k=-r—r+=N —r=2N,...
= 0, otherwise
(b) 52 irrational > The signal is aperiodic
nl =1 : iﬁ( 2ml) 1, k=0 =N, £2N,...
x[n] = T w — 27T ay =
I=—= g 0, otherwise
Periodic square wave
1, Il =N, . sinfTk/NY(N; + 1))
= = ay = ——————=— k#0, =N, 22N, ...
il 0, N <ln =NR 2 > 4l - 2mk k N sin[27k/2N]
and K N WV, + 1
ay = , k=0 %N, £2N, ...
x[n + N] = x[n] N
= 27 & 27k 1
k;ma[n — kN1 ~ k;ma( - T) ap = ; forall k
a"uln), la| <1 !
’ 1 —ae v
L o =N sinfw(Vy + 1)
x[n] ————
0, |n|> N, sin(w/2)
. 1, 0= =W
sinWn — W sinc (M) X(w) = ol
m m 7 0 W<lwl=m
O<W<m X(w) periodic with period 27
8[n] | —
1 =
ufn] T + kZ“ w(w — 27k)
8[n — nyp} e~ Jwny .
(n+ Da"u[n], |a <1 ; —
g (1 — geJ»)?
(n+r—-1N! , 1
-y ¢l lal <1 (1 —ae oy

392
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signal, reversed in time). To see this in more detail, consider two periodic sequences with
period N, related through the summation

fiml = + > glrleiremom, (5.65)
N5

If weletm = kand r = n, eq. (5.65) becomes

1 .
- = —jkQ2@/N)n
k] N n:§<N>g[n]e .

Comparing this with eq. (3.95), we see that the sequence f[k] corresponds to the Fourier
series coefficients of the signal g[n]. That is, if we adopt the notation

i
x[n] «— ay

introduced in Chapter 3 for a periodic discrete-time signal and its set of Fourier coeffi-
cients, the two periodic sequences related through eq. (5.65) satisfy
s

gln] «<— fILkl. (5.60)

Alternatively, if we let m = nand r = —k, eq. (5.65) becomes
finl = 3 Lel- ke

k=(N)
Comparing this with eq. (3.94), we find that (1/N)g[— k] corresponds to the sequence of
Fourier series coefficients of f[n]. That is,

-k 5.67
Flnl < Lel-K (567

As in continuous time, this duality implies that every property of the discrete-time
Fourier series has a dual. For example, referring to Table 3.2, we see that the pair of prop-
erties

FS ,
x[n — ng] «—— age kTN (5.68)
and
m@wIN)n 38
e x[n] «— aj_ (5.69)

are dual. Similarly, from the same table, we can extract another pair of dual properties:

S xlryln — 1l < Nagby (5.70)
r=(N)
and
FS
xlnlyln] <= > abi-t. (5.71)

1=(N)
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In addition to its consequences for the properties of discrete-time Fourier series, du-
ality can often be useful in reducing the complexity of the calculations involved in deter-
mining Fourier series representations. This is illustrated in the following example.

Example 5.16

Consider the following periodic signal with a period of N = 9:

1 sin(57n/9) .
S Sin(zni9) n # multiple of 9

x[n] = (5.72)
, n = multiple of 9

O h

In Chapter 3, we found that a rectangular square wave has Fourier coefficients in a form
much as in eq. (5.72). Duality, then, suggests that the coefficients for x[n] must be in the
form of a rectangular square wave. To see this more precisely, let g[n] be a rectangular
square wave with period N = 9 such that

1, |a] =2

slnl :[o, 2<|n| = 4.

The Fourier series coefficients b, for g[n] can be determined from Example 3.12 as

1 sin(5k/9)

—_— iple of
9 sin(arki9)’ k # multiple of 9

by =

\O| L

, k = multiple of 9

The Fourier series analysis equation (3.95) for g[n] can now be written as

2
by = é Z (])e—j2‘n'nk/9.

n=-2

Interchanging the names of the variables k and n and noting that x[n] = b,, we find that

2
X[l’l] —_ % Z (1)e7j2‘rmk/9‘

k=-2

Letting k&' = —k in the sum on the right side, we obtain

1 S
x[n] — § Z e+]27rnk/9.

K=-2

Finally, moving the factor 1/9 inside the summation, we see that the right side of this
equation has the form of the synthesis equation (3.94) for x[n]. We thus conclude that
the Fourier coefficients of x[n] are given by

(19 K =2
“Tlo 2<|k =4,

and, of course, are periodic with period N = 9.
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5.7.2 Duality between the Discrete-Time Fourier Transform
and the Continuous-Time Fourier Series

In addition to the duality for the discrete Fourier series, there is a duality between the
discrete-time Fourier transform and the continuous-time Fourier series. Specifically, let us
compare the continuous-time Fourier series equations (3.38) and (3.39) with the discrete-
time Fourier transform equations (5.8) and (5.9). We repeat these equations here for con-
venience:

[eq. (5.8)] x[n] = '21?{27 X(e/)e/ " dw, (5.73)

leq. (5.9)] X(e/®) = i x[n]e™ 7", (5.74)

leq. (3.38)] x(1) = f age’ko!, (5.75)
K==

[eq. (3.39)] ay = %L x(t)e Fk@olds, (5.76)

Note that eqs. (5.73) and (5.76) are very similar, as are eqgs. (5.74) and (5.75), and
in fact, we can interpret eqs. (5.73) and (5.74) as a Fourier series representation of the
periodic frequency response X(e/). In particular, since X(e/¢) is a periodic function of @
with period 277, it has a Fourier series representation as a weighted sum of harmonically
related periodic exponential functions of w, all of which have the common period of 27r.
That is, X(e/?) can be represented in a Fourier series as a weighted sum of the signals
e/®" n =0, 1, +2,.... From eq. (5.74), we see that the nth Fourier coefficient in this
expansion—i.e., the coefficient multiplying e/“"—is x[ —n]. Furthermore, since the period
of X(e/®)is 21, eq. (5.73) can be interpreted as the Fourier series analysis equation for the
Fourier series coefficient x[n]—i.e., for the coefficient multiplying e /" in the expression
for X(e/?) in eq. (5.74). The use of this duality relationship is best illustrated with an
example.

Example 5.17

The duality between the discrete-time Fourier transform synthesis equation and the
continuous-time Fourier series analysis equation may be exploited to determine the
discrete-time Fourier transform of the sequence

sin(7rn/2)
T

x[n] =

To use duality, we first must identify a continuous-time signal g(¢) with period T = 2
and Fourier coefficients a; = x[k]. From Example 3.5, we know that if g(¢) is a periodic
square wave with period 27 (or, equivalently, with fundamental frequency wy = 1) and
with

1, |[| =T
0O TW<[|t|] ==’

gl = [

then the Fourier series coefficients of g(r) are
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g = sin(kT)
k= km

Consequently, if we take Ty = 7/2, we will have a; = x[k]. In this case the analysis
equation for g(?) is

sin(mk/2) 1 (™ . 1 (™2 .
- Jkt - De” Jkt .
ik 277[ Wg(t)e dt o Lﬂ( e /Mdt

Renaming & as n and f as @, we have

(e ™ dw.

