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Preface

The present book on probability theory and statistics is intended for
graduate students and research workers in experimental high energy and elementary
particle physics. The book has originated from the authors’ attempts during many
years to provide themselves and their students working for a degree in experimen=
tal particle physics with practical knowledge of statistical analysis methods and
some further insight required for research in this field.

The first drafting of notes started more than ten years ago when the
authors were colleagues at the University of 0slo, and working with bubble cham—
ber experiments. At that time no textbook in statistics was known to us which
tock its examples and applications from high energy physics and could serve as a
reference book in daily work and a suitable curriculum for our students. Several
advanced books were available in the library which discussed the fundamentals of
probability theory and mathematical statistics per se [e.g. Cramér, Kendall and
Stuart]. Other, less demanding textbooks incorporated useful examples from many
fields, including physics, and had the virtue of acquainting a wider scientific
community with the universal methods devised by the science of statistics [Fishet,
Johnson and Leone, Ostle, Sverdrup, Wine]. Also available were articles and lec-
ture notes discussing statigtical estimation in physics in general and in high
energy physics in particular [Annis et al., Bock, Hudson, Jauneau and Morellet,
Orear, Scimitz]. The need for more coherent presentations apparently was latent
and brought on the market a systematic, relatively theoretical account of statis—
tics as used by physicists [Martin, 1971], as well as two treatises written by
experimental particle physicists. The latter authors, however, either intended
their book "for students and research workers in science, medicine, engineering
and economics" [Brandt, 1970], or addressed their course "to physicists (and ex-
perimenters in related sciences) in their ragk of extrécting information from ex-
perimental data" [Eadie et al., 1971].

The present text has been written for readers who are supposed to have
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their main interest in elementary particle physics and who have a need for stat-
istical methods as a tool in their work. This, of course, does not mean that the
book can only be comprehended by people whose background is particle physics.
However, it is only fair to state that it is a rather specialized book, in which
the topics discussed, the disposition and style reflect the need of an exper imen—
tal particle physicist, and in which examples and applications have been almost
exclusively chosen from this field. This fact undoubtedly limits the usefulness
of the book to readers from other branches of physics. On the other hand, with
the high degree of specialization within the physical and other sciences today,
it is, in the opinion of the authors, well worth—-while to aim at a more re~
stricted group of readers and to tailor the presentation to meet the specific
demands of this group. After all, the statistical methods needed in many disci-
plines are more or less standard and available in excellent general presentations
of mathematical statistics. Often, however, the task of extracting the relevant
information from these books can be both time-consuming and troublesome for the
non-specialist, Stories are told about physicists who have spent months of their
time developing new methods for data analysis, emly to find out later that such
methods were already described in the statistical literature. A dedicated book
like the present can hopefully serve to reduce such instances of vasted time and
effort.

The book assumes no previous knowledge beyond basic calculus. The sub-
ject of probability theory is entered on an elementary level and given a rather
simple and detailed exposition; this is thought to be to the bhenefit of the stu-
dent who starts a new course and should get well acquainted with the most common
probability concepts and distributions before entering the domain of statistics.
The book has been written so that it need not be worked through as a regular
course, with extenmsive reading from the very beginmning, but can be studied chap-
ter- or section—wise, should the reader prefer so. The material has, in fact,
been organized with an eye to the experimental physicist's practical need, which
is likely to be statistical methods for estimation or decision-making, Since an
eatablished physicist will probably possess a sufficient background on the funda—
mentals of probability theory, he can be recommended to start his reading direct-
ly at the chapters he is interested in. Cross references are given to indicate

where definitions and developed formulae can be found in earlier chapters of the

wvi

bock. It is hoped that the book will prove useful in everyday work, For this
purpose the list of contents and the subject index have been made to include
physics key words as well as statistical terms to facilitate the use of the book
as 2 reference manual. To make it selfcontained, the book has also been sup-
plied with a set of statistical tables in an appendix.

With its emphasis on the various practical aspects of statistical
methods and techniques the presentation in this book differs from the general,
more theoretical points of view shared by statisticians. As non-professionals
in statistics the authors make no claim to origirality on the subject, We have
felt free to borrow material which, over the years, have acquired a status of
"common property" among patticle physicists, without mentioning originators or
written sources. Our reference policy is otherwise to give only the names of
authors in the text where examples have been taken from articles in physics pub—
lications, lecture notes ete., and to give the full reference in the bibli-
ography at the end of the book, The bibliography alse contains references to
textbooks which can be suggested as alternative and further reading,

We would like to express explicitly our indebtedness to M,G. Kendall
and A. Stuart, the authors of the three-volume work “The Advanced Theory of
Statistics” which we have constantly consulted and found to contain answers to
any question.

We are also indebted to Addison-Wesley Publishing Company, Inc., for
permission to use material from Table 15.1 in Handbook of Statistical Tables
by D. Owen, and to the Biometrika Trustees for permission to reproduce Table 1
from L.R. Verdooren's paper "Extended tables of critical values for Wilcoxon's
test statistie", printed in Biometrika. '

It is a pleasure to acknowledge the useful help of our many students
who over the years contributed their comments on the course. Finally, we wish

to thank Mrs. Laila Ngst for her patient and careful covperation with the ¢yping
of the mapuscript.

December 1978 A.G,F., 0.5., H.T.




I often say

that when you can measure

what you are speaking about,

and express it in numbers,.

you know something about ity

but when you cannot measure 1t,

when you cannot express it in numbers,
your knowledge is .

of a meagre and unsatisfactory kind.

Lord Kelvin 1883

Contents

1 INTRODUCTION

2 PROBABILITY AND STATISTICS
2,1 Definition of probability

2.2 Random variables, Sample space

2.3 Calculus of probabilities

2,3.1

'R PR .
B et el D G0 g O T B 0 N

Wtd = O

, P +
Wl W W W W W W
. MR

2.4

]

e Ww
M Sl oA .

(SO0 PR O

. .

MNRMONMNE NN NN

Definitions

Example: Topologies of bubble chamber events (1)
Addition rule

Conditional probability

Example: K°p scattering cross section
Independence; multiplication rule

Example: Relay networks

Example: Efficiency of a Yerenkov counter
Example: m° detection

Example: Beam contamination and S-rays

Example: Scanning efficiency (1)

Marginal probability

Example: Topologies of bubble chamber events (2)

Theorem

Statement and proof
Example

Comments

Example: Betting odds
Bayes' Postulate

3 GENERAL PROPERTIES OF PROBABILITY DISTRIBUTIONS
3.1 The probability density function

3.2 The cumulative distribution function

3.3 Properties of the probability density functiom

3.3.1
3.3.2
3.3.3

Expectation values of a function
Mean value and variance of a random variable
General moments

3.4 The characteristic function

3.5 Pistributions of more than one random variable

3.5.1

The joint probability density function
Expectation values

The covariance matrix; correlation coefficients
Independent variables

Marginal and conditional distributions

Example: Scacterplots of kinematic variables
The joint characteristic functiom

ix

30
30
31

31
32
33
34

36

8
38
39
39
4
42
43
47



3.6

3.8

3.9

3.10

Linear functions of random variables
3.6.1 Example: Arithmetic mean of independent variables
with the same mean and variance

Change of variables .
3.7.1 Example: Dalitz plot variables

Propagation of ervors

3,8.1 A single function

3.8.2 Example: Variance of arithmetic mean
3.8.3 Several functions; matrix notationm

Discrete probability distributions
3.9.1 Modification of formulae
3.9.2 The probability generating function

Sampling

3.10.1 Universe and sample
3.10.2 Sample properties

3.10.3 Inferences from the sample
3.10.4 The Law of Large Numbers

SPECIAL PROBABILITY DISTRIBUTIONS

4.1

4.4

4.5

The binomial distribution

4.1.1 Definition and properties

4.1,2 Example: Histogramming evemts (1)}
4.1.3 Example: Scanmming efficiency (2)

The multinomial distribution
4.2.1 Definition and properties
4.2.2 Example: Histogramming events (2)
The Poisson distribution
4.3.1 Definition and propertles
4.3.2 The Poisson assumptions
Example: Bubbles along a track in a bubble chamber

4.3.3 Example: Radioactive emissions

Relationships between the Poisson and other probability

distributions

4,4.1 Example: Distribution of counts from an inefficient
counter

4.4.2 Example: Subdivision of a counting interval

4.4.3 Relation between binomial and Poissou distributions
Example: Forward-backward classification

4.4.4 Relation between multinomial and Poisson distributions
Example: Histogramming events (3)

4.4.5 The compound Poisson distributicn
Example: Droplet formation along tracks in cloud chamber

The uniform distribution
4.5.1 The uniform p.d.f.
4.5.2 Example: Uniform random nunmber generators

48

50

50
52

52
52
54
54

57
57
57

58
58
59
59
61

63

64
64
67
68

72
72
74

75

78
81

83

83
84

85
86

87

89
89
91

4.6 The exponential distributien
4.6.1 Definition and properties
4.6.2 Derivation of the exponential p.d.f. from the Poisson
asgumptions

4.7 The gamma distribution

4.7.1 Definition and properties

4.7.2 Derivation of the gamma p.d.f. from the Poisson
assumptions
4.7.3 Example: On—line processing of batched events

4.8 The normal, or Gaussian, distribution

4,8.1 Definition and properties of N(u,c?)
4.8.2 The standard normal distribution N(0,1)
4.8.3 Probability contents of N(u,0?%)
4,8.4 Central moments; the characteristic function
4.8.5 Addition theorem for norma].ly distributed variables
4.8.6 Properties of X and s? for sample from N(u,o?)
4.8.7 Example: Position and width of resonance peak
4.8.8 The Central Limit Theorem
4.8.9 Example: Gaussian random number generator
4.9 The binormal distribution
4.9.1 Definition and properties
4.9.2 Example: Comstruction of a binormal random number gemerator
4,10 The multinormal distribution

4.10.1 Definition and properties
4.10.2 The quadratic form ¢

4.11 The Cauchy, or Breit-Wigner, distribution

SAMPLING DISTRIBUTIONS

5.1 The chi-square distribution

5.1.1 Definition
Proof for the chi-sgquare p.d.f.
Properties of the chi-square distribution
Prebability contents of the chi-square distribution
Addition theorem for chi-square distributed variables

.2

.3

A

5

6
5.2 The Student's t-distribution

5.2.1 Definition

.2 Proof for the Student's t p.d.f.

.3 Properties of the Student's t-distribution
L4
F-
1
.2
3

Probability contents of the Student's t-distribyrion

distribution

Definition

Proof for the F p.d.f.

Properties of the F-distributiocn

.4 Probability contents of the F-distribution

xi

Proof that (n-1)s®/0? for sample from N(u,02) is x2(n-1)

.4 Limiting properties — connection between probability distributions

'92
92

93

95
95

97
99

101
101
101
103
106
107
109
110
110
i13

114
114
119

120
120
122

123

127

127
127
129
130
135
135
136

140
140
141
142
143

145
145
146
146
148

149



COMPARISON OF EXPERIMENTAL DATA WITH THEORY

Rejection of bad measurements
Experimental errors on measurements. The resolution function
6.2.1 Example: Gaussian resolution function and exponential p.d.f.

6.,2.2 Example: GausSsian resolution function and Gaussian p.d.f.

6.2.3 Example: Breit-Wigner vesolution function and Breit-Wignetr
p.d.f.

6.2.4 Example: Width of a rescnance

6.2.5 Experimental determination of resclution function; ideogram

Systematic effects. Detection efficiency

6.3.1 Example: Truncation of an exponential distribution

6.3.2 Example: Truncation of a Breit-Wigner distribution

6.3.3 Correcting for finite geometry — modifying the p.d.f.

6.3.4 Correcting for unobservable events — weighting of the events

Superimposed probability densities

6.4.1 Example: Particle beam with background

€.4.2 Example: Resonance peaks in an effective-mass spectrum

STATISTICAL INFERENCE FROM NORMAL SAMPLES

7.1
7.2

7.3

7.4

Definitions

Confidence intervals for the mean
7.2.1 Case with ¢° known
7.2.2 Case with ¢® unknown

Confidence intervals for the variance
7.3.1 Case with Y known
7.3.2 Case with p unknown

Confidence regioms for the mean and variance

ESTIMATION OF PARAMETERS

8.1
8.2
8.3
8.4

8.5

8.6

Definitions
Properties of estimators
Consistency

Unbiassedness
8.4.1 Example: s’ as an estimator of ol
8.4.2 Example: Estimator of the third central moment

2

Minimum variance and efficiency

8.5.1 Example: Estimator of the mean in the Poisson distributioen
B.5.2 Example: Estimators of the mean in the normal p.d.f.

8.5.3 Example: Estimators of o’ and ¢ in the normal p.d.f.

Sufficiency
8.6.1 Ome-parameter case

8.6.2 Example: Single sufficient statistics for the normal p.d.f.
8.6.3 Extension to several parameters
8.6.4 Example: Jointly sufficient estimators for u and 0% in

N(u,0%)

xii

151

151
152
153
155

156
156
157

158
161
161
162
163

163
164
164

166

166

169
169
171

174
174
176

177

179
180
180
181

182
183
184

185
187
138
189

190

190
19
193

193

9 THE MAXIMUM-LIKELIHOOD METHOD

9.1 The Maximum-ILikelihood Principle
9.1.1 Example: Estimate of mean lifetime

2.2 Estimation of parameters in the normal distribution
9.2.1 Estimation of U; measurements with common error
9.2.2 Estimation of ; measurements with different errors
(weighted mean}
9.2.3 Simultaneous estimation of mean and variance

9.3 Estimation of the location parameter im the Cauchy p.d.f.

9.4 Properties of Maximumr-likelihood estimators
9.4.1 Invariance under parameter transformation

9.4.2 Consistency

9.4.3 Unbiassedness

9.4.4 Sufficiency

9.4.5 Efficiency

9.4.6 Uniqueness

.9.4.7 Asymptotic normality of ML estimators

9.4.8 Example: Asymptotic normality of the ML estimator of the
mean lifetime

9.5 Variance of MaximumLikelihood estimators

9.5.1 General methods for variance estimation

9.5.2 Example: Variance of the lifetime estimate

9.5.3 Variance of sufficient Ml estimators

9.5.4 Example: Variance of the weighted mean

9.5.5 Example: Errors in the ML estimated of Y and o® in

N{u,0%)

9.5.6 Variance of large-sample ML estimators
9.5.7 Example: Planning of an experiment; polarization (1)
9.5.8 Example: Planning of an experiment; density matrix

elements (1)

9.6 Graphical determination of the MaximumLikelihood estimate
and its error
9.6.1 The one-parameter case
9.6.2 Example: Scanning efficiency (3)
9.6.3 The two-parameter case; the covariance ellipse

rval estimation from the likelihood funmetion
Likelihood intervals, the one-parameter case
Confidence intervals from the Bartlett functions
Example: Confidence intervals for the mean lifetime
Likelihood regions, the two-parameter case

Example: Likelihood region for p and o? in N(p,a?)
9.7.6 Likelihood regioms, the multi-parameter case

Inte
9.7.
9.7.
9.7.
9.7.
9.7,

AV RN I LI

9.8 Generalized likelihood function

9.9 Application of the MaximumLikelihood method to classified data

9.10 Combining experiments by the Maximum-Likelihood method

xiii

195

196
198

199
199

199
200

201

202
202
203
203
204
205
206
207

208

210
210
212
213
215

215
217
218

219

221
221
222
225

229
232
236
237
239
245
246

249
249
251




11 THE METHOD OF MOMENTS 321
9.11 Application of the MaximunLikelihood method to weighted events 252 11.1 BRasis for the simple moments methed 321
9.12 A case study: an ill-behaved likelihood function 255 11.2 Generalized moments method 323
11.2.1 OUme-paramefer case 323
= 11.2.2 Multi—parametetr case 124
10 THE LEAST-SQUARES METHOD 259 11.2.3 Example: Density matrix elements (2) 924
10.1 Basis for the Least-Squares ?Eﬂ_md 259 . 11.3 Moments method with orthonormal functions 327
10.1.1 The Least-Squares Principle L. 259 "7 11.1.1 Example: Polarization of antiprotoms {3) 328
10,.1.2 Connection between the LS and the ML estimation methods 261 11.3.2 Example: Angular momentum an.aly?is (2) 330
10.2 The linear Least-Squares model 262 11.3.3 Confidence intervals for MM estimates . 330
10.2.1 Example: Ficting a straight line (1) 9262 o A » different experiments 191
10.2.2 The normal equaticns 263 11.4 Combining MM estimates from di
10.2.3 Matrix notation 265
i i ATION OF DIFFERENT PARAMETER
10.2.4 Properties of the linear LS estimator 267 12 A SIMPLE CASETz'ggIS)Y WITH APPLIC 332
10.2.5 Example: Fitting a parabola 268 ESTIMATION ME '
10.2.6 Example: Cembining two experiments 271 12.1 Simulation of a polarization experiment 333
10.2,7 General polynomial fitting 272 . . difE timation methods 135
10.2.8 Orthogonal polynomials 273 12.2 Application of different estim . e
10.2.9 Example: Fitting a straight line (2) 274 12.2.1 The method of moments
T e g 12.2.2 The MaximumLikelihood method . 336
10.3 The non-linear Least-Squares model 275 12.2.3 The MaximmrLikelihood method for classified data 336
3 10,3,1 Newton's method 276 12.2.4 The Least-Squares method 338
: 10.3.2 Example! Helix parameters in track reconstruction 278 12.2.5 The simplified Least—Squares method 340
10.4 Least-Squares fit 282 12.3 Discussion . 340
10.4.1 "Improved measurements™ (fitted variables) and residuals 282 . 12.3.1 The estimated parameter values and their errors 340
10.4.2 Estimating o® in the linear model 283 12.3.2 Goodness-of-fit 142
10.4.3 The normality assumption; degrees of freedom 285
10.4.4  Goodness—of-fit 288 13 MINIMIZATION PROCEDURES 346
1 A} (1]
10.4.5 Stretch functions, or "pulls 289 13.1 Ceneral remarks 347
.5 Applicari ast—5 thod to classified data
105 g ot e e o 0 clasici e R
5. ke 13.2.1 Grid search and random search ) 350
o3k fhoice of clas§es i i 294 13.2.2 Minimum along a line; the success—failure method 352
10.5.3 Example: Polarization of antiprotons (2) 295 13-2'3 fhe coordinate variation method 353
10.5.4 Example: Angular momentum analysis (1) 296 13:2-[' The Roserbrock gethod ' 354
10.6 Application of the Least-Squares method to weighted events 298 13.2.5 The simplex method 356
10.7 Linear Least-~Squares eatimation with linear coastraints 13 1 13,3 Gradient methods . . 359
10.7.1 Example: Angles in a triangle 301 13.3.1 Numerical calculation of derivatives 360
10.7.2 Linear LS medel with linear constraints; 13.3,2 Method of steepest descent 362
Lagrangian multipliers 304 13.3.3 The Davidon variance algorithm 363
10.8 General Least-Squares estimation with constraints 307 13.4 Multiple minima 365
10.8.1 The jteration procedure o8 \ . 366
10.8.2 Example: Kinematic analysis of a V° event (1) 312 13.5 Evaluation of errors
10.8.3 Calculation of errors 314 13.6 Minimization with constraints by ch . ( obles gga
i imi i aints change of variable
10.9 Confidence intervals and errors from the X° function 316 13-6'; El1:;:“;3:‘:‘:;;2?52;3011.syresponse surface technique 372
107373 tasis for the determination of LS confldence intervals 316 13‘2. EEZ 1z' Determin;tion of rescnance production 373
10.9.2 LS errors and confidence intervals, the one-parameter case 337 13.6.3 Example:
10.9.3 LS errors and confidence regions, the multi-parameter case 3j9 13.7 Concluding remarks 374
! v

xiv




E e —

14 HYPOTHESLS TESTING 376 APPENDIX STATISTICAL TABLES 459
14.1 Introductory remarks 378 Table Al The binomial distribution 461
Table A? The cumulative binomial distribution 465
14.2 Outline of general methods 378 Table A3 The Poisson distribution 469
14.2.1 Example: Separation of one-m° and multi-n° events 381 Table A4 The cumulative Poisson distribution 473
14.2,2 The Neyman—-Pearson test for simple hypotheses 384 Table A5 The standard normal probability demsity fumction 477
14.2,3 Example: Neyman-Pearson test on the Z° mean lifetime 385 ‘ Table 46 The cumulative standard normal distribution 478
o 14.2.4 7The likelihood-ratio test for composite hypotheses 388 Table A7 Percentage points of the Student's t-distribution 479
' ! 14.2.5 Example: Likelihood-ratio test on the mean of a Tahle A3 Percentage points of the chi-square distribution 480
nernal p.d.f. 390 Table A9 Percentage points of the F-distribution 481
i i Table Al0 Percentage points of the Kolmogorov-Smirnov statistic 486
14.3 Parametric tests for normal v:.anable's ) 395 Table ALl Criticalgvarljues of the rum statistic 487
14.3.1 Tests (-’f mean and variance in N(u,o_) . : 395 Table Al2 Critical values of the Wilcoxon rank sum statistic 488
; 14.3.2 Comparison of means in two normal distributions 397
; 14.3.3 Comparison of variances in two normal distributions 401
] 14.3.4 Summary table . 403 BIBLIOGRAPHY 493
14.3.5 Exanpl?: Conpa.risnn of results from two different INDEX 497
measuring machines 404
: 14.3.6# Example: Significance of signal above background 406
14.3.7 Comparison of means in N normal distributions; scale factor 411
14.4 Goodness-of-fit tests 514
14.4.1 Pearson's x* test 415
14.4.2 Choice of classes for Pearson's x> test 418
14,4.3 Degrees of freedom in Pearson's Y° test 420
14.4.4 General x° tests for goodness-of-fit 421
14.4.5 Example: Kinemaric analysis of a v? event (2) 423
14.4.6 The Kolmogorov-Smirnov test 424
14.4.7 Example: Goodness—of-fit in a small sample 427
14.5 Tests of independence 429
[ 14.5.1 Two—way classification; contingency tables 429
) 14.5.2 Example: Independence of momentum components 433
14.6 Tests of consistency and randomness 433
14,6.1 Sign test 436
i 14.6.2 Run test for comparison of two samples 438
| 14.6.3 Example: Consistency between two effective-mass samples 440
' 14.6.4 Run test for checking randomness within one sample 442
‘ 14.6.5 Example: Time variation of beam momentum 443
‘ 14.6.6 Run test as a supplement to Pearson's )(2 test 4i4
i 14.6,7 Example: Comparison of experimental histogram and
! : theoretical distribution 446
! 14.6,8 Kolmogorov-Smirnov test for comparison of two samples 448
14.6.9 Wilcoxon's rank sum test for comparison of two samples 450
‘ 14.6,10 Example: Consistency test for two sets of meaaurements
of the 1° lifetime 452
14.6,11 Kruskal-Wallis rank test for comparison of several samples 453
14.6.12 The X test for comparison of histograms 455
xwii

i




1. Introduction

The term statistics is given several precise definitions in the
dictionaries and is also used with different meanings in everyday language.

It can be used as sSynonymeus with data, or taken to mean the entire seientific
discipline concerned with the methodology of extracting information from data.
Often the word is given a meaning between these two extremes, and stands for a
compilation of figures pertaining to varicus interests, or for specified methods
or computational procedures applied to sets of numerical observations of similar
kind. Used in different contexts the word statistics is associated with the
collecting and summarizing of observations in experiments, with measuring the
variation in such data, and with more elaborate investigations; these may
include comparison with other data or model predictions, and parameter estima-—
tion and hypothesis testing on the basis of observed data.

The ultimate goal of the physical sciences is to uncover the funda-
mental laws governing the phenomena in the material world. In pursuiog this
ambitious task it is widely recognized that statistical reascning and statis-—
tical analysis methods are becoming increasingly important, even indispensable
in many fields. Accordingly, training in statistics has become more or less
mandatory for students aiming for an academic career on the experimental side
of these fields. Many supervisors recommend a course in mathematical statis-
tics to their students. However, as each discipline has developed its own
character and methodology for experimentation, registration, and interrelation
of observed facts, as well as its own conceptual and theoretical framework,
it is by now usually agreed that the training in data handling and statistics
should be made an integrated part of the discipline for practical and peda-
gogical reasons. Thorough knowledge of means and methods is essential in all
gscientific research. The education in statistics should therefore go beyond
the teaching ¢f cook—-book recipes to be applied in a more or less automatic
manner to standard problems, and aim at providing some understanding of the

general principles involved as well as of the specific assumptions underlying




the various methods, since these determine their applicability and henc:. their
impticit limitations.

An experiment is often motivated by the need to confront current
theoretical ideas with new experimental facts to reduce speculative model-
building and confine intellectual and other effort in a certain direction. In
experimental high energy physics utilizing the facilities of man-made particle
accelerators a typical experiment is an impressive undertaking which may repre-
sent the combined effort of large teams of technicians, engineers and physicists
from several universities or other research institutions, often from many coun-
tries, and which may last over a period of many years. Probability arguments
and statistical reasoning are employed throughout the experiment, and may in
fact enter already at the initial planning stage with estimating the size of the
experiment, in terms of the number of events needed to attain a specifiea preci-
sion. The propesal for the experiment will include other estimates for costs in
money and man-power, the proposed experimental layout and design., During the
long period when the experiment is assembled on the floor, extensive Monte Carlo
simulations are carried out to follow the paths of produced particles through
the experimental set-up and estimate the acceptances and efficiencies of the
different detectors. The actual running period with beam on target may last for
a few weeks time up to several months. In electronic experiments the interesting
event candidates are, during this period, directly selected through triggering
systems, checked and initially analyzed by on-line computers before the relevant
information from all parts of the detection system is output event—by—event on
magnetic tape. In experiments with bubble chambers as detection device the films
from the exposure must first be scanned for events with the selected track
topologies, measured, kinematically analyzed, and checked again on the scanning
table before the event is ready for the data summary tape. Following the data
acquisition comes next a phase in which the collected data are examined for
internal consistency, possible error sources located, and hiases corrected for,
When the observed data have passed all consistency checks and are well understood
the final stage involves the interpretation of the experimental findings in the
light of theoretical models. At times, when the data can not be explained by the
existing models, the experimental outcome may call for revision of current ideas,

in exceptional and historic cases even lead to the discovery of fundamental laws.

The interplay between theory and experiment through probability and
statistics can be sketched as follows:

A theoretical model predicts a certain correspondence between an
cbservable quantity x and some parameter 8 which is not known experimentally and
which is not directly accessible to measurement; the value of 0 may, or way not,
be predicted by the model. The purpose of the experiment is to "determine" the
value of 6 by performing measurements of the observable x. From the set of
observed numbers L IVE PTRRAPE 5 statistical methods will tell us how to obtain an
estimate for the parameter, as well as a measure of uncertainty in this quantity.
Parameter estimation on the basis of observations is the most important applica-
tion of statistics in physics. The second main application is that of Rypothesis
testing, which can consist in, for example, finding out whether the parameter
value as predicted by the model is consistent with the value inferred from the
experimental observations.

Theoretical models produce answers to questions of the type: "For a
given value of the parameter 9, what is the expected distribution for the observ—
able x ?", The experiment has to do with the inverse problem, corresponding to
answering questions like: "Given the observations ST PPRAANT what is the
value of 8 7", Fundamentally different as these questions are, they are never-
theless intimately connected, illustrating the complementary relationship between
probability theory and statistics, represented by, respectively, the theoretician
and the experimentalist.

The subsequent four chapters of the book are concerned with probability
theory, since an account of this subject must be considered an esseptial pre-
requisite for a meaningful introduction to statistics, We begin in Chapter 2 by
defining different probability concepts and establish rules for the combination
of probabilities. Tn Chapter 3 we consider the properties of probability distri-
butions for random variables in peneral; we introduce some useful concepts to
characterize distributions of a single variable (among them: mean value, variance,
and other expectation values or moments) and several variables (in particular:
the covariance matrix), develop various formulae pertaining to functions of
random variables (rules for error propagation), and give some remarks on
sampling. In Chapter & we focus on special probability distributioms which

often serve as mathematical models in experimental situations, notsbly the




binomial, Poisson, and expomential distributions. Particular attention is given
to the normal, or Gaussian, distribution, because of its key role, theoretically
(the Central Limit Theorem) as well as practically (describing outcome of measur—
ments) . Chapter 5 deals with a class of sampling distributions which are all
related to the normal distribution; the most important of these is the chi-square
distributien.

The real world seldom fits exactly into the scheme provided by the
ideal mathematical models. In Chapter 6 we indicate how different situations can
be handled by truncation of the probability distribution, by folding—in of the
experimental resolution, and by correcting for inefficiencies in the detecting
apparatus.

Passing to the domain of statistics, we begin in Chapter 7 by intro-
ducing the important concept of a confidence interval, applying it to the common
practical problem of estimating the parameters of the normal distribution. The
general aspects of parameter estimation are discussed in Chapter 8, which gives
the formal background for the specific estimation methods described in the three
subsequent chapters. The Maximmr-Likelihood method {Chapter 9), the Least-—
Squares method (Chapter 10), and the method of moments (Chapter 11) all produce
peint estimates of the unknown parameters, and we discuss how measures can be
obtained for the uncertainty - or error - in these estimates. A point estimate
and its error is equivalent to a particular interval estimate of the parameter,
Interval estimation in general is also discussed, based on the simplifying
assumptions of infinite sample sizes (in the likelihood appreach) and linear
models (for the Least-Squares estimation), since these facilitate comparisons
with the normal and the chi-square distributions. In Chapter 10 we also con-
sider the important issue of constrained parameter estimation, using the tech-
nique with Lagrangian multipliers, and discuss how the Least-Squares estimation
can provide measures of goodness—of-fit. Chapter 12 describes a simple case
study with application of the different estimation methods on simulated polari-
zatien experiments.

The Maximum-Likelihood and the Least-Squares estimation methods both
require searching the extremum of a function with respect to the unknown para-
mweters. In Chapter 13 we sketch the principles behind commonly used numerical
procedures for locating the minima of general functions of many variables.

The second main application of statistics, the testing of statistical
hypotheses, is taken up in Chapter 14. 1In this area of statistical inference
the observations are used for decision-making. With a test we mean a given rule
or criterion for arriving at a decision of acceptance or rejection of some
formulated hypothesis. After a brief survey of the general principles involved,
we concentrate on parametric tests for normally distributed variables, which
have considerable practical importance, Distribution-free tests of goodness—of-
fit between model prediction and experimental observatiom, or between different
sets of observations, include the common xz—test and the Kolmogorov-Smirnov
tests; the xzﬁtest can also be used to test independence between variables and
consistency between sets of observations (histograms). Other simple, less well-
known prescriptions are given to test randomness within a sample, and consist-
ency between two or mere samples.

The Appendix contains tabulations of the most common probability
distributions which are referred to throughout the book, as well as a set of
tables with percentage points and critical values for some of the test statis—
tics used exclusively in Chapter 14,

There are two important subjects of wide application in particle
physics, which are mutually related like probability theory and statistics but
not covered im this book. The first of these concerns the simulation of
processes and generationm of artificial W-particle reactions in the 3%-4 dimen—
sional Lorentz invariant phase space by the Monte Carle technique. The second
deals with methods for analyzing and finding structures in this multi-
dimensional space, given a sample of observed N-particle reactions. Readers
who are interested in these topics should consult references on Monte Carlo
methods and multi-~dimensional data analysis givem in the bibliography at the end

of the book.




2. Probability and statistics

The theory of probability is a brench of pure mathematics. From a
certain set of axioms and definitions one builds up the theory by deductions.
In contrast, staétsties is a branch of applied mathematics which is essential-
1y inductive. WMevertheless statistics ie intimately comnnected with probabili-
ty theory as the following considerations may show.

Suppose it is known that when tossing a coin it has an a priori pro-
bability p(p=4) of landing "heads" end a probability 1-p of landing "tails".
We ask: What is the probability of observing r heads out of n tosses? Thia
ia a question in probability theory, and an answer is provided by the binromi-
al distribution law, which states that the probability to obtain r heads and

(d-r) tails is given by the number

B(rin,p) = ?(—:_‘—r')‘r P,

A completely different situation exists if one haa no a priori know-
ledge on the probability p and decides to perform an experiment to "determine"
this parameter. A simple experiment would consist in tossing the coin repeat-
edly and counting how many times the outcome heads would occur, Tt would then
be a question of statistics to ask what the parameter p is like, given that in
n tosses, r heads were observed. A reascnable answer to this question is to
say that "the most likely value" of the parameter is given by the ratioc of the
mmber of heads observed to the total number of tosses,

Bin

P=P"

E
The experiment has then given a point estimate p=p for the unknown parameter -,

We could also say that the value of p was inferred from the observations made

by the experiment. However, from the very nature of the experiment, we could

[ 3
) The symbol ~ over a quantity is-used to denote an estimate.

not be completely sure that the value S thus obtained would be identical to the
true value of the parameter p. Indeed we would feel that if the experiment
were repeated, with new sequences of tosges, then presumably different esti-
mates ﬁ would be obtained.

Instead of stating the result of the experiment in terms of a single
number p we could give an tnterval estimate for the parameter p, We would

then finalize our experiment by giving two numbers p,,p;, hoping that

P1 2P S p2

represents a true statement about p. The faith we attach to the statement
could be expressed by assigring a confidence level to it. Given the observa-
tion of r heads in n tosses it is again a case of Statistical inference to de-
termine an interval [p;,po] which is such that it has a certain probability of
including the true value of p. In general, the larger we take the interval the
more certain we would Be that thie interval really includes the true value of
p, but at the same time a large interval means less precise knowledge on p. On
the other hand, a small interval corresponds to a better precision in the de-
termination of p, but the statement that {p;,pz] includes p then has a greater
chance of not being true.

Since the actual calculation of the limits p; and pz of a certain
confidence interval requires some assumption about the probability for getting
just r heads out of n tosses we realize that in order to make this statistical i
inference it is necessary to know the functional form of the binomial distribu-
tion law.

In the following sections we shall state, but not prove, the rules
that govern the calculus of probabilities, and illustrate these with some
simple examples. Two of the examples, Sects.2.3.10 and 2.3.11, also include

statistical inference.

2.1 DEFINITION OF PROBABILITY

Statisticians do not seem to agree about the best way to define pro—
bability, We will adopt a rather simple approach, customary among physicists,
and define probability in terms of the Iimit of relative frequency of




cocurrence. Thus, if in a sequence of n trials of an experiment the outcome of
a specified class, or the event E, occurs r times, then the probability of E is

operationally defined as the limiting value
P(E) == whenn > w, @.n

From this definition the probability of the event E is some number

satisfying
05PE) L1, (2.2)

where P(E)} = 0 if the event never occurs when the experiment is performed, and

P(E) .= 1 if it always occurs.

2.2 RANDOM VARIARLES. SAMPLE SPACE

To illustrate what is meant by a random varichble consider the simple
experiment of rolling a die. Since prior to a throw, its outcome can not be
predicted with complete certainty, the nunber of dots that is observed is called
a random varisble. In this case the outcome will be one number in the sequence
1,2,...,6, hence the sample space consists of the collection of integer numbers
betweer 1 and 6. Since the occurrence of one particular outcome, 1 say, ex-
cludes the other possibilities 2,3,...,6 these events are said to be exclusive.

If the random variable X can only take on a finite number of values,
as in the example above, we call X a discrete random variable. We associate
with each possible outcome xg of the experiment a probability Pi’

P{X = xi) = Pi'

Since there muet be some outcome of every trial the sum of all Pi for all con—

ceivable outcomes must be equal to ome,
g Bo=1. (2.3)

Exclusive events, for which eq.(2.3) is satisfied, are said to be ewhaustive.
If the random variable X can have s continuum of values within any

finite interval it is called a continuous random variable. An example is the

length X obtained from measurements on a bar. We would then associate a proba—
bility P(x<X<x+dx) to the event of getting a measured length in the interval
[x,x+dx], and define the probability density fumction f£(x) for the continuous

random variable X by the equation
f(x)dx = P(x € X < x + dx) .

