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Measurement of the time spent by a 
tunnelling atom within the barrier region

Ramón Ramos1,3 ✉, David Spierings1, Isabelle Racicot1 & Aephraim M. Steinberg1,2

Tunnelling is one of the most characteristic phenomena of quantum physics, 
underlying processes such as photosynthesis and nuclear fusion, as well as devices 
ranging from superconducting quantum interference device (SQUID) 
magnetometers to superconducting qubits for quantum computers. The question of 
how long a particle takes to tunnel through a barrier, however, has remained 
contentious since the first attempts to calculate it1. It is now well understood that the 
group delay2—the arrival time of the peak of the transmitted wavepacket at the far side 
of the barrier—can be smaller than the barrier thickness divided by the speed of light, 
without violating causality. This has been confirmed by many experiments3–6, and a 
recent work even claims that tunnelling may take no time at all7. There have also been 
efforts to identify a different timescale that would better describe how long a given 
particle spends in the barrier region8–10. Here we directly measure such a time by 
studying Bose-condensed 87Rb atoms tunnelling through a 1.3-micrometre-thick 
optical barrier. By localizing a pseudo-magnetic field inside the barrier, we use the 
spin precession of the atoms as a clock to measure the time that they require to cross 
the classically forbidden region. We study the dependence of the traversal time on the 
incident energy, finding a value of 0.61(7) milliseconds at the lowest energy for which 
tunnelling is observable. This experiment lays the groundwork for addressing 
fundamental questions about history in quantum mechanics: for instance, what we 
can learn about where a particle was at earlier times by observing where it is now11–13.

The earliest attempts to calculate the time a tunnelling particle spends 
in the barrier region (not to be confused with the lifetime of a 
quasi-bound state) addressed the propagation delay for a wavepacket 
peak; however, work in the 1980s, particularly by Büttiker and Lan-
dauer14,15, shifted the discussion to an ‘interaction time’, the time actu-
ally spent by a particle in the barrier. This was motivated by the 
prediction16 that in certain regimes, the wavepacket delay (sometimes 
referred to as the ‘phase time’ or ‘Wigner time’2) could appear to be 
superluminal, suggesting that it does not reflect the duration of the 
tunnelling event. Büttiker and Landauer provided arguments in favour 
of a ‘semiclassical time’ equal to md/ħκ, where m is the mass of the 
particle, d is the barrier thickness and κ m V E ħ= 2 ( − ) /0  is the eva-
nescent decay constant in the tunnelling regime (E is the incident 
energy, V0 is the barrier height and ħ is the reduced Planck constant); 
it should be noted that unlike the group delay, this grows linearly with 
d and is therefore generally not superluminal. As we shall discuss in 
depth below, another way of defining the tunnelling duration is via the 
effect a particle has on a degree of freedom that acts as an auxiliary 
‘clock’.

A number of experiments have sought to measure tunnelling times. 
Several experiments3–6 have confirmed the superluminal nature of the 
group delay, and some have attempted to probe other timescales—
including the Larmor times we focus on in this paper—using analogue 
optical systems17,18 and an elegant neutron experiment19, although the 

latter was for a very different propagation problem. A pioneering exper-
iment studying quantum tunnelling in a Josephson junction20 was the 
first attempt to apply the insights of Büttiker and Landauer to instead 
probe the duration of the tunnelling event itself; the experiment offered 
qualitative agreement with the ‘semiclassical time’.