3 w2
sin (7rn/2) L f 5.77)

mn 2 —al2

Replacing n by —n on both sides of eq. (5.77) and noting that the sinc function is even,
we obtain

i /2
sin (mn/2) ! J (el do.

mn 2w —a2

The right-hand side of this equation has the form of the Fourier transform synthesis
* equation for x[n], where

; 1 |lw| =72
X(e/) = .
() {o 72 <|o| = 7
In Table 5.3, we present a compact summary of the Fourier series and Fourier trans-
form expressions for both continuous-time and discrete-time signals, and we also indicate
the duality relationships that apply in each case.

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

Continuous time Discrete time

aperiodic in time

>

continuous frequency

discrete time

periodic in frequency

Time domain Frequency domain Time domain Frequency domain
I 1
x(t) = | a; = x[n] = ! a, =
£ I 1 - i 1 1 - i
Zz':ix a,‘ejku)(,t \ 7 fTO x()e Jkwgt zk=(N> akejk(er/N)n X N Zk:(N) x[nle JkQaINyn
Fourier : !
Series continuous time | discrete frequency discrete time discrete frequency
eriodic in time ! aperiodic in frequenc riodic in time riodic in frequenc
p ! p quency pe , pe quency
| . I .
x(t) = 1 X(jw) = x[n] = | X(e/® =
1+ gy i ® . - .
X ey Ll Xemem L e
Fourier | " !
Transform | continuous time : continuous frequency
|
]

aperiodic in frequency

aperiodic in time

5.8 SYSTEMS CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT

DIFFERENCE EQUATIONS

A general linear constant-coefficient difference equation for an LTI system with input x[n]
and output y[#] is of the form
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N M
> ayln—kl = > byxln— k). (5.78)
k=0 k=0

The class of systems described by such difference equations is quite an important and
useful one. In this section, we take advantage of several of the properties of the discrete-
time Fourier transform to determine the frequency response H(e/®) for an LTI system
described by such an equation. The approach we follow closely parallels the discussion
in Section 4.7 for continuous-time LTI systems described by linear constant-coefficient
differential equations.

There are two related ways in which to determine H(e/?). The first of these, which
we illustrated in Section 3.11 for several simple difference equations, explicitly uses the
fact that complex exponentials are eigenfunctions of LTI systems. Specifically, if x[n] =
/" is the input to an LTI system, then the output must be of the form H(e/*)e/®". Substi-
tuting these expressions into eq. (5.78) and performing some algebra allows us to solve for
H(e’/®). In this section, we follow a second approach making use of the convolution, linear-
ity, and time-shifting properties of the discrete-time Fourier transform. Let X(e/), Y (e/®),
and H(e/*) denote the Fourier transforms of the input x[x], output y[#n], and impulse re-
sponse h[n], respectively. The convolution property, eq. (5.48), of the discrete-time Fourier
transform then implies that

Y(e/®)
X(e/o)

Applying the Fourier transform to both sides of eq. (5.78) and using the linearity and
time-shifting properties, we obtain the expression

H(ej“’) =

5.79)

N M
Z age *Y(el®) = Z bre k0 X(el),
k=0 k=0

or equivalently,

Y(ei) S bre ik

H(e/?) = _ = —
X(el®) zgzoake—jkw

(5.80)

Comparing eq. (5.80) with eq. (4.76), we see that, as in the case of continuous time, H(e/®)
is a ratio of polynomials, but in discrete time the polynomials are in the variable e~ /¢,
The coefficients of the numerator polynomial are the same coefficients as appear on the
right side of eq. (5.78), and the coefficients of the denominator polynomial are the same
as appear on the left side of that equation. Therefore, the frequency response of the LTI
system specified by eq. (5.78) can be written down by inspection.

The difference equation (5.78) is generally referred to as an Nth-order difference
equation, as it involves delays in the output y[n] of up to N time steps. Also, the denomi-
nator of H(e’/?) in eq. (5.80) is an Nth-order polynomial in e~/ .

Example 5.18
Consider the causal LTI system that is characterized by the difference equation

yln] — ayln — 1] = x[n], (5.81)
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with |a| < 1. From eq. (5.80), the frequency response of this system is

1

H(™) = 1=

(5.82)

Comparing this with Example 5.1, we recognize it as the Fourier transform of the se-
quence a"u[n]. Thus, the impulse response of the system is

h[n] = a"uln]. (5.83)

Example 5.19

Consider a causal LTI system that is characterized by the difference equation
3 1
yinl = 2yln = 11+ gyln — 2] = 2x{n] (5.84)

From eq. (5.80), the frequency response is

2

1—2ejo + ce/2

H(e/®) =

(5.85)

As a first step in obtaining the impulse response, we factor the denominator of eq. (5.85):

2

(1 - dedoy(l - ye /o)

H(e®) = (5.86)

H(e/®) can be expanded by the method of partial fractions, as in Example A.3 in the
appendix. The result of this expansion is
4 2

H(el?) = — . 5.87
(€™ 1- %e*/"“ 1- %e’f"’ ( )

The inverse transform of each term can be recognized by inspection, with the result that
1 n 1 n
hin] = 4 3 uln] —2 7 uln]. (5.88)

The procedure followed in Example 5.19 is identical in style to that used in contin-
uous time. Specifically, after expanding H(e/*) by the method of partial fractions, we can
find the inverse transform of each term by inspection. The same approach can be applied
to the frequency response of any LTI system described by a linear constant-coefficient dif-
ference equation in order to determine the system impulse response. Also, as illustrated in
the next example, if the Fourier transform X(e/®) of the input to such a system is a ratio of
polynomials in e/, then Y(e/*) is as well. In this case, we can use the same technique
to find the response y[n] to the input x[n].

Example 5.20

Consider the LTI system of Example 5.19, and let the input to this system be

x[n} = (%) u[n].
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Then, using eq. (5.80) and Example 5.1 or 5.18, we obtain

Y(e/®) = H(e/)X(e'*) 2 ][1 11 —jw:|
B (5.89)

(1 - fe i)l — zeiv)
2
(1 - Jemio)(l — je~ew)?’