The requirement that all probabilities should add up to one is now formelated

by

[ Fx)dx = 1» (2.4)
Q

vhere the integration goes over all possible outcomes x defining the sample

space fl,

2,3 CALCULUS OF PROBABILITIES
We shall now introduce some useful concepts and state some basic rules

for calculation of probabilities according to set theory,

2.3.1 Definitions

The concept of a set is used to denote a collection of objects with
gome common properties. Am object that belongs to a set A is said to be an
element of A. 1f every element of the set B is alsc an element of the set A we
say that B is a gubset of A,

Let A be an arbitrary set of elements in the sample space {I. The
complement & is then defined as the set of all elements in 2 that do not belong
to the set A.

The wnion AU B of two sets A and B is defined as the set of ele-
ments that belong to A or B, or both.

The intersection AN B is defined as the set of elements that be-
long to both setg A and B.

Two sets A and B are said to be erhaustive if any element of O belongs
to the union A U B,

AUB=g. (exhaustive sets) (2.5}




Two sets A and B are mutually exclusive if they have no elements in

common, that is

ANB =20, {exclusive gets) (2.6}

According to these definitions the set A and its complement X are
two exclusive and exhaustive sets.

A convenient way of visualizing the concepts introduced above, and
also of illustrating the algebra of sets, is by means of Vemn diagrams.

Let the square of Fig., 2.1 represent the sample space ¢ end the
areas enclosed by the circles represent the sets A and B. Then the complement
A, the union A U B , and the intersection A N B are given by the different

shaded regions in the diagram,

SN\

AuB AnB

Fig. 2.1, Venn diagram for the complement A, the uniom A U B, and
the intersection A N B,

More complicated combinations of aets can also be conveniently de-—

pictured in Venn diagrams.

Exercise 2.1:

Let A,B,C be three non-exclusive sets in the sample space Q2.
Find representations of the combinations

(AUBYNC and (ANB)NGC

Exercige 2,2: Show, by using the technique of the Venn diagram, that
(AU B) 1 C in general is different from A U (B N C).

Y —

11

2.3.2 Example: Topologies of bubble chamber events (1)

To illustrate the definitions introduced in the previous section, let
us consider the topologies of high-energy proton-proton interactions in a bubble
chamber.
(prongs) and 0,1,2,...

The reactions will have final states with 2,4,6,... charged particles

associated neutral strange particles v?'s). The sample
space (I will be the collection of all conceivable topologies, that is, all com—
binations of number of prongs and v™'s that can occur at this particular energy.
Por definiteness, let the set A be the collection of all events asso-
ciated with at least ome V°, The complement A will then be the collection of
events which are pot associated with V° signals. Similarly, the set B can re-
present all 2~prong events; the complementary set B will then represent all
events with more than 2 prongs. The union A U B will be the collection of all
events that have at least one Vo, or Z2-prongs, or both. The intersection

AN B represents events with 2-prongs and at least one Ve,

Exercige 2,3: Draw Venn diagrams for this example.

2,3.3 Addition rule

From the Venn diagrams in Fig. 2.1 one may write

P(AU B) = P(A) + P(B) - P(A N B), (2.7)

which is known as the rule of addition for probabilities. If, in

the sets A and B are mutually exclusive, .. the circles in Fig. 2.1 do mot

particular,

overlap, the addition rule takes the simple form

P(A U B) = P(A) + P(B), (exclusive sets). (2.8)
If the sets A,;Az,...,An are exclusive and exhaustive:

n
P(Az U Az U, .U An) = Z P(Ai) = 1y ({exclusive and exhaustive). (2.9)
i=1

2.3.4 Conditional probability

Suppose A and B are subsets of the sample space [} and represent the
probabilities P(A) and P(B), respectively. Suppose further that we for some

reason will be interested only in the elements of A and that we therefore want

2 - ProbabHity and statistics.
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to redefine the sample space to the subset A only. How can we then express the
probability of the subset B relatively to the "new" sample space A? Thias new
probability is called the conditional probability of B relative to A; it is
written P(B[A), which should be read "probability of B given A". Another way
of expressing the conditional probability, with reference to many applications,
is to say that P(B|A) gives the probability that the event B occurs under the
condition that the event A has already occurred.

It seems intuitively clear that the conditional probability must have
something to do with the "overlap" of A and B, or the intersection AN B. 1In

fact, the conditional probability P(B|A) is defined through the equation
P(A N B) = P(B|A) P(A). ‘ (2.170)

To illustrate the meaning of donditional probability, we look at the
Venn diagram of Fig. 2.2, The sample space { has a total of N elements and the
number of elements in the subsets A and B is N, and NB, respectively, while A

and B have NC elements in common.

Fig. 2.2. Venn diagram to illustrate conditional probability.

Inspecting the different areas in the diagram we Write

N N
) =5, F®) =5,

and
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N
B(ANB) =<C . i .
N (overlap region relatively to square)
NC
P(B|A) = ¥’ (overlap region relatively to circle A)
A
NC
?(A|B) =¥ - (overlap region relatively to circle B}
B
It is seen that these probabilities satisfy eq.(2.10) as well as the similar
equation for the conditional probability P(A|B),
P(A N B} = P{A|B) P(B). (2.1%)

It may be worth stressing that all probabilities, in fact, are condi-
tional probabilities, because the occurrence of any event always depends on
some conditions. But since these ronditions often are the same for all events
conatituting the sample they are comsidered to be trivial and therefore not

stated explicitly.

2.3.5 Example: Kop scattering cross section

As an illustration on the implicit use of conditional probability,
consider an experiment to determine the sign of the mass difference between the
longlived and the shortlived K°, which can be deduced from the Kop and Eo;'a
scattering cross section2. To evaluate these quantities one can measure the
probability that a neutral kaon produced in a hydrogen bubble chamber will
interact with a proton within the chamber. The calculated probability for Kop
scattering will, however, depend on the probability for observing the decay of
a k%,

Assume the K°'s to be produced ypig the reaetion

+ + .
K +p~+ Ko n e P, (production},

and detected through the decay
o, + . -
E"+1 +1m , {decay, evenr B}).
The interesting reaction is

¥+ P+ K°+ P (scatter, event A),
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for which we search the probability P{A). We arc only able to identify event
A if event B is also observed, because the decaying kaon as well as the recoil-

ing proton must be measured to obtain a kinematical fit to the scattering reac—
tion. Writing (eq.(2.10))

P(A N B} = P(B|A) P(A)

Potential path of
/unscattered K®

P
nt }—Potential path
f o of scattered K
4 \Decay
rd
I
e Scatter
s
PN,
\Production

Fig. 2.3. Sketch of seiuential events observed in a hydrogen bubble
chamber6 An incomigg K" meson gives rise to a K” via the reaction
Kp > Kmp. The K scatters+off a proton, K'p =+ Kop, and decays
into a pair of pions, K- ~mw = .
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the intersection P(A N B} represents the fraction of corpletely identified

gequential events,
K+p + K°ﬂ+p
L Kp + K

L ot
T

relatively to the total number of x° producing reactions K+p +K°ﬂ+p with K?
seen or unseen in the bubble chamber. Thus the probability P(A N B) can be
found by counting events.

On the other hand P{B|A), the conditional probability for a seen
decay of the Ko, given that a scattering has occurred, can be calculated from
the identified, complete events taking into sccount the geometric detection
efficiency of the bubble chamber, the mean lifetime of the Kc, and the branch-
ing ratio for the charged decay mode. Note that P(B|A) is different from the
probability P{B) to obaerve the decay of an unscattered KO, due to the change
in the k° momentum and direction in the scattering process, Compare the 11lu-
stration, Fig. 2.3, where the sequential events are shown, together with indi-
cations of the potential paths for the scattered X° as well as for an unscat-

tered K°.

2.3.6 Independence; multiplication rule

Two sets A and B are said to be independent if the conditional proba-
bility of B relative to A is equal to the probability of B,

P(B|A) = P(B), {independence) . (2.12)

This means that the occurrence of the event B is not dependent cn the (previous)
occurrence of event A. From our earlier defimition of conditional probsbility,
eq.(2.10), we see that an alternative formylation of independence for two gets

is




16

P(A N B} = F(A)*P(B), (independence}. (2.13)

In other words, the probability for the occurrence of both events A and B is

equal to the product of the probabilities for the two separate events.
Eq.{2.13)} provides a necessary and sufficient condition for indepen—

dence of the two sets A and B. It is often referred to as the rule of multi-

plication for probabilities of independent events.

2.3.7 Example: Relay networks

In Fig. 2.4 the probability for the closing of each relay in the eir-
cuit is some given number . Assuming that all relays act independently we

want to find the probability for the flow of a current between the terminals.

1
—

-
2 3
Fig. 2.4, Relay network

Let the event of closing relay i be denoted by Ei, i=1,2,3. Then
P(E,) = P(E;) = P(E3) = a. Having a current between the terminals corresponds

to the event E = E; U (E; N E;), for which we shall find
P(E) = P(E, U (E: N Ej)}.

Applying the addition rule for probabilities, eq,(2.7), leads to
P(E) = P(E\} + P(E2 N E3) - P(E; N (B2 N Ea)) »

and using the multiplication rule eq.(2.13) for the independent events E; we

obtain

P(E) = P(E;) + P(E;)P(Es) - P(E)P(E;)P(E;) = a + o - a's

“P— e e e ,, i

2.3.8 Example: Efficieney of a Terenkov counter

Suppose the Cerenkov 1ight from particles traversing a Gerenkov
counter slong its axis is detected by & concentric arrsngement of phototubes

as illustrated in Fig. 2.5.

=
S

P—

9-fold 3-fold
(a) coincidence (b) coincidence

Fig. 2.5. Arrangements of 9 phototubes in a Cerenkov counter.

In order to discriminate against accidental triggering of the system it is
desirable to observe coincidences between the signals from several phototubes.
We assume all phototubes to act independently,

If the event E of having a signal from one phototube corresponds to a
probabilicy P(E) = £ = (1,93, the probability for the detection of the ferenkov
light by all 9 independent phototubes in Fig. 2.5(a) is

-  _ 9 -
p, = (B(E))® =€ = 0.52,

The efficiency of the detector can be largely improved by a different
arrangement of the phototubes. In Fig,2.5(b) the tubes are grouped together three
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by three, and each group is activated if at least one of the tubes in the group
has 2 signal. The observation of a particle by the detector then requires a
coincidence between the signals from the three groups, for which the probabi-
lity becomes

P, = (P(EUEUE))®= (3 - 3e” + £')* = 0.999.

2.3.9 Exapple: 1° detection

The 7° meson is known to decay electromagnetically inte two Y-quanta.
Suppose that we study ™ decays in some detector, €.g. a heavy liquid bubble
chamber, and that the average probability is o for the conversiom of a ¥ into
an electron-positron pair within the detector. We want firet to find the pro-
babilities for seeing two, one, or none of the decay products of a single n°.

Clearly the conversion of different y-rays can be assiumed to occur
independently of each other, Therefore, in a simple application of the multi-
plication rule, eq.(2.13), we can write down the probability to detect both ¥'s

from the decaying 1° as
P(2y) = o?
and, similarly, the probability for seeing none of them,
P(OY) = (1-w)%,
The probability that only one of the Y's is visible is also essily written dowm,
P(1y) = 2o(1-o) .
The three probabilities can be added to give
B(2y) + P{1y) + B(OY) = 1 ,

as they should. We also note that the probability to see at least one y from a

s o,
decaying 7 1is

B(Z1y) = B(2Y) + B(1y} = 2a - o,
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which can be rewritten as
B(Y1 Uyz ) = Py} + Py,) = B(y)*Bly,)

to show an application of the addition rule, eq.(2,7}.

The same line of thought may be spplied to more complex situations
where several 7°'s are involved. For instance, an w? meson, with a decay into
3110 will give rise to up to six detected Y-rays. However, unless the detector
is very efficient, the probability to see many decay products soon becomes wery

small.

2.3.10 Example: Beam contamination and delta rays

It is quite often 2 problem in kaon and antiproton exposures in bubble
chambers to find the contamination in the beam of lighter particles, pions and
muons. Since a light particle can impact more of its energy to an electron
than a heavy particle of the same momentum, it is possible to estimate the con-
tamination from a count of beam tracks having delta ray electrons with an energy
E exceeding the maximum possible, me, for a delta ray produced by the heavier
particle, Hence the presence of a delta ray with E > me {"large ¢") indicates
a "light" beam track.

We introduce the following notation:

N = total number of beam tracks observed,

Ny = number of beam tracks observed with one "large §",
N; = number of beam tracks observed with two "large &",
N_ = number of "light" beam tracks (unknown),

P(18) = probability that a light particle produces one "large &",

P(26) = probgbility rhat a light particle produces two "large &".
Then, by definition, in the limit of large mumbers,

PO18) =,

N2
P(28) = =,
™ NTI'

The law of independence, eq.(2.13}, implies that

*
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B(28) = [P(18))%2.

Thus, combining the expressions above one sees that it is possible to estimate

the number of "light" beam tracks as

Hence the contamination is estimated as
PO i
FeF=oe o0__,

N RN

2.3.11 Example: Scanning efficiency (1)

In experimental high energy physics employing track detection methods
(bubble chamber, nuclear emulsion, spark chamber) the experimenter must rely on
scanners who search for specified types of events. The interesting events occur
at random among large quantities of extraneous information, and it is rather
unlikely that the scanner will be able to register all events of the specified
types. The scanning proceas is therefore probably less than 1007 effective. To
estimate the probability that the interesting events are recorded one can per =
form two, or more, completely independent scans of the material.

Suppose that from two independent scans of a given sample of bubble
chamber pictures one divides the interesting events into four exclusive classes,

where

Niz + N1 events were found in the first scan.

Hyz + N2 events were found in the second scan»

Nyz events were found in both scans»

N -~ (N;+Nz+N;,) events are undetected by the two scans-
N is the unknown number of interesting events in the film. N; is the number of
events that are found in the first scan but not in the second, and similarly for
N;. A diagrammatic representation of the situation ia given in Fig. 2.6.

FProm our definition of probability, eq.(2.1), the efficiencies of the

individual scans are, respectively, assuming large numbers,
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Nia + N
P{1) = _,LZN_NI , P(2) = Ln*ﬂ , (2.14)

N = All events

Undetected events  N-(N,+N,+N,,)

Fig. 2.6. Venn diagram for illustration of scanning efficiency.

The probability that an event has been found in both scans is given

by the intersection (see Fig., 2.6)
B(1 N 2) -%. (2.15)

Since the scans were assumed to be independent, the probability that an event

will be observed in both scans is also given by the multiplication rule, eq.
(2.13),

P(1 N 2) = P(1}+P(2), (2.16)

Combining the relatioms (2.14) - (2.16) we find an estimate for the total number
of events in the film, by taking

Hamfl = Q2+ MM, + Np) .
¥z

(2.17)

Hence, inserting this expression in eq.(2.14) we obtain the estimated efficien-

cies of the individual scans as

.

P(1) = ——N2_ B(2) = —X
POD =g ow; ! P(2) =y (2.18)
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It is worth noting that hecause N has to be estimated using the in-
formation from both scans the estimated efficiency for the first scan depends
on the result of the second scan, and vice versa.

From the total number of eventa found in the two scana, the overall
scanning efficiency is given by the umion,

P(1U2) = Elz_iﬁﬂi_ﬁ_gl . (2.19)

Thus, taking the estimated value for N from eq.(2.17) we arrive at the follow—

ing expression for the estimated combined efficiency of the two scans,

Niz(Njz2 + Ny + Ny)
Ny + Nyj)(Nyp + Np) *

B(1u2) = (2.20)

The overall efficiency can alternatively be expressed in terms of the

individual efficiencies; applying eq.{2.7) we have
P(1U 2) =P{1) + P(2) - P(1 0N 2)
which, using eq.(2.16), gives
P{1 U 2) = P(1} + P{2) = P(1)*P(2) . (2.21)

In developing the formulae above several assumptions were involved,
some of which have not been stated explicitly and may hardly be fulfilled in

practice, For instance, it has been assumed that

(i} the different scans are performed independently (an assump-—

tion that is perbapa best met by having different scannera),

(ii) all events have the same probability of being detected (an
ideal requirement which is not achieved in practice when

complicated topologies occur),

(iii) the number of events is sufficiently large to warrant the

use of the concept "probability".

We briefly touch the question of the statistical uncertainties in the
scanning efficiencies in connection with our discussion of the binomial distri-

bution (Sect.4.1.3). The whole problem of estimating scanning efficiencies ise

23

taken up again in Sect.9.6.2 where we adopt the Maximwm-Likelihood approach to
the estimation problem.

2.3.12 Marginal probability

The elements of a set may frequently be classified according to more
than one criterion. The term marginal probability is them used whenever some
of the criteria are being ignored in the classification. Thus if the classi-

fications according to two criteria A and B are A;,As4e..,A and By ,B;,...,B ,
o m n

[
respectively, where ) P(Ai) = ¥ P(Bj) = 1, then the marginal probability of
i=1 j=1
A, is
i
n
B(A) = ] B(A, N B,) (2.22)
g b

and, similarly, the marginal probability of Bj’

m
P(B,) = ) B(A; N B (2.23)

11
In particle physics the concept of marginal probability is inherent

in the notion of tnelugive reactions. For example, writing
a+b-=+c+ anything

implies that in the reaction of particles a and b one is only interested in cb-
servations on the properties of particle c, ignoring all the other particles.

A more specific example follows,

2.3.13 Example: Topologies of bubble chamber events (2}

An experiment on strange particle production in proton-proten reac-
tions in a bubble chamber has classified the events according to the identified
neutral strange particle (Vo), ctiterion A, and the number of charged particles
(prongs) seen in the primary reaction, criterion B, Criterion A gives four
exclugive possibilities, with cbservation of one Kz, one A, two K:, or one K:
plus one A, respectively, while criterion B gives five (exclusive) possible
prong number assiguments for the primary reaction. Suppose that the probabili-
ties P(Ai n Bj) are given by the observed relative frequencies for the various

topolopies displayed in the following table:
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B
Z-prong 4~-prong 6-prong B-prong 210-prong
1(: 0.117 0.169 0.055 0.006 0.
A 0,180 0.220 0.092 0.012 0.001
A
K:K: ¢.017 0.014 0.002 0. 0.
K:A 0.055 0.045 0.014 0,001 0.

The marginal probability to have a reaction with, say, only one K:,
irrespective of the number of prongs, is here found by adding the entries in the

first row of the table,
P(Ay) = p(:(:) = 0,347,

whereas, for example, the marginal probability for having a 4-prong reaction

with any v° signal is found by adding the nuwbers in the second columm,
P(B,} = P{4~prong) = 0.6448,

It will be seen that the marginal probabilities add to umnity,

4 5

T ra) = EP(BJ-) - 1,000,

iml & jm

2.4 BAYES' THEOREM

We shall give a brief account of Bayes' Theorem, which, although
mathematically simple, has a controversial status among the specialists., Ve
first stete the theorem, next prove it (Sect.2.4.1), consicder an example (Sect.

2.4.2), give further comments (Sect.2.4,3) and a second example (Sect.2.4.4).

2.4.1 Statement and proof

Let the sample space {i be spanned by the n mutually exclusive and

exhaustive subsets Bi R
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n
RRLRERP
i=]
If A is also a set belonging to §}, Bayes' Theorem states that
P(AlBi)P(Bi)
p(nilm -—_— (2.24)
P{(A|B.JP(B,
j§1 (A|B;)P(B;)

The proof of this theorem is nothing but an application of the defini-
tions introduced in the previous sections, From the definition of conditicnal

probability we can write down two expressions for the intersection P(A N Bi.) .
NngB)= . P(A) = P . -
P(A N B) = P(B,[AIP(A) = P(A|B,)P(B,),

(compare eqs.(2.10), (2.11)), hence
P(AlBi)P(Bi)

P(BilA) - _-_I-.’.—(-.I)—— .

For P{A) we get an expression from the definition of marginal probability, eq.

(2.22), which can be rewritten using eq.(2.11),

n n
P(A) = JE(ANB.) = T PCA|B.)P(B.) .
j=1 i e i

Substituting for P(A} in P(BiIA) above is seen to give eq.(2.24).

2.4.2 Example
Let each of three drawers Bi,Bz,B; contain two coins; By has two gold

coins, B, one gold and one silver, By two silver coins, We are to select one
drawer at random and pick a coin from it. Supposing that this first coin turns
out to be one of gold, what ie then the probability that the second coin in the
same drawer ia also a gold coin?

If A denotes the event of first picking a gold coin we want to calcu-
late the conditional probability P(B;]A). Obviously the conditional probabili-
ties P(A!Bi) of getting a gold coin from drawer B,, are

P(A|By) = 1,  P(A[By) = i, P(AlBy) = 0,
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respectively. Also, since a drawer is selected at random

P(B;) = P(By) = P(B3) = 1/3.

Hence, from eq.(2.24),

1+1/3

p(a, [a) = GALBIR(E = 2/3.

I P(Alsj)P(nj) 141/3 + }o1/3 + 01/3

j=1
Thus, although the probability was only 1/3 for selecting drawer By, the ob-
servation that the first coin drawn was a pold coin effectively doubles the
probabiliity that the drawer B, had been selected.

This example may serve to justify the following nctation: The P(Bi)
are the prior probabiliities for the drawers, while P(B,iA) is the posterior
probability for the drawer B;. The probability P(A|Bi) is called the
likelthood of the event A, given B,.

2.4.3 Comments

Bayes' Theorem as it hag been stated by eq.(2.24) is nothing but a
simple and logical conmsequence of the rules for calculation of probabilities.
When it comes to the application of Bayes' Theorem to estimation problems, how-
ever, different schools of statisticians have different interpretations of the
theorem with far-reaching philosophical implications, and the apparently uncon-
ciliatory opinions among specialists have led to a vast literature on the sub~
ject.

Let us, in eq.(2.24), make a change in notation and write x instead
of A, Bi instead of Bi' We may think of x as a random variable, to be measured
by an experiment; the Ei may represent different hypotheses about a parameter
8, whose actuval numerical value iz not known. The set of hypotheses Gi satis~

fies the condition for exclusive and exhaustive sets,

o
I R(8) =1. (2.25)

i=}
Bayes' Theorem relates these prior probabilities for the hypotheses to their

posterior probabilities P(Bi‘x), given the measurement x,
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P(x|6.1P(8.]
(O, %) = ot (2.26)
P B, 0,
jgj (x| BUICH

where the conditional probability P(xlﬁi) is the likelihood of obtaining the
measurement x for a specified hypothesis Bi'

From eq.(2.26) any posterior probability P(Ei|x) can only be evalu-
ated if gll pkior probabilities P(ei) are specified. The numerical value of
P(Bi) iz a measure of our prior degree of belief that Bi is a true hypothesis
about the unknown 8. The measurement of x implies a change in our belief that
Bi is true, P(Gitx) giving a numerical value for our new faith in the statement
that Gi is true, If, on the basis of the observation x, we had to choose one
hypothesis from the set 9;,82,..-,6n we would probably choose the one with the
largest posterior probability P(ei[x). )

A consequence of Bayes' Theorem is that two physicists, from the same
chservation x, may find different distributions of posterior probabilities, de-
pending on their formulation of the prior probabilities. From their individual
experience and prior knowledge they may arrive at difrerent posterior knowledge,
and hence they may, quite legitimately, reach different conclusions about the
parameter 8.

To avoid the element of subjectivism in the inference about § it would
be necessary to agree on the prior probabilities P(Bi). Thus all physicists
would have to combine their prior knowledge, deciding on an “objective" prior
distribution of the P(Bi). This distribution would, however, still be condi-
tioned in the sense that every P(Bi) would be dependent om all knowledge accu~
mulated up to the present *).

The preceding considerations reflect the attitude of Bayesian stati~
sticians. The anti-Bayesians, on the other hand, prefer to abstain from posterior
probabilities, being satisfied with destilliing and presenting their data as indi-
cative as possible, but leaving the (subjective} conclusions to be drawn by the

reader,

In many cagses the prior probabilities P(ei) are only incompietely

*)} Recall our earlier remark that all probabilities indeed are conditiomal.

-
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known. Tf the denominator of eq,(2.26) can not be found, Bayes' Theorem takes

the weaker form

P(8;|x) = P(x|6,)P(6,). (2.27y
Although one can not in this case completely determine the posterior probabili-
ties, eq.(2.27) can nevertheless bhe useful for caleulation of relative posterior
probabilities, With the observation x, the relative posterior probabilities
for Bi and Gj define the betting odds for the hypothesis 8;
thesis Bj'

against the hypo-

p(ei}x)

= 1’(9-1 xy

B(x[8 )P (8,)

F(x|9,.)P(8.] °
J 1

Betting oddg of Bi against ej (2.28)

An example follows.

2.4.4 Example: Betting odds

Let us go back to the experiment described in Sect.2.3.13 and assume
that the numbers in the last two rows of the table indicate a priori probabili-
ties for the observation of K:K: and K:A pairs, respectively,

Suppose further that a new event with two V°'s has been found in the
film, and that the subsequent meagurement apd kinematical analysis of this
event shows that while ome of the V°'s is uniquely identified as a K , the
second V° is ambiguous between a K and & A assignment. The probabllltles
following from the identification aud meagyrements x heve been found to be
P(x|K]) = 0.10 and P(x|A) = 0.50 for the two poseibilities. We want to find
the betting odds for the hypotheais that the 2V° event is a K K pair against
the hypothesis that the event is g K A pair., PFrom the table ip Sect,2.3.13,
ignering the information on the charged tracks of the primary reaction, we find,

using eq.(2.28},

P(K:tx)

PCA[X)

P(x',l( )P(K ®° »!

0.1040.033 _
I A‘)P(K_‘*‘OA) T S0g o ~ 0.057.

<500,115

2.4.5 Bayes' Postulate

From our previous discussion of Bayes' Theorem it is clear that no
statement can be made about the parameter 8 on the basis of the observation x
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1f the prior knowledge P(Bi) is completely missing. 1In prectice, hovever,
peaningful posterior statements about 0 can frequently be made alsoc when the
prior knowledge is acanty; this is particularly sc if the P(Si) are roughly of
the game magnitude and the likelihoods P(xlei) are very dissimilar for the
different hypotheses ei' .
Bayes' Postulate says that if the distribution of prior probabilities

is completely unknown, one may take

(2.29)

P(6;) = P(B) = ... = P(Bn).

Then Bayes' Theorem will express the posterior probabilities by the likelihoods

alone, P(x|9 )
PO, |x) = 5——— .

2 B(x|8))

j=
As we have argued before, given the choice between different hypotheses Bi’ we
The resewblance to the Maximuar-

(2.30)

would choose the one with the largest E(ﬁilx). ’
Likelihood method at this-point is, however, only artificisl, because in the
present context, © is a parameter, whereas in the Maximum-Likelihood approach to
the estimation problem O is regarded as a variable.

Choosing all prior probabilities equal according to Bayes' Postulate
eq.(2.29) looks clesrly quite arbitrary, and may lead to logical inconsistencies
under some circumstamces. Consider, for instance, the decay of unsteble par-
ticles, which may be described in terms of the mean lifetime T of the particles,

s

1 . . ing no
or the decay constant A, where A = = If we wish to determine T, having

prior information on this quantity, Bayes' Postulate suggests that we take the
prior distribution P(t) = constant. If ingtead A was chosen to deacribe the

decay, and we had no prior information on this quantity, then Bayes' Postullfe
would suggest that we use the prior distribution P(A) = constant. But this is

quite different from the previous suggestion, because

dx 2, :
B(T) = BQA) g7l = AT EOY.
As we shall see later in our discussion of the Maxisumr-Likelihood

method the prior probabilities need not represent a problem; see Sect. 9.4.1.




3. General properties of probability distributions

In this chapter we shall be concerned with the formulation of some
basic concepts and definitions from probability theory which are also impor-
tant to applications in statistics. Without specializing our assumptions on
the actual form of the probability distribution, we shall discuss a set of
general features which are common to most types of probability distributions
to be studied later. A number of specific distributicns are treated in more
detail in the subsequent chapters, which also include examples of practical
interest. The present chapter, with its minimum of applications, should be
regarded as a rather complete reference list of the general definitions and
properties which will be applied and developed further in the remsinder of
the book.

3.1 THE PROBABILITY DENSITY FUNCTION

From the very outset we will assume that the random variables to be
considered are of the continuous type.

For the moment it will suffice to consider a single, continucus random
varigble X, We assume that X can have any value over a certain domain . The
probability that the random variable comes out with a value in the particular
interval [x,x+dx] is written

BP(x < X < x + dx) = f(x)dx . (3,1)

Here f£(x) must represent "probability per unit length" and is called the proba-
bility density fumction for x. Since the total probability that the variable

will have some value in {! must be equal to one, the normalization condition is
f f(x)dx = 1. (3.2)
Q

The way f(x) is introduced guarantees it to have a non—negative depen—

dence on x. We ghall also assume that the functional dependence on x {¢ unique,

that is, £(x) is a single-valued function of x. In our further applications
’ - - -
£(x) is anticipated to be sufficiently regular, so as to allow differentiatione

with respect to x. In short, £(x} is assumed to be a well-behaved functiom.

The probability density function will be our mein topic in the follow-
ing. We shall often use the notion "p.d.f.", or just "distribution", when no
confusion is possible.

From this point we shall alsc simplify notation and denote the random

varigble itself as well as its specific values (observations] by lower-case

letters.

3.2 THE CUMULATIVE DISTRIBUTTION FUNCTIION

Instead of characterizing the random variable by its probability de:—
gity function £(x) one may use the cumulative distribution F(x), defined by

X
.3

F(x) = J f(x'}dx', (3.3)
*min
where x . is the lower limit value of x., Since f(x) is always non-negative

min ) i

F(x) is clearly a monotenic increasing function of x over the interval

x. Sx2

x ., Omne has
min max

b
Flx ;) =0: Pl =1 (3.4)

3,3 PROPERTIES OF THE PROBABILITY DENSITY FUNCTIION

The probability density funetion £(x) contains all information about
the random variable x. Various properties of £(x) serve to characterize the
distribution. For instance, a mode of the distribution is & value of x which

maximizes the p.d.f.., Lf there is only one mode the function is wnimodular.

The median of the p.d.f. is defined as the value of x for which

3.5
F( ) = % . {3.5)

X .
‘median

*) Statisticians often prefer the inverse definition and put

_ dF
f(x) = i

referring to F(x) as the "distribution function.
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Particularly useful are the mean as a measure of the central value and the
Variance as a measure of the spread of the distribution. These concepts are

introduced below.

Fig. 3.1 shows the relative position of the location parameters {mode,

wedian, mean) for a unimodular p.d.f..

f OO
0.15

mode

[—— median
mean

0.10

0.05

I v N
0 5 10 15 20
X
Fig. 3.1. Location parameters for a unimodular probability density function.
{The curve corresponds to a chi-square p.d.f. for 5 degrees of freedom,)

3.3.1 Expectation values of a function

Let g(x) be some function of x. We define the mathematical expacta—
tion value {or expected value, or expectation) of the function g(x) for the
p.d.£f. £f(x) by

E(zg(x)) = f g{x) £ (x)dx » (3.6}
Q
where the integration is over the entire domain of the varigble, Thus f(x)
gerves ag g weighting function for g(x), and the resulting quantity E(g(x)] is
a number, i,e. a constant, independent of x. We see that the expectation
E(g(x)} is a measure of the mean or central value of the function g(x).
From the definition of the expectation value one easily derives the

following relations:
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E(a) = &, where a is a constant

E(sglx) = = E(z(x),

Elargi(x) + azga(x)) = aiE(g1(x)} + a,E(g2(0)].
Thus E has the properties of a linear operator.

An important application of the expectation operator is to derive the
expected value of the square of the difference between g(x) and its expectation
E[g(x)}. We will then get a measure ol the spread or dispersion of g(x) about

{ts central value, which is called the varianse of g(x) for the p.d.f. E(x)!

2
vigx)} = E(g(x) - E(g(x)]] . 3.7)

We next specify some definite forms of g(x) which are particularly use-

ful.

3.3.2 Mean value and variance of a random variable

As a simple application we put g(x} = x in the general definition eq, :

(3.6). We then have the expectation of the random varisble itself, which is
called the mean value of x for the p.d.f. £(x}; this number we denote by u:

uEEX = J x£(x)dx . (3.8) ;
Q
For the spread of x sbout its mean value we take the variance V(x}, or -

diepersion, of x for the p.d.f. £{x); this number is denoted by ¢?:

a?

i)

V(x) = E(x-u)? = I (x-v) 2f (x}dx . {3.9)
Q
Cleerly o2 g a non-negative quantity; o is called the standard deviation of x
for the p.d.f. £(x).
Using the linearity property of E we can establish a useful relation

between the expectation of x* and the parameters g%, u. From eq.{3.9) we find

02 = E(x-1)2 = E(x2-2uxru?} = E(x?) - u?, (3.10)

or

E{x?) = o? + p2. (3.11)

It may be instructive to note that one has
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E(x-p)? = E(x2) - 1% = E(x2) - (E(x})?, (3.12)

Exercise 3.1: Show that, if a is a constane, V(ax) = a2v(x).

Exercise 3,2: (The Bienaymé-Tshebycheff inequality)
Let g(x) be a non-negative function of the random variable x with
p.d.f. f(x) and variance ¢?, Prove that the probability for g(x) to be at least

as large as any constant value ¢ is limited if E(g(x)] exists,
1
Plat0) 2 ¢) < 7 E(g(x) .

In particular, with g{x)=(x-E(x))?, this is equivatent to
P(|x-E(x)| > o) j%z .
which is called the Bienaymé-Tshebycheff inequality.
This general result on the probability for |x-E{x)| to exceed a given

nunber of standard deviations turns out to be very useful for proofs of limiting
»perties and convergence thecrems; see Sect.3.10.4.

4.3.3 General moments

Because of their simple interpretation ! = E(x) and 02 = E(x-u)? are
extensively used as parameters in the probability demsity function.

For theoretical and practical purposes it is also convenient to define
expectation values of other powers of x and {x-p)}. With a general definition
we shall call the expectation of x* the k-th moment of flx) about the origin,
or the k—th algebraic moment,

u{( = E(xk) = I xkf(x)dx. (3.13)
Q

In a similar way the expectation of (x—u)k is called the k—th moment of f(x)
about the mean or the k—th central moment,

- k k
W 2 EGew)” = J (x-1)" £ (x)dx . (3.14)
Q
The mean value and the variance are therefore special examples of more
generally defined moments. In particular, the mean is equal to the first moment

of f(x) about the origin, whereas the variance is equal to the second moment of
f(x) about the mean,

H = u;, (first algebraic wmoment)

2

g° = g (second central moment)

s
The moments of lowest order are easily derived from the definitions:
L
Yg = 1
U1 = (algebraic mements), (3.15)
1
Uz = g +p?
and
Mo =1
y; =0 (central moments). (3.18)
Hz = a?
Note in particular the relation between the second moments:
we =y = ul, 3.17)
This is the same result as eq.(3.12).
The general relations between central moments and algebraic moments
are as follows:
|3 ke %
n -Z [} ' ~ug) (algebraic moments known}, (3.18)
k r -r
=0
' k k [ o
U, o= 2 } My (u1} {central moments known}. {3.19)
k g \T -r

Here u) = W, in accordance with eq.(3.15).

The moments of higher order become of interest when one wents to study

the behaviour of f£(x) for large |x-u{. For a symmetric distribution all odd
central moments vanish. Any odd central moment which is not zerc may therefore
be taken as & measure of the asymmetry or skewness of the distribution. The
simplest of these measures is the third central moment ls, but its numerical
value will depend to the third order on the units of the varisble x. To have
an absolute and dimensionless measure of the asymmetry one, therefore, defines

the qsymmetry coefficient, or skeumess, by

3
13— JEOG (3.20)
(P S

Clearly a positive value of ¥, implies that the distribution f(x) has a tail to

the right of the mean value, whereas a negative v, indicates a tail to the left,

N
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The coeffictent of kurtosis, or peakedngss, of f(x) is defined by the

dimensionless quantity

o L4
VAR LS W Lc5aT) M (3.21)
(uz)? a*

This definition implies a comparison with the normal or Gaussian p.d.f., which
has y; = 0, (see Sect. 4.8.4). A positive (negative) value of Yy, indicates that
the distribution is more (less) peaked about the mean than a normal distribution

of the same mean and variance.