Recently, there has been increased experimental interest in the area 
owing to the development of the ‘attoclock’21. These experiments7,22–26 
use strong-field ionization in an elliptically polarized field to determine 
how much time elapses between the ionizing field reaching its maxi-
mum and an electron finally escaping. Intuitively, one might therefore 
expect such times to be related to a wavepacket delay (as opposed to a 
‘dwell’ or interaction time), although there have been multiple theoreti-
cal approaches26–28 and no small amount of controversy. In the attoclock 
experiments, instead of impinging upon a barrier, the electron escapes 
from a quasi-bound state (note the distinction made early on between 
escape time and traversal time)29. Therefore, it is impossible to identify 
a time at which the event ‘starts’, as opposed to merely the moment at 
which the field reaches its maximum. The problem is further compli-
cated by electron–electron correlation and atomic-physics effects, 
which generate additional delays unrelated to the tunnelling event28. 
The most recent work, which eliminated some of these effects by carry-
ing out the experiment in hydrogen, made the claim that tunnelling is 
essentially instantaneous7. There has also been an experiment probing 
the time delay between two tunnel-coupled momentum components 
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of atoms oscillating in the wells of an optical lattice30, although it was 
unable to discriminate between the different theories.

To provide an operational definition of the tunnelling time, it is 
natural to devise a ‘clock’ which ticks only while the particle is present 
in the barrier region. The Larmor clock15,31,32 is the most famous exam-
ple of such a thought experiment. If an ensemble of polarized spin-½ 
particles impinges on a barrier, localizing a magnetic field in the barrier 
region alone will cause the spins to precess only while the particles are 
under the barrier (Fig. 1). Considering incident particles polarized in 
the x direction and a magnetic field along z, one would expect the spin 
to precess by an angle θ = ωLτ, where ωL is the Larmor frequency and τ 
is the time spent in the barrier. By working in the limit of a weak mag-
netic field (ωL → 0), this time can be measured without substantially 
perturbing the tunnelling particle. Büttiker15 noted that even in this 
limit, measurement back-action cannot be neglected, and it results in 
preferential transmission of atoms aligned with the magnetic field. 
This leads to two spin rotation angles: a precession in the plane orthog-
onal to the applied magnetic field, θy, as well as an alignment along  
the direction of the field, θz. He defined times associated with the  
spin projections: τz, τy and  τ τ τ= +x y z

2 2 ; the latter is often known as the 

‘Büttiker time’. It turns out that combinations of two such quantities 
appear in other theoretical treatments as a single complex number33,34, 
but researchers were hesitant to accept complex-valued times without 
a clear interpretation. Later, further studies11,12 associated τy and τz with 
the real and imaginary parts of the ‘weak value’13 of a dwell-time oper-
ator, thereby providing them with distinct interpretations as the inher-
ent tunnelling time and the measurement back-action, respectively.

We have built an experiment to implement the Larmor clock, making 
use of the long de Broglie wavelengths achievable in atomic Bose–Ein-
stein condensates and the remarkable degree of control possible in 
such systems, both for tailoring optical potentials and for manipulat-
ing and measuring spins. The spatial resolution of the potentials is 
limited only by the wavelength of the laser light used, and at our energy 
scales—which are of the order of E ≈ 100 feV (kB × 1 nK, where kB is the 
Boltzmann constant)—the tunnelling probability is sizeable, and the 
millisecond-level timescales are convenient to probe experimentally. 
We map the proposed Larmor clock to our experiment by creating a 
pseudo spin-½ system using two of the hyperfine states in our system. 
We couple these states through a two-photon Raman transition, driven 
by the barrier beam itself, thus generating a pseudo-magnetic field for 
the Larmor clock implementation: the effective Larmor frequency ωL 
is set by the two-photon Rabi frequency Ω. Using this scheme, we are 
able to determine the barrier traversal time in our system by measuring 
the final spin state of the transmitted atoms.