As described in the appendix, the form of the partial-fraction expansion in this case is

By, By, By

Y(e/®) = + + ,
) 1- %e*lw 1- %e*f‘*’)2 1- %e*f‘”

(5.90)

where the constants By, B\, and B;; can be determined using the techniques described
in the appendix. This particular expansion is worked out in detail in Example A.4, and
the values obtained are

By =—-4, Bp=-2 By =3§
so that

Y(e/®) = — 4 - 2 + 8 (5.91)

1 | R | R
— lo—jw — Ll,o—jw)2 - 1 jw
1 1€ (1 1€ ) 1 7€

The first and third terms are of the same type as those encountered in Example 5.19,
while the second term is of the same form as one seen in Example 5.13. Either from
these examples or from Table 5.2, we can invert each of the terms in eq. (5.91) to obtain
the inverse transform

ylnl = { —4(%)n —2n + 1)(%)" +8 (%)] ufn]. (5.92)

5.9 SUMMARY

In this chapter, we have paralleled Chapter 4 as we developed the Fourier transform for
discrete-time signals and examined many of its important properties. Throughout the chap-
ter, we have seen a great many similarities between continuous-time and discrete-time
Fourier analysis, and we have also seen some important differences. For example, the re-
lationship between Fourier series and Fourier transforms in discrete time is exactly anal-
ogous to that in continuous time. In particular, our derivation of the discrete-time Fourier
transform for aperiodic signals from the discrete-time Fourier series representations is
very much the same as the corresponding continuous-time derivation. Furthermore, many
of the properties of continuous-time transforms have exact discrete-time counterparts. On
the other hand, in contrast to the continuous-time case, the discrete-time Fourier transform
of an aperiodic signal is always periodic with period 27r. In addition to similarities and
differences such as these, we have described the duality relationships among the Fourier
representations of continuous-time and discrete-time signals.

The most important similiarities between continuous- and discrete-time Fourier anal-
ysis are in their uses in analyzing and representing signals and LTI systems. Specifically,
the convolution property provides us with the basis for the frequency-domain analysis of
LTI systems. We have already seen some of the utility of this approach in our discussion of
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filtering in Chapters 3-5 and in our examination of systems described by linear constant-
coefficient differential or difference equations, and we will gain a further appreciation for
its utility in Chapter 6, in which we examine filtering and time-versus-frequency issues in
more detail. In addition, the multiplication properties in continuous and discrete time are
essential to our development of sampling in Chapter 7 and communications in Chapter 8.

Chapter 5 Problems

The first section of problems belongs to the basic category and the answers are provided
in the back of the book. The remaining three sections contain problems belonging to the
basic, advanced, and extension categories, respectively.

BASIC PROBLEMS WITH ANSWERS

5.1. Use the Fourier transform analysis equation (5.9) to calculate the Fourier transforms
of:

@ (3" uln—11 () "
Sketch and label one period of the magnitude of each Fourier transform.
5.2. Use the Fourier transform analysis equation (5.9) to calculate the Fourier transforms
of:
@ 6[n—11+6[n+1] (b) 8[n+2]-06[n—2]
Sketch and label one period of the magnitude of each Fourier transform.

5.3. Determine the Fourier transform for —7 =< w < 7 in the case of each of the fol-
lowing periodic signals:
(@ sin(Gn+ )  (b) 2+cos(gn+ )

5.4. Use the Fourier transform synthesis equation (5.8) to determine the inverse Fourier
transform's of:
@) Xi(e/?) = > _{2m8(w — 27k) + wd(w — 5 — 2k) + wd(w + T — 2mk)}

. 2j, O0<w=m

joy = ’

(b) Xa(e™) { “2j, —m<w =0

5.5. Use the Fourier transform synthesis equation (5.8) to determine the inverse Fourier
transform of X(e/) = |X(e/)|e/*X(¢"), where

3w

and <X(e/?) = -5

: I, 0=sloj<Z
X(e/?) = ’ 4

Use your answer to determine the values of n for which x[n] = 0.

5.6. Given that x[n] has Fourier transform X(e/“), express the Fourier transforms of the
following signals in terms of X(e/®). You may use the Fourier transform properties
listed in Table 5.1.

(@) xi[n] = x[1 —n] +x[—1-~r]
(b) xz[n] — .r*lfnéfr[n]
(©) x3[n] = (n— 1)*x[n]
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5.7. Foreach of the following Fourier transforms, use Fourier transform properties (Table
5.1) to determine whether the corresponding time-domain signal is (i) real, imagi-
nary, or neither and (ii) even, odd, or neither. Do this without evaluating the inverse
of any of the given transforms.

@) Xi(e) = e /030 | (sin ko)
(b) Xa(e/®) = jsin(w)cos(Sw)
(©) X3(e/?) = A(w) + e/8@ where

= =T
L0 ""IS; and B(w) = = + .

A(“’):{O, 2 <lo

5.8. Use Tables 5.1 and 5.2 to help determine x[n] when its Fourier transform is

. 1 sin %w
X(e/®) = — —— |+ 570(w), —T<w =T
1l —e /o \ sin%
5.9. The following four facts are given about a real signal x[n] with Fourier transform

X(e™):
1. x[n] = Oforn > 0.
2. x[0] > 0.
3. Im{X(e/¥)} = sinw — sin2w.
4. 5o [T |X(e/)P dw = 3.

Determine x[n].
5.10. Use Tables 5.1 and 5.2 in conjunction with the fact that

X(eVy = Z x[n]
to determine the numerical value of
A= in l )
5]
n=0
5.11. Consider a signal g[n] with Fourier transform G(e/®). Suppose
gln] = x)lnl,

where the signal x[n] has a Fourier transform X(e/*). Determine a real number o
such that 0 < @ < 27 and G(e/®) = G(e/@~ ).

5.12. Let
sin Zn Y i
y[n.] = ( 4 > *(Slnwcn),
mn mn

where * denotes convolution and |w.| = . Determine a stricter constraint on w,
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5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

The Discrete-Time Fourier Transform Chap. 5

Com \2
_ Slnzn
y[n]—( p )

An LTI system with impulse response h)[n] = (%)"u[n] is connected in parallel
with another causal LTI system with impulse response h,{n]. The resulting parallel
interconnection has the frequency response

—12 4 Se7 /@
12 —Te Jo + ¢ Jj20°

which ensures that

H(e!?) =

Determine h;[n].
Suppose we are given the following facts about an LTI system S with impulse re-
sponse h[n] and frequency response H(e/*):
1. (%)"u[n] —> g[n], where g[n] = Oforn = 2and n < 0.
2. H(e/™2) = 1.
3. H(e/?) = H(e/*™™),
Determine h[n].
Let the inverse Fourier transform of Y(e/®) be

. 2
sinw.n
mh ’

yln] = (

where 0 < w. < 7. Determine the value of w. which ensures that

Y(e/™) = %

The Fourier transform of a particular signal is

, 3 1/2)
X(e?) = Z_———l - (12)

4 ](‘U ’7/2k)
4

x[n] = glnlqln],

where g[n] is of the form a"u[n] and g[n] is a periodic signal with period N.
(a) Determine the value of «.

(b) Determine the value of V.

(¢) Is x[n] real?

The signal x[n] = (—1)" has a fundamental period of 2 and corresponding Fourier
series coefficients ay. Use duality to determine the Fourier series coefficients by of
the signal g[n] = a, with a fundamental period of 2.

Given the fact that
3 1—da?

’ < 1v
1 —2acosw + a2 la

o
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use duality to determine the Fourier series coefficients of the following continuous-
time signal with period T = 1:

1

X0 = 5 cos@mt)

5.19. Consider a causal and stable LTI system S whose input x[n] and output y[n] are
related through the second-order difference equation

yim) = yln = 11 - yin 2] = xinl

(a) Determine the frequency response H(e/®) for the system S.
(b) Determine the impulse response A[#] for the system S.