3.4 THE CHARACTERISTIC FUNCTION

The various moments introduced in the preceding section serve to char-
acterize the distribution under study. For instance, the first algebraic moment
defines a mean or "center of gravity" for the distribution, and the second cen-
tral moment measures the spread of the distribution about this mean.

In addition to the usefulness of the individual moments there is con-
siderable theoretical interest attached to the complete set of moments e (or
equivalently of 111'() since this set determines the probability demsity function
completely.

We shall now introduce the characteristic fimetion ¢(t) for the proba-
bility density function f£(x). By definition ¢(t) is the Fourier transform of

f{x),
+o00

o(r) = f e Fe(xyax = £y, (3.22)

-0
This function then contains the complete set of algebraic moments for the dis-
itx

tribution f{x}. By taking the Taylor expansion of e about the origin and

using the linearity property of the expectation operator, we have
o(t) = E(1 + irx + 1/2!1Gex)? + 1/31(iex)? + ...)
= 1+ (it)E(x) + /2! (i) Ex?) + 1/3T(it)*E(x?) + ..,
or

Tk
o(t) = = @) ) . (3.23)
k=z=0 k. k
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Since the algebraic moments ul'[ appear as coefficients in a series
expaneion of ¢¥(t) they can be expressed as
%0 (c)
ui* T k=1,2,... (3.24)
a{it)

t=0
Thie relation can be used for the evaluation of the algebraic moments of any
order when ®(t) is known.

If instead we want the central moments we should use the characteris-

tic function in the form
vy

® (t) = J W (yax - (1T (3.25)
=
and perform an expansion in a power series sbout Y. Then, by analogy with eq.
(3.23),

T 1. .k
NG =k§O pr (1) (3.26)
and the central moments are obtained as
3*e (1)
b = ___“ k . k= 1,2,... (3.27)
a(it) =0

The relation between the two forms of the characteristic function de-

fining the two different sets of moments, is simply
® (e) = e "ar) . (3.28)

Clearly, if one is interested in a general set of moments about an arbitrary

point a, then one should use instead
o (1) = Efelt(xa)y o By, (3.29)

and derive the desired moments from this function.

With the knowledge of $(t) the moments can be evaluated to any order;
hence the properties of the parent distribution are derived. Furthermore, the
probability density function itself can be found explicitly, since, from eq.
{3.22)

b




38

=0
-itx

£(x) = 3 J e eyae . (3.30)

—ca

Remark: In the literature one frequently finds reference to the moment-genera-
ting finction M{t), which is used to evaluate moments of distributions. Using
this function is in many respects equivalent to our use of the characteristic
function. Thus, the moment-generating functionm about the mean Hll(t)’ defined

by
40

M () = J et e gy = E(FETV), (3.31)

sy

provides the central moments through the formula

a“nu(:)
—

= k= 1,2,..., (3.32)

t=0

which is of course equivalent to eq.(3.27). However, from a theoretical view-

M

at

point it may be advantageous to work with the characteristic function rather
than with the moment-generating function. For instance, when &(t) is known,
£(x) is explicitly given by eq.(3.30), whereas a similar formula can not be

written with M(t).

3.5 DISTRIBUTIONS OF MORE THAN ONE RANDOM VARIABLE

3.5.1 The joint probability density function

Up to now we have assumed the probability density function to depend
on a single random variable. The extension to several variables KiaKaseeraXy
consists in considering a joint probability deneity function f(xj,xz,...,xn).
We assume this function to be positive and single-valued at every point

X1gXzyees X in the n-dimensional space, and that it is properly normalized,

! f(xl,xz,...,xn)dx1dx2...dxn - 1
Q

when the integration is over the entire domain of all X, . For short we write

I £(x)dx = 1. (3.33)
b .
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3.5.2 Expectation values

The generalization of eq.(3.6) gives the expectation value of a

general funetion g(xl,xz,...,xn) = g(x) as
E(gtn)) = I g(x)} f(x)dx . (3.34)

f2

We can generally define the variance of the function g(x) by
~ 2
v{gw) = E(gty - E(g(gc_)]]

2
"Hs(_x) - E(s(z)]] f(x)dx . (3.35)
Q

3.5.3 The covariance matrix; correlation coefficients

Specializing g(x) = x, e get the expectation or mean value of x;
as
= E("i) = I x, £(x)dx - (3.36)

Q

We are next lead to handle the extension of the definition of the
variance by eq.(3.9) to the case of several variables. The covariaice matrix
V(x) of x ig defined by its elements

Vij = E((xi-ui)(xj*uj)] =J (xiwi)(xj-uj)f(z)d_:g- (3.37)
Here g and uj are the expectations of the variables x and xj, respectively,
in accordance with eq.(3.36) above.

The covariance matrix is of great importance to physicists. Some of

its properties may be stated as follows:

(i) V{x) is symmetric.
(ii) A diagonal element V.. is called the variance G; of the
variable x.. 0’; is a non-negative quantity,

o?

2 = - - z - 2
§ 3V mEGxgu) 'I (=, ~u,) *£(x}ax ,

0
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and, analogously to egs,.({3.10) - (3.12) for a single random wariable,
we have

2 4 - 2y 2

of =V, = E(x) [E(xi)). (3.38)

1

(iii) An off-diagonal element vij' where i*j, is called the

covariance of X and xj, and is denoted by cov(xi,xj).
K.} =V, = %) - E{x. )E(x,}. .
cov(xl,xj) VlJ E(xli) (xl) (xJ) (3.39)
The covariance may be a positive or negative quantity.

A frequently used measure on the correlation between two variables

X% is the correlation coefficient p(xi,xj) defined by

1
V., cov(x, ,x,)
0x;%;) = ———s—y = —1, (3.40)
(viivjj) oiuj
which satisfies
-1 & g . LAl
12 p(xi,xj) =+ (3.41)

Two random variables having p(xi,x.) = +1(-1) are said to be completely posi-
tively (negatively) correlated. When D(xi,xj) = [ the variables are uncorre-
lated.

To prove that the correlation coefficient is a number between -1 and
+1 we make use of a theorem on the variance of & linear corbination of wvariables,
which is proved for a more general case in Sect.3.6. The theorem (eq.{3.55))

implies that for the sum x,+ax; the variance is given by

Yixivaxz) = Vix1) + a’¥(xz) + 2a cov{x],xz).

By definition the variance is a non-negative quantity, hence
Vixi) + aZVixz) + 2a cov{x;,x2) 2 0,

Dividing by V(x:), putting a®V(xz)/V(x;) = o’ and using the definition of the

correlation coefficient p, the condition can be written as

41
1+ +2pa20.

Since this condition must be satisfied for any value of a, there follows a

restriction on p, p? X1, which leads o the inequality (3.41).

3.5.4 Independent variables

The random variables T said to be mutually independent
if their joint probability denmsity function is completely factorizable as

f(x;,xg,...,xn) - fx(x:)fz(zz)---fn(ln), (independence). {3.42)

This is just a new formulation of the definition of independence by eq.(2.13)
applied to the case of continuous variables.

Independent variables have the property that their covariance, and
hence their correlation, vanish. To see this, consider the expectation of the

product of two mutually independent variables xi,xj:

E(xixj) = i xixjf(xi,xj)dxidxj = J xixjfi(xi)fj(xj)dxidxj
Q
= j xifi(xi)dxi- I xjfj(xj)dxj - E(xi)-E(xj) (3.43)

provided that fi and fj are both pyoperly normslized. From the definitiom of
the covariance of two variables and of the correlation coefficient, eqs.(3.39)

and (3.40), respectively, it follows that

cov(xi,xj) =0, o(xi,xj) =0, (independent variables). (3.44)

It may be noted that although independent variables necessarily are
uncorrelated, the opposite statement is not generally true.

The result derived above by eq,{3.43) means that the expectation of
the product of two mutually independent variables is equal to the product of
the expectations of the individual variazbles. This is in fact just a special
case of a more general statement about the expectation value of a functiom
which is factorizable in the two indépendent variables. To see this, let us
write

g(xi,xj) = u(xi)V(xj) (3.45)
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where X and x. are assumed to be mutually independent. Using the definition

of independence one readily shows that
E{g(xi.xj)] - J ulg VE; (x; ) - f vix,)E (x)ax,

- n(u(xi)}-z[v(xj)} , {3.46)

{independence).

again assuming fi and fj to be separately normslized. This general property
frequently gimplifies the calculation of various expectation values.

Finally, one may note the following fact sbout twe independent vari-
ables x; and xj: If u=u(xi) and v-v(xj), then u and v are also independent.
The proof of this statement is suggested as an exercise for the reader in Sect.
3.7, (Exercige 3.7).

Exercise 3.3: Given f£(xy,x;) = %—ﬁ + —Exz

dent variahles), show that p(x;,x,) =

and { defined by x} + x} =1 (depen-
(no correlatiom).

3.5.5 Marginal and conditional distributions

A projection of the probability demsity function f{(x) onto a subspace
is called a marginal density function or a marginal distribution for £(x). Con-
sider the n-dimensiomal p.d.f. £(x1,%2,.. ..xn). Integrating over all variables

except one, say X1, gives the marginal distribution in this variable; we write

x2 {max}
hy(x1) =

%2 {min}

X max)

f(xl,xz,...,xn)dxz...dxn ’ (3.47)

xn(mn)

and similarly for the other n~1 variables. It will be seen that eq.{(3.47) re-

presents an application of the definition of marginal probability, eq.(2.22).
In the case of mutually independent variables for which the p.d.f.

factorizes according to eq.(3.42), the marginal distribution becomes

X7 (max)
hi{x1) = £1(x1)

x; (min}

xn(max)
Fz(x2)dxs... fn (xﬂ)dxn
xn(mln)
with corresponding expressions for h,{(x,) etc. Because of the overall normali-

zation condition for f(x), one must have
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hi(xy) = £ (x;), hz(x) = £(x2),

Thus the concept of independence as stated in Sect,3.5.4 can be formulated by

saying that mutually independent random variables have a joint probability

density function which is factorizable into its marginal density functions.

We next introduce the concept of a conditional demsity function or a
eonditional digtribution for £(x)}. Consider again the n-dimensional p.d.f.
f{xl,xz,...,xn). The conditional probability demsity in all variables except x,
is then defined as the ratio between f(x;,%2,.. ..xn) and the marginal density

function for x;, thus

f(xl-xz.---.xn)

Elxay..onx [x1) = (3.48)

hy (x1)
Here it is understood that x; is kept fixed, and f(xz,...,xn|x1) is then a
function of the remaining variables PR Similar definitions apply for
the other variables. It will be seen that eq.(3.48) corresponds to the previous
definition of conditional probability by eq.(2.10).

With the conditional p.d.f. of eq.(3.48) one may define conditional
expectation values of functions and variables in a mamner which is quite ana-
For example, the conditional expectation

logous to what has appeared before.

of u(xz,...,xn|X1). given x,, is

E(u(xz,...,xn|x1)} -
X; (max) xn(mx)

= f u(xa.-u;Xntxx)f(xh---'xnlxl)dxz”'dxn (3.49)
%2 {min) xn(min)

3.5.6 Example: Scatterplots of kinematic variables

In particle physics probability density functions of two variables are
encountered in studies of scatterplots, or two-dimensional displays of kimematic
variables. The most common of these are presumably the Dalitz plot and the
Chew~Low plot.

For definitenesz let us think of a reaction

3 - Probability and statistics.

_*—.#
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a+b~+1+2+3

at a total centre—of-mass energy /;, and let Bij, tai denote, respectively, the
squared effective-mass of particles i,] and the squared four-momentym transfer
between particles a,i. Then the kinematically allowed region in a Chew-Low dis-
play of ty; versus siz is a closed area bounded by a straight line and a hyper—
bola, see Fig. 3.2(a). The marginal distribution in s;z is the projection on the
s12 axis, giving the one-dimensional distributiom in the squared effective-mass
of particles 1 and 2. The other marginal distribution for the Chew-Low plot
gives the one-dimensional distribution in the squared four-momentum transfer
between the initial particle a and the final particle 3. For the Dalitz plot of
say, S1z Uersus si1i, both marginal distributions are squared effective-mass
spectra, see Fig. 3.2(b).

Lorentz-invariant phase space predicts the density in the Chew-Low
plot to be given by the formula

c‘st 1T2

-

ds;zdtg, 45,0

A_% (s sm:"m;);\i (312 ’m% ,m%)

where the kinematic function X is defined by

oyt o+ 2t - 2x%y? - 2472 - 2ytl?

A(xz ’Y2 ,22)

(x* - -2)%) (x* = y+2)7) -

(The quantity %; Xl(xz,yz,zz) corresponds to the magnitude of the momenta
when two particles of masses y and z share the centre—of-mass emergy x.) Thus
according to the phase space prescription the conditional density, given 812,
is a constant,

d’Ry(ta,|8;2)

d517dt; (independent of tg,).

f(taglslz) =

In Fig. 3.2{(a) this implies that the density is uniform within the kinematic
boundary along lines of constant $;,. The marginal distribution in 82 is ob-
tained by integrating over th,, thus
ta, (max)
hi(s;z) =

t gy (min)

£(e, [812)dty, = E(tasls12) [ty (max) = t,, (min)],

D S _

(a)
- > S
dR,
at_,
dRy
9515
K
(b)
e e
12
dRy
ds]3
dRy
ds]Z v

Fig. 3.2. Illustration of joint probability and marginal distributions. The
shaded areas correspond to the kinematically allowed physical regions in tw
dimensions (variables) for the reaction a +b + 1+ 2 + 3 ; (a) tay vergus
81z (Chew-Low plot), (b) s13 versus s;; (Dalitz plot). In both diagrams the
degree of shading indicates the density expected according to Lorentz-inva-
riant phase space, and the one-dimensional projections on the two axes give
the spectral shapes for the variables invelved.
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Since the boundary corresponds to configurations where the final state particles

are collinear, the square bracket can be evaluated quite easily to give
_ ; 1 04 P IVENEY. 2
(tas(max) = ta (min)} = T A (smamy) 7 Ai(s,8,2,m3).
Hence the marginal distribution in s1z according to Lorentz-invariant phase
space is obtained explicitly as

,'12

hy{s;2) = Zass

Mo,mz,md)nd (sys,mdnd)s

(the proportionality sign is a warning that h; is not properly normalized due
to the conventional definition adopted for Ra).

If instead we were interested in the marginal distribution in the
other variable tg,;, we would have to iutegrate the conditional density
f(slzltaa) for fixed ta,, thus

81; (max)

ha(ty,) « £(812|ta;)dera .

g1z {min)

It is seen that this leads to an elliptical integral.

Exercige 3.4: Show that the marginal distribution h,{s;,) can be normalized
using the relation
812 (max)

h;(syz)dsi2 = Ra(s;m,mo,ms)
512 (min} (Vams}?

= Rp{s;sy2,ma)Ra(s12;5m1,mz)ds )2

(my#m;)?
where the two-particle phase space factor R; is related to the kinematic func-—
tion A by 2
s
R; (x’gy2,z?) = Y Ai(xz,yz,zz).
2%

Exercise 3.5: For the three—particle final state Lorentz-invariant phase space
predicts the demsity within the kinematic boundary of the Dalitz plot to be
proportional to
lea - ,"2
dsjzdsga s
i.e. comgtant. Show that the marginal distribution for sy, is given by the
expression for h (s,,) in the text.
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3.5.7 The joint characteristic function

In analogy with the definition of the characteristie function in the
case of a single random variable, we now intreduce the joint characteristic
function @(tl,tz....,tn) for the joint probability demsity functiom

f(xl,xq,...,xn), by the definition

- i +itoxa+...+i
¢(t1.tz,...,tn) = E[e tixititaxs Ltnxn}

o o o
- i r
_ f J .. f elth] lt2x2+"'+1tnxnf(x1,x2,...,xn)dxldx2...dxn(3.50)
—0 =00 -

Let us examine the case with just two variables, when the character-

istic function is

itya+ityx
$(t1,tz) = E{fe 1F1TIT2EY),

If x1 and x; are independent variables, f.e. if £{x1,%x2)= £1(x;1)*f2(x2), we can

write
oty ,tg) = E(eitlxl_eitgxz} - E(eitlxl}-E[eitzxz]
= o(ty) 0 (ts),

where ®(t;) is the characteristic function for f£,(x,), the marginal distribution

in x;, and similarly for $(t;). Thus, for independent variables the joint char—

)

*
acteristic functionm is factorizable *, 1In general, with n independent variables,

Pltr,ta,. .. ty) = $(t1)P(ta).. . B {ty), (independence). (3.51)

The joint characteristic function may be used to find the general
moments of the different variables, The technique is the game as shown before
in the case of a gingle variable., For simplicity, let us again specialize to

just two variables, x; and x;. When

*
) In fact the inverse statement also holds: If the joint characteristic
function can be factorized, the variables are independent. Thus eq.(3.51)
represents a necessary and sufficient condition for independence.
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46 40
- it
t{ty,ta) = J Jelt’xl v zxzf(xhxz)dxldxz
—o —ao

a derivation with respect to (it1)} gives

40 a0
J itix+it
ETE%TT-. f J x1e TIXITREZRZ (0 ko Ydxpdxa .
— -0

Putting t;=t;=0, the right-hand side is nothing but the expectation of xi,

3%

ETET) = E(x1).

£=0
Similarly, after two derivations with respect to (it,), for t=0,

aZe

—_— = E(x%)
z >
a(it,) £=0 )

and 8o on, Corresponding expressions for the other variable result from deri-
vations with respect to it;. Also
9%
- T =E{xix2).
F(LEya(itz) (xi%2)

=0

Thus, with two variables,

r+s
By - — 2t . (3.52)

CICTIDRETCTIO S

The extension to more variables is clearly straightforward.

3.6 LINEAR FUNCTIONS OF RANDOM VARTABLES

We shall go back to our definitions of the expectation and variance
of a general function and investigate the consequences if g(x,,xz,...,xn) is a
linear function of the random variables. We put

n
g(xl,xz,...,xn) = i§1aixi' (3.53)

#*j1-IlI""""""“""""""";-
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The expectation of this sum is easily found by using the linearity property of
E:

n n o n
E( } ax]) = § E(ax) = f aE(x) = [ au,. (3.54)
i=1 i= it o bt

Thus the expectation of a linear cowbination of variables x; is the same linear
combination of the individual mean values.

The variance of the linear function is slightly wore troublesome to

evaluate. We have

n n n 2
v § ax) - E( [ o ~E(L 4}
121 i=1 i=t

= - B(fagx; - Lagn}® = E(Ta; xp-up)®

= b 2 - -
E[Ea;(xi )t + 1£jaia5(xi cs uj)].

This can further be written as follows:

7 2

2 -— - -
V(.Z1aixi) ZaiE(xi u)* o+ .E,aiajE((xi ui)(xj uj)]
i= 1#])
= Eaiv(xi) + Z a.a.cov(xi,x.),
ixj ¥ J
or, finally
n n

n n-1
V[.Z]aixi} = Lafv,+2] ]

(3.55)
=t i e

aiajvij'
Thus the variance of the Iinear combination consists of two parts: the first
part is just the sum of the variances of the individual variables, weighted by
the square of their coefficients in the linear combination, the second part is
a sum of all the covariance terms that can be made up for the variables.

We note that for the particular case of uncorrelated variables the

variance of the linear function reduces to the simple relation

n n
V(7 aixi} = ¥ azv(xi), (uncorrelated variables). (3.56)
i=1 im1
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3.6.1 Example: Arithmetic mean of independent variables with the same mean

and variance
Let XI,Xzy..0sX be n mutually independent random variables having
the same mean value ui-u and the same variance diﬂdz. We then take as a parti-

cular linear combination the arithmetic mean x or average of the ;.

% =

A=

)
X, .
i=i b

This is a special case of eq.(3.53) in which all coefficients a, are equal,
a = % . and hence we get from eqs.(3.54) and (3.56) the expectation and vari-

ance of x:

_ n n
E(x) = _Z au; = _E M=k, (3.57)
i=7 i=1
_ L oy, g2

3.7 CHANGE OF VARIABLES

it often happens that the probability density fumction is known for
a certain set of variables and that ome wants to find what the distribution
will be like when a transformation is made to a new set of variables. For
instance, given a spectrum of particle momenta one may want to have the corre-
sponding energy spectrum.

Suppose first that x is & continuous ramdom variable with p.d.f.

f(x) and that we know a functional dependence
y = yx). (3.59)

We ask: What is the p,d,f. g(y) for the new variable y?
For 2 one—to-one correspondence between the old variable x and the

new varisble y, an interval [x,x+dx] is mapped onto [y,y+dy] and we raquire

E(x)}dx = g(y)dy.
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To ensure a non-negative dependence, we take

gly) = £(x)*

dx
dy

] (3.60)

and this is the answer to our questionm.

It the transformation (3.59) is not ome-to-one, and several segments

[x,x+dx] map onto [y,y+dy], one must sum over all segments,

g(y) =} £(x)

dx

iy (3.61)
Eq.(3.60) can easily be extended to cover a transformation from a set

of variables X1aXzsoenyX, with p.d.f. f(x1.xz,-..,xn) to a second set of vari-

ables LAV £ FRTEN A The p.d.f, for the new set of variables is

Xy ykzyererX )
8()"1 y¥2 9---:)"“) - f(xl 1XK2p000,3% ) . o (3.62)
n 53?1.Y2.---:Yn5
or, for short, in obvious vector notationm,
gy} = f(x)-|J}, (3.63)

where J is the Jacobian determinant of the transformation, given by

X1 9x, ax;
dxz Jx; dx2

3(}(1 ,xz,...,xn) 3y1 5)!’2 e By

J| = = n
131 BEn,y:,...,ynT . . (3.64)

Exercis% 3.6: If f(x) = (Zn)_lexp(-lxz) (the standaId normel p.d.f.), show that
t@e vgrxa@le y=x has a p.d.f. given By g(y) = (2n)~ y'!exp(—ly) {the chi-square
distribution with one degree of freedom).

Exercise 3.7: Let x) and xz be two independent variables with p.d.f.'s £;{(x1)
and I»(x2), respectively, and let y; be a function of x; alone, y, a function
of x; alone. Show that y, and y» are also independent.
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3.7.1 Example: Dalitz plot variables

Consider a three-particie final state for which Lorentz-invariant

phase space predicts in terms of the squared invariant massee M%g,M?a,
d%R, ?
4s
dMiaui s
that is, a constant density, (compare Exercise 3.5). For new variables choose

£(M}2 M7 50 -

the linear effective masses M;;,M;3. Then the Jacobian of the transformation

is
QHE 2 BME 2

3M;z oM 2M. 0
- [a(Mfz.Mh) o Ty e = iMyMis.
3(M12,M;3) amd, amt, o M, 5
oMy, oMy

The density in the new varisbles is therefore
w2 m?
g(Mi2,M13) % 7= =4MiaMis = = MizMass

which is not a comstant, Thus the nice feature of constant density is lost in

the change from squared to linear effective masses.

Exercise 3.8: 1In the example above, prove that a transformation to the energy
variables E3,E; yields a constaunt probability density.

3.8 PROPAGATION OF ERRORS
We have in the preceding paragraphs gtudied various functions of

random variables. Clearly any such function or new variable which is defined

by a functional dependence of random varisbles is itself & random variable.

We shall now study properties of variables of this type.

3.8.1 A single function
Let X1,%2yr0 0¥ be the original random varishles and put

N ACSTECTRRRSL I B y(x) - (3.65)

Let us further asaume that the covariance matrix V(x) of x is known. We need

not specify whether the xi'a are independent or mot, so the form of Vix)

R T R —
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(diagonal or not) is inessential.
To estimate the variance of y we perform 2 Taylor expaneion of y
about the mean value | = iti
u {u;,u;,...,un} of x. Writing out the terms of order
zero and one we have
z 3
Y =y + b)) 3E i
X yu} i£1(xi ui) 3xi + terms of higher order . (3.66)
xm
Taki i i o
ing the expectation value of this expression each first order term will
vanish, so that
E(y(f)} = y{() + terms of higher order . (3.67)

Under the assumption that the quantities (x;-u.;} are small
i >

catt be dropped to give the approximate result

the remaining terms

E(y(x)} = y(u). (3.68)
Introducing this in the formulae for the variance of y{x), eq.(3.35), we get
2
Viyeo) = E[Y(zs) - E[Y(ze)}] * E(y(x) - y()2. (3.69)

Now we can find an approximate value of the difference y{(x) - y(u) from eq

(3.66) by dropping all terms of order higher than one,

n
Y@ - yw = L ) &

i=1 i

. (3.70)
X
Substituting this back in eq.(3.69) we obtain the following approximation for
the variance of y(x),

3y
X,
xmy gy
The expectation values here gre nothing but the elements of the covariance

matrix of X. So we get the final result

1

Vyw) = 1 X

1 Bxi

13 E((xi-ui)(xj-uj)]. (3.71)

n n
v = él 3y
) i?,, jz, T, X, Vij®, (3.72)
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where the derivatives are evaluated at x=|i.
The formula (3.72) is known as the law of propagation of errors and

is of great importance te physicists, In the general case it is to be regarded

as only approximately valid, in view of the assumptions made in deriving it

(dropping terms of higher order}. We have found an expression for the variance
of y valid when x is in the neighbourhood of p. WNote, however, that for the
particular case when y has a linear functional dependence on x all derivatives
of second and higher order vanish identically; eq.(3.72) is then exact for all
X

- For n mutually independent varisbles all covariance terus are Zero

and eq.(3.72) reduces to

n 2
v{y) = . 21(731-: ) Vi, (x), (independent variables}. (3.79
i=1Y%

This relatiom is also exact only for linear functions of X, and otherwise

approximately correct to the extent that higher-order terms can be neglected.

Exercise 3.9: If y =2+ /
having variances V{x;) afd V(x»), respectively, show that

Viy) = x3*{x5V(x) + x2V(x2)), and V(y}/y* = vk }/xg + Vixs ) /% .

3.8.2 Example: Variance of arithmetic mean

Let y be the average of a set of n independent variables xi,Xz,-.-

lxn

. 2
all with the same variance 07,

al=

n
y=x= z X -
im]

Then %1 =1 for all i, higher derivatives of y vanish and eq.(3.,73) holds
x., n

] trictli‘r, giving

_ nofae \2 g?
i=] i

This is the same tesult as eq.{3.38) derived in the example of Sect.3.6.1.

3,8.3 Several functions; matrix notation
We need a generalization of the law of propagation of errors which

will cover the important case when there is a set of functions Yis¥zse ¥y

where x; and x; are twe independent random variables
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which all depend on the n random variables KysXys-04,X 5 thus
n

e ™ YR(XLHQ.-.-,X“) = Yk(-_x.); k = 1,2,...,m, (3.76)

A Taylor expansion about x = U leads to

Byk

— ..
ax,
i

tes k=1,2,,0.,m,

V() =y, () + E {x;-u;)
, Eo)
by amalogy with eq.(3.66). Taking the expectation value each of the first order

terms drops out, and we have

E(r () = v, K= 1,2,....m

which helds exactly in the close neighbourhood of . Generalizing eqs.{(3.69) -

(3.71) we find for the covariance between, say, Y and Yo

Vig(a} = E (rk(z) - E(yk(g)}][yg(i) - B{y )
or
B n 9y 3y
Vi @2 = ] B )
Kt by 5h Ty B (ex, RICRRY
. x= x=l
In analogy with eq.(3.72) we write
R0 dy 3y
v I T — =y
ki i=1 j=1%% 9% LY (3.75)

which is the general formulation of the law of error propagation. It is under-
stood that the derivatives should be evaluated for x=U, and the formula is omly
valid to the extent that terms of second order and higher can be neglected,

The covariance terms vkll,(x-) define the covariance matriz V(y) for the
dependent variables ¥ Eq.(3.75) in fact provides the basis for error calcula-
tion in physics.
the diagonal terms of V(y). In general a diagonal term ka(l) will contain co-

The errors on the variables y are given by the square root of

variance terms Vij (x)} of the original variables, because, granted a sufficient

linearity,
n 0 9y 33y,
v @ = (] [—k]v..
kk L i§1 qu ax; 3%, 1548 . (3.76)
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If, however, the original variables x; are uncorrelated, the sum reduces to

n BYk 2
Vi ) = .21{-3;‘] v, (x. €3.77)
1= 1

Hence, in terms of the errors 7,

n Byk 2
ckﬁx) = _E {52‘1 Ui(f) ' (uncorrelated Xx). (3.78)
i=] 1
This expression is commenly referred to as the law of error propagation, but as
we have emphasized, it represents only a apecial case.
Note that even if the original variables x are uncorrelated the co-

variance matrix for the new variables y may well have of f=diagonal elements

different from zero.
Finally, let us for convenience summarize in matrix notatiom. With x

and y as column vectors having, respectively, n and m elements we write
¥y = c + Sx + higher order terms . (3.79)

Here ¢ is an m-component (column} vector of constants and § an mw by n matrix

describing the linear part of the transformation x + y. Then, to first order,

e g RIJR
axK, ki ! %, i
1 A

and the ki-th element of the covariance matrix V(z) can be expressed as (eq.

(3.75)),

n n
Vig & = 121 jLSkivij(E)s!,j .

Thus, the law of propagation of errors takes the form
T
vi{y) = SV(x)Sy (3.80})

where the superscript denotes the transposed matrix.

Exercise 3.10: 1If the variables 13 A, ¢ have been measured with errors Afl},
A%, 0P, respectively, and with no correlations, what are the errors associated
with the derived quantities py = p cosh cos¢, Py =P cogh sind, py = p simh?
what are the correlations in the new variables?
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3.9 DISCRETE PROBABILITY DISTRIBUTIONS

3.8.1 Modification of formulae

A random variable which can teke on only discrete vslues we denote by

r. TIts probability distribution i i
i8 given by the set of probabiliti
malized such that pro e e

e =1
r T (3.81)

where the summation goes over all r.
F . PO R . .
or a discrete probability distribution the definitions of expectatio
wval initi i -
ues are analogous to the definitions introduced earlier in the case of conti
nti-

nuous vari i vari
ables. The expectation and variance of t, for instance, are
. »

E(r) =] ™,

r (3.82)
v(r) = § (v - E())%p_ = -
® =1 (£ -2e@)e, - 66 - @) (.69

Exercise 3.11: If p_ = nl r n-r

S r = Tinrey’ P (1-P) (the binomial distributi

variable r may take any 1;23;;;T:;Iue 0,1,....n, show that E ribution) and the
V(r) = np(l-p). sy at E(r) = np,

3.9.2 The probability generating function

Dealing with discrete probabilities one can make use of the probabil-
ity generating function, defined by
G(z) = E(zr) =- E zrp .
L - (3.84)
I .
ts usefulness comes from the properties of the derivatives evaluated at the
point z=1, Since

-1
6'(z) = ] rz" p,
T

¢'(2) = § (e,
T T

elc., we deduce that
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6' (1) =} xp, - E(x},
r

G =] s(e-tip, =] x'p, - | rp = EGY) - E(D)-
r r r r r

F th i
or the most common expectation values one has therefore the convenient expres—
sions

E{r) = G¢'(1
‘ M, (3.85)

V(r) = g" ' - (g
r) () +e'(1) - (6 (n)2. (3.86)

EEZEZLSE 3.]2; 1leen the probability generating function G(z) = (zp + q)
P *tq » show that E(r} =uap, V(r) = npq. (Compare Exercise 3.11.)

.10 SAMPLING

3.10.1 Universe and sample

A probability density function £(x) for a continuous random variable
or equivalently the set of probabilities in the discrete case, describes the '
properties of a population, or wniverse. In physics one agsociates random
variables with observations on specified physical systems, and the p.d.f, £{x)
summarizes the outcome of all conceivable measurements on such a system if the
measurements were repeated infinitely many times under the same experimental
conditions. Since an infinite number of observations is of course impossible
even on the simplest system, the concept of a population for a physicist repr;~
sents an idealization which can never be attained in practice.

\ 4n actual experiment will consist of a finite number of cobservations.
' ::::::c:foii::a:Tre:e:::p:;,::,;;;;fzizzlio:es:::::ity is said to ?onstitut?
of the population or uni-
verse; we may say that " sample of size n is drawn from the universe". Phygi-
cists would like to think that their meagurements are typical, in rhe sense
that repeated experiments with the same number of meagurements are likely to

ive 2 i
g more or less the same result. This corresponds to the notion of random
ezamples .
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3,10.2 Sample properties

Let the sample of gize n bhe 3T IATERE This set of n independent,
random variables possesses certain properties, which we may hope resemble those

of the population. Two quantities to characterize the sample are

:ll—-

n
Z (3.87)

and

H|~

n
2 —x) (3.88)

Here % is the sample mean, or arithmetic mean (average), which we have already
met; the quantity a? measures the dispersion of the sample about its mean value
and ig called the sample variance.

- The two quantities x and 8? defined here as functions*) of the random
variables x., are themselves random variables. This is clearly so because a
repeated drewing of new samples, all of size n, obteined from the same popula~
tion will produce new x,8%. Thus the random variables X and 8° will have their
own distributions. Obvicusly, these distributions must depend on the properties
of the parent distribution, and oo n. The study of samples by the distributions
of X and 8 forms an important part of probability theory.

Particularly interesting are samples drawn from & normal universe. It
turns out in thia case that the variables %X and s? are independent; this proper—
ty is unique for the normal distribution. Moreover, the resulting distributions
for the two variables become especially simple, X% being normally distributed,
and s® related to a chi-square distribution. This will be discussed further in

Sects.4.8.6 and 5.1.6.

3.10.3 Inferences from the sample
A physicist's motivation for umdertsking an experiment and to perform

measurements of physical quantities is that he wants to find out something about

"reality"; thus his interest is in some true distribution, er universe. In fact,

*) A function of one or more random variables that does not depend on any un-
known parameter is called a statistic. In accordance with rhis definition

X, as well as s, may be called a statistic.
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he may be prepared to make inferences about this universe on the basis of his
restricted nuymber of observations.

Suppose that measurements on the variable x have given the numbers
X1,K25 000X, constituting a sample of size n. Evidently we hope that the
sample in some respect is representative of the underlying universe or popule-
tion. A measure of the population mesn value u which suggests itself is X, the
arithmetic mean of the sample, as given by eq.(3.87). We may therefore call x
an egtimate of the population mgan u. Similarly, a measure of the population
variance 02 is provided by the quantity 8’ describing the dispersion of the
sample, eq.(3.88). Hence the notion that s? is the estimate of the population

variance 0°. We write

~ — 3 B
pexeg Ixg, (3.89)
i=]
-\2 2 1 n —.z
S TR 1‘_51 Gegmx) ™ (3.90)

The reason for using (n-1) and not n in the expression for 8%, is to

2

ensure that s? is an unbiaseed estimator of ¢} a discussion on this point is

given in Sect,B.4.1. An intuitive explanation why we should take (n-1) instead
of n is the following: From the sample alone we do not know exactly what the
central value p of the population is; we onrly have an estimate, ﬁéi, which is
subject to uncertainties. As a measure of the dispersion of the population the
quantity %;ig](xi—;f is therefore likely to be too small, and we should be
better off replacing n in the denominator by a smaller number.

When n becomes very large the sample properties will appreoach the

properties of the population, hence

This is the contents of general convergence theorems, In particular, the fact
that the sample mean has the population mean as its limiting value is a con-

sequence of the Law of Large Nuwbers, which will be discussed briefly in the
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following section. It can be intuitively understood from the observation that
the expectation and variance of the variabie x are, respectively, E(x)=u and
Vv(x)=02/n, (eqs.(3.57), (3.58)), implying that the spread of 7 about p will
become small when n is large. GSimilar results apply for the mean and variance
of 82 (Exercise 3.13).

desired accuracy can be cbtained in the estimates of the population parameters.

Thus, by choosing sufficiently large samples, any

This property is called consistency of the estimators; see further Sect.B8.3.

Show that, in terms of the central moments,

v(a?) = -:; {m—ud) + E\va{ 3.