We prepare a degenerate gas of approximately 8,000 87Rb atoms in 
the 5S½ |F = 2, mF = 2⟩ state (F and mF denote the hyperfine and Zeeman 
quantum numbers, respectively) in a crossed dipole trap. One of the 
trap beams is turned off and the atoms are left free to move longitudi-
nally in a quasi one-dimensional waveguide. We decrease the effective 
temperature of the atoms using matter-wave lensing (see Methods), 
resulting in a root mean square (r.m.s.) velocity spread of 0.45(15) mm s−1, 
or an equivalent effective temperature of 2(1) nK (de Broglie wave-
length, λdB = 4(1) μm). We then push the atoms towards a 1.3-μm Gauss-
ian barrier, that is formed by a focused blue-detuned laser beam (see 
Methods), by exploiting the magnetic moment of the atoms and 
momentarily accelerating them using a magnetic gradient pulse to set 
the velocity. We have previously observed tunnelling through this 
potential in two different contexts: escape from a quasi-bound state35,36 
and in a single-collision geometry37 that is similar to that studied here. 
While the atoms approach the potential barrier, rapid adiabatic passage 
is used to transfer the atoms from their initial spin state to the |2, 0⟩ 
state. An effective spin-½ is encoded in the |2, 0⟩ and |1, 0⟩ hyperfine 
clock states denoted by x| + ⟩ = (|↑⟩ + |↓⟩)/ 2 and x| − ⟩ = (|↑⟩ − |↓⟩)/ 2 , 
respectively (Fig. 2). The barrier light is phase-modulated at the 6.8-GHz 
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Fig. 1 | Larmor clock. A weak magnetic field B pointing in the z direction is 
localized inside the potential barrier. A particle with spin-½ pointing initially 
along the x direction impinges on the barrier, and after transmission, the spin 
has precessed in the x–y plane with a Larmor frequency ωL and tilted towards 
the z axis, as depicted in the Bloch sphere. The |↑⟩ and |↓⟩ states are the 
eigenstates of the system in the presence of the magnetic field along the z axis. 
The Larmor times are then defined as τy = θy/ωL and τz = θz/ωL.

F = 2

|2,–1〉
B′

|2,0〉

|+x〉

|–x〉
F = 1

5S1/2
6.8 GHz

mF0–2 –1 21

1

2

3

4

ODT
Waveguide

Barrier and
Raman beams

1

2 3

4

y

z x

Fig. 2 | Experimental setup and sequence. We create a Bose–Einstein 
condensate in the |F = 2, mF = 2⟩ state in a crossed dipole trap formed by an 
optical waveguide and an intersecting perpendicular beam (ODT). Left, 
experimental setup; right, atomic-level scheme. (1) After the effective 
temperature of the cloud is lowered, the atoms are pushed by a pulsed 
magnetic field gradient along the waveguide in the −z direction towards a 
blue-detuned beam that generates the potential barrier and the pair of  

Raman beams. (2) While the atoms travel towards the barrier, we use rapid 
adiabatic passage to transfer them to the |2, 0⟩ (|+x⟩) state. (3) During the 
interaction with the barrier, the pair of Raman beams couples the |+x⟩ and |−x⟩ 
states separated by the 6.8-GHz hyperfine splitting. (4) To perform the 
read-out sequence, the atoms that were coupled to |−x⟩ are transferred to the 
|2, −1⟩ state, after which we apply a magnetic field gradient B′ to perform a 
Stern–Gerlach measurement and separately image both of the states.
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hyperfine frequency, thus creating a pair of Raman beams that couple 
the |+x⟩ and |−x⟩ states. In the interaction picture, the pseudo-magnetic 
field generated by the Raman beams points along the z direction of the 
Bloch sphere. After the collision with the barrier is complete, we per-
form a final rapid adiabatic passage sweep from |−x⟩ to |2, −1⟩. A sub-
sequent Stern–Gerlach sequence separates the two spin states, enabling 
us to determine the populations of |±x⟩.

We begin by testing the implementation of the Larmor clock in free 
space. For this purpose, we remove the potential barrier but keep the 
pseudo-magnetic field on by changing the barrier wavelength to a 
nearby tune-out wavelength (see Fig. 3 and Methods). The preces-
sion angle tells us how much time the atoms spend in the region with 
the localized pseudo-magnetic field. The results without the barrier 
(Fig. 3b) show an expected 1/v dependence, where v is the velocity of 
the atoms. With our knowledge of the barrier width, we can extract the 
Rabi frequency of the two-photon transition.