5.20. A causal and stable LTI system S has the property that

4 n 4 n
(5) uln] — n(S) ufn].

(a) Determine the frequency response H(e/*) for the system S.
(b) Determine a difference equation relating any input x[n] and the corresponding
output y[n].

BASIC PROBLEMS

5.21. Compute the Fourier transform of each of the following signals:
(@) x[n] = u[n — 2] — uln — 6]
(b) x[n] = ) "u[-n—1]
(©) x[n] = ()M"u[—n—2]
(d) x[n] = 2"sin(Fn)ul—n]
(e) x[n] = (3)"cos(Z(n — 1))
n —-3=n=3
@) x[n] = [O, otherwise
(g) x[n] = sin(Fn) + cos(n)
(h) x[n] = sin(3Zn) + cos(Zn)
(i) x[n] = x[n — 6], and x[n] = u[n] —ulpn—5]for0 =n=<2>5
@ x[n] = (n = D(H"

(k) x[n] = ("I cos(Tn)

5.22. The following are the Fourier transforms of discrete-time signals. Determine the
signal corresponding to each transform.

1,

0, 3777 = lw| =70 =lowf<]

() X(e/®) = 14 3¢ /@ + 2¢ /20 — 4o~ 30 g~ /100

©) X)) =e 2 for T <w <7

(d) X(e/®) = cos?w + sin’ 3w

%S|w|53777

(@) X(e/) =
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5.23.

5.24.
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(€) X(e/) = X;__.(-D*(w — 5k

ji 1
.w _ e Jo
® X(e*) = T—lew
i 1-1eiw
® X(™) = iormr
(h) X(eio) = DG

1- % e~ Jo
Let X(e/®) denote the Fourier transform of the signal x[n] depicted in Figure P5.23.
Perform the following calculations without explicitly evaluating X(e/¢):
(a) Evaluate X(e/9).
(b) Find <X (ef“’)
(¢c) Evaluate [ 7 X(e/*)dw.
(d) Find X(e’ 7T)
(e) Determine and sketch the signal whose Fourier transform is Re{x(w)}.
(f) Evaluate:
@) [ " IX(efw>|2dw
(i) |7, |4 axte) |

Fig P5.23

Determine which, if any, of the following signals have Fourier transforms that sat-
isfy each of the following conditions:

Ref{X(e/®)} = 0.
Im{X(e/*)} = 0.

There exists a real @ such that e/“ X(e/) is real.
[T X(e/*)dw = 0.

X(e/®) periodic.

X% = 0.

(a) x[n] as in Figure P5.24(a)
(b) x[n] as in Figure P5.24(b)
(©) x[n] = (3)"uln]

(d) x{n] = M

() x[n] = 6[n— 1]+ 6[n + 2]
() x[n] = 6[n— 1]+ &[n + 3]
(g) x[n] as in Figure P5.24(c)
(h) x[n] as in Figure P5.24(d)
(i) x[n] = 6[n—1]—6[n+ 1]

CARAIE ol Sl
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(@

Fig P5.24

5.25. Consider the signal depicted in Figure P5.25. Let the Fourier transform of this signal
be written in rectangular form as

X(e/?) = A(w) + jB(w).

Sketch the function of time corresponding to the transform

Y(e/®) = [B(w) + A(w)e’®).
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x[n]
3e

Fig P5.25

5.26. Let x,[n] be the discrete-time signal whose Fourier transform X/ (e/?) is depicted

in Figure P5.26(a).
(a) Consider the signal x,[n] with Fourier transform X,(e’/®), as illustrated in Fig-

ure P5.26(b). Express x»[n] in terms of x[n]. [Hint: First express X>(e/*) in
terms of X, (e/*), and then use properties of the Fourier transform.]

(b) Repeat part (a) for x3[n] with Fourier transform X3(e/*), as shown in Figure
P5.26(c).

(¢) Let

%

Z nxy[n]

n=-x

o =

%

> xln

n=-—=

This quantity, which is the center of gravity of the signal x,[n], is usually re-
ferred to as the delay time of x;[n]. Find «. (You can do this without first deter-

mining x,[n] explicitly.)

Re{ Xy (€)} Im{X, ()}
1
/——\ 1+
f — —Y f : t —1 —
-1 o _m T o ™ 0] —Tr _T_T LU 18 T @
36| 6 3 3 61 5 |3

(@)

Fig P5.26a
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(©) Fig P5.26b,c
(d) Consider the signal x4[n] = x,[n] * h[n], where
h[n] = sm('n'n/6)‘
mn

Sketch X4(e/®).

5.27. (a) Let x[n] be a discrete-time signal with Fourier transform X(e/®), which is il-
lustrated in Figure P5.27. Sketch the Fourier transform of
wln] = x[n]p[n]
for each of the following signals p[n]:
i) pln] = cosmn
(i) pln] = cos(wn/2)
(iii) p[n] = sin(wn/2)

(v) pln] = > 8[n— 2k

k=—w
() pln]l = > 8[n—4k]
k= —o
X(e?)
PVRR ( r o I
2 2

Fig P5.27
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5.28.

5.29.

5.30.
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(b) Suppose that the signal w[n] of part (a) is applied as the input to an LTI system
with unit sample response

sin(7n/2)
mn

hin] =

Determine the output y[n] for each of the choices of p[n] in part (a).

The signals x[n] and g[n] are known to have Fourier transforms X(e/®) and G(e/),
respectively. Furthermore, X(e/“) and G(e/®) are related as follows:
+ar
L f X(eG( @™ Mdg = 1 + e /@ (P5.28-1)
2w )

(a) If x[n] = (—1)", determine a sequence g[n] such that its Fourier transform
G(e’®) satisfies eq. (P5.28-1). Are there other possible solutions for g[n]?
(b) Repeat the previous part for x[n] = (%)”u[n].

(a) Consider a discrete-time LTI system with impulse response

h[n] = (%) u[n).

Use Fourier transforms to determine the response to each of the following input
signals:

() x[n] = )"uln]

(i) x[n] = (n+ 1)(3)"uln]

(b) Suppose that
Use Fourier transforms to determine the response to each of the following in-
puts:

() x[n] = (3)"uln]
(ii) x[n] = cos(mwn/2)
(c) Let x[n] and h[n] be signals with the following Fourier transforms:
X(e/9) = 3e/® + 1 — 779 4 2¢7 73,
H(e/®) = —e/® + 2e72% + g/,
Determine y[n] = x[n] * h[n].
In Chapter 4, we indicated that the continuous-time LTI system with impulse re-
sponse

ney = Y sinc (E) _ SinWr
ar s Tt

plays a very important role in LTI system analysis. The same is true of the discrete-
time LTI system with impulse response

W . Wn sinWn
h[n] = —sinc|—
T T mn
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5.31.

5.32.