Exercise 3,13:

E(s?) = 02 = ug,

3,10.4 ‘The Law of Large Numbers

_ Convergence theorems play a fundamental role in probability theory
and statistics and are thoroughly discussed in treatises on the theoretical
foundations of these subjects. Since in this book mathematical rigor is consi-
dered of less importance compared to practical implications we shall limit our
discussion here to the Law of Large Mumbers which was mentioned in the preceding
section and which will be referred to in later applications.

Let x%1,X2,°'* be a set of independent random variables which have

identical distributions with mean value p. For the first n of these variables

—_ n
%= % 5 x| will also have mean value y, regardless of the
i=1 L.

The (weak) Law of Large Numbers states that, given any positive g,

the arithmetic mean
number n,
the probability that % deviates from u by an amount more than € will be zero in

the limit of infinite n,

lim P(lx=}| >€) = 0. (3.91)
n+ o
As stated above the theorem concerns the limiting properties of x
when n approaches infinity. A stronger version of the theorem says something
about the behaviour of x for any value of n exceeding some finite value, say N,

Given two positive quantities ¢ and §, an N exists such that

P(ix-u| > €) < & (3.92)

for all n2 N,
The Law of Large Numbers can easily be adapted to the case when the
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«'s have different mean values. It will be observed that nothing has been

said about the variance of the distributions, 1In faect, the theorem remains

true even if the variances do not exist. [f we assume that the variance of

any x exists and is equal to g2 the proof for the theorem follows as an

immediate consequence of the Bienaymé-Tshebycheff inequality (Exercise 3.2);

when applied to the variable x of variance o”/n this inequality can be written
52

P([xmn] 2 €) £ o

Thus, for a given £, the probability to have [X-u|>c can be made arbitrarily
small by choosing n large encugh.
In cases where the variances exist a much more precise statement can
he made about the behaviour of x when n becomes large. Tt turns ocut that x
5 to be mormally distributed in these situations, regardless of the dist-
“1itional shapes of the individual x's. This is the contents of the Ceniral

Limit Theorem , which will be discussed in Sect.4.8.8.

4. Special probability distributions

In this chapter we shall be concerned with an examination of those
ptobability distributions which are, probably, most frequently encountered in
practice. These distributions represent good approximations to 'real life",
and/or nave particular theoretical importance. Fortunately, they all possess
relative mathematical simplicity. In establishing the properties of the differ-
ent ideal distributions we will make use of the gemeral definitions and theotems
from the preceding chapter and, whenever possible, provide illustrations by
comnon, physical examples. The mathematical comnection between the different
probability distributions is worked out in some detailt); their physical comnec-
tion is also pointed out in some cases.

Inctuded in this chapter is a number of exercises. Some of these are
rather formal and serve to fill a gap in the proof of a statement in the fext,
which' usually requires little more tham just a computational effort. Other exer—
cises point out specific properties as well as useful relationships between the
different distributions. A few exercises introduce other probability distribu-
tions which are related to those discussed in the text. These may be less well-
known to particle physicists, but may have a direct, often quite simple mathe~
matical or physical content. Finally, some exercises are included which provide
the theoretical background for applications found in the later chapters of the
book .

A theoretically and practically important class of probability distri-
butions, the sampling distributions related to the normal p.d.f., is treated

separately in Chapter 5.

*

For a graphical illustration of the relationships between the probability
discributions, see Fig. 5.4 at the end of Chapter 5.




64

4.1 THE BINOMIAL DISTRIBUTION

We begin our discussion of probability distributions by considering
first a few examples of distributions of random variables of the diserete type.
The simplest situation one can think of involves a single, discrete variable

which describes an experiment with only two possible outcomes.

4.1.1 Definition and properties

Let us denote the two exclusive outcomes of a random experiment by A
and A; A is called a "success" and A a "failure", For each experiment or trial
let p (0 S p S 1) be the probability that a success occurs, and q=1-p the
probability for a failure. Then, in a sequence of n independent trials, the

probability to have a total of r successes and n-t failures is

B(r:n,p) = (:) pr(1_p)n—r' r=0,1,2,...y0 (4.1)

This is the binomial (or Bermoulli) distribution for the variable r with the
parameters n and p. The binomial coefficient :) takes account of the fact

that the order of the individual r successes apd n-r failures is immaterial,

ny . n! (=

() = mritor - () @
It is readily checked that the probabilities of eq.(4.1)} are properly normal- -
ized, since they add to unity when summed over all r,

y T in\r n-r S fo\roar n

1 B(rin,p) = } (r)p (-p7 " = ] (r)P = (pra) = 0. 4.3)

r=() =0 =

The binomial probabilities are invariant under the interchange

(r,p) <> {n-r,1-p),
B(r; n,p) = B(n—r;n,1-p). (4.4)

The binomial distribution has been tabulated in Appendix Table Al for
11 different values of p between 0.01 and 0.50, and for n up to 20. Appendix
Table A2 gives a corresponding tabulation of the cumulative binomial distribu-

tion,
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x
Flxinyp) = Y B(rinm,p), %= 0,1,...,0. {4.5)
r=0

The binomial distribution is symmetric when p=q (= 0.5), and otherwise
skew. Figure 4.1 shows illustrations of the distribution for two values of the
constant p (= 0.2, 0.5) and three different n (= 5,10,20). Tt is seen that the
distribution gets increasingly symmetric for higher values of n. When n becomes
large the binomial distribution takes an approximate normal (Gaussian) shape.
Compare Exercise 4.3.

The mean value and variance for a variable which is distributed accor-
ding to the binomial law, eq.(4#.1), can be found as follows. First, the mean
value of the distribution is obtained from the definition of the expectation
value of a discrete variable, eq.(3.82),

n

n
E(r) = ¥ rB(r;n,p) = } r(:)pr(1—p)n—r.
r=0

r=0
Since the first term drops out the summation limit can be changed from r=0 to
r=1, Writing out the binomial coefficient and extracting the factor np outside

the sum we get

n
= . Jn“ = :
E{r} = np [r§1(r—1)!((n—1) - P

1 1oy D (1)

.

With the substitutions s=r-1, m=n-1 the sum becomes

o m! 8 m-3 T fm\ s m-g

) T T P (1-p) =1 s fp C-p) = 1

s=0 3=0
from eq.(4.3). Hence the mean value of a variable with a binomial distributien
is

U =E(r) = np. (4.8)

To find the variance from eq.{3.83) we observe that one can write
B(r?) = E(r(r-1) + r) = E(x(r-1)) + E(r), vhere

o 1 _ n ¢ -
B(xem1) = §eed gy e - L mpteyr p 0ot
=0 ) ) r=

(n-2)° pr-z( 1-p) (n-2)-(r-2}

o 2
= n(ﬂ"l)pzrgz(r_2) v ((n_2)_(r_2)): - ﬂ(n_'i)P .
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The binomial distribution for indicated values of the parameters n,p.
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Exercise 4.2:
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The variance of the binomial variable is therefore
v(r} = E(r?) - (E())? = a(n-1)p® * np - (up)® = np(1-p) = npg. (4.7)

One is often interested in the quantity E. the relative number of

successes in n trials. For this variable the mean and variamce are given by

r

E(E) = %E(r) =5, (4.8)
2 -
v(ﬁ) - (&) w(r) = 20°p) _ BS (4.9)

Exercise 4.1 From the definition of the cumulative binomial distribution by
eqs.(4.1},{4.5), show that, fer 0 < x < n-1,

F{x;n,p) = 1 =~ F(nx~1;n,1-p).

Show from its definition by eq. (3 84) that the probabl.hty gene~
rating function for the binomial distribution is G(z) = (zp + q)

Exercise 4.3: Show from the definitions eqs.(3.20), (3.21) that the asymmetry
and kurtosis coefficients of the binomial distripution are given by, respect~
ively,

v1 = (1-2p)//ap(7-p), Yz = {1-6p(1~p})/ (mp(1-p)).
Observe from the expression for Yithat, for finite n, p < 0.5 (p > 0.5) implies
that the distribution is positively (negatively) skew and has & tail to the
right (left). Note also that both coefficients tend to zero when n becomes
large, indicating that the binomial distribution becomes similar to the normal
distribution (Sects.3.3.3 and 4.8.4).

4.1,2 Example: Histogramming events (1)

As an application of the binomial distribution suppose that we for
some reason are interested in just one particular bin of a compound histogram.
Then A (success) may correspond to getting an entry in this particelar bin, say
bin number i, and A (failure) corresponds to an entry in any other bin of the
histogram. With a total of n independent events the probability for having just
r events in bin i and the remaining n-r events distributed over the other bins
ig givenm by the binomial distribution law, eq.(4.1). The expected number of
events in the i—th bin is E{r) =np from eq.(4.6), and the variance of this num-

ber V(r) =np(1-p), eq.(4.7).

The probability p for a success is some constant whose exact value may

not be known prier to the experiment., When the experiment has been performed,
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giving r events in the i-th bin cut of a total of n events, we may adopt for p

its estimated value

p=p

2r

The number of successes r has an estimated variance
V(e) = mp(1-p) = rt- 3
and a standard deviation

o(r) = ve(1- 5 . (4.10)

The last result implies that the error on the number of events r in
the i-th bin is not VT, but a smaller quantity. Only in the limit when p + O,
usually corresponding to a large number of bins, is o(r) = /r. In fact, this
asymptotic limit reflects the condition for a variable with a Poisson distribu-

tion.

4.1,3 Example: Scanning efficiency (2)

We shall take up again the problem with the scanning efficiencies
which was introduced in Sect.2.3.11.

Suppose for the moment that we know the efficiencies €, and €; of two
individual, independent scans. The overall scaming efficiency e is then given
by

E =g, +Ez — E1E2 » . (4.11)

(compare eq.(2.23), which is the same, except for an obvicus change in notation).
We want to find expressions for the errcrs to be associated with the quantities
€1,E2,E.

The scanning process itself is of binomial nature, because either an
event is registered by the scanner, or it is not. We can therefore for the indi-
vidual scans apply the formulae of the binomial distribution. Thus the standard
deviation of the scamming efficiency for the i-th scan is obtained from eq.{4.9),

/'E_.FT.)'
og;) = L—-L;—lm , (4.12)

where N is the total number of events contained in the film,
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For the overall scanning efficiency the error is found by applying the
law of propagation of errors to eq.(4.11). If one assumes that £, and £, are

independent variables, the variance of € is given by

3E

2 2
V(g) = (551) a?(e1) +(g—§2) o(es). (4.13)

Hence eqs.(4.11)=(4,.13) lead to the following expression for the standard devia-

tion of the overall scanning efficiency,

{(1-£1) (1“52)(51*‘52“25162)'
o(e) = q . (4.14)

In the error formulae (4.12) and (4.14) N is the true number of events
contained in the film. Usually N is not known exactly and has to be estimated
from the number of events found in the two independent scans.

.Strictly speaking, the assumptions stated above are not fulfilled in
ptactice. Specifically, the efficiencies £1,£2 are not independently determined,
since they, as well as the total number of events N, have tc be estimated from
the number of events found in the two independent scans, as indicated by the
formulae derived in Sect,2.3.11. Thus a better estimate of the errors would
require a more elaborate treatment of the error propagation starting from the
observed quantities Ni,Nz,M12. This is presumably only seldom tried in practice,
since the systematic errors associated with the scanning procedure in most cases
are assumed to be more important than the pure statistical error in the overall

efficiency.

Exercise 4.4: (The geometric distribution)

(i}  Show that, if p is the probability for having a success in each binomial
trial, the probability that the first success occurs in the r-th trial is

Pi(rip) = pC-p)" ),

and verify that Py(r) with r=1,2,,., gives a correctly normalized probability
distribution for the occurrence of the first success.

(ii) Show that this geometrie distribution has the probability generating func-
tion

G(z) = pz/(1-qz), (q=1-p).

(iii) By the use of G(z), show that the mean and variance of this distribution
are given by, respectively,
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E(r) = 1/p, v(r) = (1-p)/p,
and that the asymmetry and curtosis coefficients are
Yi = (2-p) /T, Y2 = (p%-6p+6)/(1-p).

The geometric distribution is illustrated in the upper part of
Fig. 4.2 for a few values of the parameter p.

Exercise 4.5: {(The negative binomial distribution)

(i) Generalizing the situation from the preceding exercise, show that the
probability for obtaining the k-th success in the r-th trial is given by the
negative binomial (or Pasecal) distribution

B (mip) = ({::)Pk(1-p)r_k.

(ii)  Show that this probability distriburion has the properties

rek,k+l,.en.

E(r) = k/p,
1 = (2-p)/&(1-p),

. e : s k
{Hint: The probability generating function is G(z) = [pzl(1-qz)) ]
Note that this distribution is always positively skew.

v(r) = k(1-p)/p?,

Yz = {p®~6p+6)/k(1-p}.

(iii} Introduce the number of failures, s=r-k, and show that the probability
distribution for having s failures when the k—th success occurs can be written

P, (s5k) = (s+§'1)pk(1-p)s.

Verify that this distribution has the mean value shifted (reduced} by the amount
k, but that all central moments, and hence V(3),Yy,Y2, are as above.

The negative binomial distribution is shown in Fig. 4.2 for a few combi~-
nations of the parameters p and k. The probabilities for k=1 in the upper part
of the figure correspond to the geometric distribution of Exercise 4.4.

521,25 .00

Exercise 4.6: (The hypergeometric distribution (1))}

(i) Suppose_that of N elements, a have the attribute A and the remaining N-a
the attribute A. Show that, when n elements are picked at random and without
replacement from the total N elements, the probability that the random sample of
size n will contain r elements with the attribute A and n-r elements with the
attribute A, is given by the hypergeometric distribution,

rnmr = (),

(ii) Show that when N >> n, this distribution reduces to the ordinary bino-
mial distribution of eq.(4.1) with p=a/N, in accordance with common sense expec-

tation.

r=0,1....,mio{a,n),

The conditions above can be generalized to a classification in more
than two categories; see Exercise 4.8,
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Fig. 4.2. The negative binomial distribution (Exercise 4.5) for indicated values

of the parameters k,p. For k=1 one has the geometric distribution (Exercise 4.4},
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4.2 THE MULTINOMIAL DISTRIBUTION

4.2.1 Definition and properties

The generalization of the binomial conditions to the cage with more
than two pogsible outcomes of an experimental trial leads to the multinomial
distribution law.

Let the possible outcomes define a set of categories or classes
A,,A,,...,AE. For each trial the probability of an outcome in the specific
class A; is p;. Then since every trial must give some outcome, the probabili-

ties must add to unity,

Ep. = 1, ('!‘- 5}
1=

Now we assume that the outcomes of different trials are independent. After n
independent trials the probability of having a final result with LITLETERRT %

outcomes in the different classes is given by

Ty r T
—v pilpz’ gk, (4.16)

M(rin,p) = o
: T

Fq.(4.16) gives the multinomial distribution of the variables r = {rl,rz,...,rk}
for the parameters n and p = {pl,pz,...pk}. The t; are not all independent,

since
Yr, =n, (4.17)
i

Evidently the multinomial distribution eq.({4.16) incliudes the binomial
distribution eq.(4.1) as a gpecial case. In addition it has the following prop—

erties:
(1) The expectation value for class Ay is E(ri) = mp, .
(ii) The variance for class A, is V{(r;) = np;(1-p,).
(iii) The covariance for classes Ai’Aj is COV(fi:rj) = 'ﬂpipj-

(iv) When n becomes large the multinomial distribution tends to a

multinormal distribution.
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To prove properties (i} and (ii), notice that the probability for get-

ting r, outcomes in the class i in a total of n trials is

n T n-r-:

This is an example of the binomial case: either a trial gives an outcome in the
class Ai (the probability for this occurrence being pi) or it does not (probabi-
lity 1-p;). Therefore the formlae from the binomial distribution eqs.(4.6),
(4.7) can be taken over to give the expectation and variance in one particular
class.

To prove property (iii), consider the two c¢lasses Ai and Aj together.
The probability for r, outcomes in A, and i outcomes in Aj’ and with the cut-

comes of the remaining n—ri-rj trials distributed over all other classes, is

n' r: Y. n-r,-r
T e oo b:lop:d (-p,-pl)y i,
ri.rj.(n . rj). i Al i*j

It is easy to show that the expectation value of the product T with the p.d.f.
of eq.{4.16) is
E(rirj) = n(n—1)pipj. (4.18)

With this result one gets the covariance from eq.(3.39),

LR 4

cov(rirj) = E(rirj) - E(ri)-E(rj) = “(“")pipj - (npi)(npj) = iR

which was stated above.

Notice that the contents in the two classes are always negatively corre-

lated. In terms of the correlation coefficient from eq.(3.40) one has

cov(r,,r.) P.D.
= ) .. v 1]
n(ri'rj) 0,0, (1-pi)(1—pj) : (4.19)

]

Exercisze 4.7: Prove eq.(4.18),
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4.2.2 Example: Histogramming events (2)

As an example of the multinomial distribution we consider n events
distributed among k bins in a histogram. Then P; is the probability that an
event will fall in bin number i, and t; is the number of events in this bin. The

mean value and variance of the variable r; are, respectively,

E(ri) = np; , v(r;) = npi(1-pi) .

1f pi<<1, corresponding to a distribution with many bins in general, we have
V(ri)rx np; = ¥, and the standard deviation becomes U(ri) u/i'?.

The covariance for the number of events in bins i and j is the negative
number

cov(ri,rj) = = nPint

Thus the correlation between two bins is only negligible if the probabilities for
the two bins are small, corresponding to a histogram with many bins.

The multinomial classification considers n, the total number of events,
a fixed number (parameter). If instead we regard the number of events T in the

different bins gs independent, random variables of the Poisson types, they will

|
have standard deviations u(ri)=¢ri. and the total number of events n’i§1ri will

then be a random variable of the Poissen type; see Exercise 4.18 and Sect.4.4.4.

Exercise 4.8: (The generalized hypergeometric distribution (2)) |

(i} A population consists of N elements which can be classified into k |
different categories.k There are a, elements in the first category, a, in the

second, and so on, .§1a.=N. Show that, if a random sample of size n is drawn
from this population} &ﬁat is, if n elements are picked at random among the N
elements and without replacement}, the probability distribution for obtaining

rl,rz,...,rk elements of the different categories is

P(1;W,n,3) = (N)wl T (ai) ’

.,min{ai.nh

r.=0,14..
Moqar VY i
k I
where .IL. r.=n.
14171
(ii) Show that if the populatiom is very large compared to the size of the

sample (N>>n), this distribution reduces to the multinomial distribution, of
eq.{4.16) with Pi-ai/N’ i=1,2,...,k.

e
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4.3 THE POISSON DISTRIBUTION

4.3.1 Definition and properties

With binomial conditions it sometimes happens that the rate p of "suc-
cesses” is very small. In a long series of n trials the total number of succes-—
ses np may, however, still be considerable. It is therefore appealing to examine
mathematically the limiting case of the binomial distribution, when p+0, n+w
in such a way that the product np remains constant and equal to y, say. From
Stirling's formula for the factorial of a large number, n'27a n'e ", we have

under these conditions for the terms of the binomial distributiom

' T

n. t 1 n-r 1
TeepyT PR o

AT
l Zﬂ(n—r)(n—r)n-r e-(n*r) n n

ut 1—En
n,r nj *

1
ol k]
el

L) b

Thus, we can write

1 -
P(r;u) = —T-ure u, =0,1,2,... (4.20)
Tt

This is the Poisson dietribution for the discrete variable r, with the parameter

(mean value) y,

The distribution of eq.(4.20) is evidently correctly normalized. The
probability generating function (eq.(3.B4)) becomes

o - -]

- 1 - -

E(z") = ] 2* :.— ue ™ s ! rr(uz)re Voo gz,
=0 ) ., r=Q "

HE

G(z) (4.21)

From the general expressions eqs.(3.85), (3.86) the expectation and veriance of
the distribution come out as

E(r) = G'(1) = p,
2
V{r}) = @&"(1} + (N - [G'(‘)I = H.
Thus the Poigson distribution has the property thar the mean equals the variance,

E(r) = V(r) = 1. (4.22)

4 - Probability and statistics.
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The Ppisson distribution is very asymmetric for small p and has & tail
to the right of the mean. Quantitatively, the asymmetry is expressed by the

positive skewness coefficient (eq.(3.20))

Yy = (4.23)

1

i

i

which approaches zero whem | gets large. Asymptotically, when U goes towards
infinity the Poisson distribution becomes identical to the normal distribution.
As will be seen from Fig. 4.3 thesimilarity between these two distributions is
rather close already at u=20.

From eq.(4.20) we observe that

P(r;u) = P(r=t;1)- % R (4.28)

and the probability will therefore increase from r=0,1,2 etc. so long as r < u.
The maximum probability is at r = [u}, and with an equal, adjacent maximum at
u=-1 if ¢ is an integer; see Fig. 4.3,

The Poisson distribution of eq.{4.20) has been tabulated in Appendix
Table A3 for values of U between 0.1 and 20. Appendix Table A4 gives a similar

tabulation of the cumulative Poisson distribution

x
F(x;u) = 3 P(riu). (4.25)

=0

The tables of the Poisson distribution involve only one parameter and
are easier to work with than the corresponding tables of the two-parameter binmo-
mial distribution. Because of the limiting relationship, the tables of the
Poisson distribution represent a convenient approXimation of the binomial tables
when p is small apd n sufficiently large (p=np).

There exists a useful relationship between the cumulative Poisson sum
of eq.(4.25) and the cumulative integral of the chi-square distribution, which
we shall discuss in Chapter 5,
2u
ff(u;v=2x+2)du-
0
Here £(u;Vv) is the chi-square p.d.f. with v degrees of freedom, and the quantity

Flxsu) = 1 - (4.26)

on the right-hand side has been displayed graphically for different v in Fig.5.2.
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From this graph one can therefore read off directly the value of F{x;u) on the

curve for w=2x+2 at the value u=2y.

Exercise 4.9: Derive the mean value and the variance of the Poisson distribution
by carrying out the summations for E(r) and E(r?) with the probability distri-
bution (4.20).

Exercige 4.10: Show that the Poisgon distribution has the probability generating
function G{z) = exp(u(z-1)).

Exercise 4.11: Show that the asymmetry and kurtosis coefficients of the Poisson
distribution are given by yy=1/vU and Y,=1/1, respectively. Both coefficients
tend to zero when U gets large, indicating an increasing similarity to the nor-
mal distribution (Sect.4.8.1).

Exercise 4.12: Show that the Poisson distribution has algebraic moments connec—
ted bythe relation
du!

' = t —k
s “(” x T )

Exercise 4.13: Show that the Poisson distribution has the characteristic fune-
tion &(t) = exp(u(elt-1)).

4.3.2 The Poisson assumptions

Example: Bubbles along a track in a bubble chamber

In the previous section the Poisson distribution was introduced as a
limiting case of the binomial distribution. To get more insight into its mean-
ing and applicability as well as the basic assumptions underlying a Poisson law
we discuss next in this and the following section two exawples of physical pro-
cesses which are well described by this law. In fact, starting from first prin-
ciples we shall now derive the Poisson distribution formula.

Let us here think of the distribution of bubbles formed along the
paths of charged particles in a bubble chamber. We assume for the moment that
the size of the bubbles can be ignored and that the mean number of bubbles per
unit length along the track is comstant. We denote this average bubble density
by g, and consider a small length AL of the track. The three basic Pofsson
agsumptions may then be formulated as follows:
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(i) There is at most ome bubble in the interval [2,%+AL]).

(ii) The probability for finding one bubble in this interval is pro-
portional to Af.

(iii) The occurrence of a bubble in the interval [£,8+AL] is indepen-—
dent of the occurrence of bubbles in any other non-overlapping

interval.

From assumptions (i) and (ii) the probability that there is one bubble
in the interval [R,2+AL] is

Py (AR) = gAR,
while the probability that there is no bubble in the interval is
Po(Ai) =1 = Pi(AL) = 1 — gAl.

Asgumption (iii) implies that the occurrence of no bubble in AL is independent
of the presence of no bubbles over the distance %, and hemce a factorization of

the probability for the occurrence of no bubbles over the length L+A%
P (i+AL) = Po(ﬁ)Po(AE).

Combining the last two expressions we may write

P (R+AR) - P (L)
g (D)
AL o '
When A% + 0 the left-hand side of this expression is the derivative of Po(l)

with respect to £, hence we get

dP_(2)

—3F " " 2R (L. (6.27

The differential equation (4.27) can, because of the assumed constancy

of g, easily be solved with the boundary condition PO(O) =1,

gl

?ﬂ(l) = g‘ . (4-28)
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Thisformula gives the probability that there are no bubbles over the length %.
Let us next find the probability for observing r bubbles within the
length %. Since there can be at most one bubble in the small interval [2,R+A81

we may write
pr(E+AE) = Pr(z)-Po(Aﬁ) + Pr_1(2)-P1(AE),

where the first term on the right implies all r bubbles in £, and the second
term implies (r—1) bubbles in % and ome bubble in Af%. Introducing the probabi-
lities Po(Aﬂ) and P (AR) from assumptions (i) and (ii) we get after rearranging
P_(L+A2) - P (%)
Tt ) e ()
Again, when AL + ¢, the left~hand side is a derivative, and leads to the differ-

ential eguation

dPr(E)

“—;E'— = - gr (R) +gP (). (4.29)
The sojution of this equation is

(0 -1 0T (4.30)

which gives the distribution of the number of bubbles r in intervals of fixed
length £. It is seen that eq.(4.30) pives a Poisson distribution with the para-
meter (gl). Specifically it includes eq.(%4.28) as a special case.

It may be appropriate to emphasize that eq.(4.30) describes the fre-
quency distribution for the discrete variable r, with & (or, strictly speaking.
gl) as a parameter of the distribution. From the Poisson assumptions one can
also turn the problem around and seek the distribution in the eomtinucus vari-
able & for specified values of the parameter r. In other words, one can ask for
the probability to have a total distance £ of the track to find exactly v bub~
bles, given that the average probability to find a bubble is constant aleng the
track and equal to g per unit length. This problem will be investigated later
in Sects.4.& and 4.7, and as we shall see, it will lead us to a specific class
of the gamma distributions, including the well-known exponential distribution

law.

i
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Let it also be pointed out that it is essential in the derivation of
the formulae above that the average bubble density g per unit length is a

oongtant, independent of L. If g=g(2) the resulting distribution of bubbles

will not be Poisson but some other, genmerally unknown, distribution; see also

Exercise 4.35.

Exercise 4.14: Verify that eq.(4.30) is the sclution of eq.(4.29).

Exercise 4.15: Suppose that the average bhubble density of minimum ionizing
particles of charge e in a bubble chamber is 9 bubbles per cm. What is the
probability that a relativistic particle will produce only 1 bubble per cm,
equal to the bubble density expected from a quark of charge *1/3e? If the mini-
mum jonization were two times larger, #.s. 18 bubbles per cm, what would then
the probability be for observing a track with 1/9 of this average bubble den-
sity?

Exercise 4.16: The number of beam particles per pulse is assumed to be Poigsgon
distributed. If it is known that the average mumber of particles per pulse is
16, what is the probability that a pulse will have between 12 and 20 particles?
(Answer: 0.74%1,}) -~ See also Exercise 4.40.

Exercise 4.17: In an experimental search for weak neutral currents 9 candidates
were observed for the meutrino reactions
o
VEp v tp T,
+
VP FVAEDFT .
The candidates could, however, also be interpreted as background events due to
the neutron reactions
atprnspen,
n+tp+n+n+ W+-
From identified events of the type n+pp+p+T the expected number of background
events was estimated to be 4.9, Assuming that the uumber of background events
is Poisson distributed with mean value 4.9, what is the probability to have 9 or

more background events? Do you consider that this experiment indicates the pre-
sence of weak neutral currents?

4.3,3 Example: Radioactive emissions

A frequently cited example on a Poisson process is that of particle
emigsion from a radioactive source. If the particles are emitted from the
source at an average rate of Ax particles per unit time the number of emissions

t, in fixed time intervals t follows a Poisson law with mean Axt.
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PGl o) = 1o (A0 X e xE,
X
Suppose now that the source is placed in surroundings where the back-
ground of radicactive emissions is given by an average rate Ab particles per
Then the number T
length t is Poisson distributed with mean Abt,

T X
P(r A ) = -1;..(%:) be

Accessible for measurement is the sum of background and source emissions.

upit time. of background emissions in time intervals of

Let
the number of counts in an interval t be denoted by r. The distribution for the

variable r can then be expressed as

P(rsd tih t) { R(r-ry ;3 t) “P(r shyt)

rb-o

1 r-r, A t][1 Ty
Ty T P e "][g:(%t’

-A'bt]

r, =0
1 L T, Ty (et )t
i ?;-“;'5"?*“ B POy P e TR,

or,

e-—()\x+kb)t zp

POEsA A0 = 2r(0 33 e (1,26, {4.31)

Thus the observed emissions are also Poisson distributed, with a rate equal to
the sum of the rates of the source and background.

With this example we have arrived at the addition theorem for Poisson
distributed variables. The

gsum of any number of independent Poisson variables is itself a Poisson variable

The generalization to more variables is obvioust

with mean value equal to the sum of the individual means. See also Exercise

4.18 below.

Exercise 4.18:
mean values U|,uz.---.un-

Let r1sF2,..+,¢_ be a set of independent Poisson variebles with
Show, using the characteristic function technique of

E T,
i=t1

Sect.3.4 and the result of Exercise 4.13, that T = is also a Poisson

E B
i=1 )

varisble with mean vajue U =

o
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4.4  RELATIONSHIPS BETWEEN THE POISSON AND OTHER PROBABILITY DISTRIBUTIONS
The Poisson distribution has some interesting comnections to other
We will

in the following indicate how the same mathematical relationships between the

probability distributions which are useful for physical applications.

Poisson and other distributions can come out when a physical problem is attacked
from different viewpoints which may at firat appear rather dissimilar. We study
in particular the connections between the Poisson and binomial/multinomial dis-
tribution laws which are important for many practical problems. In the final

section we indicate an extension to the compound Poisson distribution, adequate

for the description of chained reactions.
4.4.1

Example: Distribution of counts from an inefficient counter

" Suppose that charged particles are counted by some electronic device
which has a probability p < 1 for registering a particle traversing it; the
regigtration probability is the same for all particles. We assume further that
the number of particles n entering and traversing the device in fixed time inter—
vals t is Poisson distributed with mean value v. We want to find the distribu—
tion for the number of registrations r over time intervals of length t.

To have r counts by the inefficient device at least r particles must
have traversed it. The probability we seek is therefore obtained by adding all
probabilities that will give r registrations. For a given n the probability of
getting r counts is given by the binomial law. Thus, when all conditional pro-

babilities are added with n running from r to infinity, we get

P(r) = I B(rim,p) -P{n;V)
n=r
- Lot o) e 0 )
__]]:_!_ (o0E uz ("113"'((1'1’)")“—1- "}-T(pv)r v_e(1-p)v,
n=r
or,
B( 1 r _-pv
1) =) e P, t =0, 1., (4.32)

which ig nothing but a Poisson distribution with mean value pv.
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An inefficient counter of the above type has the property that it
picks a random sample from the parent population. With a Peisson population the
random sample was found to be of the Poisson type. Conversely, the sample will

only be Poisson distributed if the population was Poisson.

4.4.2 Example: Subdivision of a counting interval

We assume that a detector registers particles over periods of T sec—
onds and that the number of counts n follows a Poisson law with mean value v=AT.
We want to find the distribution describing the number of counts r inm an inter-

val of t seconds, where t < T.

From the specification above the counts occur at a rate of X counts
per second, Since the basic process is of the Poisson type the occurrences of
events in two non—overlapping time intervals are independent. The probability
to have T counts in the interval t and n-t counts in the remaining time T-t is

therefore equal to the product of the two Poisson probabilities,
B(r) = P(r;At)-B(n-r;A(T-t)).

This is not the probability distribution we seek, because the normalization is
not correct. We need the conditienal probability to have r and n=r counts,
given a total n counts. The conditional probability is therefore ohtained by
dividing P(r) by the Poisson probability for n counts in the time T, thus
P{r; ) {n-r;A (1)}

P{n; ) *

P(r in t, n-r in T-t|n in T) =

Substituting the explicit Poisson probabilities on the right-hand side and re-

arranging terms we get

' T -r
B(r in t, n-r in T-t]n inT) = ;iiﬁi;jT'(%) 0 - %) = B(r;n.%).(4.33)
This is a binomial! distribution law for the variable r, with parameters o and
t/T.
The result found is identical to what we would have obtained with a
less sophisticated approach, considering the total number of counts n a fixed

number, equal to the number of independent binomial "etrials". 1In this line of
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thought a "success" would correspond to having the count occur in the time t,
while a "failure" would be that it occurred in the remaining time T-t. With an
average counting rate n/T per second,the success rate, or the probability for

each count occurring in the time t, is p= %(n/T)t=tlT. Thus the probability for

r counts in t and nr counts in T-t is given by the eXpression above.

4.4.3 Relation between binomial and Peisson distributions

Example: Forward-backward classificationm

The mathematical relationship between the binomial and the Poisson pro-
babilities of the preceding section can be derived from an alternative point of
view, assuming two variables related in a binomial distribution, with their sum
obeying a Poisson law, The formulation below involving two variables can easgily
be generalized to several variables, see the subsequent section.

For the moment, let us suppose that we make a classification of par—
ticles in two categories, "forward" and "backward", accoerding to their production
angle in an overall centre-of-mass system. The total number of particles n is
assumed to be a Poisson variable with mean value v, For any n the number of
partieles in the forward (f) and backward (b} hemisphetes are conditioned through
a binomial law, which we write

B(f,bin,p,q) = —f-'v%r pfqb-

Here p and q are the comnstants describing the fractions of forward and backward
particles, respectively, The joint probability distributicn for all three vari-
ables £, b and n becomes therefore

P{f,b,n) = B(f,b;n,p,q) -P(n;v) = (?%%T pfqb)-(%T vne-v).

Using the facts that p+q=! and f+ben this can be written

P(f,b,n) = (%T(vp)fe_w) '('g—r(\’q)be_w) )
which is nothing but a product of two Poisson probabilities for the variables f
and b with mean values vp and vq, respectively,

P(f,b,n) = P(f;vp)-P(b;va). (4.34)
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The explicit n-dependence therefore dtops out on the right-hand side.

The last formulas could of course have been written down immediately if
we had assumed f and b to be two independent Poisson variables.

It will be seen that the present and the preceding section are mathe~
matically equivalent, 1in the sense that they invelve the game Poisson and bino-
mial factors, but in different order.

Exercise 4.19: An experiment is made to measure the Goldhaber asymmetry coef-
ficient

(i) Show that, if f and b are congidered two independent Poigson variables, the
variance of Y is approximately

V(y) = 4Eb/ (f+b) %,
(Hint: Use the law of error propagation, eq.(3.77).)

(ii) Show that, if n is considered fixed, with f and b conditioned iq a binomial
law with cowstants n,p,q, the variance is given by the exact expression

V(y) = 4pg/n.,
which coincides with the result from (i), provided p and q are replaced by thelr
estimated values, p=p=f/n, g=g=b/n.

4.4.4 Relation between multinomial and Poisson distributions

Example: Histogramming events {(3)

Suppose that k variables ri,tz,...,r, are dependently distributed
according to the multinomial distribution law, eg.(4.16), in such a way that
their sum n is a Poisson variable with mean value V. The joint distribution is

then equal to the preduct of the multinomial and the Poisson probabilities,

P(l’],l’z,---,rk,n) = H(_E;“’E_)'P(n;\’)

r); 2 T
n! 1 kY, n —v)
= (rlﬂrgl...ré P1 PzecePy ) (;TM e Je

k r
Since .§1pi-1, I g =n, this can be organized to give
1= -
i=1
N -
1 ry -vp 1 Ty ~Vp2 1 Fp ~VPy
P(f1:T2,...T;,0) = (;T:(Up1) te 1)(;;1(UP2) e )"(;;!(vpk) & VPK), (4.35)

e E——
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Thus the joint distribution is equal to a product of k Poisson distributions,
the i-th variable T, having the mean value (vpi).