After verifying the behaviour of the clock, we move to the case of 
a repulsive barrier. In this case, after the interaction with the bar-
rier and the Raman beams, each atom will be either transmitted or 
reflected, with its spin in a superposition of the |+x⟩ and |−x⟩ states 
(Fig. 4a). At high energies, the barrier has little effect on the atoms 
and the semiclassical treatment is a good approximation; we therefore 
deduce the Rabi frequency from the high-energy measurements (see 
Methods). We perform the tunnelling measurement with a barrier 
height of 135(8) nK, corresponding to 5.1 mm s−1 and a Rabi frequency 
of Ω = 2π × 225(40) Hz.
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Fig. 3 | Implementation of the Larmor clock. a, Scalar a.c. Stark shift (black 
line) created by the tunable laser beam used for the optical potential. The two 
points represent the wavelengths used in the experiment: the orange dot is the 
wavelength at which the barrier height vanishes (tune-out wavelength) and 
where the free-space Larmor measurement is performed, and the red square is 
the wavelength used to create a 135-nK potential barrier. The pair of Raman 
beams, with two-photon Rabi frequency indicated by the green line, is created 
with the same beam as the barrier. b, Measurement of the precession angle at 
the tune-out wavelength. The error bars represent the standard error of the 
mean and are mostly smaller than the symbol size. The dashed line is a 
one-parameter fit to the expression Ωd/v, where d is the effective barrier width, 
v is the incident velocity of the atoms and Ω is the Rabi frequency, which is left 
as a free parameter. We find Ω = 2π × 440(10) Hz. Ω can be controlled 
independently of the barrier height and was reduced for the tunnelling data 
(see Methods).
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Fig. 4 | Traversal time of an atomic wavepacket through an optical 
potential. a, Absorption images of the atomic densities after the interaction 
with a 135-nK barrier and the Raman beams for incident energies of 400 nK 
(top) and 140 nK (bottom). A Stern–Gerlach pulse is used to separate the two 
spin components; a nearly 45° angle exists between the magnetic field 
gradient and the propagation direction. The precession angles for the 
transmitted atoms are obtained by doing full tomography on the spin-½ 
system. b, Obtained spin projections for the different incident velocities. The 
top right and bottom right figures show cuts along the x–y and x–z planes. The 
data are colour-coded to indicate velocity (red, lower velocities; green, higher 
velocities). c, Experimental data of the Larmor times τy (orange dots) and τz 
(blue dots) as a function of incident velocity. The error bars denote the 
standard error of the mean and in some cases are smaller than the symbol size. 
The dashed grey line corresponds to the velocity matching the height of the 
barrier (5.1 mm s−1). Light orange and blue regions are the one-dimensional 
two-component time-dependent Schrödinger simulations, and the bands 
represent one standard deviation on the measured Rabi frequency. The 
dashed lines are monochromatic weak-measurement theory predictions  
for the Larmor times τy (orange) and τz (blue), and the semiclassical time 
(green). The corresponding solid lines are calculated by taking into  
account the velocity spread of the initial wavepacket (0.45 mm s−1).  
Inset, transmission-probability data (blue dots) and two-component 
time-dependent Schrödinger simulations using a wavepacket with a velocity 
spread of 0.45 mm s−1 (orange line).
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We investigate the two Larmor times by performing full-spin tomog-

raphy of the transmitted spin-½ particles. Rotations after the scat-
tering event enable us to measure the spin components along the x, 
y and z axes of the Bloch sphere (Fig. 4b). From the different projec-
tions, we find the traversal time τy and the time τz associated with the 
back-action of the measurement (Fig. 4c). At the lowest incident velocity 
(4.1 mm s−1), we observe a transmission probability of 3%. Given the 
energy dependence of the transmission, we calculate that the trans-
mitted atoms have a velocity distribution with a peak at 4.8 mm s−1, 
corresponding to κd ≈ 3. About three-quarters of this distribution cor-
responds to energies below the barrier height. The measured traversal 
time τy is 0.61(7) ms.

