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We describe photon statistics experiments using pseudothermal light that can be performed in an

undergraduate physics laboratory. We examine the light properties in terms of a second-order

coherence function, as determined either by measuring the light intensity as a function of time or

via coincidence analysis of a pair of photon detectors. We determine the coherence time and

intensity distribution of the pseudothermal light source that exhibits either Gaussian or non-

Gaussian statistics as a function of their optical parameters, and then compare the results with

theoretical predictions. The simple photodiode method can be used for the qualitative analysis

of the coherence time, but more accurate measurements are achieved using the coincidence

method. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4975212]

I. INTRODUCTION

The introduction of second-order temporal coherence
g(2)(s) is the most important development step in the history
of quantum optics.1–4 Experiments with beamsplitters per-
formed by Brown and Twiss and their observation of photon
bunching in light emitted by a chaotic source stimulated the
birth of modern quantum optics.5,6 Moreover, g(2) provides a
nice tool for characterizing and classifying the basic types of
light: thermal, coherent laser, and single photon light.
Because g(2) can be explained within the framework of clas-
sical electromagnetism, it also gives undergraduate students
a natural approach to understanding some basic features of
light.

Measurement of g(2)(s) for natural thermal light is chal-
lenging because of the very short coherence time of these
sources, typically only a few femtoseconds. This measure-
ment problem was solved by Martienssen and Spiller when
they introduced the construction of a pseudothermal source
in which a laser beam is focused on rotating ground glass,
which acts as a scatterer.7 This concept was used later to
experimentally demonstrate the photon bunching phenome-
non.8,9 This kind of pseudothermal source has since been
used in numerous fundamental studies of photoelectron sta-
tistics and even as student laboratory experiments.10

However, minimal attention has been paid to the optical
parameters that significantly affect the time scale of the
second-order coherence and the features of the intensity
distribution.11,12

Here, we describe simple low-cost experiments using a
pseudothermal source based on a rotating ground disk that
can be adapted for use in an undergraduate laboratory. Since
the coherence time of this source is long, light intensity fluc-
tuations can be directly measured with a photodiode and the
second-order coherence can be determined numerically as
the autocorrelation function of the intensity time series. This
can be regarded as the most classical method of measuring
g(2)(s). We also describe g(2) measurements obtained by
sending a beam of light onto a beamsplitter and measuring
the correlations between the reflected and transmitted output
intensities. This approach is more natural with respect to
quantum optics. We show how the coherence time and inten-
sity distribution depends on the features of the ground glass,
the laser, and the focusing optics. We also compare the
experimental results of these two measurement approaches

with theoretical predictions. These photon statistics experi-
ments can serve as a complementary approach to recently
developed photon counting experiments designed for use in
student laboratories.13,14

II. SECOND-ORDER TEMPORAL COHERENCE

If the intensity I(t) of light is measured at one point in
space and the statistical properties of the intensity do not
change in time, the second-order temporal coherence is
given by

g 2ð Þ sð Þ ¼ hI tð ÞI tþ sð Þi
hI tð Þi2

: (1)

The brackets normally indicate a time average but they can
be replaced by the ensemble average for stationary light
fields. If the fluctuations of the intensity are measured as a
time series, g(2)(s) can be determined as the normalized auto-
correlation function of the intensity and it can be proved that
for classical fields 1� g(2)(0) and g(2)(s)� g(2)(0).15

The actual functional form of g(2) for thermal sources
depends on the details of the process by which the total elec-
tric field is created. If the oscillating electric field consists of
a single frequency component but the phase of the oscillation
changes randomly and abruptly in time, we have

gð2ÞðsÞ ¼ 1þ e�jsj=sc ; (2)

where sc is the coherence time.15 This simple model corre-
sponds to collisionally broadened thermal light, where more
or less isolated atoms radiate. The corresponding frequency
spectrum of the intensity time series has a Lorentzian shape.
Another perspective is to recognize that the electric field has
many different frequency components with a Gaussian distri-
bution, and each component has a randomly distributed but
constant phase. In this case, the atoms are close enough to
interact with each other, giving15

gð2ÞðsÞ ¼ 1þ e�ðs=scÞ2 : (3)

This kind of thermal light is called Gaussian because of the
shape of the frequency spectrum, and it corresponds to
Doppler broadened light.16 The value g(2)(0) is commonly
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used to classify different types of light.15 In both Eqs. (2)
and (3), g(2)(s) has a maximum value of 2 when s¼ 0, as it
should be in the case of thermal light.17