This result can be applied to considerations over the contents of a
histogram with k bine. If the total number of entries n is a Poisson variable,
it is appropriate to regard the numbers of events in each bin, ri,i-1,2,...,k
as independent Poisson variables. Thus, for each bin, E(ri)=V(ri)=ri, as stated
in Sect. 4.2.2,

4.4.5 The compound Poisson distribution

Example: Droplet formation along tracks in cloud chamber

Let F1alzaes iyt be a set of n independent Poisson variables with com
men mean value Y, and let alse n be Poisson distributed with mean value v. We
want to find the distribution of the sum r=i§1ri.

From the definition of marginal probability the probability P(r) we

seek will be the sum of all probabilities that produce exactly r "events", hence

a0
n
P(r) = § P(r=;1,r.5u) P(nv),
2174
n=0
4 s 1] a £ n
Here P(n;Vv) is the Poisson distribution for the variable n, and P(r=i§1ri;u)
is the joint probability distribution for the n constituent variables Ty which
according to the addition theorem for Poisson variables (see Sect.4.3.3 and
Exercise 4.18) is the Poisson distribution P(r;np). Hence

P(r) = ] {(%'(nu)re_nu)(%,vne-v)} ' r=0,1,... (4.36)
n=( : :

This is the compound Poisson distribution.

The compound Poisson distribution has the probability generating func-
tion

6(2) = exp(ve”‘z‘” - v) , (6.37)

from which all moments can be derived. Specifically, the mean and variance come

out as

E(r) = uv, v(r) = plu+rNv. (4.38)

P
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The compound Poisson distribution is applicable whenever a random pro-
cess of the Poisson type initiates another. In nature, one can find many exam-
ples on chained reactions, where the products frem one type of reaction gives
rise to a second generation of random events., For instance, it has been sugges—
red {by R.K. Adair and H. Kagha) that the formation of droplets along the tracks
of charged particles in a cloud chamber provides an example on chained Poisson
processes and should be described by the compound Poisson distribution rather
than by the simple Poisson law. The physical argument is that the charged par-
ticle on its passage through matter will experience a series of elementary secat-
terings, the number of which, over fixed lengths, will be Poisson distributed,
and further the number of droplets produced in each scattering event is also
adequately described by a Poisson law. The number of droplets r over fixed
lengths will then be given by eq.(4,36}, where u gives the mean number of drop-
lets per elementary scattering and v the mean number of scatterings over the

fixed length.

Exercise 4.20: In the example in the text, let L denote the fixed length over
which the droplets are counted, and put V=AL whete X is the average number of
scatterings per unit lemgth. Writing the probability generating function in the
form G(z,L)=exp (ALeH(Z"1)~AL}), show that, with L=2)+L2.,

Gz, L1+22) = G(Z,R;) *G(zs0s) -

This factorization property implies that the number of droplets over each of the
two non-overlapping lengths %) and &, will also be distributed according to the
compound Poisson law. The result can obviously be generalized to any number of
non-over lapping lengths.

Exercise 4.21: {The general compound Poisson distribution)

(1) The conditions of the previous section can be generalized to situations
where the second generation of the hranching process is describable by any

{<.e, not necessarily Poisson) distribution. Specifically, let the number of
primaries © be Poiasson distridbuted (as before} with mean value v=it. Bach
primary gives rise to a mumber of secondaries r. which are distributed with a com-
mongmean value p. Show that the distribution ‘of the total number of secondaries
=4, 1, is given by the general compound Poisson distribution

[+ n _
Plr) = i Plr= E ri;U)(%t()\t)ne At) ,
= i=1 "

n
where P(r= X ri;p) is the joint distribution of the s given n.
i=1

a9

(ii) If the constituent variable

sr, h i1i i {
a(2). show thee the Drobapility ave the probability generating function

generating function of r is given by
G(z,t} = exp(Atg(z) - lt).

(iii) Show that the probabilit

property ¥ generating function hag the factorization

Gz, t1tty) = Glz,ry) Glz,t,)

and interpret the result. Compare Exercise 4.20.

4.5 THE UNIFORM DISTRIBTION

4.5.1 The uniform p.d.f,

In pagsing from discrete to continuous randem variables the simplest
Sltuation one can think of is that there is a single variable x for which the

probability density is constant over the region where x is defined. We write

¥
f{x) =3 ? ag{x<h, (6.39)

which gives the uniform probability density function.

The expectation and variance of x with the uniform p.d.f. become, from
eqs.(3.8) and (3.9),

E(x) = |xf(x)dx = i (a+b), (4.40)

1

(x-E(x)) 2 £{x)dx = = (b-a)?. (4.41)

Vix) = T3

B —g pY—

Since £(x} is symmetric about its mean all odd central moments vanish; the even

central moments can be found by trivial integration,

b
- i3 1 {b-a\2k
Hay I[xﬁE(x)] f(x)dx = f§§173(_§") , k=0,1,... (4.42)
a
The cumulative distribution for the wniform p.d.f. is
X
- ' _ Xa
P Sf(" = aSx3b. (4.43)
a

Fig. 4.4 illustrates f(x) and P(x) for the upiform distribution.
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f(x)4 F(x)4

a b X a

(o gl SR R

X

Fig. 4,4, The p.d.f. £(x) and the cumulative distribution F(x)
for a wniform distribution between x = a and x = b,

The uniform distribution, although extremely simple, is nevertheless

very useful; for example, any distribution of a continuous variable can be trans-

formed into a uniform distribution.
To see this, recall the definition of the cumulative distributien
function F(x) for an arbitrary continucus p.d.f. £(x),

x

F(x) = [f(x')dx'.

0

1f we make the substitution
u = F(x),

the new variable u will cover the region 0%ufl and be uniformly distributed,

because from eq.(3.60) its p.d.f. becomes

| -1
g(u) = f(x)‘%% = f(x)|(%£) | = 1.

An example on the usefulress of this transformation is given in Sect.10.4.4.

Exercise 4.22: Show that the skewness and kurtosis coefficients for the uniform
distribution are Yy;=0 and Y;=-1.2, respectively.
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Exercise 4.23: Show that monoenergetic pions which decay in flight, m + p + v,
produce nmeutrinos with a uniform energy distribution in the laboratory system.
(Hint: The decay is isotropic in the pion rest system.)

Exercise 4.24: Let x be a continuous random variable which is uniformly diastri-

buted between 0 and 1. Show that the variable u=-2 Inx has the p.d.f.
g{wmlexp(~4u) {(the chi-square distribution with 2 degrees of freedom).

4.5.2 Example: Uniform random number generators

As-an example of an approximative uniform distribution one can con-
sider the frequency distribution of a sample of numbers obtained from a random
number generator.

Truly random numbers can be constructed by rolling dice, dealing cards
or be generated by special mechanical machines, Such methods are, however, slow
and only of limited practical use.

Large samples of numbers "chosen at rapndom” are frequently needed, for
example in Monte Carlo simulations and integrations. Many algorithms have been
invented to produce them by computers. These algorithms give prescriptions on
how to derive sequences of numbers X,,X;,;Xgs;.+. which are "evenly" and "ran-
domly" distributed in a given interval. The numbers are obtained by a recurring

arithmetic process,
Kiar = BOGHX foeeaxyy )y

where g is some generating function and k is usually 1 or 2. Each number X in
the sequence will therefore be completely determined by its predecessors and the
given starting value(s). Thus the sequence is not random, but it will appear to
be so for most practical applications. The sequence will always be periodic,
with a cycle of numbers which is repeated endlessly. The length of the periodic
cycle is determined by the chosen algorithm, and has an upper limit implied by
the computer word 1ength*).

Random numbers generated by recursion formulae are in the technical

literature called pseudo-random or quasi-remdom.

*) A specific algorithm producing sequences of period m is given by the linear
aongruential method as x, .=(ax,+c)modm, where the constants have been
properly adjusted and thé user only selects the starting value X -
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Exercige 4.25: A random number generator produces numbers x, which are uniformly
distributed between 0 and 1. We seek a generator for a new Tandom number y
defined over the interval [A,B], which corresponds to the probability density
f(y). Definimg a function y,=y(x.) by
1 1
y(Ki)
% = J f(t)de ,

A
show that y, has the desired distribution. Specifically, show that the
exponentialldiatribution f(y)=exp(-y) for 0<y<e can be simulated by taking

v, = - 1n(1-xi) .

4.6 THE EXPONENTIAL DISTRIBUTION

4.6.1 Definition and properties

The exponential p.d.f. is defined as
. 1 =x/B <
f{x;B) = ze ’ 0Sx%=, {4.44)

for positive values of the scale parameter B. The mean and variance for this

distribution are given by, respectively,
E(x) =B, (4.45)
v(x) = 8% (4.46)
The asymmetry and kurtosis coefficients are constants, and independent of 8,
Y1 =2, Y2 = 6. (4.47)

The expomential distribution describes a variety of physical phenomena.
It can easily be derived from the Poisson assumptions for individual "random"
events, as we shall see in the next section. Mathematically, the exponential
distribution is a special case of the more general gamma distribution discussed

in Sect.4.7.

Exercise 4.26: Show that the algebraic moments of the exponential distribution
are given by

k
. K _ gk
be = BB = kgt |

_ kT 1
r—U( R k-3¢ -
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4.6.2 Derivation of the exponential p.d.f. from the Poisgon assumptions

Let us go back to our earlier example {Sect.4.3.2) with bubbles along
the track of a charged particle in a bubble chamber, with the constant g giving
the number of (point-like) bubbles per unit length of the track.

We want now to find an expression for the probability that the first
bubble on a track occurs at a distance £ from the chosen origin. Since "the
first bubble in the interval {2,8+A2]" is equivalent to having no bubble in
[0,2] and one bubble in the non-overlapping interval [f,2+A2] the joint probabi-
lity for the occurrence of these two independent "events" is the product of the
probabilities for the individual events. Now we know that the probability for
no bubble over the length % is e B~ (from eq.(4.28), or the Poisson formula with
r=0) and that the probability for one bubble in AL is gif (the Poisson assump~
tions). The probability for the simulraneous events is therefore (e-gﬂ)-(gAﬂ)-
The probability density, 7.e. the probability per unit length, for finding the

first bubble at the position & becomes

£(238) = ge B, 0S8, (4.48)

The distribution law (4.48) can also be interpreted as the p.d.f. for
the distance % between two consecutive bubbles on the track. Hence the probabi-
lity for finding intervals of length <! between two adjacent bubbles is given by

the cumulative integral

F(g) = [f(i';g)d?.‘= 1- e 8, (4.69)
0

The probability for intervals >£ is
1 - F(e) = e 8%, (4.50)

The mean size of the intervals between two consecutive bubbles is, of course,
-1
E{l)=g .
If the bubbles are of non-negligible size the formula (4.48) still
gives the distribution of the distance between adjacent bubble centres. Assum
ing the bubbles to be of equal size with diameter d the distribution of the gap

lengths x=f~d between adjacent bubbles can also be expressed by the exponential
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law, as

£(x;g) = ge BT, 0Sxs™. .51

The parameter g will then have the interpretation of the inverse of the mean gap

length.

Exercise 4.,27: FoTl processes occurring randomly in time the probability density
for the events, decays, arrivals of particles into a detector, €tc., is eXpras-
sed as

£(t;1) = % e-tjr, 0=

t S ]

where the parameter T measures the mean lifetime, or the average time between
two consecutive events. Equivalently, in terms of the decay comstant A =1/T the
p.d.f. is

=Y
£(esh) = he T, 0% ¢t£w.

Review the considerations of the last section in this context. In particular,
find arguments for the common statement that "the exponential distribution has
no memory". This property is very useful in practice since it, for example,
allows one to measure the lifetimes of unstable particles starting from an arbi-
trary time £y after the time (t=0) they were created. See also Exercise 4.28
below.

Exercise 4.28: A neutrino beam is produced by decays of high-energy pions,
m > y+v. If the pions have momentum p, and the available decay region is of
length %, what fraction of the pions will produce neutrinos? As a numerical
example, take py=10.0GeV/c, 2=80 m, m =0.1396 GeV/c?, c1=7.8 m.

(Answer: 13.3%.)

Exercise 4.29: Decays from a radiocactive source of decay constant ) are regis~
tered by a Geiger counter of resolution time t, (7.e. a detector which fails inm
recording an event if it occurs separated in time from the previous event by an
amount less than t ). Lf N' counts are registered over the time t, show that
Fhe ?umber of decays N that have actually taken place in the radioactive sdurce
1s given by

y - e—lt

e-lto E-lt

N = N' = aN'

where a > 1,

Assume that the registered number of counts is a Poisson variable of
estimated mean yalue Q=N'. Show that the estimated variance in the true number
of decays is V(N) = aN > N, whereas yith a perfect detector, t0<<1/A, the
estimated variance would have been V{(N) = N.
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FExercise 4.30: (The hyperexponential distribution)

A superpesition of exponential probability distributions goes under
the name of the Ayperexponential distribution. 1In terms of a time variable t
the p.d.f. is

k
£(e5p,0) = | pdexp(=);0), 05Exe=,
i=1

where p, denotes the proportion of the i-th process (i¥1p.=?), for which the
decay cénstant is A,. Discuss the properties of this p.d.E.

This distfibution describes the effect of exponentials operatimg in

parallel . When exponential distributions of similar type operate in series,

the resulting distribution is an Erlangian distribution; see Sect.4.7.2.

4,7 THE GAMMA DISTRIBUTION

4,7.1 Definition and properties

With o and B as two positive constants we define the gamma diatribu-

tion by

£(x;0,8) = ———l—a-x“'1 e*x/B, 0SxSe, (4.52)
[ ()P
This function is seen to be properly normslized, in virtue of the gamma functionm,
o ol e
Py = |y e “dy {c¢ > 0) (4.53)
c
which has the property
T{a) = {(a=-1)T(a-1). (4.54)

The formula {4.52) produces a variety of shapes for different values
of the constant &, as indicated in Fig. 4.5. For af1 the distribution is
J-shaped, while o>1 gives a unimodal distribution with maximum at x=(a-1)B.

The parameter 8 is only a scale factor.

When o is an integer, o=k, ['(k)=(k-1)}! and the p.d.f. (4.52) is called
the Erlangtan distribution; this distribution law can be derived from first prinm
ciples and is discussed in the following section. The special case a=} corre-
sponds to the exponential distribution, which was treated already in Sect.4.6.

The specisl case B=2, u=-% where V is an integer is equivalent to the chi-
square digtribution with v degrees of freedom; this important distribution is

discussed quite extensively in Chapter 5.




O<a<1 a=1

=W

oy

le@«? f =2 f a>?

o

—

X X

xW

Fig. 4.5. Shapes of the gamma distribution for different parameter values.

Exercise 4.31: Show that the mean and variance of the gamma distribution are

given by,

respectively,
E(x) = of, vix) = aB?.

Exercise 4.32: Show that the gamma distribution has the characteristic function

d(v) = (1- i

Exercise 4.33: Show that the gamma distribution has asymmetry and kurtosis
coefficients given by, respectively,

vy = 2/4a, Y2 = la,

Exercise 4.34: (The beta distribution)

one side,

While the gamma distribution describes variables which are bounded at
the beta distribution

flx;u,v) = %%E;%%GT L 1(1—x) 0<x<

can be used to describe variables which are limited on two sides. The para—
meters U and VvV are both positive integers; the quantity B(u,v)SI(U)}T(v)/T{n+v)
is often called the beta function.

(i)
tively,

(ii)

Show that the mean and variance of the beta distribution are, respec-

T R N
EG) =935 V) = RS G

Show that the beta distribution is symmetric about x=} when p=v, and

reduces to the uniform p.d.f. for y=v=1.

(iii)
meters.

Sketch the beta distribution for the lowest combinations of the para-
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4.7.2 Derivation of the gamma p.d.f. from rhe Poisson assumptions

From a physicist's point of view the importance of the gamma distribu=
tion lies mainly in the fact that it, for integer values of the parameter a, can
be derived from the Poisson assumptions, and consequently describes random pro-
cesses of the Poisson type.

For definiteness, let us take the random variable to describe a time
interval. 1f } is the constant average number of events (decays, accidents,
ete.) per unit time, the Poisson prediction for the number of events r in the

time t is (eq.{4.30))

1 r -At
Pr(t;A) = ;1(At) e '
We want to find the distribution law for the time t at which the k-th event
occurs. ' Since the prubability for 0,%,...,k-1 events in the time t is

r -At

E P (t A = E i__l_____
=0 r=0
the probability that there are at least k events in the time t is

T _-At
R 6N = 1= [ lﬁﬁl——T—— . (4.55)

It can be shown by mathematical induction that the sum in eq.(4.55) canm be writ-

ten as an integral,

ki1(kc)re—lt . J k-1 e

do S T 4

Hence
k—1 -z At k=1 Pt
Fk(t;}\) =1= J (k—'l)' f (k= 1)1 *
At
Replacing z by Az leads to
}\kzk-‘le‘-)\z
Fk(t;k) = J___TE:TTT_ dz. (4.56)

4]
This is the cumulative integral of a probability density which is seen to be of
. 1 ,
the form of eq.(4.52), with the parameters a<k (integer}, Re =, 4.2, an Erlan—

gian p.d.f.; we write




| l“--lI-"l-lllllllIllIll-l.-llllII---llIl-..---.'-'-l-'-'l--"-l'...IIl!IIllIIllll.lllIl-..llIl.-IIllIllllllllIIllIIIIIIIlIlIIllIIIIIIIIIIIIIIIIIIIIIlI.
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k k-1 -At

TE:TTT t e ' 0SSt £m,.

£tk 0 = (4.57)

Since the cumulative distribution of eq.(4.56) gives the probability
that there are at least k events in the time t the p.d.f. £(t; k,A) will give
the probability density in t for the cccurrence of the k—-th event, when the
events occur independently and at an average rate of A per unit time. We ob-
serve in particular that the p.d.f. describing the occurrence of the first
event {(a decay, say) is f(t;1.l)=Ae—At, as it should be. The formula (4.57) can
also be interpreted as giving the distribution for the time elapsed between
In accordance with

{(k+1) consecutive events; corresponding to k "time gaps”.

this interpretation the expectation value for t is

E(O) = % =k (4.58)
in other words, the mean value of t is k times larger than the average length of
the time gap between two consecutive events.

To summarize, the Erlangian p.d.f. describes the (time) distribution of
exponentially distributed events occurring in series. (When exponentials operate

in parallel the result is the hyperexponential distribution, Exercise 4.30.}

Excrcise 4.35: Show that the mean value for the p.d.f. (4.57) is E(t}=k/X (eq.

%.58) and that the variance is v(t)=k/A%.

Exercise 4.36: (Connection between the Erlangian, Poisson, and negative bino-
mial distributions)

In the previous sections it has frequently beep emphasized that the
physical assumption underlying the Poisson distribution law is that the aver-
age event rate is constant. Suppose now that this conditicn is not fulfilled,
and that the average i is described by an Erlangian formula
Ak k=1 <hu

e

—_— = £ o
=17 0%

flpik,A) =

Given 1 a discrete variable s is supposed to be Poisson distributed with mean
value y. Show that the resulting probability distribution for s is

T k s
e - ot s - () -2
a

This is recognized as a negative binomial distribution with parameter p=i/{(A+1)
(Exercise 4.5) for which the mean value and variance are E(s)=k/} and
v(s)=k/h+k/)?, respectively.

-
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4.7.3 Example: On-line processing of batched events

As an application of the previous arguments, let us conmsider a queue-
ing problem involving the collecting and processing of data in an electronic
experiment. The direct measurements from a number of sequential events are
stored in an intermediate buffer and subsequently transferred to a central com
puting unit for processing. If the buffer runs full before the computer is
ready with the previous batch of events the transfer of the data is prohibited;
the buffer is then simply reset to zero and the data collecting is started anew.
How large a fraction of the events will in the long run get lost with this way
of operating the system?

The essential quantities in this problem are the event rate, the
buffer capacity and the computing speed, We will assume that the events occur
independently in time, at an average rate of A events per second. The buffer
has a capacity to store k events, and the computer processes the k events in T
seconds. We assume that the transfer time between the buffer and the central
memory is negligible and that the time required for resetting the buffer before
a new collecting peried can also be ignored.

With this formulation we recognize that the probability demsity func-
tion for the time t of a full buffer is given by the Erlangian formula {4.57).
The fraction F(T)} of rejected events then corresponds to the probability of get—
ting the k-th event before the time T, when the computer is still working with

the previous batch of events. Thus,

T TAktk"1 -At
F(T) = If(t;k.)\)dt = J-(k—_'{)—i- e "dt.
0

For a mnumerical example, suppose that the average event rate corre-—
sponds to A=0.5 s-l, the buffer capacity k=10, and the cemputer speed such that
one event is processed per second, or T=10 s for one batch of 10 events. With
this choice of constants the Erlangian p.d.f. £{tsk=10, A=}) is identical to a
chi-square p.d.f, with v=2k=20 degrees of freedom. The cumulative chi-square
distribution of Fig, 5.2 from Chapter 5 can then be used to read off the value

of F(T); we find
1

0
F(T) = Jf(u;v-ZO)du ~ 0.03.
1]

Thus only about 3% of the events will not be used in this case.
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X

Fig. 4.6. The normal p.d.f. W{u,02) for differeut values of the standard
deviation O,
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4.8 THE NORMAL, OR GAUSSIAN, DISTRIBUTION

We discuss next the rormal, or fauestian, probability density function

which plays a fundamental role in probability theory and statistics. We consider

it first as a function of only one variable; the extension to two and more vari-
ables iz made in Sects.4.9 and 4,10, respectively,

4:8.1 bPefinition and properties of N(u,o?)

The normal p.d.f, in one dimension has the general form

N(u,0?) = £(x) = Relca Vb

o £ X 5w (4.59)
/it

The expectation and the variance of x with this distribution can be found by

trivial integration from the definitions eqs.{3.8) and {3.9),
o

E(x) = f xf(x)dx = y, (4.60)

g 8

V() = [(x-wE(x)dx = of. (4.61)

8§ —

Hence' the parameters p and o of N{p,0°) have the usual meaning of the mean value
and variance (or dispersion) of a distribution.

The normal p.d.f. N(u,0?) is symmetric about x~, and hence the median
coincides with the mean. The p.d.f. also has its mode (maximum) at x=p, while
the two points of inflection occur at distances *¢ from this value. Figure 4.6

shows different normal distributions with a common mean.

Exercise 4.37: Show that the half-width of N(u,06%) at half-maximum is equal to
v2inZo s 1.180c,

Exercise 4.38: Show that if x is N(u,0%), then ax is W(ap,a’c?}.

4,8,2 The standard normal distribution N(0,1)

The general normal distribution M{}:,02) can be transformed to a com-

venient form by the standard transformation

= (4.62)
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Fig. 4.7. (a) The standard normal p.d.f. N(O,l?, . .
(b) The cumulative standard normal distribution.
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which implies a shift of the origin to the mean value and an appropriate change
of scale. This gives the standard normal p.d.f.

1 —fy?
gly) = — e Iy » —w Ly <o

N{0,1)
e ' (4.63)

which has mean value zero and standard deviation one. This p.d.f,

is tabulated
in Appendix Tahle AS5.

The cumulative standard normal distribution is given hy

¥
L 1] t "iy'z L]
Gly) = Jg(y Ydy' = f——— e dy (6.64)
/7T !

- -0

and is tabulated in Appendix Table A6, This function, which in the literature
is often called the standard normal distribution function {compare the footnote

in Sect.3.2), has the property
Gl-y) = 1 - €(y). (4.65)

Figure 4.7 shows the standard normal p.d.f, and ite cumulative distri-
bution.

Exercise 4.39: Verify that if x is N{p,0?) the variable y=(x-u)/o is N(0,1),

(eq.(4.63)). Show that u=y” has the p.d.f. f{u)= (21)“1u*iexp(-;u), (the chi-
square distribution with one degree of freedom).

4.8.3 Probability contents of N(p,0?)

The cumulative standard normal distribution G(y) is used in practice
to determine the probability contents of a given interval for a normally distri-

buted value, or vice versg, to determine an interval corresponding to a given
probability,

Let x be a random variable which is distributed according to the p.d.f.

N(u,0%) of eq.(4.59}. We want to find the probability that x falls between a

lowet limit a and an upper limit b, Clearly,
PlaSx<b)=P(x2b) -P(x%a).

On the right-hand-side the inequalities may be expressed in terms of the stan-
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dardized variable (x-u)/g, and we have

P{a £ x5Db) P(5§E-5 h%E) - P(Eéﬂ < Eaﬂ)

(b-u) /o (a-w) /o
gly"dy' - gly')dy'.

- sl

Hence

P(a g x <b) =c("—;’i)- c(a%'”), (4.66)

where G is the cumulative standard normal distribution of eq.(4.64). Given p,o®
and the interval [a,b] the actual function values of G can be found from, for
example, Fig. 4.7(b) or Appendix Table A6. Using the property of eq.{4.65) we
find the probability contents corresponding to the (symmetric) one-, two-, and

three standard deviation intervals about the mean up:

P(U~0 < x < 30 ) = 26(1) - 1 = 0.6827
P(U-20 £ x £ 1+20) = 2G(2) = 1 = 0.9545 (4.67)
P(U-30 < x £ p+do) = 2G(3) - 1 = 0.9973.

See the illustration of Fig. 4.8.
Suppose next that we have the opposite situation and want to deter—
mine the size of an interval which is to correspond te a given probability, say

0.90. Equation (4.66) is now

0.90 = G("‘T“) - c(i;l) , (4.68)

and with given parameters |,0 there are obviously infinitely many solutions for
the unknowns a,b. With the additional requirement that the interval [a,b]
should be symmetric about |, however, there is only ome unknown, say b. With

the use of eq.(4.65) we can then write eq.(4.66) as
T 4T TR TR Sl TR NP - T
0.90 = G(T) G( P ) ZG( P 1 '

c(b%“) - 1(140.90) = 0.95.

or
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N\

=30 p-20 p-0 @ p+0 pe20  pedo

Fig. 4.8, Probability contents of the mormal probability distribution N{u,0?).
The shaded area corresponds to the symmetric one-standard deviation interval
about the mean value, for which the probability is P(p-0 < x < utc) = (,6827;
the symmetric regions covering the two- and three standard deviation intervals
correspond to pro?abilities P(u-20 € x < w20) = 0.9545 and P(u-30 < x £ u+da)
= 0.9973, Fespectlvely, (eq.(4.67}). - The dotted lines indicate th;'exzénsion
of the regions which correspond to probabilities 0.90 and 0.95, {(eq.(4.69)).

Tnterpolation in Appendix Table A& then gives for the value of the argument of G
b-p
5 1,645,

Thus, given N(p,0%) the symmetric interval about W corresponding to the probabi-
lity 0.90 is

[u-1.6450, 1 + 1.645q] .

For any given probability ¥y between 0 and 1 one can proceed in a gimi-
lar manner to determine symmetric intervals around u.

Y =0,90, 0.95, 0.99, 0.999 often referred to, one has

For the common choices

P{(p-1.6450 € x < y+1.6450) =A0.90

P(u~1.9600 £ x £ p+1.9600) = 0.95

P(U-2.5760 £ x £ p+2.5760) = 0.99 (4.69)
P(u-3.2900 £ x < 1+3.2900) = 0.999 .
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The first two of these intervals are indicated in Fig. 4.8,
For practical purposes it may be useful to observe and remember that,
for a normal variable, the symmetric interval covering a probability 0.95 very

nearly coincides with the two-standard deviation interval.

Exercise 4.40: Tf x is normally distributed with mean and varian?e both equal
to 16, what is the probability that 12 € x < 20 7 Compare Exercise 4.16,

4.8.45 Central moments; the characteristic function

The central moments of the normal distribution of eq.(4.59) can be
obtained from the general definition by eq.(3.14). Clearly all odd central
moments vanish because of the symmetry property of the normalp.d.f. The even

moments can be evaluated in a straightforward way by carrying out integrations

of the type
= 2 2
W = J(x—u)Zk e (4.70)
x /2T o
tne finds
1
Moy = Zi%i(!cl)k, k=0,1,2,... (4.71)

Thus all central moments of the normal distribution can be expressed in terms of

the variance 0. The lowest of the even moments are

we =%, w = 3%, Ye = 150°. (4.72)

The asymmetry and kurtosis coefficients are both zero,

a ___EAT_ =9
" (llz)3 ?
4.73)
u
Yo = ——5-3=0,
(uy)

since the particular definition of the kurtosis coefficient by eq.{3.21) was

made to correspond to Yz=0 for the normal p.d.f,
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From the general definition of eq.{3.22) one finds the characteristic
function for the normal p.d.f. of eq.(4.59),

6(r) = E(eltY) - HiETIO"EE (4.74)

This form of the characteristic function is used to derive many theoretically
important properties of the normal distribution (see, for example, the following
sections). For the purpose of evaluating central moments of the normal p.d.£.

one may consider instead the fumction (eq.(3.28))
i 2p1 02
¢”(t) = e I"utq’(t:) = e!G (iv) ’
which has the series expansion
L APTIRY'3 4
- (it) 24T
MOR rEO o ahy ", (4.75)

According to eq.(3.27) the central moments are found by taking the derivatives
of ¢u(t) with respect to (it) and putting t=0,
- 2T T 69" o]
T oty T t=0 "
Since only even powers of t appear in the sum, all odd derivatives will vanish
when evaluated for t=0. Thus all odd central woments will be zero and only even

moments survive; it will be seen that eq.(4.71) is regained, as expected.

Exercise 4.41: Show that the central moments of the normal distribution satisfy
the relation d
3 u2k

- 2
Vogez T UMy Y 9T 5o k=0,1,...

Exercise 4.42: Show that the algebraic moments of the normal p.d.f, are connec-
ted through the relation
]
s
da

uI.c+2 = Zuu;+1 * (Uz-uz)ui ro ' k=0,1,...

4.8.5 Addition theorem for normally distributed variables

It frequently happens that one wants to know the distribution of a
variable which is a function of normally distributed variables, In particular,

one can have a linear function of normal varisbles, It turns out that a random

5 - Probability and statistics.
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variable which is a linear combination of independent, normally distributed ran-—
dom variables is itself normally distributed with mean and variance equal to the
sums of, respectively, the means and variances of the constituent variables.

To see this, let x; and X; be two independent varisbles with normal
digtributions N(yp;,0%) and N(u,,ci). respectively. Then, with a; and a, as con—
stants, we know that a;xy and azx, are independent, normal variables distributed
ag, respectively,

N(alul.afof) and N(azuz,agcg) {compare Exercise 4.38). Accor-

ding to eq.(4.74) their characteristic functions are

® (t) = (31U1)1t HETHE:
arxy

and

(t) = e(azU2)it—§(ﬂ%Ug)t2
az Xz

We consider the sum
¥ 5 axy toazxs,

Because of the independence of the two terms the characteristic function for y
is equal to the product of the characteristic functions for a,x; and a,x%, (this

is the result of Sect.3.5.7). From eq.(3.51), therefore

= . = (a;u+azuz)it-) (afol+adod)t
¢y(t) = ¢a1xl(t) ¢a x () e

But this is nothing but a new characteristic function of the form of eq.{4.74);
hence v is distributed as N(alul+a2Uz,a¥Uf+a§c%).
The proof can clearly be extended to any number of independent, normal

variables. So we may formulate the addition theorem for normally distributed

variables as follows:

Let X1,%p,..00% be independent, normally distributed variables

such that x; is N(u.,o?). Then the linear conbination y=; Z a,

=174 *
is also a normally distributed variable, with mean E au, and
variance Z 3202 i=1

i=1

An application of this theorem is given in the following sectiom.

T
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z

4.8.6 Properties of x and s° for sample from N(p,0?)

We assume that n independent random variables are all normally distri-
buted with mean p and variance o®. The variables K1,%zy ..., X  aTe said to be a

random sample of size n drawn from the normal population (or universe) N(p,o?}.

" The sample has a mean and a variance given by the general formulae eqs.(3.87) -

(3.88),

co1d SR PO
x a i=1xi, s L (xi x®)“,

From the preceding section we are now able to state the distributional
properties of the sample mean x. With the notation of Sect.4.8.5 x is a linear
function of the independent, normal variables X, with all coefficients equal,
a;= %. Hence, according to the addition theorem for notmally distributed vari-
ablea, * will also be a normal variable, with mean g a, . =y and variance

Z azc =g /n' thus
i=q
-, . a?
x is distributed as N(p, a ).

It will be demonstrated in Sect.5.1.6 that the sample variance s® for
the normal sample is related to the chi-square distribution with n-1 degrees

of freedom, ¥*(n-1). Specifically,

o1y a2
£Eaél§ is distributed as xZ(n-1),

Furthermore, x and s? for the normal sample are independent variables (see
Exercise 3.9). This is a property which is specific for the normal sample,
The outstanding position of the normal distributionm in this respect is explicit

in the following important theorem:

Given that the random variables K1pXys.-eaX  are independent, with
identicsl normal distributzons, then the two variables (statistics)
x= E xlln and 8= E (x -x)%/(n-1) are independent. Conversely, if
th:géean % and varlance 3? of random samples from a population ate

independent, that population must be mormal.
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4.8.7 Example: Position and width of resonance peak

To illustrate the implication of the foregoing let us consider as an
example the determination of the position and width of a resonance peak in an
effective mass spectrum.

For simplicity we assume that the background problem does not exist,
From the observation of n events with effective-masses Ml,Mg,...,Mn in the
appropriate regiom of the spectrum the true mass ¥ and width TO of the peak

can be estimated by, respectively, the arithmetic mean of the sample values
Mo=H=L Tm
o n i

and the square root of the sample variance, given by

o . P _
SRR

1=1

According to the statement in the preceding section the variables M and s; will
be independent if, and Enly if, the Mi constitute a normal sample. Hence the
above estimates Ho and Fo wili only be independent if the resonance has a
strictly normal shape. Any other form of the underlying distribution, for ins-
tance a Breit-Wigner shape, implies that the estimates of the peak mass and width
will necessarily be dependent. Hence the understanding of the uncertainty in
the estimates of these quantities will omly be straightforward when the normal
peak shape is assumed: the estimates are then uncorrelated and have errors simp-
ly given by the square root of the diagonal elements in the covariance matrix.
For all other assumptions about the shape of the true resonance peak a more
elaborate treatment is required to determine the correlation in the estimates
of peak mass and width,

In the discussion above we have tacitly assumed an ideal situation
where the measured Mi are precise values, without any experimental uncertainties
attached to them. A more realistic experimental situation with a finite inhe-
rent error in any measurement can be treated as described in some detail in

Bect.6.2.

4.8.8 The Central Limit Theorem

We shall next consider the Central Limit Theorem, probably the most
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important theorem in probability theory, with far-reaching theoretical and prac—
tical implications.

We learned already in Sect.3.6 that if x;,xz,...,xn is a set of inde-
pendent random variables, such that each x; has a mean value 28 and a variance
Ui, then the zum of these variables, in, will be distributed with mean and
variatce equal to, respectively, Eui and Zoi. The distributions of the separate
X, were unspecified except for their means and variances, and so was also the
distribution of their sum in.

The Central Limit Theorem expresses that the distributional properties
of the sum in will be completely known provided that the numbernof terms in the
sum is very large. In the limit when nngoes towards infinity, I X, will be

. . . . n o, i=t
normally distributed, with mean value I 1. and variance L o0°.
i=1 ! i=1
In a condensed form we may state the Central Limit Theorem as follows:

Let X1aRzy oo X be a set of n independent random variables, and

1

each x; be distributed with mean value Ti and a finite variance g?.
has a limiting distribution

. n n n
Then the variable { I x,- L i, }/| I of
i=t =g N 1

1
which is N(0,1).

The remarkable thing about this powerful theorem is that the assump-
tions about the X; are so unrestrictive. In fact, it is sufficient to specify
that each X, should have a finite variance, since then necessarily also the
mean will be fimite.

We will prove the Central Limit Theorem only for the special case when
all n independent x; have the same mean and variance. The % then correspond
to a sample from a population with mean U and variance 0%<®, We construct the

standardized variable

n n
i§1xi—i§1u' °EY
R el S (4.76)
/Z o i=1
i=1 '

for which we want to establish the characteristic functiom #(t). Each of the X
has a characteristie function ¢(t} which contains the arithmetic moments of the

x, by the series expansion of eq.(3.23), Writing out the terms up to second
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otder moments we have
itx; . 1 .,
$(6) = ') = 1+ (10w + 5, (O D) + ..