The experimental data are in good agreement with one-dimensional 
two-component time-dependent Schrödinger simulations with no 
free parameters (Fig. 4c), and Gross–Pitaevskii simulations show no 
sizeable modifications from the presence of interactions. Further-
more, the theoretical prediction given by the weak value formalism 
describes our results well (see Methods). By contrast, the ‘semiclassical 
time’ disagrees with τx by more than three standard deviations for the 
lowest velocities.

This is, to our knowledge, the first direct measurement of the time 
that massive particles spend in a barrier region, and successfully imple-
ments the Larmor clock thought experiment. For a range of incident 
velocities, we can observe both the time spent in the barrier and also 
the spin rotation owing to measurement back-action, clearly separating 
the two effects. We see that as we head deeper into the quantum regime, 
the back-action grows in importance, and our results are consistent 
with the prediction that the tunnelling time begins to decrease15. Our 
results are inconsistent with claims that tunnelling takes ‘zero time’7,22. 
Beyond resolving the controversy regarding how long a tunnelling 
particle spends in the barrier region, the experimental approach we 
demonstrate here opens a window on quantum measurement and 
the broad question of how much can be inferred about the history of a 
quantum particle. In particular, it will enable measurements of at what 
position within a barrier the transmitted and reflected particles spend 
their time11,12. As it is predicted that such measurements exhibit non-
classical behaviour, their study as the system is made ‘more classical’ 
by the introduction of dissipation or atomic interactions promises to 
offer new perspectives on the quantum–classical boundary.
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Methods

Experimental setup
We Bose-condense 8,000 87Rb atoms in a 1,064-nm crossed dipole trap. 
The trap is composed of two beams: an elongated beam that we refer 
to as the atom waveguide (with a waist of 15 μm and a Rayleigh range 
of z0 ≈ 600 μm), and an orthogonal beam intersecting the waveguide 
nearly 150 μm away from its centre. The atoms start at the intersection 
of the two beams. The atom waveguide has radial and longitudinal 
frequencies of νr = 220 Hz and νl = 2.7 Hz. The barrier beam, formed by 
a 421-nm laser focused to 1.3 μm (see below), intersects the waveguide 
close to its centre. The longitudinal trap frequency sets the minimum 
velocity at which the atoms meet the barrier, as the waveguide curva-
ture produces an acceleration of 5 × 10−2 m s−2.

Matter-wave lensing
We use delta-kick cooling38–42, also referred to as matter-wave lens-
ing, to decrease the effective temperature of the atoms from 15 nK to 
2(1) nK, corresponding to an r.m.s. velocity spread of 0.45(15) mm s-1. 
The effective temperature is given by Teff = mΔv2/kB where Δv is the 
r.m.s. width of the atomic velocity distribution, m is the atomic mass 
and kB is the Boltzmann constant. After cooling, the atoms have a ther-
mal de Broglie wavelength of λdB = 4(1) μm. The cooling procedure is 
as follows: the atoms start in a crossed dipole trap, then are released 
from one of these beams (ODT) and expand in the atom waveguide for 
9 ms (to approximately four times the initial cloud size), and then a 
quasi-harmonic trap with a frequency of ω = 2π × 50(5) Hz, created by 
the ODT beam, is flashed for 1.1 ms to collimate the atomic wavepacket. 
The amount of expansion is limited by the radius of the beam (1/e2 
radius of 100 μm); this expansion time is kept short enough that the 
atoms remain within the harmonic region of the Gaussian potential. The 
condensate has a final longitudinal r.m.s. radius of 15 μm. By reducing 
the initial number of atoms we have achieved temperatures as low as 
0.9 nK using this technique, but to work at higher atom numbers we 
perform this experiment at 2 nK.