The second order coherence function can be also deter-
mined using a beamsplitter and subsequent coincidence anal-
ysis of a pair of photon detectors.18 In this case, Eq. (1) is
replaced with

g 2ð Þ sð Þ ¼ hIT tð ÞIR tþ sð Þi
hII tð Þi2

; (4)

where IT is the intensity of the transmitted beam, IR is the
intensity of the reflected beam, and II is the intensity of the
input beam. According to the semiclassical theory of photo-
electric detection, the conversion of the electromagnetic field
into photoelectrons is a random process. The probability of
obtaining a single photocount within a short time window Dt
is proportional to the average intensity measured by the
detector.18,19 Probabilities can be approximated by the mea-
sured (over the total counting time DT) counts NT, NR, and
NTR to obtain20

g 2ð Þ sð Þ ¼ NTR

NTNR

DT

Dt

� �
: (5)

III. EXPERIMENTAL SETUP

Figure 1 shows a schematic diagram of our experimental
setup. The main component is the rotating ground glass that
we use as a source of pseudothermal light. The rotation
speed is fixed at 6.75 Hz, which corresponds to a period of
148 ms. The laser source (a collimator pen) has an output
power of 1 mW, a wavelength of k¼ 637 nm, a beam diame-
ter of 4 mm at the focusing lens, and a total divergence of
hdiv¼ 0.3 mrad. The laser beam passes through a focusing
lens (of focal length f¼ 100 mm, except in one measurement
series where lenses with focal lengths of 35, 50, 70, and
13 mm were also used) onto the ground glass wheel (diame-
ter of 25 mm, 1500-grit polished; see later comments), 7 mm
from the rotation axis. The distance F from the waist of the
laser beam to the ground glass was varied between 0 and
20 mm.

After the baffle, the light is either measured with the pho-
todiode (with an iris 1.0 mm in diameter) and recorded by a
digital oscilloscope (sampling frequency 100 kHz) or col-
lected with the multimode optical fiber (core diameter
62.5 lm) without any focusing optics and directed to the

beamsplitter for coincidence analysis. The laser light is
attenuated with a neutral density filter. The single and coinci-
dence counts are recorded using a time-to-digital converter;
the width of the coincidence window is 10 ns.

IV. PROPERTIES OF SPECKLE PATTERNS

When the laser beam shines on the ground glass, the
roughness of the surface acts as a large set of scattering
centers, which produce approximately spherical waves.
Since these centers are randomly distributed, they produce
complex interference patterns, or speckles, in the far field. If
the number of surface details is high in the area of the laser
spot, the spatial distribution of the field amplitude is
Gaussian, which is a manifestation of the central limit
theorem.21

If the laser spot is tightly focused, the speckles on the
screen are large but if the spot itself is large, the patterns are
small.7 Further, the speckles seem to move if the ground
glass rotates, and while this might seem quite natural, the
real situation is fairly complex.11,12 If the distance F from
the waist to the ground glass is decreased, the speckle pattern
moves faster. Further, if the laser waist is in front of the sur-
face (F> 0; see Fig. 1) the speckles move in the same direc-
tion as the scattering surface. If the waist is on the surface
(F¼ 0), the speckles do not move at all but simply evolve in
situ. And finally, if the laser waist is behind the surface
(F< 0), the speckles move in the direction opposite to that
of the scatterer. The explanation for all of these phenomena
is the fact that the moving speckles can be observed only
when the laser light has a nonzero curvature on the ground
glass. Laser light, which is often modeled as a Gaussian or
TEM00 beam, has zero curvature only at the waist (and at
infinity).22

Detailed calculations have shown that with a Gaussian
laser beam, in the limit of very many scatterers, g(2)(s) has
the form of Eq. (3) and the coherence time is given by11,12

sc ¼
W0

v 1þ F=Lð Þ2 þ y2

h i1=2
; (6)

where W0 ¼ 1
2

fhdiv is the radius of the waist, v is the velocity
of the surface of the ground glass at the center of the laser
spot (the circumferential path length multiplied by the rota-
tion frequency), and L is the distance from the glass to
the detector. The parameter y ¼ kW2

0=2L, with k¼ 2p/k the
wavenumber of the laser light, determines whether the

Fig. 1. Experimental setup: W0 is the radius of the waist of the laser beam, W is the radius of the laser spot on the ground glass, F is the distance from the waist

to the ground glass, and L is the distance to either the photodiode or the end of collecting fiber from the ground glass. The single photon detectors (SPDs) are

connected to the output ports of the beamsplitter (BS), and single and coincidence counts from the detectors are analyzed in the counter module.
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detectors are in the near field (y� 1) or far field (y� 1). In
our system, we always measured intensities in the far field.
We note that sc is not the time taken for a new independent
set of scatterers to enter the laser spot. Actually, when F/L is
small, sc only weakly depends on F and hence on the size W
of the region of the scatterers illuminated by the laser beam.
If the divergence of the beam is not known, the radius of the
beam waist can be roughly estimated as W0¼ fk/D where D
is the diameter of the beam at the aperture. The divergence
can also be determined by measuring the fraction of the
beam power transmitted by various circular apertures at vari-
ous distances.