(a) Determine and sketch the frequency response for the system with impulse re-

sponse h[n].
. [mn mn
x[n] = sin (?> — 2cos (—4—>

(b) Consider the signal

Suppose that this signal is the input to LTI systems with the following impulse
pp g p Y g 1mp

responses. Determine the output in each case.
P sin(7rn/6) P

* S .

(i) hln] = —n

oo __ sin(mn/6) sin(wTn/2)

(ii) A[n] = e

see __ sin(arn/6) sin(rn/3)

(iii) h[n] = 77—

. __ sin(mn/6) sin(mrn/3)

(iv) h[n] = Snrn/O)sinmnl3)

(c) Consider an LTI system with unit sample response

sin(7rn/3)
Tn

h[n] =

Determine the output for each of the following inputs:
(i) x[n] = the square wave depicted in Figure P5.30
() x[n) = > 6[n— 8k]

k=—
(iii) x[n] = (—1)" times the square wave depicted in Figure P5.30
@iv) x[n] = 8[n+ 1]+ 6[n—1]

x[n]
0. L T, T, 1, 1T
-8 0 8 16 n
Fig P5.30

An LTI system S with impulse response h[n] and frequency response H(e/®) is
known to have the property that, when —7 = wg = 7,

COS W —> wq COS wol.

(a) Determine H(e/®).
(b) Determine h[n].
Let hy[n] and h;[n] be the impulse responses of causal LTI systems, and let H(e/)

and H,(e/*) be the corresponding frequency responses. Under these conditions, is
the following equation true in general or not? Justify your answer.

[ir H.(e-fﬂ’)dw”ir Hz(ej“’)dw] = LJW H,(e/*)Hy(e/*)dw.

27 2m | 27 ) _,
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5.33. Consider a causal LTI system described by the difference equation

5.34.

5.35.

yinl + 5in =11 = xln).

(a) Determine the frequency response H(e/®) of this system.
(b) What is the response of the system to the following inputs?
@) x[n] = (3)"uln]
(i) x[n] = (—3)"uln]
(iii) x[n] = 8[n] + 38[n — 1]
(iv) x[n] = 8[n] — 38[n— 1]
(c) Find the response to the inputs with the following Fourier transforms:
; — 1w
M Xy = =

e

.o 1 ]+l€7jw
(i) X(e'*) = ;==
Te
YT jw — ——1—_
(iii) X(e/) (1= Temdoy(1+Te i)

(iv) X(e/®) =1+ 2e7%@

Consider a system consisting of the cascade of two LTI systems with frequency
responses
. 2 - )7jw
Hy(e/”) = =
1+ 5e /@
2
and
. 1
Hy(e'®) =

1 - 1 — 2w’
1 Jo 1 J2w
1 € + ;€

(a) Find the difference equation describing the overall system.
(b) Determine the impulse response of the overall system.

A causal LTI system is described by the difference equation
y[n] — ay[n — 1] = bx{n] + x[n — 1],

where a is real and less than 1 in magnitude.
(a) Find a value of b such that the frequency response of the system satisfies

|H(e/)| = 1, for all w.

This kind of system is called an all-pass system, as it does not attenuate the
input e/°" for any value of w. Use the value of b that you have found in the rest
of the problem. _
(b) Roughly sketch <H(e/*),0 = w = 7, whena =
(c) Roughly sketch XH(e/*),0 = w < 7, whena

I
| i

N —
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(d) Find and plot the output of this system with a = —% when the input is
il = (2 utn)
nl =15 .

From this example, we see that a nonlinear change in phase can have a signif-
icantly different effect on a signal than the time shift that results from a linear
phase.

5.36. (a) Let h[n] and g[n] be the impulse responses of two stable discrete-time LTI sys-
tems that are inverses of each other. What is the relationship between the fre-
quency responses of these two systems?

(b) Consider causal LTI systems described by the following difference equations.
In each case, determine the impulse response of the inverse system and the
difference equation that characterizes the inverse.

(@ y[nl = x[n] = 3x[n — 1]

(i) y[n] + %y[n — 1] = x[n]

(iii) y[n] + %y[n - 1] = x[n] - %x[n —1]

(iv) y[n] + 3yln = 11— gyln = 2] = x[n] = gx(n — 11 = gx[n = 2]
W) yinl+3yln— 11— Lyln =21 = x[n] - Lxin - 1]

(vi) y[nl+ 2y[n — 1] = gy[n — 2] = x[n]

(¢) Consider the causal, discrete-time LT system described by the difference equa-
tion

yln] + yln =11 + %y[n -2l =x[n—1] - %x[n -2]. (P5.36-1)

What is the inverse of this system? Show that the inverse is not causal. Find an-
other causal LTI system that is an “inverse with delay” of the system described
by eq. (P5.36-1). Specifically, find a causal LTI system such that the output
wln] in Figure P5.36 equals x[n — 1].

LTI system yln] Causal
X[N] | described by —> LTI F——> wIn]
eq. (P5.36-1) system
Fig P5.36

ADVANCED PROBLEMS

5.37. Let X(e/*) be the Fourier transform of x[n]. Derive expressions in terms of X(e/®)
for the Fourier transforms of the following signals. (Do not assume that x[n] is real.)
(a) Re{x[n]}
(b) x*[—n]
(¢) &v{x[n]}
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5.38.

5.39.

5.40.

541
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Let X(e/?) be the Fourier transform of a real signal x[n]. Show that x[x] can be
written as

x[n] = JW{B(w)cosw + C(w)sinw}dw
0

by finding expressions for B(w) and C(w) in terms of X(e/*).
Derive the convolution property

x[n] # hn] < X(e/)H(e/*)

Let x[n] and h[n] be two signals, and let y[n] = x[n]* h[n]. Write two expressions
for y[0], one (using the convolution sum directly) in terms of x[n] and h[n], and
one (using the convolution property of Fourier transforms) in terms of X(e/*) and
H(e/?). Then, by a judicious choice of h[n], use these two expressions to derive
Parseval’s relation-—that is,

+o 1 T .
> P = o [ X e)Pdo.

n=-—x

In a similar fashion, derive the following generalization of Parseval’s relation:

+00 1 T ) .
> xnlZ'n] = o~ J X(e™)Z*(e/*)dw.
P 2w |,
Let %[n] be a periodic signal with period N. A finite-duration signal x[n] is related
to X[n] through
| Xnl, ng=n=n+N-1
xnl = { 0, otherwise ’

for some integer ng. That is, x[n] is equal to X[n] over one period and zero elsewhgre.
(a) If X[n] has Fourier series coefficients a; and x{»] has Fourier transform X(e/?),
show that

ay = X(ej277'k/N)

2=

regardless of the value of ny.
(b) Consider the following two signals:

x[n] = u[n] — u[n — 5]

£[nl = > x[n—kN]

k=-—cx

where N is a positive integer. Let a; denote the Fourier coefficients of X[n] and
let X(e/®) denote the Fourier transform of x[n]. '
(i) Determine a closed-form expression for X(e/*).
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(ii) Using the result of part (i), determine an expression for the Fourier coeffi-
cients ay.