Potential barrier and Raman beams
The light for the barrier and the Raman beams is created by a 
custom-made 421-nm external cavity diode laser (ECDL) in Littrow 
configuration. We set the frequency of this beam in the vicinity of one 
of the rubidium tune-out wavelengths (421.07 nm) located between 
the 5S1/2 → 6P1/2 (421.7 nm) and the 5S1/2 → 6P3/2 (420.3 nm) transitions. To 
generate the pair of Raman beams, the beam passes through a 6.8-GHz 
electro-optic phase modulator using a modulation depth of β ≈ 0.3, 
which creates a pair of sidebands in the optical spectrum. About 5% 
of the optical power goes to the sidebands. The generated sidebands 
have opposite phases and act destructively when used along with the 
carrier to drive Raman transitions. An etalon with a full width at half- 
maximum bandwidth of 12 GHz is therefore used to remove one of the 
sidebands. We can control the Rabi frequency without modifying the 
power of the Raman beams by adjusting the modulation depth, β. This 
is monitored by detecting the beat signal between the carrier and the 
remaining sideband on a fast photodiode.

The barrier light is sent to the science chamber, where it is focused to a 
1/e2 radius of wz = 1.3 μm along the z direction, and along the y direction it 
is scanned with an acousto-optical deflector to create a flat, 50-μm-wide 
potential. The scan rate of the potential (133 kHz) is faster than any atomic 
dynamics and guarantees that the cloud experiences a time-averaged 
potential. The Rayleigh range of the beam is 8 μm, larger than the trans-
verse radius of the condensate (∼2.5 μm). We can set the wavelength to 
421.38 nm, where a power of approximately 0.5 mW generates a repulsive 
potential as large as V0/kB ≈ 180 nK (given, for the mF = 0 clock states, by the 
scalar a.c. Stark shift)43. A magnetic field pointing along the propagation 
axis of the beams (x direction) sets the quantization axis. The beams are 
circularly polarized to drive σ+–σ+ Raman transitions.

To calibrate the Rabi frequency, we study high-velocity incident 
atoms traversing the barrier. For these velocities, the semiclassical 
approximation is valid (see Fig. 4), and the calibration can be obtained 
from ∫θ Ω G z z v v G z= ( )d / − ( )b−∞

∞ 2 2 , where G z z w( ) = exp(− 2 / )z
2 2  is the 

Gaussian envelope of the potential, v is the velocity of the atoms and 
vb is the velocity corresponding to the barrier height. The Rabi fre-
quency can also be calibrated at the tune-out wavelength. Accounting 
for the difference in a.c. Stark shift between the barrier and tune-out 
wavelengths, and frequency-dependent transmission owing to etalon-
ing effects in our chamber windows, the two techniques differ by about 
10%. However, owing to the limited tunability of the barrier ECDL, we 
use the first method to calibrate the Rabi frequency.

Calculations of the Larmor times
We calculate the characteristic Larmor times using the weak measure-
ment formalism13. The projection operator onto the barrier region, Θ, 
has eigenvalues 1 (for particles in the barrier region) and 0 (for particles 
outside). A dwell time operator ∫D tΘ t= d ( )

−∞

∞
 provides a measure of 

the time spent in the barrier. However, its expectation value includes 
contributions from both transmitted and reflected atoms. It has been 
shown11,12 that the weak value of this operator, Dw = τy − iτz = ⟨f | D | i⟩/
⟨f | i⟩ where ‘i’ refers to the initial state and ‘f’ to the final state, can be 
understood as the conditional dwell time of a particle which is prepared 
in the |i⟩ state and postselected in the |f⟩ state. In our experiment, the 
initial state corresponds to atoms incident on the barrier from the left, 
and the final state corresponds to transmitted atoms on the right side 
of the barrier. As originally shown15 for a square barrier, and later gen-
eralized to arbitrary potentials44, these Larmor times can also be cal-
culated as follows: τy = −ħ∂φ/∂V and τz = −ħ∂log|T|/∂V, where φ and |T| 
are the phase and the magnitude of the transmission amplitude,  
respectively.