V. RESULTS

Figure 2 shows the intensity of the pseudothermal light
measured with the photodiode as a function of time, and this
intensity varies in what appears to be a random manner.
Strictly speaking, the intensity is not random but periodic;
after rotation of the ground glass the intensity repeats its
course. However, in our experiments the period of the inten-
sity could not be determined, either from the time series or
from its power spectrum.

We calculated the second-order coherence g(2)(s) based on
the photodiode measurements, as stated in Eq. (1). We calcu-
lated the intensity autocorrelation of the digitized data using
home-made software,23 but these calculations can be done
by almost any software capable of numerical calculations,
even spreadsheet programs. We note that the calculation of
the autocorrelation is highly sensitive to any offsets in the
input data, either due to background light, a photodiode dark
current, or an input offset voltage of the amplifier. If there is
any offset, it should be removed prior to autocorrelation
analysis. When the waist of the laser beam is on the ground
glass, the characteristic Gaussian shape of g(2)(s) is observed,
as shown in Fig. 3. However, the maximum value of
g(2)(0)¼ 1.74 6 0.02 (Ref. 24) is well below the theoretical
value of 2.

In the case of a waist distance of 10 or 20 mm, the autocor-
relation is almost constant. The obvious reason for this is the
fact that the speckle patterns are so small that the detector
has averaged out the smallest spatial details. By using a
smaller iris diameter in front of the photodiode, we could
restore the correct shape of g(2)(s) but the lower signal level
and poorer signal-to-noise ratio can prevent accurate meas-
urements, unless the output power of the laser source is
increased. In the case of non-rotating ground glass, the

intensity is practically constant on these time scales (there
are minor slow variations in the laser intensity) and thus
g(2)(s)¼ 1 (data not shown). We can conclude that if the
diameter of the iris or the active area of the photodiode itself
is small enough, qualitative measurements of g(2)(s) can be
performed at the very least.

Figure 4(a) shows the second-order coherence at different
waist distances as a function of the delay time, as measured
with a beamsplitter and a coincidence analysis of the outputs,
according to Eq. (5). The maximum values of g(2) are closer
to 2, which is a clear indication of less spatial averaging due
to the very small aperture of the optical fiber. When the
ground glass is not rotating, we get g(2)(s)� 1 as expected
for stable laser light. The shape of g(2)(s) is very close to
Gaussian, as demonstrated in Fig. 4(b). When comparing our
experimental data (F¼ 0) with the Gaussian function of Eq.
(3) using the theoretical prediction sc¼ 0.051 ms from Eq.
(6), we can see that the deviations are almost within the
range of measurements errors. The maximum value of
g(2)¼ 1.96 6 0.03 when F¼ 0, but it drops as the waist dis-
tance is increased. This behavior indicates that even when
using optical fiber, spatial averaging can be significant.

By fitting the theoretical prediction of Eq. (3) to the results
shown in Fig. 4(a), we determined the delay time sc as a
function of the waist distance F. The delay time decreases
slowly when this distance increases (see Fig. 5), as expected
from Eq. (6), since the ratio F/L is quite small. As seen in the
figure, the experimental results are close to the theoretical
prediction. For example, at zero distance, experimentally we
have sc¼ 0.052 6 0.003 ms while the theoretical prediction
was sc¼ 0.051 ms. We note that the most inaccurate parame-
ter in the measurement system is the position of the laser
spot on the ground glass, which directly affects the velocity
v in Eq. (6).

In order to further validate Eq. (6), we also varied the
radius of the waist W0. We performed this experiment using
five lenses with different focal lengths and based our experi-
ments on the beamsplitter method. In all cases, we adjusted
the waist of the beam to the surface of the ground glass so
that F¼ 0. As can be seen in Fig. 6, the dependence of the
delay time on the focal length is quite linear and close to the
theoretical prediction; deviations are within the error bars.

Fig. 2. Intensity of the pseudothermal light measured with the photodiode.

In this case, the waist distance F from the ground glass was zero.

Fig. 3. Second-order coherence as a function of the delay time measured

with the photodiode. The waist distances F from the ground glass were

0 mm (solid dots), 10 mm (open dots), and 20 mm (open rectangles). For ref-

erence, the value g(2)¼ 1 is shown as a dashed line. The data points are con-

nected by lines for clarity. Error bars represent one standard deviation.
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These results demonstrate that the coherence time can be
varied by nearly an order of magnitude simply by changing
the focusing lens.