Since all X - and hence the terms (xi-u)/ofﬁ in eq.(4.76) - by assumption are
independent, the characteristic function for z is equal to the product of n

characteristic functions for each of these terms (Sect.3.5.7). Hence
S T ity .t n
1t—7—H - 1 X,
o{t) = [E(e avn )] - [e ovn E(e ovn 1)]

or

_ ity n
575¢(t\] '

B(t) = [E m;

Taking the logarithm and expressing ¢(3§E) in terms of the series expansion

above we get

f s : 2
oo = of- 35k« w1+ (G 2R oo+ ]}

and with the expansion ln{1+x)=x-4x?+... this can further be written

o -f- 88 |35 b8 o - () - )

which simplifies to
Ine(t) = - 42 + o H.

Thus, when n + =, &(t} + exp(-}t?). But this is precisely the characteristic
function for a normal distribution with mean 0 and variance 1 (see eq.(4.74)).
In the limit of wvery large n, therefore, the variable z has the distribution
N(0,1), in accordance with the statement made; this completes the proof for the
Central Limit Theorem for this particular case.

The Central Limit Theorem is responsible for many other theorems and
statements in the theory of probability and statistice. In fact, we have
already seen the theorem in operation earlier in this chapter, in the observed
tendency towards normality for increasing n of the (discrete) binomial and

Peisson distributions.

113

It is an empirical fact that a variety of phenomena seems to be well
described by the normal distribution law, Thus, for example, repeated measure-
ments on the same physical system by a certain apparatus may show z distribution
of cutcomes which approaches the normal if the number of observations becomes
sufficiently large. This is by no means obvious, since even the simplest physi-
cal experiment involves many different scurces of errors, which can be of
instrumental origin as well as have a subjective character. The Central Limit
Theorem affords a theoretical explanation of these empirical findings. The
total effect registered can be considered as the sum of a "true effect” and a
"total error", which is in turn the combined effect of 2 number of mutually
independent elementary errors. When the number of error sources becomes large
the total error will be normally distributed, and hence also the total effect
observed.

Quite frequently one can envisage that the "true effect" under study
is composed of several partial contributions. For example, multiparticle pro-
duction in high-energy reactions is thought of as being due to different funda-
mental mechanisms. A dynamical variable describing these reactions will then
have contributions from different physical effects. If these effects are inde-
pendent and many in number, the resultant will be a variable which is normally
distributed, irrespective of the spectral forms from the individual etementary
effects. In a certain sense the Central Limit Theorem can therefore be said to

obscure the fundamental effects in nature.

4.8.9 Example: Gaussian random number generator

An illustrative example with a practical application of the Central
Limit Theorem is the construction of a generator for normally distributed random
numbers .

Suppose that there is available an ordimary random number generator
which delivers numbers uniformly distributed over the interval [0,1], as des-
cribed in Sect.4.5.2, with a mean value } and a variance %E' Let % be the i-th
number in a sequence of n consecutive numbers from this gemerator. Themn, accord—

ing to the Central Limit Theorem, in the limit of large n, the variable




will have a distribution which is exactly normal, with mean zero and variance
one. A reasonable approximation to the normal distribution is obtained for n
values as small as 10. A practical choice is to take n=12, which gives simply

12
z= Y x, -6,
=1t

This variable, constructed for repeated sequences of size 12, preduces & distri-
bution of putbers between -6 and +6, which differs only slightly from N(0,1) and
will be sufficiently accurate for most purposes.

An alternative method to obtain normally distributed random numbers is
the following: If x; and xp is a pair of pumbers from a generator producing a
uniform distribution between 0 and 1, any derived quantity comstructed as
z1= /=28nx; cos(2mx;) or Zz“/CEEE;: sin{?mxz) will in the long run be of stan-

dard normal form; see Exercise 4,43.

4,9 THE BINORMAL DISTRIBUTION

In generalizing the normal p.d.f. to more tham one variable it may be
useful to investigate first the case with two variables in some detail. This
particular case demonstrates the special features of the normal distribution in
a tramsparent way, and will facilitate the further generalization to many

dimensions.

4.2.1 Definition and properties

A joint probability distribution for two random variables and x3 is
called binormal or two-~dimenaional normal if, for -« < x;,%; s =,
L e
2110102\"1—;)I

£(xy,x2)=
.77

o) -]
1-p2 Gl d2 01 J2

In order that f{x;,x») be non-negative and real, both u's are requited positive,
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and |p| <1, As one may suspect from the notation the parameters ug,uz.of.og
will have the meaning of mean values and variances, respectively, while p
measures the correlation between the two variables.

To see this, it i3 convenient to work out the characteristic function
for x; and x, with the p.d.f. (4.77) from the general definition of eq. (3.50);
the result is

ity itz + 3Gt %0F + (it,) 208 +(it))(it2)2po,0,]

¢(t1.t3) =e (4.78)

The algebraic momente of the variables x; and x, can then be obtained from this
function, by calculating partial derivatives with respect to (it,) and (ity),

and evaluating the expressions for ty=r;=0, as was shown in Sect. 3.5.7. We
find, for example,

—l

E(x1) 3(it1)! = Uy,
t=tz=0

=) = sy = uf +of,
£y=ty=0

and similarly for the other variable; these are the usual relations between the

lowest moments of a random variable (see Sect, 3,3.3). For the product of x; and

xz the expectation is

¢
ity)a(ita)
tl't2=0

E(xixz) = = L1z + pdi02

From ¢q9%.(3,3%), (3.40) the correlation coefficient p(x,,x;} between the two
variables therefore becomes

o(x1, %) = BCUX2)E(xE(x2) _ (y2#p0y02)=yys _ 0

G102 0102

Hence the parameter p in the p.d.f. (4,77) can be identified as the correlation
coefficient between x; and xp .
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If p = 0 we see from eqgs. (4,77) and (4.78) that the p.d.f. and the
characteristic function both facterize into two separate parts, one for each

variable giving

1 —i(x;-u1)2/0%].1 1 e‘“"!’“ﬂ”"%] (4.79)
£(xy,x2) = |———¢ =
[fz—no, 7T gy
and
(4.80)

8t 6,) = {eitIUL+i(iti)203].[eitzuz*i(it2325§]
According to Sects. 3.5.4 and 3.5.7 the variables xi and x2 -?rf. ":herefure als?
independent. - This is a special feature of the normal distrlbuuon.becauae, in
general, when two variables have zero correlation they need not‘be lnde?endent.
For the general case, when p %0, the marginal distribution in one
variable is found by integrating the binormal p.d.f. (4.77) over the ?econ?
variable, (this ia the definition of a marginal probability density given in

Sect. 3.5.5). Thus the marginal distribution in x; is obtained by evaluating

the integral

hi{x;) = ] fixy,x2) dxa2
oo

In substituting f(x,x;) from eq. (4.77) the factors can here be organized to

give -

24..2¢61.n2
1 e—!(xl—ul)zlo%{ 1 [9‘5(12-0) fo31-p )de},
Yimay VIm o, Yimp_

hi(x;) =

is i i i vari-
where C in the exponent of the integral is independent of the integration

able x2, C ® Yz + poz/o1{x1=}¥1) » The curly bracket is therefore an integrated

normal p.d.f, which gives just 1. Hence the marginal distribution im x; 18
.d.f,

-V o .81
hylxy) = —m e HOTHIO0 Sy oty (4.81)
v/ﬁﬂ']
Thus

2
gimilarly, the marginal digtribution in x; becomes equal to N(pz,0%) «

the projections of the binormal distribution perpendicular to the coordinate
axes are always of a normal shape, independent of the correlation between the
variables,

Let us next turn to the conditicnal distributions which, according to
Sect.3.5.5, are defined as the ratio between the joint p.d.f. and the marginal
distributions (eq.{3.48)). For example, the conditional discribution £(x]%;)
for %2, given x1, is equal to £f(x1,x3}/hi(x:) . From the expressions above it
will be seen that the curly bracket correaponds to the integral of f{xz|x;) over
Xz » Hence the conditional distribution in x; for given x, is

£(xz[x1) = N(Uz*l)g_‘?(xru;),ogﬂ-pz)) . (4.82)

A corresponding expression is obtained for the other conditjonal density
f(xa]x2),

pendicular to a coordinate axis will produce 2 normal curve,

Thus any intersection of the two-dimensional surface by a plane per-
From eq.(4.82) it
is interesting to observe that although the mean value of the conditional dis-
tribution in x; for given x; does depend on X;, the variance does not., Hence

the plane intersections for different values of x; will be a set of normal
curves which all have variance 0f(]1-p?), but with the mean value H2+p0z fo1{x=1)
growing linearly with x, .

Other interesting features of the binormel distribution are contained

in the exercises below; see in particular 4,46~4,48,

Exercise 4.43: Let x; and x; be two independent variables which are uni formly
distributed between 0 and 1, Show that two new variables z; = V“2inx; cos(2mx2),
2z = ¥=20nx; 8in(27x;) will be binormally distributed, with marginal distributions
N{0,1} and zerc correlation.

Exercise 4.44: Verify that the covarianmce matrix and its inverse for two vari-
ables with the binormal distribution (4.77) are given by, respecrively,
of 0010, o}

-1 =p0102
poiG2 g3

_ 1
cla3(1-p?) t-pa,0zr o}
(i) Show that the binormsl p,d.f. can be expressed as
£ = @1y} expl-d(a-w V7 e )

where x = {x1,x;} and y = {u,u:}.

(4.77b}
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. . . . e form
(ii) Show that the marginal distribution in x; is given by a formla of the

£ (4.77b) , bur with V replaced by the "submatrix” obtained by deleting the
of eq.(4. .

second row and colum from V.

. . . . iven b

iii) Show that the conditional distribution in xz ., ng:n x; R 1:*ai:ot§;VﬁSsz

(1;0rmu1a of the form (4.77b), but with V replaced by V¥, wheve ¥* Lo the “eub-
:natrix“ obtained by deleting the first row and column from an

At
resultant "submatrix .

. . . ith a
Verify that the characteristic function for two variables with

B e (4.78), which in vecter notation reads

binominal distribution is given by eq.

o(t) = expl(inTu+ 1D TV ED. (4.78b)

i i in the binormal p.d.f., show that
Exercise 4.46: With x3 and % relateczl in 12: e b a1 el Nza hov Fy
¥ = axivazhz Satx is  N(aiHi+tagliz,2107+a205+2818200:02 a‘y, a*Va

(Hint: Find the characteristic fuaction for ¥.)

Excercise 4.47: (i) Shew that two variables construc‘ted as linea;.combu;élitlgt;z_
T the variables of 2 binormal distribution (4.77) will also be ;MT azteris-
Zributed. (Hint: Write yj=aix;+azXa y2=\;1:;1+b§xz azxfi :t;ow(zh?;)t)e char

i i is o e form . . . . ) .
l(:i:)f;:::::::l; z(il’{:ffa:?f il:?glfliz;s, show that th% newainurmal dlstr;butlun
has the marginal distributions N(i?l_l, ET'VQ) and N(b %,Tlgi':b_) fizf\czlyalnaniz;z
respectively, and that their covariance is cov(yl,yz?-g mi_e.s ey
will be independent if, and only if, the transformation avh

i bincrmal p.d4.f. of eq.(4.77).
ise 4.48: Let x1,x2 be related in the .
?fﬁrcéiuw that a change of variables to yi.¥a2 by the orthogonal transformation

- T |xp=8y _ X2—Udyz
1 | 1= Xa“={z , ya = o
Y = 75 03] * Cz ] 75 o33 o))

brings the p.d.f. over to the form ,
‘ (2 —~”2)] .
£ya,y2) = gpmE o vt T0
. he
i dent and normal. Here, each of t
i hows that y; and y» will be indepen e . ¢
:2:1?:@: ¥, OCcurs :,-ith a coefficient determined by the latent roots (eigem

1 Of the matrix V{x). . ) _
‘(r?il)le;t)mw that a subSequent transformation 2z, = y1/v1%0, 22 = yalvl-p, or

directly, . - et
1 1 1xi-h Xp~H2 = [ = R
e 2 [ o 0 ] . BITVSAL o a3

makes O = 2% ¢ 23 , and
! D1 (= exe -4z |
f(z1,22) = [m exp(-4zi) T3 exe 3

This shows that z) and zz will be independent and standa;?on?;mal.iazqzsqug:t1ty
i ar »
in the form of a sum of two squared, 1ndepem:]ent , v
Sée:lloto:l:e x?(2), in view of the definition of a chi-square variable (see Sect.

5.1.1).
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4.9.2 Example: Construction of a binormal random number generator

For Monte Carlc simulations of particle production and subsequent
detection in an experimental set-up it is sometimes desirable to have available
a method for generating variables which are normally distributed and internally
correlated. It is known, for example, that a charged particle moving in a uni-
form magnetic field describes a helix curve with axis along the field direction,
which can be parametrized in terms of three quantities 1/p, A, and ¢: 1/p mea-
sures the curvature of the helix projection in a plane perpendicular to the
field, ¢ gives the azimuthal angle in this plane, and X the dip angle of the
helix relative to the same plane. Further, experience has shown that each of
these quantities under measurements can be considered as a normally distributed
variable, with a spread around the central (true) value as implied by the accu-
racy of the measuring system; in addition, 1/p and ¢ are correlated. To simpu-
late an experiment by the Monte Carlo technique one therefore needs a prescrip~
tion for cbtaining sets of random, normal variables, such that two of them
possess a mutual relationship corresponding to a binormal distribution of speci-
fied correlation, corresponding to that between the curvature and the azimuthal
angle.

We assume that a generator for Gaussian randow numbers is available,
which upon call producez a “random number" z such that, in the long run, z will
be nearly N{(0,1). Any independent normal variable of mean value u and standard
deviation o is then simply constructed as U +0z.

Suppose that two dependent variables x, and x3 are required to have
the correlation coefficient p. We then use the Gaussian random number generator

to obtain two independent standard normal variables z1 and zy, and write
1
% =m0 e+ 5 AT e,
) (4.83)
Xz = 75 Yisp 2y —7;_ ./"i-p z3 o

This transformation represents the solution to our problem, since the joint

p.d.f. for x, and X, becomes

1 1 2 H
f(x , = —— - + - . 4 .84
(x[ xz) 2 v‘f:? exp{ 2——1-:“_’9 (x1 X3 29x1x2)} { )

The variables x; and x, are therefore binormally distributed with correlation
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coefficient p, as required, and each variable has mwarginal distribution N{0,1).
Clearly, if non-zerc mean values and standard deviations different from 1 are
needed, this can be achieved by appropriate location shifts and scalings. Thus
the case with parameters i, U2, O3, OF is obtained by replacing the left-hand
sides in eq.(4.83) by (x,-1,) /0, and {x2-M2)/g,, respectively. The reader will
recognize this transformation as the inverse of the general transformation in

Exercise 4.48 of the previous section.
4,10 THE MULTINORMAL DISTRIBUTION

4,10,1 Definition and properties

The normal distributions of dimension ! and 2, as defined by eqs,(4.59)
and (4.77), respectively, lead us to search a multinormal or n~dimensional normal
distribution, for which the p,d.f, should be of an exponential type and the expo-

nent have a general quadratic dependence on n variables X

£(xy,xz,eetsx ) = C Pt 1t ,

n u K=,y X, =M, (4.83)
P c__(_:)(_g_._;)' ey <.

i=1 j=1 YN0y o, =7 =

This will be an allowed p.d.f, provided the coefficients cij , symmetrie in the
indices, are such that the integral over the n-dimensional real space exists,
and C ensures a proper cverall normalization.

With an eye to the two-dimensional case, for which vector motation was
introduced in Exercise 4.44, it is at ence realized that a more compact form of
eq.(4.83) is

T =1
1 —x-p’ T VO (x)
E(x) = e M= - = I, (4.84})
= an |v|!

where x = {xl.xz,---,xn} y 4= {ul,uz,-'f,un} , and V is the symmetric nxn co—
variance matrix for x. The denominator of the overall mormalization factor in-
cludes one (2n)1 for each dimension of x, and the square root of the determinant
of V, Clearly we must have {V|#0, and for the imtegral of f(x) to exist, V
(and V_l) must be positive definite,

The characteristic function for the p.d.f. (4.84) is

T .
o(r) = 1B B ¥ 1o Vi) . (4.85)

1
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from which the moments can be calculated in a straightforward manner as

described in Sect.3.5.7. For example,

¥
E(xr) ETT?:Y =W
=0

E(xx) = - 829 =Uu +V
T8 a(xtr)a 1ts) s rs

f =0

for any r,s = 1,2,+++,n. With vrr = 0: and the correlation coefficient between

the variables L and ® given by Prq -p(xr,xs) = Vrgl(vrrvsa)i the covariance

matrix takes the general form

2
o1 P120:¢2 = P 50,0
2 e
P120,0, a; Pan%,0n
v = : : . . (4.86)
2
Pin¥1% Pon%:%, -°* %

If V isla diagonal matrix, implying that all x, are uncorrelated, the
inverse matrizx V  will also be diagonal. The expoment in eq.(4.84) will then
have no terms mixing the different x , 8o that the joint p.d.f. E(x) will be
factorizable into n one~dimensional normal p.d.f.'s for the separate components
xl,xz,"°,xn , showing that they are all independent. — In fact, the wvariables
in a multinormal distribution are independent if, and only if, the covariance
matrix is diagonal.

Similar reasoning to that applied for the binormal distribution shows
that any projection of the f(x) from eq.(4,84) to a space of lower dimension
gives a new distribution which is of the same form, but with a covariance matrix
obtained from the original! V by deleting the rows and columns corresponding to
the variables projected away. In particular, integrating over all variables ex-
cept Xx; gives the marginal distribution in this wvariable, which is N(ui,ci).
Also, intersecting £(x) by a plane perpendicular to one of the coordinate axes,
say X; » produces a conditional distribution which is an (n~1)-dimensional normal
p.d.£.; the matrix V = V* in this conditional distribution is obtained by de-

s + - . -1 -, a
leting the i~th row and column from the original V  and inverting the resultant
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submatrix.
Other properties of the normal distributien im two dimensions are found
to extend to the multi-dimensional case. Thus any linear function of the x from
a multinormal distribution is itself a {(one~dimensional) notrmally distributed
variable (see Exercise 4,49); more generally, a set of variables made up as lin-
ear combinations of the multinormal x; will also be mmltinormally distributed i
(Exercise 4.50). This is a vast generalization of the addition theorem for nor-
mal variables from Sect.4.8.5.

Exercise 4.49: Let y be a linear function of the X with the multinormal dis-

)i}
tribution (4.84), y= L a:x; = a'x.
i=1"171 -

Show that y is N(_ETB, ETVE)

Exercise 4.50: Ler y ,¥z,*"",¥, be a set of linear functions of the x; with the
multinormal p.d.f. (4.84), such that y=5x, where the matrix 8 is of dimension
mxn (m<n). Show that the characteristic function ®(ti,t2,«*-,ty) has a form
which implies that the y; are multinermally distributed with a vector of mean
values Sy and covariance matrix SVS©.

5.,10,.2 The guadratic form Q

In the multinormal p.d.f. the exponent has been expressed as -iQ,

where Q is the quadratic form, or covariance form,

Q= (x-wvix-w (4.87)

in which U and V are, respectively, the mean value and covariance matrix for the
n-component variable x. For the special cases with n=1 and n=2 it has been in-
dicated earlier that the variable Q has a distribution which is that of a chi-
square variable with, respectively, 1 and 2 degrees of freedom (compare Exercises
4,39 and 4.48), It turns out that Q also for a genmeral value of n has a chi-
square distribution with n degrees of freedom and thus is a function of owme para-
meter only. This is quite remarkable, in view of the formal structure of Q as a
function ianvolving many parameters.

When the covariance matrix is non-singular, as we have assumed, it is
always possible to find a linear transformation to a new set of variables ¥y from
the x;, which is such that it brings Q to a form with sums of squares in ¥i» and
with no terms mixing the different y; . In particular, an orthogonal transforma-
tion will produce Q as a sum of squares of n independent y; » where the coaffi-
cients are given by the latent roots of the covariance matrix V(x); in common

. . . . . f
parlance, this transformation serves to "diagonalize the covariance matrix",
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A further transformation to a new set of scaled variables, say z will express
Q as a sum of n squares of independent, standard normal z; and, in accordance
with the definition of Sect,5.1.', Q is therefore ¥2(n), a chi-square variable
with n degrees of freedom.

If the covariance matrix is singular, |V| =0, its inverse does not
exist, and hence eq.(4.84) will loose its usual meaning, There is then at least
one linear relation between the X o, o1 equivalently, one or more of the L is
redundant. In this case we shall take eq.(4.84) to mean the multinormal distribu-
tion in a space of dimension (n-r), where r is the number of linear redundancies,
implying the covariance matrix to be eliminated for the rows and columns corre-
sponding to the redundant x;s . Similarly, the quadratic form Q can be considered
as composed of an equivalent reduced number of terms, making it in this case dis—
tributed as x*{n-t) *)  This property of quadratic forms of normally distributed
variables will be frequently referred to later in this book; since, however, the
proof is rather formal and sophisticated its details will not be given here.
Exercise 4.51: (Construction of a multinormal random number gemerator)
Given n independent variables z., all N(0,1), Discuss the problem of finding
n variables x;j , linearly related to z; , such that the x{ become multinormally
dist¥ibuted with given covariance matrix,
4,11 THE CAUCHY, OR BREIT-WIGNER, DISTRIBUTION

The Cauchy distribution has the form

flx) = % T%}T . ~®w < g <o, (4.88)
and is an allowed probability density function since the integral of f(x) over
all x is equal to one. This distribution is of interest to particle physicists
because it produces the Breit-Wigner shape, Unfortunat;ly, however, the function
f(x) as defined above is mathematically awkward, Difficulties arise immediately
if one tries to evaluate the expectation valve of x with the p.d.f. f(x), since

the integral
oo

J X l-—J—T dx
T 1+x

*) The number of independent variables, n-r , is often called the rank of the
guadratic form.
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is not completely convergent. This means that the limiting value
L!

13 11, 4

L T e

L+e -L

L+ oe

does mot exist, although the principal value, defined with L' = L, dves exist and
is equal to one. Following convention we shall regard the distribution of eq.
(4.88) as not possessing a mean, The same convergence situation applies to all
other moments xX, Thus we may say that for the Cauchy distribution no moments
are defined, since they all diverge.

One way of getting out of the dilemma is to impose & restriction on the
domain of the wariable x. The integral of f(x) over a finite interval [-L,+L]
is equal to 2/m (tan_lL) . If we therefore redefine our f(x) by thks normaliza-
tion factor and write

£'(x) = L .

)
2 tan L 1+x?

~L<x<L, (4.89)

this will be an acceptable p,d.f, which is properly normalized and for which all
motents exist., From its symmetric form all odd moments of £'(x) wvanish ident-—
ically; in particular, E(x) =0 . We also find

V(x) = —E— - 1, {4.90)

tan—lL

This expression for the variance il1lustrates the atate of affairs for the Cauchy
p.d.f. (4.88): the tails of this distribution tend so slowly to zero that conver-
gence is prevented. Indeed, when L is permitted to grow indefinitely, the vari-
ance can become arbitrarily large, since V(x)+»®= when L»eo.

For moderate x values the shape of the Cauchy distribution (4,88) is
not very different from the standard normal, as one can see from Fig. 4.9, A
quantitative expression of their different tail behaviour is provided by the fol-
lowing table, which gives the fraction of each distribution in both tails beyond
the indicated values of |x| . For comparisom, the table also shows the corre-
sponding fractions for the double exponential distribution (see Exercise 4.55),

which in this respect is seen to have an intermediate behaviour.
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Fraction of distribution in tail
Distribution lxl 5 1 52 >3 >4 > 6
Standard normal L3173 L0455 .0027 00006 -
Double exponential .3679 ,1353 L0498 .0183 0025
Cauchy 5000 L2952 2048 1560 L1051

-0.4

Fig. 4.9. The Cauchy or Breit-Wigner distribution (aoliq curve) and the
standard normal distribution (dashed curve). The half-widths at half-
maximum are indicated by arrows of length 1 and ¥2InZ = 1.18, respectively,

Exercise 4.52: Show that the Breit-Wigmer formula for an s-wave rescnance of cenm-

tral value M and full width [ at half maximum,

f(M:MD’F) = iE ._____l______. N

n (MY D)
corresponds to a Cauchy distribution. WNote that with this form, half-ma*imum
occurs for M=M *(il), whereas a Gaussian shape N(HD,(QF)Z) has hal f-maximum at
rI-M°t1.]8(§F); compare Exercise &4.37.
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Exercise 4.53: ShoT ?hat the characteristic function for the Cauchy p.d.f. is
-t
o(t) = e .

Note that this function has no Taylor expansion around the origin and that there-
fore the moments of the Cauchy p.d.f. do not exist.

Exercise 4.54: Let XlaXzyer s X be n independent Cauchy variables, each distri-

- - n
buted according to eq.(4.88). Show that x--% i£1xi has the same distributionm.

This result may at first appear somewhat surprising, in view of what has
been learned from the Central Limit Theorem., One might perhaps have expected
that the arithmetic mean X of the n independent variables would become approxi-
mately normally distributed for very large n. The appearant discrepancy is due
to the fact that the n Cauchy variables do not fulfil the requirement of possess-
ing a finite variance, which was essential in deriving the Central Limit Theorem.

Exercise 4.55: {The double exponential distribution)

Discuss the properties of a variable with the p.d.f.

X

flx} = % e R —w < x <@,

Note in particular that this distribution has tails which drop off more slowly
than the standard normal but faster than the Cauchy distribution.

5. Sampling distributions

The previous chapter hes dealt rather extensively with the character-
istics and properties of some probability distributions which have been found
to describe VYarious physical phenomena quite accurately under certain ideal
conditions.

The pregent chapter will be devoted to a study of the properties of
three sampling distributions which are related to the normel. The chi-square,
the Student’s t, and the F-distributions do not have any direct physical ana—
logues, but can be connected to experimental situations where the normal dis-
tribution law is supposed to describe the outcome of measurements. The motiva-—
tion to study these distributions may perbape not be clear to the reader at the
moment, in which case he should proceed to the following chapters and return to
this peint when it is found necessary. It may suffice to mention that, although
some applications of the sampling distributions are found already in Chapter 7,
in connection with simple inference problems involving samples from the normal
distribution, a full appreciation of the mampling distributions discussed here
will first become evident in the last chapter of the book. Thus a number of
examples on hypothesis testing indeed presupposes knowledge on the standard
sampling distributions as well as some acquaintance with the related mon-central
sampling distributions, which are introduced in the exercises of the present

chapter.

5.1 THE CHI-SQUARE DISTRIBUTION

5.1.1 Definition

Let us asgume that there is given a set of n mutually independent
random variables IR PR N which are all normal B{p,q2). We may for instance
think of the xi'u as the outcomes of n repeated measurements on the same physi-
cal system or n independent observations on the same qusntity. Then the Xi'l
constitute a sample of size n from a population which is normal with meam y and
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variance 0?, We define the chi-square sum %® by adding the squares of the
standardized normal variables (x].:-u)/n, via,

~ n xi'UZ
x* :izt( o ] . {5.1)

The variable }* has a probability density function given by

EG3n) = e (2} 1T,

05y fm, (5.2)
240 pgn)

which is called the chi-square distribution with n degrees of freedom. 1In eq.
(5.2), T is the gamma function, for which I'(x+#1) = xF(x), I'(}) = #7, T(1) = 1,

Notice that the number of degrees of freedom is the number of indepen-
dent variables making up the ¥* sum (5.1).

Remark 1. The sample XL yXzpeonn X, from N(u,0%) has a sample variance

1
g? = il Z (x -x)?,
im?
where x = ; lE1xi is the sample mean. It was stated in Sect.4.8.6 and will be
proved in Sect.5.1.6 that the quantity (n-1)s?/o? is distributed as a chi-

square variable with n-? degrees of freedom. Thias is equivalent to saying that

n xl-— *y 2
)} ( = ] is X2 (o-13, (5.3)
i=1

in words, this sum of squares has & chi-square distribution with n-1 degrees of
freedom. This may at a first glance seem to contradict the definition of the

chi-square distribution in this seetion, which implies that

no(x,~ |
i [ L ]2 is x2(n). (5.4)

i=ml @
The disagreement is, however, only apparent, for the following reason: In the
expression (5.4}, U is considered a known quantity, given independently of the
%3 in the expression (5.3), on the other hand, % is a derived quantity, namely
the arithmetic mean of the X When this average has been calculated and
adopted as an estimate of the true, but unknown parameter |, only n~! of the

squares in the sum s? are independent quantities. Loosely speaking, ome degree
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of freedom has been lost, since it has been used to estimate the unknown para~

meter (the central value) of the distriburion.

Remark 2. From & mathematical viewpoint the requirement that all the x. should
be similarly distributed, (all N(u 02)), ig unnecessarily restrictive. In gene-
ral, for n 1ndependent variables x from normal distributions N(u.,cr ), the sum
of squares x ETy. of the stmdardued quantities y -(x- -, )[U will have a
chi-square distribution with n degrees of freedom.

If the variables ¥; in the sum xz l§1y. are not N(0,1}, but more
generally distributed with unit variances and means different from zero (and
not necessarily equal), the variable ¥? will have a non-central chi-square dfo—

tribution with n degrees of freedom. See Exercise 5.12.

5.1.2 Proof for the chi-square p.d,f.

In our discussion of the standard, or central, chi-square distribu-
tion we shall for convencience write u instead of ¥?. Also we shall use the

Greek symbol V for n, to be in accordance with our convention for parameters

entering a p.d.f.. Thus the chi-square distribution for u is written
fluzv) = —;1—‘“—' uiv-]e_iu. 0fufw;v>0. (5.5)
2w

We shall not prove eq.(5.5) for the general case of arbitrary v. For
the most trivial case when ve! the reader should have no difficulties in verify-
ing the formula by using the change-of-variasble technique outlined im Sect.3.7,
recalling only that putting u = [%sz implies a two-to-one transformation from
X to u; compare Exercise 3.6. Here we shall be satisfied with verifying eq.
¢5.5) for the case v=2. The case V=3 can be treated in an analogous way, (Exer-
cise 5.1). For the general case of an arbitrary v a proef can be given by
mathematical induction (Exercise 5.2), or using a more direct method, (see for
instance Kendall and Stuart, Chapter 11, Vol.t).

For v=l we have
x;- p)? xo= 1) 2
e B e

where x; has a p.d.f. £{x;) = (Zmz)-iexp{—i(ﬁl-&:u}z] and similarly for x;. The
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{
joint p.d.f. is equal to the product of the p.d.f.'s of the two independent !
variables x,.¥2 (compare Sect.3.5.4). We define two new variables p and ¢ by 1 A
- i flu;v)
1"'c-'[-—ufﬂccvs(l’, *x—za—-lifpsin'@. '
where 0 £ p S=, 02 ¢ £ 21, The transformation from the set x,,x; to the set
p,¢ involves the Jacobian ' 0.40 —
9x1 9x) ~ap i
5% 56 g cost p sing .
J = - - g,
%2 X2 x Gp cos 0 30 ]
T 55 o ging P ]
Hence the joint p.d.f. in terms of the new variables becomes
1 et .
£(p,8) = £(x)EGR) 3] =5 e 0 w0, 0.204
. is independent of ¢. The marginal distribution in p obtained by integra-
ting over 4 (Sect.3.5.35) becomes simply 0]0
in?
f(p} = e ko P
: —

Since the relation between the variables u and p is ] | >
0 5 10 15 20 25 u

Fig. 5.1. The chi-square distribution tor different degrees of freedom V.

u-'p2

the p.d.f. for u is given by
For v S 2 the chi-square diatribution is monotonically decreasing

Llde ot P IR W s . . . e .
E(u) = £{o) || = e Ptlgg e ’ with increasing u; indeed v=1 implies an infinite ordinate at uywd, For v > 2
. . . the distribution has a maximm value (mode) at wwy—2. It is seen that the chi-
which is seen to be f(u;2), the chi-square diatribution with two degreee of K . . .

aquare distributions correspond to a special class of the more gemeral gamma

freedon. distribution (Sect.4.7.1).
5.1.3 Properties of the chi-square distribution The characteristic function for the chi-square distribution is found
The chi-square distribution of eq.(5.5) is shown in Fig. 5.1 for from the definition eq,{3.22),
gselected values of the parameter v. . @
() = E(elm] - f e % (uzv)du.
o

Inserting the p.d.f. of eq.(5.5) and carrying out the integration leads to

e(t) = (1 - zi:)""- {5.6)
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When the characteristic fumction is known one can easily evaluate expectation
values by differentiating with respect to (it) and putting t=0, as demonstrated

in Sect,3.4. One finds in particular

b
E(u} = ul = 57Ty =V,
£ =0
.7
2 2 3¢ _y? —y? = 2v
Y(u) = up = E{u®) - {E(u}}® = TEO VvEom oy(u2) = v .
L

Thus the chi-square distribution has mean value v and variance 2v.
In general the algebraic mement of order kj or the k-th moment about

the origin, for the chi~square distribution is given by

. TGy + 1
by =BG - 8 Ly (v2e) - 2 —(Ii;‘(’—l:—)—— (5.8)
a(it)
£=0

This relation, together with the generally valid formula (3.18), permits the
determination of all central moments up to any desired order. In particular,

the central moments of orders 3 and 4 are found to be
Uy = Bv, Py = 48 + 1203 (5.9)

Thus the asymmetry and kurtosis coefficients, from their definition by eqs.
¢3.20) and (3.21), respectively, become
N E I (.‘i)L
N 1,122 v
: (5.10)

l-lu2 - 3= 12
{TPY)

Yz = .

These numbers express the tendency seen in Fig. 5.1, that the skewmess of the
chi-square distribution decreaseg for increasing v, while the shape becomee more
"bell"-like. Vigually the distribution looks "sormal"already at v = 20. In the
limit v + = the coefficients y, and Yy, are zero, indicaring exact aymmetry and

& peaking equal to that of a normal distribution.

133

In fact, it can be shown that asymptotically the chi-square distribu-
tion does indeed become identical to the normal distribution., To see this it
is sufficient to demonstrate that the characteristic functions for the two
distributions become equal in the limit of large v. Guided by the established
facts that the mean and variance for the chi-square distribution are given by

v and 2v, respectively, we form the standardized variable

u=-v
o= : .11)
YZv

The characteristic function for this variable is

b, (6) = E(eT) -k [':““’] - [.."i_t g _12&]
Y, (1) [exl’ i = exp e exp[m

which can be rewritten as

. . T IV
oy (&) = em[- 2 £ . [-ﬁ] [1-3.15]
1 ¢ I "‘[./z'u~ U /v

vwhere, in the last step, we have inserted the expression of eq.(5.6) for the
characteristic function of the variable u, Taking the logarithm and expanding
the last term we have
. P s 12 f 13
lo & (t) = - ut v (— 3531 - %{“ glsl + %{- EEE} - e
L IV Vau© VI V2V
1.2 -4
n—-—z-t +0(\) ].
2

When v goes towards infinity, @y (t) » e-l ; thus in the limit of infinite v
, 1

the varisble y, has the characteristi¢ function of a standard normal variable,
Hence the original variable u, for limiting values of v, will also be normal,
namely N{v,2v),

Mathematically, the approach of y; = (u-v)/vZV to N{0,?) is rather

slow. Ome can show, see Exercises 5,10, 5.11, that the variable
y2 = /2u - Y] (5.1

represents a better approximation to N(0,1).
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Fig. 5.2. Probability contents of the chi-square digtribution.
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5,1.4 Probability contents of the chi-square distribution

In practice one is frequently interested in the cuymulative chi-square
distribytion to calculate confidence intervals or for testing hypotheses invol-
ving chi-square distributed varigbles.

Figure 5.2 gives probability contents of the chi-square p.d.f. for
different numbers of degrees of freedom. The figure shows a double-logarithmic
display of the quantities F(x;;v) and O versus x;, as implied by the relatiom

. 2

s 4
F(){;;v) 5([ fFluyidu = 1 - o, (5.13)

Appendix Table A8 gives values of x; for different v and specified entries of
FlxGv)-

When the number of degrees of freedom is sufficiently large, v > 30,
the probability contents of the chi-square distribution can easily be found
using the fact that the variable y: of eq.(5.12) (or y, of eq.(5.11)) is
approximately standard normsl. See Exercise 5.8.