Using the transfer-matrix method, we numerically solve for the con-
ditional dwell times at different incident energies. In the experiment, 
the Larmor probe is implemented by the pair of Raman beams; there-
fore, in the calculations, we obtain the dwell times by integrating over 
the Gaussian region of the barrier (the top-hat function Θ is replaced 
with a Gaussian weight function, representing the local strength of the 
interaction with the clock). This integration region extends beyond the 
turning points of the barrier for the range of incident energies, and we 
calculate that about 40% of the measured time for the lowest incident 
energy comes from the time spent in the classically forbidden region.

Spin preparation, rotation and readout
After we accelerate the atoms using a 15 G cm−1 magnetic gradient pulse 
for a variable time (0–0.9 ms), we prepare the spin state of the atoms. 
While the atoms travel towards the barrier, we ramp up the magnetic 
field to approximately 40 G. The high magnetic field causes a difference 
in successive energy splittings of the F = 2 manifold of 210 kHz as a result 
of the quadratic Zeeman shift. This allows us to transfer the atoms from 
|2, 2⟩ (the state in which they Bose-condensed) to |2, 0⟩, using a 1-ms 
radio-frequency rapid adiabatic passage. A multi-loop antenna provides 
the radio-frequency coupling with a Rabi frequency of approximately 
Ωrf ≈ 2π × 9 kHz. The transfer efficiency is greater than 95%, and the 
atoms left behind can be identified and do not affect the subsequent 
dynamics in the experiment. The total preparation sequence lasts for 
9 ms. Because the clock transition has a field dependence of 575 Hz G−2, 
we lower the magnetic field to 1 G before the interaction with the Raman 
beams to reduce our sensitivity to magnetic noise.

For the read-out sequence, we again increase the magnetic field to 
40 G. Owing to the quadratic Zeeman shift, the frequency difference 
between the |1, 0⟩ to |2, −1⟩ and the |1, −1⟩ to |2, 0⟩ transitions is 110 kHz. We 
transfer the atoms through a rapid adiabatic passage from |1, 0⟩ to |2, −1⟩ 
in 1.5 ms. The transfer efficiency is 90%. This sequence lasts for 8.5 ms. 
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Subsequently, we lower the magnetic field to 1 G and perform a 5.5-ms 
free expansion with a 40 G cm−1 magnetic gradient to implement a Stern–
Gerlach measurement and simultaneously image both of the final states.

We can only directly measure the hyperfine states |+x⟩ (|2, 0⟩) and 
|−x⟩ (|1, 0⟩), thus obtaining ⟨Sx⟩. To complete the tomography, after the 
interaction with the barrier we apply a microwave pulse addressing 
the |+x⟩ and the |−x⟩ states to perform a π/2 rotation along the z axis 
to measure ⟨Sy⟩. Similarly, we rotate the spin by π/2 along the y axis, 
through a phase shift of π/2 radians in the driving field, to measure 
⟨Sz⟩. The rotations are done with a dipole antenna driving the atoms 
with a Rabi frequency of Ωmw = 2π × 2.4 kHz. To identify and account 
for possible systematic errors such as imperfect π/2 rotations or 
population transfer in the read-out sequence, we also measure the 
−x, −y and −z projections. We periodically calibrate the phase between 
the microwave source and the Raman beams because drifts in the ECDL 
frequency and changes in the etalon owing to temperature fluctua-
tions can occur. The phase calibration is performed as follows: a spin 
rotation along the z axis, for atoms with an incident velocity well above 
the barrier height, is induced by the Raman beams and followed by a 
microwave pulse tuned to provide a π/2 rotation about a torque vector 
which lies in the y–z plane of the Bloch sphere; its angle on this plane 
depends on the phase of the microwave source (relative to that of the 
Raman beams). We repeat the procedure while scanning the phase 
of the microwave source and determine the phase difference from 
the sinusoidal behaviour of the measured hyperfine populations. For 
this calibration, we use a 120(7)-nK barrier and an incident velocity of 
8.70(15) mm s−1. The typical phase drift between calibrations is 90 mrad 
and has been included in the measurement uncertainties. Finally, the 
Larmor rotation angles15 are found by calculating θy = arctan(⟨Sy⟩/⟨Sx⟩) 
and θz = arctanh⟨Sz⟩; although the in-plane angle arises from a phase 
accumulation and can thus be calculated trigonometrically, θz is related 
to the logarithmic derivative of a transmission probability, related to 
the inverse hyperbolic tangent of ⟨Sz⟩—in the limit of small Larmor 
frequencies, this can be equally well described by an arctangent, but 
in the regime of our experiment we prefer not to make the small-angle 
approximation, and we therefore keep the more accurate expression.