5.42. In this problem, we derive the frequency-shift property of the discrete-time Fourier
transform as a special case of the multiplication property. Let x[n] be any discrete-
time signal with Fourier transform X(e/“), and let

gln] = e/ x[n).
(a) Determine and sketch the Fourier transform of
pln] = eloon,

(b) The multiplication property of the Fourier transform tells us that, since

glnl = plnlx[n],

G(el?) = %J i X(e/9)YP(e/ @~ )dg.
<2mT>

Evaluate this integral to show that
G(e®) = X(e/ ™),
5.43. Let x[n] be a signal with Fourier transform X(e/*), and let
glnl = x[2n]
be a signal whose Fourier transform is G(e/). In this problem, we derive the rela-

tionship between G(e/) and X(e/®).
(a) Let

(e~ /™ x[n]) + x[n]

vln] = 5

Express the Fourier transform V(e/®) of v[n] in terms of X(e/*).
(b) Noting that v[n] = 0 for n odd, show that the Fourier transform of v[2#] is equal
to V(e/?).
(¢) Show that
x[2n] = v[2n].
It follows that
G(e!?) = V(e/?).

Now use the result of part (a) to express G(e/?) in terms of X(e/).

5.44. (a) Let
[ ] _ mhn 1 wn
Xiln) = €o0S T sin —2—
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be a signal, and let X (e/®) denote the Fourier transform of x;[n]. Sketch x,[n],
together with the signals with the following Fourier transforms:

@) Xa(e) = Xi(e/*)el®, |o| < m

(i) X3(e) = Xi(e/*)e P2, || <7

(b) Let
(t) = co m + sin i
WA = COS\3 | TSI T

be a continuous-time signal. Note that x[n] can be regarded as a sequence of
evenly spaced samples of w(t); that is,

xi[n] = w(nT).

Show that

x2[n) = wnT — a)

and

x3[n] = w(nT — B)

and specify the values of a and . From this result we can conclude that x;[n]
and x3[n] are also evenly spaced samples of w(?).
5.45. Consider a discrete-time signal x[n] with Fourier transform as illustrated in Figure
P5.45. Provide dimensioned sketches of the following continuous-time signals:
@ x(1) = 3 xln]es 210
(b) x(t) = >, x[—n]elem1Om

Re{ X(E") }
A A
e w3 | 3 4 o .
Im{ X(e*) }
1 /\
‘2|1'r -7 _I"_T moT 2I'rr w
2

Fig P5.45
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(©) x3() = >7_ Od{x[n]}e/ Bt
d) xi() = > _ __ Ref{x[n]}e/?mom
5.46. In Example 5.1, we showed that for |a| < 1,

n ] E} ]
D e —
a'uln e io

(a) Use properties of the Fourier transform to show that

1
(1 — ae jw)?2’

(n + Da"uln]

(b) Show by induction that the inverse Fourier transform of

o 1
X(ej ) - (1 — ae‘jw)r
is
(n+r—10 ,
x[n] = =) au[n].

5.47. Determine whether each of the following statements is true or false. Justify your
answers. In each statement, the Fourier transform of x[n] is denoted by X(e/®).
(a) If X(e/®) = X(e/@™ ), then x[n] = O for |n| > 0.
(b) If X(e/?) = X(e/~™), then x[n] = O for |n| > 0.
(c) If X(e/?) = X(e/*?), then x[n] = 0 for |n| > 0.
(d) If X(e/?) = X(e/?*), then x[n] = O for |n| > 0.

5.48. We are given a discrete-time, linear, time-invariant, causal system with input de-
noted by x[n] and output denoted by y[n]. This system is specified by the following
pair of difference equations, involving an intermediate signal w[n]:

1 1 2
yin] + Zy[n — 1]+ wln] + EW[" -1} = gx[n],
y[n] — %y[n — 11+ 2w[n] = 2w[n — 1] = —%x[n].

(a) Find the frequency response and unit sample response of the system.
(b) Find a single difference equation relating x[n] and y[n] for the system.

5.49. (a) A particular discrete-time system has input x[#n] and output y[n]. The Fourier
transforms of these signals are related by the equation

dX(e/®)

Y(e/?) = 2X(e/°) + e /X (e/?) - o

(i) Is the system linear? Clearly justify your answer.
(ii) Is the system time invariant? Clearly justify your answer.
(iii) What is y[n] if x[n] = 6[n]?
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(b) Consider a discrete-time system for which the transform Y(e/*) of the output
is related to the transform of the input through the relation

. w+7/4 )
Y(e/®) = J X(e’*)dw.

w—/4

Find an expression for y[n] in terms of x[n].
5.50. (a) Suppose we want to design a discrete-time LTI system which has the property

xin| = uin 2 un >

yn] = (%) uln.

(i) Find the impulse response and frequency response of a discrete-time LTI
system that has the foregoing property.
(ii) Find a difference equation relating x[n] and y[n] that characterizes the
system.
(b) Suppose that a system has the response (1/4)"u[n] to the input (r+2)(1/2)"u[n}.
If the output of this system is 6[n} — (—1/2)"u[n], what is the input?

5.51. (a) Consider a discrete-time system with unit sample response

h[n] = (%) uln] + %(i) uln).

Determine a linear constant-coefficient difference equation relating the input
and output of the system.

(b) Figure P5.51 depicts a block diagram implementation of a causal LTI system.
(i) Find a difference equation relating x[n] and y[n] for this system.
(ii) What is the frequency response of the system?
(iii) Determine the system’s impulse response.

then the output is

A /NEN

~ 1
> + P

+ p—a{ + * :Q -> y[n]
[ & | Al

xin]

AP

"_L
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5.52. (a) Let h[n] be the impulse response of a real, causal, discrete-time LTI system.
Show that the system is completely specified by the real part of its frequency
response. (Hint: Show how h[n] can be recovered from &v{h[n]}. What is the
Fourier transform of &¥{h[n]}?) This is the discrete-time counterpart of the real-
part sufficiency property of causal LTI systems considered in Problem 4.47 for
continuous-time systems.

(b) Let h[n] be real and causal. If

Re{H(e/“)} = 1 + a cos 2w(a real),

determine A[n] and H(e/®).

(¢) Show that A[n] can be completely recovered from knowledge of Ine{H (e/*)}
and A[0].

(d) Find two real, causal LTI systems whose frequency responses have imaginary
parts equal to sin w.

EXTENSION PROBLEMS

5.53. One of the reasons for the tremendous growth in the use of discrete-time methods for
the analysis and synthesis of signals and systems was the development of exceed-
ingly efficient tools for performing Fourier analysis of discrete-time sequences. At
the heart of these methods is a technique that is very closely allied with discrete-time
Fourier analysis and that is ideally suited for use on a digital computer or for im-
plementation in digital hardware. This technique is the discrete Fourier transform
(DFT) for finite-duration signals.