The large number of scatterers is the key assumption for
all the previous theoretical considerations. Under this condi-
tion, the distribution of the field amplitudes is Gaussian and
thus so is the distribution of the intensities. Because the
mean size of the scatterers of a 1500-grit polished ground
glass is well below 5 lm,25 and the diameter of the laser spot

was 30 lm (F¼ 0), at any given time there are approxi-
mately 150 scatterers illuminated by the laser beam. Such a
high number of scatterers guarantees the expectation of a
Gaussian distribution. From time series data collected with
the photodiode, we could compute the intensity distribution,
as shown in Fig. 7. As the data (solid dots) are well-fit by a
straight line on the logarithmic scale, the Gaussian character
of the distribution is clear.

For our final experiment, we replaced the original 1500-
grit ground glass with 120-grit polished ground glass, which
corresponds to less than 10 scatterers in the area of the laser
spot. In this case, the intensity had very sharp peaks and long
periods of zero values, as shown in Fig. 8, and the intensity
distribution is no longer Gaussian (see Fig. 7, open dots).
Figure 9 shows the corresponding second-order coherence
determined by the beamsplitter method. It no longer has a
Gaussian shape, and the maximum value is 3.2, significantly
higher than the value 2 for the Gaussian case. Further, the
coherence seems to be a combination of a Gaussian [Eq. (3)]
in the small time delays and Lorentzian [Eq. (2)] in the lon-
ger time delays. Since the form of the second order coher-
ence is related to the details of the spatial distribution of the

Fig. 4. (a) Second-order coherence as a function of the delay time deter-

mined by the beamsplitter and coincidence analysis. The waist distances F
from the ground glass were 0 mm (solid dots), 5 mm (open dots), 15 mm

(open rectangles), and 20 mm (open diamonds). For reference, the results for

non-rotating ground glass are also shown (open triangles). The data points

are connected by lines for clarity. (b) The F¼ 0 data (solid dots) from (a)

and the Gaussian function [solid line, Eq. (3)] that uses the theoretical pre-

diction from Eq. (6) for sc. Error bars represent one standard deviation.

Fig. 5. Delay time sc as a function of the distance of the laser beam waist F.

The theoretical prediction based on Eq. (6) is shown as a dashed line. The

focal length of the focusing lens was 100 mm. Error bars represent one stan-

dard deviation.

Fig. 6. Delay time sc as a function of the focal length f of the focusing lens

(35, 50, 70, 100, and 135 mm). The distance F of the waist from the surface

of the ground glass was 0 mm in each case. The theoretical prediction based

on Eq. (6) is shown as a dashed line. Error bars represent one standard

deviation.

Fig. 7. Distribution of intensity for Gaussian (1500-grit ground glass, solid

dots) and non-Gaussian (120-grit ground glass, open dots) light. The laser

beam waist was located on the ground glass (F¼ 0). The Gaussian distribu-

tion fits well on a straight line in the logarithmic scale (correlation coeffi-

cient 0.99). Error bars representing one standard deviation are smaller than

the markers.
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scatterers when the number of scatterers is low, these obser-
vations can give some information regarding the surface
properties of the ground glass.11 In general, the calculation
of the distribution of the scatters from the measured g(2)(s) is
a challenging inverse problem. However, we can assume that
the Lorentzian characteristic of g(2) is due to the well-
localized and larger scratches of the surface, which produce
abrupt changes in the intensity, and Gaussian character is
due to the many small-scale spatial details of those struc-
tures. Direct microscopical inspections of the surface gave
us some hints of this kind of texture. Finally, we note that we
could recover the pure Gaussian shape of g(2) if we increased
the size of the beam waist by changing the focal length of
the lens or increasing the distance of the waist from the
ground glass.

VI. CONCLUSION

Pseudothermal light demonstrates various aspects of many
physical phenomena and therefore its experimental analysis
with respect to second-order coherence can be useful in
undergraduate and graduate courses in classical and quantum
optics and atomic physics. Using the most minimal setup,
the fluctuations in light intensity can be measured and cap-
tured using only a photodiode and a digital oscilloscope,
from which it is then possible to determine the coherence as
a function of the delay time, at least qualitatively, depending
on the optical setup. Because of the almost unavoidable

spatial averaging of the photodiode, this method has some
limitations. However, by directly recording the light inten-
sity, it is possible to determine the intensity distribution and
draw some conclusions regarding the number of scatterers.
Using an optical fiber to collect light, a beamsplitter and sin-
gle photon detectors (equipment quite commonly available
nowadays in student laboratories), more accurate measure-
ments of second-order coherence can be performed and real
comparisons made with theoretical predictions. Our experi-
mental results indicate that accurate results can be achieved
for various sets of optical parameters.
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