Numerical methods
Transfer-matrix method. We use the transfer-matrix method45,46 to 
solve the one-dimensional Schrödinger equation. The method de-
scribes the wave after propagating by a distance δx in a potential V, 
Ψout = Aeikx + Be−ikx, in terms of the incident wave, Ψin = Ceikx + De−ikx, where 
k m E V ħ= 2 ( − ) /0 , through Ψout = M(δx, V)Ψin, where M is the so-called 
transfer matrix that relates the two waves. By discretizing the potential, 
the transmission and reflection coefficients can be calculated at any 
point in space.

The results of the transfer-matrix method are used to calculate the 
conditional dwell times, specifically the projector Θ onto the barrier 
region for the transmitted particles. Following the weak-value formal-
ism11,12, we find the projector to be

Θ Ψ x t
R
T

Ψ x t Ψ x t⟨ ⟩ = | ( , )| + ( − , ) ( , )t i
2

i i
∗

where the angle brackets denote the expectation value, Ψi and ∗Ψ i  refer 
to the incident wave and its complex conjugate, and R and T are the 
reflection and transmission amplitudes, respectively. Using this projec-
tor, the Larmor-time density can be calculated (see Extended Data 
Fig. 1), and integrating over the barrier region yields the two charac-
teristic times, τy and τz.

Schrödinger and Gross–Pitaevskii simulations. We solve the coupled 
time-dependent equations via the time-splitting spectral method47–49
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where Uij = 4πħ2aij/m, aij is the s-wave scattering length between the i 
and j components, Ω is the Rabi frequency describing the strength of an 
external coupling field, and ħδ is an energy offset. The set of equations 
can be reduced from the three-dimensional to the one-dimensional 
case on the basis of the assumption ωz ≪ ωx, ωy where ωx and ωy are the 
trap frequencies along the axes that are orthogonal to z. This crite-
rion is met in our experiment, as ωz = 2π × 2.7 Hz and ωx,y = 2π × 220 Hz. 
The ground state of the trap is found by imaginary time propagation. 
Initially, a constant energy offset is added to one of the components 
during this evolution to favour the ground state of the trap for only 
one of the spin components. The atoms are released from the initial 
potential, and a phase gradient is written across the wavepacket to 
set the velocity and launch it against the barrier. In the barrier region, 
coupling between the two components—with the same Gaussian profile 
of the barrier—is implemented to simulate the Raman coupling. The 
total duration of the simulations is set such that all the atoms have 
finished interacting with the barrier. By setting the scattering lengths 
to zero, we go from the Gross–Pitaevskii equation, also known as the 
nonlinear Schrödinger equation, to the Schrödinger equation. We find 
no major differences between the interacting and the non-interacting 
cases (see Extended Data Fig. 2).

Data availability
The data presented in the figures and that support the other findings of 
this study are available from the corresponding author on reasonable 
request. Source data are provided with this paper.
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Extended Data Fig. 1 | Calculated time density of the Larmor components τy 
and τz using the transfer-matrix method for a 135-nK Gaussian barrier. The 
black dashed lines indicate the 1/e2 radius of the Gaussian barrier and the grey 

lines show the classical turning points. The Larmor time τy (or τz) is obtained by 
integrating over space, taking into account the position-dependent coupling 
of the Raman beams.
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Extended Data Fig. 2 | Simulations of the Larmor clock. The simulations 
correspond to one-dimensional two-component time-dependent Schrödinger 
and Gross–Pitaevskii simulations. The parameters are as in Fig. 4.
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