It may be worth noting, that the p.d.f. for the variable F(x;;v) of
eq.(5.13) is uniform over the interval {0,1]. (This fact is generglly true for
any variable defined by the cumulative integral of a p.d.f., see Sect.4.5.1.)

We shall see an example of the usefulness of this property in Sect.10.4.4.

5.1.5 Addition theorem for chi-square distributed variables

It has previously been shown that a linear cowbination of independent,
normal variables is itself a normally distributed variable (the addition theo-
rem for normally distributed variables, Sect.4.8.5), A similar theorem holds
for 2 limear combimation of independent chi-square variables, and mey be stated

as follows:

Let u;,uz,...,u_be a set of independent variables having chi-square
distributions with V1y¥2,...yV, deprees of freedom, respectively.

Then the sum v=u;+uz+...+u, is algo & chi-square distributed variable,
with vy +vat., . +V, degrees of freedom,

This theorem is proved simply by noting that the characteristic func—
tion for the variable v gets the same form as the characteristic funection for an

individual uy. Because of the assumed independence, eq.(3.5%) applies, and

gives

-
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Hence v is xz(v1+vz+...+vr).
The addition theorem for chi-square varisbles in fact may appear in-
tuitively correct, because the number of degrees of freedom is nothing but the

number of independent terms making up the X2 sum.

5.1.6 Proof that {n—1}s?/oc® for sample from N(u,0*) is x*(n-1)
Before leaving the chi-square distribution we want to prove the impor-

rant fact about the variance of a normal sample which was briefly mentioned in
Sect.3.10,2, and emphasized in Sect.4.8.6 as well as in the begimning of this
is a sample from N(y,0%), with mean

chapter. Specifically, if xl,xz...ﬁ,xn
- n X =z b
X = %'iélxi and variance §? = PPN C ) N L shall prove that the variable
(n-1)s? - § {xi- x]z
a? =it @

is chi-square distributed with n~1 degrees of freedom.
From the independent variables x, which are all N(u,0%), we make a

change to a new set of variables s by Helmert's transformation,

¥, - x,-xz

vz
Xyt¥,=2x
¥a = 2177 cRy
V6
: x1+x2+...+xn_1—(n—])xn
y _ -
o1 Yn{n-1}
y - ¥t tXy Ja ;.
o G
I I n
This is an orthonormal transformation, the coefficients aij iny, = j§18ijxj

-

Exercise 5.7:
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satisfying

n
i§1aijaik - 6jk'

The independent variables ¥; are all normally distributed, each being N(0,02).
Now one has

(a-1)s? = E(x_-§)2 - E x? - nx? = E y2 - 37 a ng1y2
PPl | so 1 . i 7 ¥ " LT
i=} im=] i=1 im1

Therefore

Genet "
o? ja1@ )’

where the right-hand side involves a sum of squares of independent standard
normal variables, as required for the definition of a chi-squatre variable.
Since the number of independent terms is n-1, the variable (n~1)82/c? is
¥ (n-1),

The proof that x and s for a hormal sample are also independent vari-
ables is left as an exercise for the reader (Exercise 5.9).

Exercise 5.1: Verify eq.(5.5) for the casa v=3. (Hint: Use the procedure in the
text for V=, putting
Elgﬂ = p cos® cosd,

53§E =0 ¢o8d sing, Eﬁéﬂ = p sinf.)

Exercise 5.2: Prove eq.(5.5) by wmathematical induction.

Exercise 5.3: For the chi-square p.d.f with v degrees of freedom show that

E(u#”) = Zlkr(!(v+K)}lP(iv) for all positive and negative integers K satisfying
v+k>0. Note that this is a more general result than that implied by eq.(5.8),
where k iz assumed to be a positive integer.

Exercise 5.4: Show that the chi-square distribution has the characteristic
function of eq.(5.6).

Exercise 5.5: Verify egs.(5.8)~(5.10).

Exercise 5.6: Let Xy,Xz,...,%X_ be r independent variables which are all uni-
Aert St 2eh ' .

formly distributed over the inferval [0,1]. Show that u=-2 In{x;x...x ) is
x2¢2r). (Hint: See Exercise 4.24.) *

From Fig. 5.2, write down values of F(x2;u) taking x° equal to
the mode of the chi~square distribution for v=3,4,5,10,20,30 degrees of freedom.
What is the limiting value when v + = ?
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Exercise 5.8: From Appendix Table A8, verify that F(x;-&0.3;v-30) = 0,900,
Construcing two approximate normal variables by eqs.(5.71), (5.12) in the text,
viz. yy=(x"-V) f/f%Pand ya=rZxT—/2v-1, show that the corresponding probabilities
obtained from Appendix Table gﬁ, are 0.908 and 0.903, respectively. Repeating
the problem for the same v and a higher ¥?, for instance ¥2=53.7, show that the
¥z approximation becomes increasingly betger than the y; approximatiom.

Exercise 5.9: (Independence of x ang 52 for normal sample)

- 1 . 2 n ——y2
Show that the mean x = = i§1xi and the variance 8° = ;'—_1'1'.}-51 (:n:i %)

for a sample from N(u,0?) are independent variables. (Hint: Make use of the
identity

EIY? L eenst, (2o’

it @ J o? afvn 2t s
to show that the joint characteristic function of the variables (n-1}sfo® and
(G(i-u)!c}z factorize into their individual characteristic functions. Accord-
ing to Sect,3,5.7 these variables are therefore independent, as will be the

riables s? and X.)

creige 5.10:  (The chi-distribution)

i) Show that the variable x;/\? has the probability demsity functionm
1 w—1 -
f()(;v)“————w_1 X eb(, 0y fe.
2 T{iv}
(ii) Show that the algebraic moments for this p.d.f, become in
general,

w = 25 (i) ray)

and that in particular the even moments result as
uj = vlvez)o.. [v+2(x-13].

The odd moments can he expressed by the first, uf,

- 1
u5k+1 = (U+1) (v+3). .. (ve2k-1)Uy .
Use Stirling's expansion
1al(x+1) = 4in(2n) + (x+})Ilnx — x + T;-; SRS
. 360x°

to show that

1 1 5
NTRS Y DY HN s ).
' 7 g 180 7
(iii) With the preceding results and the general relationship between

algebraic and central moments, eq.(3.18}, show that the lowest central momente
for this distribution are

1 1 -1 1 -4 3 3 -1
Hpmg mgg ol ) —soY, m=g-g ol )
PR Y 4T 4 By
Here the convergence of U[\)-l) towards zero is faster than \J‘-l, and similarly
for G[\J !]

Exercise 5.17: Use the results of Exercise 5.10 to show that the variable
ViyZw/Zu has a distribution with

up o= YT + o[\a-slz} '

1 -
H, =1 -a—v+c{v l],

Yy =2, + o(v7).

1 -
Y1 -F+U(U i.}l oz

v

This shows that v2o is distributed about the mean Y7v=1 to order \?-3/2 with a

variance 1 to order V7!, By comparison with eqs.(5.,10) it is seen that vy
tends towards normality much faster than u.

Exercise 5.12: (The non-central chi-square distribution)

[§5) 1f y;,yz,...,yv is a set of independent variables which ate N(ui,1),
the variable u' = i§1y; is a non-central chi-square variable with v degrees of
v

that u' has the characteristic funetiofi

ey = (1 - 2it)'*“exp(—ﬁ—“—].

freedom and non-central parameter X = .}.'.1 u;; for short, u' is ¥'2(v,A}. Show

1= 2it
Wote that if all p;=0, A=0 and ${t) reduces to the form of eq.(5.6).

(ii) Show that the mean and the variance for u' are given by (v#A) and
(2v+4})), respectively.

(iii) It can be shown (see for inastance Kendall and Stuart, Chapter 24,
Vol.2) that the p.d.f. for u' is given by

. 1 R IOV I et & r(i+r) '
flu';v,2) & —0 0—0o £ <,
(u'3v, ) zi\)]‘(“(u ) e rgo—(—r—zr Ty 0Su

Verify that, when A=0, f(u';v,}) reduces to the ordinary (central) chi-square
distribution with v degrees of freedom, eq.(5.5).
It can also be shown that the variable

oo58) -l

Y vkd

is approximately distributed like a central chi-square variable according to
eq.{5.5)}, but with 2 parameter v' = (v+X}?/(v+2\) where V' is, in general,
fractional. This fact is frequently used to find approximate values of the
integral of a non-central chi-square variable, by interpolating in the tables
(curves) for the central chi-square distributiom.

€ - Probability and statistics.
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5.2 THE STUDENT'S T-DISTRIBUTLON

5.2.1 Definition

Let x be a standard normal variable N(0,1) and u a chi~square variable
with V degrees of freedom )(2 {v), and assume that x and u are independent. De-

fine a variable t by

X

t = , — Xt 5wy v>0. (5.14)
Yufv
This variable then has a p.d.f. given by
£legyy = LAODY ! (5.15)

YTV T (4v) [1 +£z]!(wl) r
v

which is called the Student's t-distribution with v degrees of freedom.

mark 1. If x is not an N(0,3) variable, but more generally N(u,1}, and u is
x*(v) as sbove, with x and u independent, the varisble t' =x/vu/Vv has a non-

central t-digtribution. See Exercise 5.20,

Remark 2. To motivate a study of the Student's t-variable, recall the by now
wellknown properties of the mean % and variance s of a sample.X) ;X2 ,4..3%

n
from N{u,a?},

- a? - 1 %
x is N(u,;-), where x == .E1xi’
i=
n
(n-1)a . 2, P —x)2
= iz x“(n-1), where 5iM = i§1(xi x)“.

Moreover, x and s? are independent variables (Exercise 5.9). Consequently the

two independent variables

x-u and (rn=1)}s2
al/n o?

being, respectively N(0,1) and x*(n-1), satisfy the requirements specified in
the beginning of this section, with the trivial difference that the chi-square
variable has n-1 degrees of freedom, instead of v. A variable constructed from

these two variables as

€ = afva - x - |
]}(n;1!sz/(n_1) s/vn

is therefore a Student's t-varisble with n-1 degrees of freedom.

5.2.2 Proof for the Student's t p.d.f.
To prove that the variable t as defined by eq.(5.14) has the p.d.f.

of eq.(5.15) one may proceed as follows:
The joint p.d.f. of x and u, because of their independence, is given

by the product of the individual p.d.f.'s,

£(x,u3V) z[J_ e_!xz] .[_.__1__._.,
VG 22V T

JVi st

Transforming to s new set of variabies,

t - . v=u,
where ~= % t 2w, 0 £ v S ®, the Jacobian of the transforumation is

ox  3x AV oo

J-Bt Bv- ,ﬁ
il

du
- 3_\?' 0 1

In terms of the new variables the joint p.d.f. can be written as

2
1 A=t ()
ST(gvyzd 1)

Since we are only interested in the variable t we proceed to find the marginal

£(t,viv) = EQruv)|d] =

distribution in this variable by integrating over v,

« ™ r2
£(t;v) = f £(t,v;v)dv = m[v!(vﬂ) 1,-hv (145 ]dv,(s.ts)

0
which is 8een to lead to eq.(5.15}).
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3.2.3 Properties of the Student's t-distribution
Llrtriouttorn

The Student's t-distribution of eq.(5.15) is shown in Pig (iv) The mean value &nd variance of the distribution are given by

5.
few values of the parameter v, e

fw

E{t) =0 l
f(u_ V) (5.17}
!
v
- > 2.
V(t) 2 [ v 2
The asymmetry and kugtosis coefficients ave, respectively,
Y
Y1 =0
( (5.18)
6
- 2 > 4.
Y2 =257 v
These results indicate the similarity between the Student's t-distri-
bution for gemeral v and the astandard normal distribution.

Fig.
The special cases v=] and y==
the standard normal distributj

1 2 3 t

5.3. The Student’s t~disiribution for different de

grees of freedom v

correspond to the Cauchy (Breit-wi ’
: ~Wi r

ons, respectively. grer) end

The properties of this distribution may be enumerated as follows:

(i) £{t;v) is unimodular and Symmetric aboyt £=

(ii)  For y=1 1y =1 i
» E(£31) T Tepze that is, the Student's t-distribu-

ti i i
lon with one degree of freedom is identical to the Cauchy distripu-
tiom.

(1ii) When v > =, £(¢; L4t
en vV > oo, f{fv) + —= e vhich means that, esymptoti-

r 3 Tr ax
the Student's t-distribution becomes equal to the standard
nrormal distribution.

cally,

i

5.2.4 Probability contents of the Student's t-distribution

The cumulative Student's t~distribution is used to evaluate confidence
intervals or for testing hypotheses involving t—distributed varisbles.

Writing

t
a3
F(t ;v) = I f(t;vide =1 - a, (3.19)

where f(t;v) is given by eq.(5.15), Appendix Table A7 gives values of £, corre-

sponding to specified entries for F(ta;V) and o for different degrees of freedom.

The table includes the special case v=r, which we have seen is identical to the
standard normel distribution, In fact the reader, who already from Sect.4.8.3
is acquainted with the probability contents of N(0,1), will easily establish
the connection between Appendix Tables A6 and A7, and thereby be able to make
use of the latter. See Exercises 5.17 and 5.18.

Exercise 5.13: Evaluate the integral of eq.(5.16) and thereby complete the
proof for the p.d.f. of the Student's t-variable, eq.(5.15).

Exercigse 5.14: Verify that thes Student's t-distribution specializes to the
Cauchy distribution for ve=l and to the standard normal distribution for v + e,

Exercise 5,15: Derive the properties listed under (iv) in Sect.5.2.3.
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Exercise 5.16: Show that the algebraic moments U' for the t-distribution exist
only it k¥ < v, and that the even moments u2'r are given by

2r
X r 2r =
£’ - 8 (7'67'\7] =" BT EWTTY, <y,
because of the independence of the variables x and uj E(xzr) and E(u—r) are the
expectations for N(0,1) and y2(v), respectively. Compare Secr.4.8.4 and Exer- 1
cise 5.3.

Exercise 5.17: Show that, givem A, one can for the Student's t-distribution
calculate the limits *b in the relation
b

P(-b £ £t £ b) = f flepvide = v

-b
by the use of Appendix Table A7. Write down values of b taking y=0.95 for
v=1,5,10,30,60,%. Note that for V=, the limits b=#2.00 correspond to the pro-

bability content 0.954 of N(0,1).

Exercige 5.18: Calculate 0 = ¥¥(t) (eq.(5.17)) and find values of
a

P(-a St Sa) = J f(t3vdde
-a w
for v=3,5,10,30,60,, '

Exercige 5.19: Show that if t2 is taken as a variasble instead of t, the p.d.f.
LXerclee J. =

18
-1
T{}ve1) t

— e ———

£(t%;v) = -
AT T(4v) 1+ & L(v+1)
v
This is the same form as a special case of the F-distribution (with vi=1) to be i
discussed in the next paragraph.

Exercise 5.20: (The non—central t-distribution)
Let x be a normal variable with unit variance but with mean different

from zero, f.e. x is N(§,1). 1f the variable u is ¥ (v) and x am‘i u are inde-
pendent, the variable t' = x//u/V for -= £ t' £ = has a p.d.f. given by (=62

Fii(\)+1)+ri (11" 1
TEHOT () i) { t.z]i(vﬂ)w ’
14—

A
which iz called the non-central t-distribution with v degrees of freedom sand
non-central parameter &. Verify that this diseribution specializes to the usual
(central) t-distriBution of eg.{(5.15) when §=0.

- ® r
sy =B L
0 "

When the mon—central t-distribution is regarded as a function of t'?
it is a special case of the non-central F-distribution (for v;=1) which is
introduced in Exercise 5.29.
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5.3 THE P-DISTRIBUTION

5.3.1 Definition

Let u; and u, be two independent (central) chi-gquare variables with
. r
respectively, vy and v, degrees of freedom, ©.o. uy is

2
. ), uz is xi(vp),
Define a variable F by 2 X" (va)

Fzwly_vm

uzfVz vy us OfFLm Visv2 > 0. (5.20)

This variable has the p.d.f.

£(F30,,V2) = 5( SY;:vzl

7+ UF
V2

which is called the F-digtribution with (V1,V2) degrees of freedom.

P}M piui
Uy [__F']'WTVZT ] (5.21)

Re . . . .
mark 1 If uw is not a central chi-square variable as Was assumed above, but

instead a non-central chi-square variable with Vi degrees of freedom, then, with
¥

2 A
uz a8 %x*{vz) and u; and u; independent, the variable F' = (w1/vi1)/(u2/V;) has a
non-central F-digéribution. See Exercise 5.29.

Remark 2. In practice one encounters chi-square variablies in the form of sample

variances for normally distributed variables. For definiteness, let x;,x; X
3X2y04y

and Yl,yz,...,ym be two independent samples from the same population N(u,0%)
’

for example two series of independent measurements., The sample varignces are

n
2 o 1 -2 - n
81 n'—_1_§ (xi_x) , vhere ¥l Tz,
i=] noaql
2 1T - o
8 = — ] (r.-7)* where v =l
m-1i-! i ’ y m i£1yi'

The: - 242 2 T
n (n-1)81/0% and (m-1)s3/0” are two independent chi-square variables with,

respectively, n~1 and m-1 degrees of freedom, satisfying the requirements speci-

fied sbove for an F-variahle; taking the ratio according te the definitiom of eq
(5.20) we find .
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_iva 2
sy o)

Fo—ro e -

2
Mzi(m_1)

a?
This varisble then has an F-distribution with (n-t, m1) degrees of freedom;

w
—h

(5.22)

w
NN'
.

for obvious reasons F is here called the variaice ratio,

5.3,2 Proof for the F p.d.f.
To prove that the variable F defined by eq.(5.20) has the p.d.f. of

eq.(5.21) one can follow the reasoning that was used to establish the Student's
t-p.d.f. in Sect.5.2.2. From the joint p.d.f. of u, and u;, & transformation
is made to the new set of variables

ufv,
wp vz
where D SF S w, 0 %vSo Aplying the change of variable technique and

F = V¥ " Up s

eliminating the auxiliary variable v by integrating the joint p.d.f. over this

variable, the reader should be able to verify eq.(5.21}).

5.3.3 Properties of the P-distribution

Figure 5.4 shows a sketch of the F-distribution for a few combina~

tions of the parameters V;,Vz.
Tbe following features characterize the F-distribution :

{1) £{F;v;,V;)} is monotonically decreasing if W % 2, while it has

a maximum for v; > 2, the mode being

vi=2 V2
¥ wode vy va+l ® vi > 2. (5.23)

(i1} The distribution is positively skew and has a mean value and

variance given by

M2
E(F) =7’ . v > 2,
2
V(F) = 2\)2(\;‘1"‘\)2 2 . Vs > 4,

vy (ve-2) 2 (ve=b)

(5.24)

Note that whereas the mode, when it exists, is always <1, the

mean value i3 >1.
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(iii) For v;=? the F-distribution specializes to

£(F;1,vy) = LV} ik
LA r(i\lz) (1 . _F_ ]!(VZ'F‘T )
vz

which is nothing but a Student's t-distribution with vy degrees of

freedom, when the latter is regarded as a function of tiaF; compare
Exercise 5.19.

(iv) The limiting properties are such that for v fized, vy + =
3 —_—

1 - —
iv (U]F)ivl 1e i(VlF)_ 1 N
22V T (jvy) V1
that is, the variable (v,F) approaches ¥%(v,); see Exercise (5.25),

E(F;vy,v2) ~+

For vy * ®», v, + = the F-distribution tends to normal. The

approach to normality is, however, rather slow.

(v) The quantity z = }1nF has a distribution which is close to

i : 1 1
normal, with approximate mean | 7,” 7, and variance § %-+ 1 See

1 V2’

. Vi
Exercise 5.28.

] (\H;VZ)

f{Fi vpvz) T =(1 ,1)

0.60

0.40

0 ’ 2 G

Fig. 5.4. The F-distribution for selected degrees of freedom (Vy,¥2) .
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5.3.4 Probability contents of the F-distribution

The cumulative F-~distribution is defined by

Ol
F(xa;Vl.Vz) - f E(F3uy,v0dF = 1~ s (5.25)

0
where the integrand is the p.d.f. of eq.(5.21). Appendix Table A9 gives values
of X, for specified entries of F(xu;\’n\’z) and different degrees of freedom
(vi,Va)- .
In practice, the probability contents of the F-distribution is used
in connection with hypothesis testing of variances for normal samples; for an

example, see Sect.14.3.3.

gxercise 5.21: If the variabie F has an P-distribution with (v1,v2) degrees of
Freedom, what is the distribution for the variable 1/F?

gxercise 5,223
of the F variable.

Exercise 5.23: Verify the formulae for E(F) and V(F) given in the text, eqs.
5.24).

Exercise 5.24: Show that the algebraic moment e for the F-distribution exists
only if k < Tv,, and is then given by
k k k
' k uy /vy _{ve k —k, _ [va], LUV, k) T {Jvz-k)
= = =l¥X21 g e 1X2] W
R = ol R AR R v R e Ty
since the expectations E(ulk) and E(uz_k) are evaluated for y?(v;} and X2 (vad,
rvespectively. Compare Exercise 5.3.

Exercise 5.25: Verify the special forms for the F-distribution steted under
(iLl) and 7iv) in Sect.5.3.3.

Exercise 5.26: Calculate O= WIFY (eq.(5.24)) for the F-distribution with
Fixed v,=5 and vy=10, 20, &0, respectively, From Appendix Table A9, find by
interpolation F(30;vi,Ve) for the three combinations of {Vv,,Vp). What is the

limiting value when v, * *?

Exercise 5.27% u ;
and. the variance of the F-distributien? Compare the corresponding entries of

Appendix Table A%.

Exercise 5.28: (The z-distribution}
€3] Put z = jlnF. Show that the variahle z has the p.d.f.

In Sect.5.3.2, carry out the details of the proof for the p.d.f.

When v; > ®, v, *> ®, what are the 1imiting values for the mean
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E(z3vp,vy) = I%l(" ul(\uwi\)J Vl}v,vzivz Mz
2

2z (v, +vz) *
ey 1™Ve
where ~» £ z £ o, ( 1 z)

ii isti
(ii) Show that the characteriatic function for z is such that

Ind(e) .35[1-1 N ECI L A
2 ve vy 2 EIATS
and thereby verify the statement
: ; t made under (v} in Sec¢t,5,3 h i
apir:ximately normally distributed with mean value i’[? 1 [ "ind variane

HUL \le' ' v~ v,) and variance

Eizercise 5£e22: ) (The non-central F~distribution)
u; be a non-central chi-s i i
h ° quare variable with v -
(zueun:rrazlr)mnh?fntral para:?eter A'as defined in Exercise 5.72 ls::g:::sucfbf“e
chi-square variable with v, degrees of freedom. 1f u! and us a?.:ea
1 2

independent the variable F':(u! . 3
given by riable F'2(ui/v,)/(u2/v,), where 0 £ F' 5 =, has a p.d.f.

f(F';\Jl,\Jz’A) = e-!)‘ E’_'[_)llr m(vl"\)z)"'f] r\"l] i\)l"’l‘ (Fr)i\h_‘“'t
r=0"" 2 r(l\h*’ﬂl"(!\)z)luz [1 . Mr]!(\)ﬂ-\lz)ﬂr *

which is called the non-cent i i .
ral F-distribytion wi
vaich is with (Vi,v;) degrees
ordin(::‘ ctzntral parameter 75. Show that, for i=0, f(F'-’u v 7\3) dOf R
y {central) F-distribution of eq.(5.21). e reduces to the

(ii) In view of a st H
L atement in Exercise 5.12 the vari v [V #20 .
have an approximate central chi-square distribution with P:E'IE :;_i -J——_\)ﬁ)\ will

Vi= {u+a)2 vy +2A
b= ued) [ (v142)). Hence “”(ﬁ?\_] fo] = ulf(v;+2) is an approximate central

chi-gquare variable divided by its number of degrees of freedom

can be written Show that F'

I3 1 3 : 1 it} ) '
where F approximately has a central F-di rL arameters {Vi,V
i3 stribution wit] P ( » 2)’ Vi

5.4 LIMITING PROPERTIES - CONNECTION BETWEEN PROBABILITY DISTRIBUTIONS

The comnection between the sampling distributions of the present
chapter and some of the probability distributions discussed in the previous
chapter i illustrated by Fig. 5.5.

Note the central position of the normal distribution as s limiting
case of the three sampling distributions (chi-square, F, Student’® t) as well

a8 of the three discrete distributions (multinomial, binomisl, Poisson)
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Binomial

p—>0
np=const.

k=2
Multinomial
n—» 00
V— 0o
Chi-square T

Fig. 5.5. Relations belween probability distributions.

Exercise 5.30: Find appropriate positions in Fig. 5.5 of the exponen

Paisson

gamma, and the Cauchy distributions.

Student's t

tigl, the

6. Comparison of experimental data with theory

In the preceding chapters we have investigated features of probabili-
ty distributions which are frequently used in physics. Experimental findings
can, however, not always be directly compared to the ideal mathematical distri-
butions. Quite often a theoretical model will have to be modified in some way
before one can make a meaningful comparison between prediction and observatiom,
The reason for this can be that the theoretical p.d.f. will only describe an
experiment performed under certain ideal conditions which are not fulfilled in
practicé; for instance, the lifetime distribution law f(tj;A)} = Ju-_"J\t for
0%t 2w gsgumes that a particle detector of infinite dimensions is avaiiable.
It may also be necessary to correct for experimental uncertainties and various
types of systematic effects.

The purpose of the present chapter, in spite of its rather ambitious
headline, is only to outline some of the preparatory work that may be necessary
before the experimental dsta can be used to elicit information on unknown para~
meters, or agreement checked with other experiments oxr theoretical models. The
parameter estimation problem is discussed quite extensively in Chapters 8-11,

whereas a treatment of various tests of goodness—of-fit ie postponed to Chapter
14,

6.1 REJECTION OF BAD MEASUREMENTS

It often happens during the accumulation of data that one of the
meagurements differs substantislly from the others. In such a situation one may
perhaps suspect that some mistake has occurred, for instance that an erronecus
figure has been recorded by the observer, and there should then be no objection
to simply discard this single chservation.

The situation ie frequently not so clear, as when there are several
observations which seem to deviate considerably from the majority. It is often
a matter of taste to judge which measurements should be kept and which should be
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discarded. Several attempts have been made to define objective criteria for

the rejection of bad measurements; it appears, however, that such criteria are

all more or less arbitrary. Some of the suggested rules will, for instance,

allow the rejection of relatively many events in a low-statistics experiment

but hatdly any events in an experiment with high statistics.

In general, in throwing away suspicious observations one must keep in

mind that this rejection should not reduce the reliability of the inferences

made on the basis of the remaining sample. In each specific case, therefore,
one ought to investigate what might be the reason for the large deviation, such
as an erroneous measurement, bias of some type, or just a statistical fluctua-
If this inquiry shows that the inconsistent value is most reasounsbly

it may safely be rejected; otherwise it is

tion.
ascribed to a "wrong" measurement,

probably most correct to keep it.

6.2 EXPERIMENTAL ERRORS ON MEASUREMENTS, THE RESOLUTION FUNCTION

The data with which we have to deal, are pubject to observational

Due to the uncertainty in the measurements a variable whose true value
Because of the uncertainties

errors.
is x may be observed at some different value x'.

inherent in the measuring systems omne can even ohserve events where ideally

there should be none. This suggests that before any comparison is made with
the data the ideal theoretical distribution for x ought to be adjusted to cor—

respond to some modified or expected distribution for the measurable quantity

x'.
A function r(x'i;x} which describes the distribution of the measur—

gble quantity x' for a given true value x is called the resclution funetion for

the variable x. If the true p.d.f. iz £{x;8), the p.d.f. for x' is given by

£ {x') = f f(x;g)r(x';x)dx. (6.1)

In eq.{6.1) the true variable x is integrated over and replaced by the observ-

able variable x'; the original theoretical distribution f£(x;B) is "smeared out”
by the experimental resolution function into its resolution treneform £'(x').

This "observable p.d.f." will depend on the parameters 8 in the original p.d.f.

as well as any new constants entering the resoclution funetion.
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The res . . c1q x
resclution function will in general distort the original p.d.f

Howew i i i i
er, if the resolution function is strongly varying about the k val
peak value x,

so that EEfectlvely TiX X may be pro ted by £ ti § =X
( * ) ap, Kima a delta function (x )
2

eq.(6.1) gives the resolution transform ag

£r(x!) = f(xl;.g)'
(6.2}

1 1}' ing that oL
mp -4 at for an experiment with very good precision the shape of the d.f
P-

18 Uﬂaffe—Ctedc For the other Ext!auﬁ, if the experimental resolution 18 very
PO slela
» 1 ) ng B 4 TLE P d.f
oL, (x X bei large aleo over the regions where the ori inal 18
Smﬂll, approximating f(x H B) by a delta function 6 (X"x ) leads to

£frix'y = r(x';xD}_
{6.3)

Thus the cbse i i i i i
tvable distribution is nothing but the resolution funetion itself

In many les i i it i
y & extreme situstions it is possible to give analytical ex-

pressions for the resolution function r(x';x)
; and perform the intepration of

repeAtEd For instance, it is quite often reasonably assumed that
measurements on the true v
alue x would lead to i
: - observati ' i
are normally distributed about x. e e

_*(x —xl
rix";x) = 1 a R ,
V2T R (6.4)

eq.{6.1) analytically.

Hence the resolution function can be taken as

where th iati

e standard deviation R measures the experimental uncertainty: R i
often called the resolution width. o

In i

win some cases other simple analytical expressions may be used for

r{x';x). I i i
H n other cases the folding-in of the experimental resolution by
eq.

( . ) as to be ne numerical We 8 8 gome example the fo WL
6 h o] do ca ].Y. discus ] xamples in llowin
Be

6,2.1 H i i
Example: Gaussian resolution function and exponentigl p.d.f

When the original p.d.f. is exponential,

~Ax
f£(x;1) = Re R
0%x 5w, (6.5)

and the resolution fun 10m 18 of Gaussian over the where 18 de—
] 3 ct f Gaussi form r range X d

fined, the resolution transform of f{x;1} Bbecomes
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Fig. 6.1. Logarithmic display showing the effect of Gaussian resolytion
functions on eXponential p.d.f,"'s for different values of the dam?lng
constant A and the resolution width R. The curves for R =0 {straight

lines) correspond to the unmodified, original p.d.f.'s of eq.(6.5).
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T
£ {x') -~ J Ae—kx.e R ax.
[=]

This integral can be evaluated to give the following form,

2 ] T
£'{x") - e;(AR) 'G[% ‘RR]'Re Ax ) 0£x' Lo, (6.6)

where G is the cumulative standard normal distribuytion introduced in Sect.4.8.,2
and tabulated in Appendix Table A6.

In practice an ideal behgvioutr of the form of eq. (6.5} iz expected,
for example, for particle lifetimes, transverse momenta and four-momentum trans-~
fers, The assumption of a normal-shaped resolution function appears reasonable
for many experimental set-ups.

Fig. 6.1 illustrates how the original p.d.f. of eq.(6.5) is modified
by eq.(6.4) into different observable p.d.f.'s of eq.(6.6) for different numer-

ical values for the constants X and R.

6.2.2 Example: Gaussian resolution function and Gaussian p.d.f.

Let the original p.d.f. for the variable x be normal with mean value

% and stsndard deviation T,

<

e‘i(x-xo)zlfz. -

£(x3x,[) = —— x 2w, (6.7)

VYIm T
If the resolution function is alsc normal of width R over the entire spectrum,
1 -4(x*-x)?/R?
—e ’
Y21 R

the integration of eq.(6.1) yields for the resolution transform

r(x';x) =

! o h G -x )2/ (17402
V2T (T2 +R?)
Hence, the p.d.f. for the observable x' will also be normal, with the mean value

, —o £ x' £ oo, {6.8)

f'{x') =

of the true distribution, but with a variance equal to the sum of the variances

of the original distribution and the resclution funetion.
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6.2.3 Example: Breit-Wigner resolution function and Breit-Wigner p.d.f.

Suppose that the ideal paremeterization is given by a Cauchy, or

Breit-Wigner, formula

! , < xS . (6.9)

£(x3x ,[) = = ——————
° (x—x°)2+I'2

Elle]
4

For an analytical evaluation of the observable distribution the most convenient
form of the resolution function is now another function of the same type, say
r(x';x) = %_.._..1__.._._
(x!_x)2+R2
Then eq.(6.1) leads to the resolution tramsform

f'(x')=£7+-r'§———-—1-—— » - £ x' I s 6.11)
(x'-xo)2+(I‘+R)2
In other words, the observable distribution will also be a Breit-Wigner curve,
with width equal to the sum of the resonance width and the resolution width,

Exercise 6.1: With a Gaussian resolution function and a Breit-Wigner p.d.f.,
how would you find the observable p.d.f.?

6.2.4 Example: Width of a resonance

The two preceding examples suggest that for studies of peaks in
effective mass spectra it may be convenient tc employ the same functional form
{Gaussian or Breit-Wigner) for the resolution functiom and for the p.d.f. de-
scribing the physical effect. When this is possible the width of the resulting
cbgservable peak I‘mbs is simply related to the true resonance width T' and the
resolution width R. Thus, if both the true rescnance peak and the resolution
function have normal shapes, the width of the resonance is given by

I =/T R?,

2 - i .
obs (two Gaussian shapes) (6.12)

For the Breit-Wigner case, the relationship between the widths is linear,

r=T_ -R,

obs (two Breit-Wigner shapes). {6.13)

In practice, therefore, the two parameterizations may lead to differ-

ent estimates of the true resonance width. The difference between the results
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will depend on the relative magnitude of the measured width and resclutiom
width, being small when this ratio is large (high resolution). It is recomr
mended to apply both sets of parameterizations; in the case of a poor agree-
ment it may be necessary to study more closely the validity of the agsumptions.
In any case, rather than using a rough approximation, a superior approach would
be te use the experimentally observed shape of the resoclution function and per-—

form a numerical integration of eq.(6.1).

2.01- r{x';x) -
N(0,Ax?) '

i
[
=
1
o
o

15

10F

0.5

o’ P 1
|
-15 -1.0 -5 0 5 10 x-x
Fig. 6.2. Five measurements of different accuracy are represented by normal

p.d.f.'s N{0,Ax?)} (dashed curves) and correspond to the resolution function
r(x';x) shown by the full-drawn curve.

6.2.5 Experimental determination of the resolution function; ideogram

It is often difficult to give a good analytical approximation for the
resolution function. This is sometimes the case when the uncertainty in the
varisble varies from one measurement to another. One may, for instance, think
of different bubble chamber events contributing to the same bin of a histogram,
where the ertors on the individual events can be largely different. In such
cases an average resclution function can be determined experimentally by plot—

.ting the data in an {deogrem in the following mannet.
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Let the measurement X have an experimental errox Axi. One will then
assign a normal probability distribution to this measurement, with a standard
deviation corresponding to the experimental error. When this is dome for all
measurements in a certain region of the histogram, and the (normalized) Gauss-—
ians are subsequently centered about some common, arbitrarily chosen wvalue,
the added contributions give the shape of the experimental resolution funetionj

gee illustration by Fig. 6.2.

6.3 SYSTEMATIC EFFECTS. DETECTION EFFICIENCY

In many experiments the detectors used to register the signals do not
have the same sensitivity for all types of reections. The detection efficiency
may, for example, depend on the location of the interaction point in the detec-—
tor, on the emission angle of the particles, on their momenta, ¢t¢. The experi-
mental bias introduced by imperfect detection ability can for many experiments
be very serious, because it leads to loss of information and less relisble com—
clusiong, One therefore tries to design the experiment in such a way that the
detection efficiency becomes as high as possible. Since, however, perfect de-
tection can never be achieved in practice due to high costs, time-consumption
ete., all kinds of possible loss and systematic effects that will distort the
data must be checked and estimated.