Let x[n] be a signal of finite duration; that is, there is an integer N; so that

x[n] = 0, outside the interval 0 = n = N, — 1

Furthermore, let X(e/*) denote the Fourier transform of x[n]. We can construct a
periodic signal X[n] that is equal to x[n] over one period. Specifically, let N = N
be a given integer, and let X[n] be periodic with period N and such that

X[n] = x[n], 0=n=N-1
The Fourier series coefficients for ¥[n] are given by

a = _Zx[n]e—jkew//v)n
N (N)

Choosing the interval of summation to be that over which %[n] = x[n], we obtain

] N-1 . ;
ap = NZx[n]e‘//‘Q”M)” (P5.53-1)
n=0

The set of coefficients defined by eq. (P5.53—~1) comprise the DFT of x[n]. Specifi-
cally, the DFT of x[n] is usually denoted by X[k], and is defined as
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N—-1
X[kl = a; = %Z x[nle”/Ke7Nm g =0,1,...,N-1  (P553-2)
n=0

The importance of the DFT stems from several facts. First note that the original
finite duration signal can be recovered from its DFT. Specifically, we have

N-1
x[n] = > X[kle/*e™™m p=0,1,...,N-1  (P5.53-3)
k=0

Thus, the finite-duration signal can either be thought of as being specified by the
finite set of nonzero values it assumes or by the finite set of values of X[k] in its DFT.
A second important feature of the DFT is that there is an extremely fast algorithm,
called the fast Fourier transform (FFT), for its calculation (see Problem 5.54 for
an introduction to this extremely important technique). Also, because of its close
relationship to the discrete-time Fourier series and transform, the DFT inherits some
of their important properties.

(a) Assume that N = N,;. Show that

X[k] = %X(ej(hkuv))

where X[k] is the DFT of x[n]. That is, the DFT corresponds to samples of
X(e/?) taken every 27r/N. Equation (P5.53-3) leads us to conclude that x[n]
can be uniquely represented by these samples of X(e/).

(b) Let us consider samples of X(e/*) taken every 277/M, where M < N. These
samples correspond to more than one sequence of duration N;. To illustrate this,
consider the two signals x;[n] and x;[#n] depicted in Figure P5.53. Show that if
we choose M = 4, we have

X, (ej(zqum)) - X, (e j(27'rk/4))

for all values of k.

X1 [n]
2

Fig P5.53

5.54. As indicated in Problem 5.53, there are many problems of practical importance in

which one wishes to calculate the discrete Fourier transform (DFT) of discrete-time
signals. Often, these signals are of quite long duration, and in such cases it is very



Chap. 5 Problems 419

important to use computationally efficient procedures. One of the reasons for the
significant increase in the use of computerized techniques for the analysis of signals
was the development of a very efficient technique known as the fast Fourier trans-
form (FFT) algorithm for the calculation of the DFT of finite-duration sequences.
In this problem, we develop the principle on which the FFT is based.

Let x[n] be a signal that is 0 outside the interval 0 = n < Ny — 1. For N =
Ny, the N-point DFT of x[n] is given by

- 1 =l .
X[kl = & > x[nle MmNk = 0,1,...,N—1.  (P554-1)
k=0

It is convenient to write eq. (P5.54~1) as

N-1
X[k = %Z x[n]WiK, (P5.54-2)
k=0

where
WN — e—j27T/N

(a) One method for calculating X[k] is by direct evaluation of eq. (P5.54-2). A
useful measure of the complexity of such a computation is the total number of
complex multiplications required. Show that the number of complex multipli-
cations required to evaluate eq. (P5.54-2) directly, for k = 0,1,...,N — 1, is
N?. Assume that x[n] is complex and that the required values of Wi* have been
precomputed and stored in a table. For simplicity, do not exploit the fact that,
for certain values of n and k, W is equal to =1 or = j and hence does not,
strictly speaking, require a full complex multiplication.

(b) Suppose that N is even. Let f[n] = x[2n] represent the even-indexed samples
of x{n], and let g[n] = x[2n + 1] represent the odd-indexed samples.

(i) Show that f[n] and g[n] are zero outside the interval 0 = n = (N/2) — 1.
(ii) Show that the N-point DFT X[k] of x[n] can be expressed as

B (N/2) 1 (N/2)—1
X[k = < Z fIRWas, + WN > glnlWi,
n=0
= 5 [k] + = WNG[k] k=201...,N—1, (P554-3)
where
) (N/2)—1
Flkl = & > flnWik,

n=0
(N/2) 1

Glk] = = Z glnIwik,.

n=0
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(iii) Show that, for all £,
F[k " %] — FlK

G[k + 5’—] = G[kl.
2 -
Note that F[k], k = 0,1,...,(N/2) — 1,and G[k}, k = 0,1,..., (N/2) —
1, are the (N/2)-point DFTs of f[n] and g[n], respectively. Thus, eq.
(P5.54-3) indicates that the length-N DFT of x[n] can be calculated in
terms of two DFTs of length N/2.

(iv) Determine the number of complex multiplications required to compute
X[kl, k =0,1,2,...,N — 1, from eq. (P5.54-3) by first computing FIk]
and G[k). [Make the same assumptions about multiplications as in part (a),
and ignore the multiplications by the quantity 1/2 in eq. (P5.54-3).]

(c) If, like N, N/2 is even, then f[n] and g[n] can each be decomposed into se-
quences of even- and odd-indexed samples, and therefore, their DFTs can be
computed using the same process as in eq. (P5.54-3). Furthermore, if N is an
integer power of 2, we can continue to iterate the process, thus achieving sig-
nificant savings in computation time. With this procedure, approximately how
many complex multiplications are required for N = 32,256, 1,024, and 4,096?
Compare this to the direct method of calculation in part (a).

In this problem we introduce the concept of windowing, which is of great importance
both in the design of LTI systems and in the spectral analysis of signals. Windowing
is the operation of taking a signal x[n] and multiplying it by a finite-duration window
signal w[n]. That is,

pln] = x[nlw(nl.

Note that p[n] is also of finite duration.

The importance of windowing in spectral analysis stems from the fact that in
numerous applications one wishes to compute the Fourier transform of a signal that
has been measured. Since in practice we can measure a signal x[n] only over a finite
time interval (the time window), the actual signal available for spectral analysis is

[n] = x(nl, - M=n=M
p 0, otherwise ’

where —M = n = M is the time window. Thus,
plnl = x[n]wln},
where w(n] is the rectangular window; that is,

, - M=n=M

0, otherwise (P5.55-1)

wln] = {

Windowing also plays a role in LTI system design. Specifically, for a variety of
reasons (such as the potential utility of the FFT algorithm; see Problem P5.54), it is
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often advantageous to design a system that has an impulse response of finite duration
to achieve some desired signal-processing objective. That is, we often begin with
a desired frequency response H(e/*) whose inverse transform h[n] is an impulse
response of infinite (or at least excessively long) duration. What is required then
is the construction of an impulse response g[n] of finite duration whose transform
G(e/®) adequately approximates H(e/“). One general approach to choosing g[n] is
to find a window function w[n] such that the transform of A[n]w[n] meets the desired
specifications for G(e/?).

Clearly, the windowing of a signal has an effect on the resulting spectrum. In
this problem, we illustrate that effect.
(a) To gain some understanding of the effect of windowing, consider windowing

the signal

x[n] = > 8[n—k

k=—ox

using the rectangular window signal given in eq. (P5.55-1).
(i) What is X(e/®)?
(ii) Sketch the transform of p[n] = x[n}jw[n] when M = 1.
(iii) Do the same for M = 10.
(b) Next, consider a signal x[#n] whose Fourier transform is specified by

joy _ | L |w| <l
X(e™) = {o, w4 <|w| =
Let p[n] = x[n]w[n], where w[n] is the rectangular window of eq.
(P5.55-1). Roughly sketch P(e/®) for M = 4, 8, and 16.

(c) One of the problems with the use of a rectangular window is that it introduces
ripples in the transform P(e/). (This is in fact directly related to the Gibbs
phenomenon.) For that reason, a variety of other window signals have been
developed. These signals are tapered; that is, they go from O to 1 more gradually
than the abrupt transition of the rectangular window. The result is a reduction in
the amplitude of the ripples in P(e/?) at the expense of adding a bit of distortion
in terms of further smoothing of X(e/®).

To illustrate the points just made, consider the signal x[n] described in part
(b), and let p[n] = x[n]w[n], where w[n] is the triangular or Bartlett window;
that is,
w[n]={1_EIL1L1’ —M_<_‘nSM_
X otherwise
Roughly sketch the Fourier transform of p[n] = x[n]w[n] for M = 4, 8, and
16. [Hint: Note that the triangular signal can be obtained as a convolution of

a rectangular signal with itself. This fact leads to a convenient expression for
W(e/®).]
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(d) Let p[r] = x[nlw[n], where w[n] is a raised cosine signal known as the Han-
ning window; i.e.,

wln] = { %[1 +cos(mn/M)], -M =n=M
, otherwise '

Roughly sketch P(e/?) for M = 4, 8, and 16.

5.56. Let x[m, n] be a signal that is a function of the two independent, discrete variables

m and n. In analogy with one dimension and with the continuous-time case treated
in Problem 4.53, we can define the two-dimensional Fourier transform of x{m, n] as

X, ey = > S xlmnle f@mrem (P5.56-1)

n=—-xm=—x

(a) Show that eq. (P5.56-1) can be calculated as two successive one-dimensional
Fourier transforms, first in m, with n regarded as fixed, and then in n. Use this
result to determine an expression for x[m, n] in terms of X(e/®!, e/*2).

(b) Suppose that

x[m, n] = a[m]b[n],

where a[m] and b[n] are each functions of only one independent variable. Let
A(e’) and B(e/) denote the Fourier transforms of a[m] and b[n], respectively.
Express X(e/®!, e/“?) in terms of A(e/?) and B(e/®).

(c) Determine the two-dimensional Fourier transforms of the following signals:
i) x[m,n] = 6[m— 116[n + 4]
() x[m, n) = ()" "uln = 2Ju[—m]
(iii) x[m, n] = (3)" cos(2mm/3)u[n)
iv) x[m n] = { l, —2<m<2and-4<n<4

0, otherwise

, 2+n<m<2+nand—-4<n<4

0, otherwise

(v) x[m,n] = {

(Vi) x[m,n] = sin(Z2 + 222

(d) Determine the signal x[m, n] whose Fourier transform is

1, 0<|wi| = 7/4and0 < |w,| = 7/2

Jjor pjwry —
X(e’, e/*?) {0’ w4 <l|wi| < mor 72 <|wy| <

(e) Let x[m, n] and h[m, n] be two signals whose two-dimensional Fourier trans-
forms are denoted by X(e/®!, e/2) and H(e/*', e/*?), respectively. Deter-
mine the transforms of the following signals in terms of X(e/“!, e/2) and
H(ej“", ejwz):

) x[m, n]e/WrmeiWan
i) yim, n] = { x[k,r], ifm=2kandn = 2r
’ 0, if m is not a multiple of 2 or » is not a multiple of 3
(iii) y[m, n] = x[m, n]h[m, n]
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TIME AND FREQUENCY
CHARACTERIZATION
OF SIGNALS AND SYSTEMS

6.0 INTRODUCTION

The frequency-domain characterization of an LTI system in terms of its frequency re-
sponse represents an alternative to the time-domain characterization through convolution.
In analyzing LTI systems, it is often particularly convenient to utilize the frequency do-
main because differential and difference equations and convolution operations in the time
domain become algebraic operations in the frequency domain. Moreover, concepts such as
frequency-selective filtering are readily and simply visualized in the frequency domain.
However, in system design, there are typically both time-domain and frequency-domain
considerations. For example, as we briefly discussed in Examples 4.18 and 5.12, and as we
will illustrate in more detail in this chapter, significant oscillatory behavior in the impulse
response of a frequency-selective filter may be undesirable, and consequently, we may
wish to sacrifice the level of frequency selectivity in a filter in order to meet the required
tolerances on impulse response behavior. Situations such as this are the rule rather than
the exception in practice, as in most applications we would like to specify or constrain
certain characteristics of a system in both the time domain and the frequency domain,
frequently resulting in conflicting requirements. Hence, in system design and analysis, it
is important to relate time-domain and frequency-domain characteristics and trade-offs.
Introducing these issues and relationships is the primary focus of the chapter.

6.1 THE MAGNITUDE-PHASE REPRESENTATION OF THE FOURIER TRANSFORM

The Fourier transform is in general complex valued and, as we discussed, can be repre-
sented in terms of its real and imaginary components or in terms of magnitude and phase.

423
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The magnitude-phase representation of the continuous-time Fourier transform X(jw) is
X(jo) = [X(jw)|e/ X0, (6.1)

Similarly the magnitude-phase representation of the discrete-time Fourier transform
X(e/®)is
X(e/®) = |X(e/®)|eI X, (6.2)

In the following discussion, we concentrate for the most part on the continuous-time case
in describing and illustrating several points related to magnitude-phase representations.
The essential points apply equally to the discrete-time case.

From the Fourier transform synthesis equation (4.8), we can think of X(jw) as pro-
viding us with a decomposition of the signal x(f) into a “sum” of complex exponentials at
different frequencies. In fact, as discussed in Section 4.3.7, |X(jw)[> may be interpreted
as the energy-density spectrum of x(¢). That is, |[X(jw)|*dw/27 can be thought of as the
amount of energy in the signal x(¢) that lies in the infinitesimal frequency band between
w and w + dw. Thus, the magnitude |X(jw)| describes the basic frequency content of a
signal—i.e., |X(jw)| provides us with the information about the relative magnitudes of the
complex exponentials that make up x(f). For example, if |X(jw)| = 0 outside of a small
band of frequencies centered at zero, then x(¢) will display only relatively low-frequency
oscillations.

The phase angle <X(jw), on the other hand, does not affect the amplitudes of the
individual frequency components,