A probability density function £(x;§) which appears suggestive to
describe the phenomenon under study will sometimes be mathematically defined

)

over non—observable values of the physical vsriable* . This situation can be
handled by fruncation of the p.d.f. in the following way., Let us assume that
the observable part of the spectrum of x lies between some definite limits A and
B. We then require the p.d.f. to be zero outside these limits and write our
new p.d.f. as

£'(x;8) = D = iy s ASZx%H, (6.14)
= F F(B) - F(A)
A

f{x;6)dx

*) In the remainder of this section we assume that, if necessary, the experi-
mental resclution has already been folded inte f£(x;8).
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where F denotes the cumulative distribution for the ideal p.d.f.. Thus the
truncation implies a renormalization of the ideal distribution over the ohserv-
able region of the variable.

The truncation of a theoretical p.d.f. can formally be regarded as a
special case of a more general handling of experimental bias which follows from
incomplete detection ability. Detection inefficiency can in principle be hand-
led according to two different approaches which differ in basic philosophy,
consisting in, respectively,

(i) modifying the ideal p.d.f. (exact method)
(ii) weighting of the observed events (approximate method)
Essentially, the idea behind the first method is to apply the correction to
the theoretical model, leaving the data as they were observed, whereas with the
second method one keeps the theoretical model unchanged and adjusts the experi-
mental data.

Let us discuss the treatment according to method (i} in more detail,
We shall modify the ideal theoretical description to obtain an observable p.d.f.
which in turn can be compared directly with the observations. Although exact,
this method may be difficult, if not impossible, to carry out in practice.

Suppose that we make observations on some variable x in order to
egstimate the parameters of the ideal p.d.f. £(x;p). Because of an imperfect
detection apparatus the distribution that can be :bserved is not £(x;8), but
some distorted distribution £'(x;6) which is related to the ideal p.d?f.
through the detection efficiency. In general, this efficiency will be depen—
dent on the variable x in which we are interested, 2s well a8 on one or more
additional variables, y say. The additional variables may alsc be:dependent on

x, 80 that to cover the most general case we write
[f(x;ﬁ)D(x,y)l’(ﬂx)d}r

”f(x;g)n(x,y)rmx)dydx

£ (x;8) = . (6.15)
Here D(x,y)} is the detection efficiency, and P{y|x) the conditional distribution
of y, given x. Since the dependence on y is assumed to be of no interest to
our problem this variasble is integrated over in the numerator. The integration

over y as well as x in the denominator ensures that the distorted p.d.f. £(x3;8)
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is correctly normalized over the cbservable region for x.

The detection efficiency D{(x,y}, or acceptance, is a property of the
detecting system and can in principle be assumed known or measurable. The
conditional probability E(y‘x), on the other hand, depends on some physical hy-
pothesis that may, or may not be known prior to the experiment. If it is not
known g priori P(y|x) must be inferred from the data at the expence of the pre-
cision in the estimation of the unknown B.

In the general case, with explicit y-dependence for D(x,y)} and P{y|x)
and with integration limits for y depending on x, the evaluation of the dis-
torted p.d.f. can therefore represent a formidable task. Lf, however, the de-
tection efficiency should happen to depend on x only, and the limits for the y—
integration are independent of x, the observable p.d.f. is easier to find, since
eg.(6.15) then reduces to

£(x; 9)D(x)

£ (x39) = . (6.16)

Jets@pmax
1t is seen that eq.{6.34) for a truncated p.d.f. represents a special case of
the last formula.

Method (ii), which is only approximately correct, but perhaps more
frequently used in practice, applies correcting weights to the individual ob-
served events, equal to the reciprocal of the detection efficiency. The treat-
ment assumes a subsequent comparison of the distribution of these weighted
events with the original p.d.f.. Thus the philcsophy is now to adjust the data,
rather than the theoretical model. If one event is observed at a particular
value % of the variable we say that the corrected pusber of events is Vs the
weight v, being equal to the inverse of the detection probability for this

particular event,

1
vy D(xi,yij : (6.17)
We will see later that the introduction of weighted events gives rise
to specific problems which require special attention for the MaximumLikelihood
and the Least-Squares methods for parameter estimation, Sects.9.11 and 10.6,
respectively.

In the following sections we shall now give some examples on the
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application of the procedures outlined above. The three first examples deal

with method (i), whereas the fourth applies the weighting method (ii}.

6.3.1 Example: Truncation of an exponential distribution

As a First example on the modification of an ideal probability distri-
bution by truncation, let us take the distribution law F(eza) = }\e—lt describ-
ing unstable particles with decay comstant X for lifetimes satisfying 0 £ t £ o,

If the geometry of the apparatus allows the detection of an event only if

< .
toin I t ax We should, according to eq.(6.14) take for the truncated p.d.f.
e—At e-At
AN CH Y I il -~ 1
max _ min _ max
J e Atdt e e

t .
min
which is properly normalized over the region of detectable flight-times and

hence describes the observable events.

6.3.2 Example: Truncation of a Breit-Wigner distribution

A second example where truncation is always used in practice is for

the Breit-Wigner parameterization of a resonance f(M;M ,[) = %{(M—M )2+I'2]—1.
0 o

When the observations are restricted to a finite mass region HA M= MB’ the

truncated p.d.f. according to eq.({6.14) is

r 1
T (MM YZ+[2 r
£ (i ,T) = ] - : i .
MB r daM tan_i[MB Mu’ ~ tan™? -ﬂ——MA’MD (M—M0)2+I'2
T W _y2eTe i v
A

For this p.d.f. the expectation of M is

MM 17 MM}
e ¢ In =2+ 1 -—r-—° + 1
1 - -, —
f ME' (M, T =, T o ,
M tan™? - tan=? L
\ ] T an iy
vwhich will be differemt from Ho, the central value of the resonance peak, unless

the interval [MA'H"B] is symmetric around MO.

EM) =
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Exercise 6.2: With a symmetric mass interval [M -m, M +m] around the peak
value M , show that the variance for the truncatéd Breit-Wigner p.d.f. is
V(M) = w/r)/arctan(m/T)- 1. Note that %1_1:.2 V(M) = =; compare Sect.4.11,

6.3.3 Example: Correcting for finite geometry — modifying the p.d.f.

Let us assume that we want to determine some parameters © related to
the spectrum of the momentum p of neutral particlea which are observed in a de-
tector through their decays into charged products. For definiteness, let us
think of K® + 7'7 in a bubble chamber. With a limited detection volume the
probability to detect and identify a produced K® will depend on the location of
the production point as well as on the momentum and direction of the K°. Fast
particles are more likely to escape the bubble chamber, as will be those whose
direction implies a short path length. One will algo often expect a lower de-—
tection probability for s decaying very close to the production peint since
such events can be difficult to distinguish from other topologies. To correct
for the loss of short-range K® we require the projected path length to be larger
than a certain minimm value. If the K° proper flight-time follows a distri-

bution law e_t” where T is the mean K° lifetime, the detection probability is
given by

- . ft -t {1
min max
D(P:)‘ ) = e - e '
where tin is the minimal detectable proper flight-time corresponding to the
chosen cut on the range, and where toax is the potential flight-time.
Both t . and t are inversely proportional to the momentum p, the
min max

“nuisance variables" X and

“interesting" variable, They will alao involve the
¢ giving the direction of the line—of—flight., It is for us necessary to estab-
lish a relationship between p and A,$, which for a given p expresses the distri-
bution of the angles, P()\,¢|p). Usually this relationship has to be inferred
from the same data which we want to use for the estimation of the unknown para-
meters §. When the dependence BE(A,$|p) has been established, in a functional
form or by a numerical mapping, the cbservable distribution for the momentum

can be found from eq.(6.15), which in this case becomes
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4 tmx(P sA,9)

- expk" —T—)}P(}\.d:lp)dn, (6.18)

min

£ (2,9 = H f(p,g){exv(- =
Q

t . (p,}\,rb))

where N is a normalization constant.

6.3.4 Example: Correcting for unobservahle events — weighting of the events

Suppose some theory relates the physical constant § to the productien
angle for a pion measured relatively to the incoming antiproton direction in
the reaction pp *+ o' 1" w1°, When cbservations are made in a bubble chawber
the events where one of the charged pions has been emitted along the direction
of the magnetic field will often not be successfully analyzed because of an un-
measurable momentum. Such events will therefore largely be missing in the
sample. If all events with a charged particle inm an “"unmeasurable" cone df}
around the magnetic field direction are excluded from the sample, the total
loss of events can be corrected for using the remaining sample, under the
assumption that these events are free from experimental bias.

The reaction pp *+ A is charge symmetric and has a rotational
symmetry around the colligion axis. For each observed event we therefore make
a rotation of all charged pion directions around this axis and determine the
total probability P; that at least one of the tracks will correspond to a lab-

oratory angle within the cone df2. The event is then assigned a weight

When all events from the purified sample are plotted with their indi-
vidual weights the resulting corrected experimental distribution can be compared

with the vnmodified theoretical model.

6.4 SUPERIMPOSED PROBABILITY DENSITIES
An experimentally observable quantity often has a possible origin in
several physical processes. The overall probability density can then be thought

of as a sum of terms where each term gives the contribution from one process;
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we write

£(e0,8) = o.f. (x;8,),
i 1)
vhere fj (x;_(_i_j) denotes the distribution expected from the j~th contribution
alone and o, the probability for this process. For incoherent processes,
§ 0!.]. =t to keep the overall f(x;0,8) properly normalized.

In many situations one will be mainly interested in only one or a few
of the contributions, and will consider the rest as some type of background
effect. Sometimes this background is well understood, Unfortunately, however,
the background sources are frequently more or less unknown, so that the mathe—
mathical description of this part of the total amplitude may be rather uncer-
tain. The conclusions that cam be drawn about the interesting physical effect
will then be correspondingly uncertain. In experimental set-ups one will there-
fore in general try to keep the background rate, or noise level, as small as

possible.

6.4.1 Example: Particle beam with background

A particle beam of mean momentum P, and standard deviation Ap is of
normal shape between the limits Py and Py From outside sources the beam is
contaminated by a background of particles uniformly distributed in momentum.
The total momentum p.d.f. can then be written

.12
1)
P + g <p <

£(pi0,Q2,p »8p) = e Py =P 2y

Exercise 6.3: In the example, above determine the relative magnitude of the
beam and the background rates.

6.4,2 Example: Resonance peaks in an effective-mass gpectrum

The resonances 1(549) and w{783) are abundantly produced in the reac-
tion 1T+p - 'lr+p'n'+11-'rr° at intermediate energies and are detected as enhancements
in the neutral wra system. An effactive-mass plot for this combination shows
nice peaks at about 550 and 780 MeV over a smooth background and may therefore
be usad to estimate the masses and widths of the r and w mesons. In terms of

the true three—pion effective-mass M the overall p.d.f. must be composed of two
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Breit-Wigner parts Wn and wa describing the resgonances, and some function B

describing the background. In an cbvious notation the ideal p.d.f. is
£{M: - . - -
M;2,8) annwn(M;Mn,I‘n) + amnww(M,Mm,rm) + (1 % B (M},

If the observations are restricted to a finite mass interval and the experimen-
tal resolution taken into account, the overall p.d.f. which should be compared
with the observed distribution is

. ¥
£'(M';0,8) = If(M;P_‘_._Q)r(M';M)dM/[ f £(M;0,98) r (M7 ;3) dMaM’ ,
M, M

M
A A A




7. Statistical inference from normal samples

The previous chapters of this book have mainly dealt with probability
theory. In particular, Chapters 3,4 and 5 were devoted to supply the reader
with some general background as well as detailed knowledge on specific proba-
bility distributions, which either describe phyeical phenomena directly, or
turn out to be useful for the handling and interpretation of exper;‘.mnntal data.
In Chapter 6 we saw how it might be necessary to modify the ideal theoretical
distributions to prepare the ground for a later comparison between theory and
experiment.

We shall now make the traneition from probability theory to the
domain of statistics. We do this by discussing in this chapter some simple
examples on statistical inference about the parameters in the noymal probabi-
lity distribution. The normal p.d.f, ia assumed to give an adequate description
of some population, or universe, for instance the outcomes of infinitely many
measurements on the same physical quantity. The numerical values of the para-
meters in the p.d.f. may, however, not be completely kmown. From a restricted
number of observatione, assumed to be representative for the universe, it is
possible to make inferences about the unknown quantities. We will build our
examples around the notion of a confidence tnterval, which we ehell meet again
later in Chapters 9-11 when we come to the different methods which are generally
applicable for estimating unknown parameters.

We begin this chapter by giving first in Sect.7.1 a set of formal de-
finitions and some general remarks on the problem of making inferences about an
underlying population from a given sample. From Sect.?.2 omwards we shall

specifically assume that the sample originates from a normsl parent population.

7.1 DEFINLITIONS
Let x) yR2yeens X, be & rendom sample from s population with a probabi-
lity density function which depends on a pareameter © which is not knowm but

| W—_—
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whose numerical value we want to estimate from the sample. If t=t(x;,x5,-+,% )}
is a function of the sample variables which does not depend on any unknown °
parmters;)we call t a gtatiatic; we assume here that t has some correspon-
dence to & ‘. Let f(t) be the probability density function for the variable t,
We will assume that, according te & given prescriptiomn, it ia poseible to deter-
mine two values 1:a and ty such that the integral of f(t)} between the limits t
and ¢ is equal to some fixed number v, 0 £y £ 1, 1f, for the parameter 9, *
the probability is such that

P(r €9 tb) =Y, (7.1)

the closed interval [ta,tb] is called a I00Y % confidence interval for 6. The

number ¥ is called the comfidence coefficient, and the numbere t and t the
. .. a
econfidence limits. See Fig, 7.1.

i(t)‘r

ta tb t

Fig., 7.1, Tllustration of the concepts of confidence
coefficient and confidence limits.

If we are given one particular sample of size n, say n measurements,

the limits <, and t, are definite numbers which can be calculated from the

meagurements., From this particular sample, therefore, a certain interval

*) We shall in Chapter 8 identify t as an estimator for the parameter 6, or,
more generally, an estimater for some function of 0.
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{t oty ] is deduced, and this interval will either include the true value g or

it w111 not. A second sample, also of size n, will usually lead to a different
interval, which may, ot may not include the parameter 8, The relevant state-

ment for ome particular sample is therefore, either

PGt S0 5t) =1, if @ is within [¢_,t,1,

or
£9<¢) = if 0 i ithi .
P(ta 8 tb) 0, if 0 is mot within [ta,tb]
The meaning of the probability statement eq.(7.1) is the following!®
There is a probability y that the random interval [t ,t ] will cover the true

value &, If a large number of samples of size 0 are examxned that is, if the

experiment is repeated many times under the same ¢onditions, then § will be in-

cluded in the calculated intervals [ta'tb] in 100y % of these experiments. Imn

other words, it is expected that, in the long rum, the calculated limits ta and

t, are such that the statement

Lg% .
t, 8 ty (7.2)
will be true in 100y % of the cases, Thus the confidence coefficient reflects

the reliability one may attach to the inequality statement (7.2).

Whenever it is desired to make a statement sbout gn unknown parameter
8 in terms of a confidence interval one is confronted with a dilemma. Choosing
a wide interval corresponds to having a large probability that the unknown
parameter indeed does belomg to the interval, but a rather vague statement is
then expressed about the parameter itself. Om the other hand, giving & narrow
interval would imply a more precise specification of the parameter, but then our
statement is less likely to be true. It appears that in this situation most
people prefer the former alternative and make their assertions taking v, the

confidence coefficient, as a number in the neighbourhood of 1. Common choices

are 0.90, 0.95, 0.99.
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7.2 CONFIDENCE INTERVALS FOR THE MEAN

In many situations it is reasonable to assume that the result of a
nea?urement of some quantity u ie a random variable x that has a mormal distri-
bution about the mean value 4, We will now assume that M ie sn unknown quanti-
fy, about which we are supposed to say something on the basis of a series of n
independent measurements, made under the same conditions. In other words, we
are to make an inference about | from a random sample of size n from the ;ormal
population N(p,0%). Here the variance g? gives a measure of the accuracy in
the measurements, and we must treat separately the two conceivable cases, when

2 s
0% 18 a known number (Sect.?.2.1), and when o is unknown (Sect.7.2 2)

7.2.1 Case with 0 known

Cur starting point is a random sample of size n from a normal popula-
- 2 - s
tion N{u,0°), for instance n independent cbservations x;,%u,... ,X ol known
er . :
ror ¢. When iunferences are to be made about the unknown population mean y it
is suggestive to consider the s 1
ample mean x = n E1x s this statigtic is dist-

2
ributed as N(U,0%/n}, and as we have seen repeatedly, {see for ipstance Sect.
4.8.6), the variable

x-n

ofva

has a distribution which is standard normal N(0,1). We can therefore apply

the considerations of Sect.4.8.3 concerning the probability contents of a
normal distribution. For instance, a probability content equivalent to *2
standard deviations is implied by writing

2

P-2 S XM <y . J -
(-~ A 2) ) gly)dy = 0.954, (7.3)

where g{y) is the standard normal p.d.f. of eq.(4,63). Eq.(7.3) is a probebi-
lity atatesgntﬁ expressing that the probability is 0.954 that the random vari-
able y = —o—t wi

e y T ~n will have some value between -2 and +2,

We can rewrite the probability statement in the form
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P;-2££u5;+2—9:}-0.954. (7.4

Vo Yo
- g = o]

This relation apparently considers U as a variable and x — 2 7-; X : 3 --Jr-_l-. as
two numbers defining an interval. We realize, however, that since x is a random
variable, the quantities x - 2 70—1__‘. and x + 2 —f-;—. ar: aiso rar;dom variablesf;
hence it is justified to call the interval [x - 2 = X +2 -/—E] a random inter—
val. We may read eq.{7.4) as a probability statement about u: Prior to the
repeated, independent measurements there is a probability 0.954 that the random
interval [x - 2 7“:., x4+ 2 %J will ipclude the unknown, but fixed value u.
Other probability statements can of course be written taking other intervals

corresponding to other probabilities. The point is, that all statements of this

sort, which can be made before any measurements are actually performed, belong

to probability theory. Gemerally we may write

1] 353‘-—:—”51,] ~=[ gly)dy = v,
af/n
where the limits a and b for a given ¥ can be found from Appendix Table A6.

As soon as the measured numbers are at hand and we are given a parti-

(7.5

cular set of u cbservations Xi,Xaz,. erX , We may pass to the domain of statis—

tics, and make inferences about the unknown u on the basis of the ohservations.
For definitenesa, let us establish & 95.4% confidence interval for

the mean p in N{p,3%), given that four independent measurements, with a known,

common error g=3, have led to the numbers
2.2, 4.3, 1.7, 6.6.
The sample mean is

X =

IZ‘
%, = 3.7.
jmi1 *

The confidence limits corresponding to s symmetric 95.4X confidence interval

=

for 1 are then given by

x~22a37-23=0.7

v V&

pe

and

x+2-La37+23m6.7,
A

n
Therefore, an inference to be made from the messurements is that the symmetric
95.4% confidence interval for the mean u ie the interval [0.7, 6.7].

Tt should be clear from the reasoning above that it is essential that
C is a known number., If O were not known, the confidence limits (x - 2 ‘%) and
(x+ 2 —%} could not have been calculated from the measurements, and hence no
inference could have been made about u based on N(0,1}.

In practice the situation is often that the error on the measurements
is not known exactly, Hewever, the size of the sample may sometimes be suffi-
ciently large to allow the approximation of d® by the observed sample variance
6, and the procedure above can be applied to find confidence intervals for i.
1f o is not known, and the sample size is small (n  20), the procedure of the
subsequent section should be used.

Exercise 7.1: For the numerical example given in the text, what is the symmetric
90% confidence interval for u?

Exercise 7.2: Given 6 independent measurements 10.7, 9.7, 13.3, 10.2, 8.9, 11.6
of known error o=2. Assuming a normal sample, find symmetric confidence inter-
vals for | corresponding to (a) y=0.90, (b) y=0.95, (c) v=0.99.

Exercise 7.3: Given that a normal distribution has variance c?, what is the
sample size needed if the symmetric 95.4% confidence interval for 1 shall have
a length equal to (a) o, (b) o/27

Exercise 7.4: Measurements on the momentum of monoenergetic beam tracks on
bubble chamber pictures have led to the following sequence of numbers in units
of GeVfc: 18.87, 19.55, 19.32, 18.70, 19.41, 19.37, 18.84, 19.40, 18,78, 18.76,
We assume that this sample of size 10 originates from a normel distribution.

If the measuring machine has 4 known accuracy corresponding to an un~
certainty of 300 MeV/c in the momentum determination, find a 95 confidence
interval for the beam momentum.

7.2.2 Case with g? unknown
We turn to the problem of finding a confidence interval for the mean
U of a normal distribution when we are not so fortunate as to know the variance
2 .
as,

The tools needed to handle this gituation have in fact already been

7 - Probability and statistics.
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provided by the remark of Sect.5.2.1. We have seen that if x ,% prenaXy is a
random sample from N{u,c* ) two varisbles can be formed, which have wellknocwm
properties, namely

n

b Sl is N{0,1), \rhere;--:; e
afvn i=l
(n-1) 82 : 2 2 1 7 — 2
e is ¥“(n-1}, where 8° = —-_—1{ (x.—x)?%,
2 n =1 1
a i

and these variahles are independent, Therefore the variable
EE)
alvn - x-q (7.6}
5 "
e

is a Student's t-variable with (n-1) degrees of freedom. We note that from the,

construction of t, the unknown parameter o? drops out, and we are left with a
variable which has only p a8 an unknown constituent. It is also worth comparing
: - T -
with the previocus case: With g? known, the variable constructed wae o_fﬁp-’ which
ig distributed as N(0,1); in the present case where o% is assumed unknown, the
: . X =L . Ve pgs . . ith (n-1) de-
ded which has a Student's t-distribution with (m
variable needed is 8—[7?-1'_'
grees of freedom.
For the variable constructed by eq.{7.6) we may write down probabili-

ty statements analogous to eq.(7.5),

P[a g E_'_“ < b] = f fltyn-1)de = ¥y, (7.7)
s/v/n

where f(t;n~1) is the Student's t probability density function for (n—1) degrees
of freedom, given by eq.(5.15). Since f£(tjn-1) has symmetry about t=0 it ia

customary to choose intervals [a,b} which are symmetric. Values for b in the

a

relation
P(-b = E;u < b] = J f(t;n-1)dt = ¥ {7.8)
afvn i

can be deduced from Appendix Table A7 for different number of degrees of free-

dom and for the usually chosen values of the confidence coefficient vy, (compare

Exercise 5.17).
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Rewriting the argument in the left-hand side of eq.(7.8) gives a pro-
bability statement sbout the unknowm 1,

1A

P(;-bs—iu ;n—’—]-y, (7.9)
o v

which may be compared to eq.(7.4), valid in the previous case when 02 was known.
For a specified value of y the corresponding value of b will be dependent on
the number of degrees of freedom, The size of the random interval [x - b %:,
X+b an] for a given Yy is large for very small values of (n-1), but approaches
the size of the corresponding intervals in N(0,!) when the number of degrees of
freedom becomes large. This is so because the Student's t-distribution has
N(0,1) as a limiting distribution when n > =; (compare Sect.5,2.3}.

For illustration, let us return to the numerical example of the pre-
vious section, with the measurements 2.2, 4.3, 1.7, 6.6 from N(u,0%), where now

Y as well as ¢ are unknowm, We calculate
X = 3.70,
s? -l E x.-x)% = 5,01,
n-1 joq1 1
Searching a confidence interval which can be compared to the symmetric 95.4%
{or *? standard deviation) confidence interval derived for the case when O° was
known, we observe that Appendix Table A7 has entries corresponding to probabili-

ty contents of 0.025 in the tails of the Student's t—distribution. For 3 degrees

of freedom, we find b = 3,182, and the confidence limits are given by the num—

bers
X-b2 =370 - 3,182 28 L g5,
/o A
T4b i =270+ 3,182 2200 o7 9,
Vo v

Thus the symmetric 95% confidence interval for ;) obtained from the four measure-
ments of unknown experimental precision is the interval [0,14, 7.26]., Notice
that this interval is larger than the corresponding 95.4% confidence interval

o iy . cbtaine in the Tevious ex, e when C0° was assume: TOWTL .
(0.7, 6.7} obtained in the previ ample when o? d k
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Exercise 7.5: For the numerical example above, what is the symmetric 90X con—

fidence interval for u? Compare this result with that of Exercise 7.1,

Exercise 7.6: Six independent observations from a population N{u,02} are given
by the numbers i0.7, 9.7, 13.3, 10.2, 8.9, 11.6. With o? unknown, find symme-
tric confidence intervals for y cervesponding to {(a) vy = 0.90, (b) vy = 0.95,
(c) vy = 0.99. (Compare Exercise 7.2.)

Exercise 7.7: With the observations of Exercise 7.4, what is the symmetric 953
SELTAeR fef = - .
confidence interval for the beam momentum if the accuracy of the measuring in-
strument is not kpown prier to the messurements?

7.3 CONFIDENMCE INTERVALS FOR THE VARIANCE

As before we will assume that x,,xz,...,xn is a random sample from
N(u,c*), but now we want to discuss how we can find confidence intervals for a?
and thereby make inferences about this parameter. Again we must treat separa—
tely two cases, first assuming |l to be known (Sect.7.3.1), and next assuming U

unknown (Sect.7.3.2).

7.3.1 Case with | known

This may correspond to an experimental situation where repeated mea-
surements are performed on a known quantity p using a measuring device of un-—
known precision,

0 A statistic which has correspondence to the variance o? is the sum
iél(xi_u)z’ As we have seen before {Sect.5.1.1) the variable

ey

i=1

gl

will be distributed as X’(n). For the chi-square distribution with n degrees

of freedom it is possible to find two mumbers, a and b, such that, for 0%y%1,

n rx, — W2 b
P{a < 5P s o) - ] rsme = (7.10)
isiv ¢
a
Here f(ujn) is the chi-square p.d.f. for n degrees of freedom, given by eq.

(5.5). The probability statement can be rewritten as

n n
Ixom? L oCxm?
im =1
|3z sots | .y, (7.11)

Exercise 7.9: Let 7.3, 6.6, 7.0, 5.1, 7.1, 8.5, 5.9

-----IrlIIllI-l-------------n-----------------
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For a chosen value of Yy there is an infinite number of possible choices for the
integration limits a and b for the skew chi-square p.d.f.. It is customary to
take the limits such that the two tails below a and above b will correspond to
equal probabilities 3(i-Y). Calculations of a and b for given y and given num-
ber of degrees of freedom can then be done in the ordinary manner, using Appen~
dix Table ASB.
Let us again take an example. Suppose that it ig requested to say

something about the accuracy of a new measuring instrument, and for this pur-
pose a calibrated length is measured several times. The outcomes from 10 inde-

pendent méasurements are the numbers
1002, 1000, 997, 1001, 1001, 999, 998, 999, 000, 1003,

and the tyue number, yu, is 1000,
If we demand a 957 confidence interval for o2, Appendix Table A8
shows that for 10 degrees of freedom the integration limits in eq,(7.10) will
correspond to equal probabilities (=0.025} in the two tails of the chi-square
p.d.f. provided that we take a=3.247 and b=20.483, The measurements give the
squared deviatiens about the known mean y as ig?(xi—u)z-Bo. Hence an inference
from the measurements is that the 95% confidence interval for the variance o
is given by
10 ) 10 .
121 (x,-u) 121 (x; =)
20.483 ’ 3.247

= [1.46, 9.23]. (7.12)

It may be noted that in this case with an unsymmetric p.d.f. the
interval constructed by letting the teils represent equal probabilities does
not correspond to the shortest possible confidence interval for a given y. The
required computation to obtain a minimal confidence interval, given y, is so

tediocus that it is rarely done in practice.

Exercise 7.8: For the example in the text determine confidence intervals for

T,
0° corresponding to (a) v = 0.90, (b) v = 0.99.

6.5, 6.2 be 9 independent

1). (n the basis of these

measuremente from an assumed normal population N(7,o0
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obgervations, make inferences about the variance o? gorresponding to
(a) v = 0.90, (b) v = 0.95, (c) vy = 0.99.

7.3.2 Case with p unknown

When we search a confidence interval for the variance a? but de not
know the mean value u of the population N(p,0?) the sample X14Xp5e 005X, PrO”
vides the arithmetic mean X, and we can make use of the fact (compare Sect.
5.1.6) that the variable

% [xi ; i]z

=1

is distributed as ¥?(n-1). Thus the reasoning of the preceding section can be
applied to the inference problem, and we may still use the chi-square distribu-
tion te obtain confidence intervals for o?. However, whereas in the previous
case when 1 was known we used ¥?{n), the present case with U unknown requires
¥Z(n-1).

Instead of eq.(7.10) we shall now have

— b
0 ofx; - X2
p[as Z[ = ] < =[f(u;n-—1)du-'\r. (7.13)
i=1
a
where f£(u;n-1} is the chi-square p.d.f. for n-1 degrees of freedom. For a
specified confidence coefficient Y the limits a,b can be determined in the usu-
al manner, entering Appendix Table A8 for n~1 degrees of freedom. The probabi-

lity statement for Uz,analogous to £q.(7.11), reads

n _ n -
1 x? RN,
p.‘;i_?_... sczsi:l_;__ =Y. (7.14)

For the numerical example of the previous section the 10 measurements

give

B

n n —,
X = i§1xi = 1000 , Z (xi-x) = 30.

i=1
If we therefore did not know what the true valuye p were, the 95% confidence
interval for o3 obtained for (10-1) = 9 degrees of freedom would be {see Appen—

dix Table A8}

-
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19 10
B L .

i=] 1=

»
19.023 2.700

= [1.58, 11.11]). (7.15)

We see, by comparison with eq.(7.12) of the preceding section, that
the 957 confidence interval for 0% becomes wider when the number of degrees of
freedom is reduced from 10 to %. That is, our knowledge about o2 has become
less precise in the present case because we also had to adopt the sample mean x
as an estimate for the unknown popularion mean p.

Exercise 7.10: For the example in the text deduce confidence intervals for o2
corresponding to {a) ¥ = 0,90, (b) Y = 0.99. {Compare Exercise 7.8.)

Exercige 7.11: If 7.3, 6.6, 7.0, 5.1, 7.!, 8.5, 5.9, 6.5, 6.2 i
. .0, 3.1, 7.1, 8. R . .2 are independent
observations from N(u,0°}, where U is unknowm, Eind éonfiéence intervals for a2

;osr‘espondins to (a} Y = 0.90, (). ¥ = 0.95, (c) v = 0.99. ({Compare Exercise
s 7]

Exercise 7.12: If, in Exercise 7.4, the momentum of the beam particles was
known to be 19.08 GeV/c, but the measuring device had an unknown accuracy, find

a 907 confidence interval for the error. How would you determi i-
dence interval for the error? Y ermine 2 682 confl

7.4 CONFIDENCE REGIONS FOR THE MEAN AND VARIANCE

Suppose we are to give & joint confidence region for the mean and the
variance in N(u,cz) on the basis of the sample Xj,Xzy++x.%K » To do this we use
the fact that for normal samples, the variables x and s> are independent (Sect.

4.8.6). If, for example, a 951 confidence region is desired we can write two
probability statements as

p[-as xop o g, ] - 0TS,

clvn (7.16)

norx, =R
e RS ev] s,

i=)

the independent variables o oms gl
P s W and i.E‘J

and determine the limits a gpd b,b' from Nz0,1) a f ¥ (n=1), respectively. For

3 a joint probability
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statement is obtained by multiplying the probabilities of eqs.(7.16), (7.17),

If [xi ;;]2 < b'] = 0.95.

giving

ploa s XM, p< (7.18)

a/vn

The ipequalities in eq.(7.18) determine a region in the parameter

i=1

space which is indicated by the shaded area in Fig. 7.2. The region is bounded

=2
| Iy n(p-%)
‘ 02 02= . n
a

2 iE](xi'i)z

b

>

X !

; 2 H
Fig. 7.2. Confidence region (shaded) for the mean U and variance o2 of N(u,0%).

[} -
by the two straight lines o = ]_;1 (xi-x)i‘fbi and ¢° = ii-:‘l (::i x}“/b, respec
tively, and the parabola expressing the dependence between ¢ and U,

?

o? = n{y - ¥ /a®. See further Sect.9.7.5.

8. Estimation of parameters

The general problem of parameter estimation may be sketched as
follows:

From a restricted number of observations, assumed to constitute a
random garple, one wants to gain some knowledge about the underlying populaticn
or universe from which the sample emanated. The mathematical form of the parent
distribution may be well-defined, but it involves a certain number of parameters,
whose numerical values are not known. The measurements should therefore be used
to extract the largest possible amount of information about the parsmeters,
specifically, the experimental sample should supply numbers which could be said
to represent the numerical values of the parameters.

We have already in Chapter 7 seen examples on interval estimation of
the parameters in the normal distribution., In the forthcoming chapters we shall
study different methods for estimating unknown parameters in general probability
distributions. These methods (the Maximum-Likelihood-, Least-Squares— and mo—
ments methods) all produce point estimates,that is, some definite numbers for the
| parameters. The methods also give measures for the uncertainties in the esti-
f mates and thereby exprees the confidence that can be attached to the numerical

results,

i In this chapter we shall take up various general aspects of parameter
estimation by diecussing in some detail a few of the criteria that should be
fulfilled by good and acceptable estimators., Although these criteria will be
applied to the specific point estimation methods described in Chaptera 9-11 the
The
student who requires just a superficial knowledge of these rather theorstical

; features may therefore he sstisfied with reading only the first two sections of
this chapter.

discussion in the following sections will mainly be of & formal natuye,

-
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8.1 DEFINITIONS .

The term ectimator denctes in the fellowing a function of the obser-
vations, or the method or prescription used to find a value for au unknoun
parameter, By an estimgte we mean the numerical value of the parameter obtain-
ed with the estimator for a particular set of cbservations. If the parameter
iz 9, its estimate is dencted by 8. The term statistic was introduced in Sect.
7.1 a8 a function of one or more random varisbles that does not depend on any
unknown psrameters. In the general case we will let the statistic
t = t(x],xz,...,xn) be an esiimator of the unknown 6 or of svme function of 8.

If a continuous or discrete population has the probability distribu-
tion £(x;0), the Itkelihood of the observations LTSI for a specific 8

is given by
n

L(x;,xz,...,xn19) = 1:I f(xi;e). (8.1)
The product expresseé the joint conditional probability for obtaining the
measurements Xy Xa,.cs X, given 6. We shall later slse think of
L{x1,Xzs.-,%,|8) a8 a function of 8, calling it & likelthood function. We will
use the symbul L or L(EJB) to denote the likelihood (%.¢. the number expressing
the joint probability) as well as the likelihood function {t.e. the function of
8). A third interpretation regards L as a joint probability demsity function of
observable quantities Xy for a given 8. Hopefully, in the following, the
precise meaning of the symbol L, or L(ﬁi&), will be clear from the context in

which it appears.

8.2 PROPERTIES OF ESTIMATORS

Observations are rzndom Variablea. Any function of the cbservations
will also be a random variable, which may take on a variety of values., If a
statistic t = t(x,,xz,...,xn) is used as an estimator for the parameter 8 it
will therefore give rise to a distribution of estimates 6. The individual esti-
mates obtained are of less interest than their overall distribution, because
this distribution will reflect the quality of the estimator when it is used many
times. We will therefore judge theé merits of an estimator from the character-

istics of the distribution of its estimates.
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A pood estimator should in the long run produce estimatee which do
not systematically deviate from the true parameter value, and its accuracy
should increase with the nurber of cbservatiens. Frequently there are several
estimators which fulfil these requirements and hence can reasonably be thought
of for estimating an unknown parameter. If so, one estimator can be said to be
superior to the others if its distribution of estimates shows the best "concen—
tration” about the true parameter value. "Concentration" may for this purpose
be expressed by giving the variance as a measure of the spread of the distribu~
tion about its central walue.

In the forthcoming sections we will discuss the following optimum
properties that are desired for good estimators: consistency, unbizssedness,
minimum variance, efficiency and sufficiency. Only rarely will the conceivable
estimators for a parameter possess all the good properties. One may therefore
have to choose between them, and in each specific case decide which of the
ideal properties that can be sbandoned, taking also practical considerations

into account.

8.3 CONSISTENCY
It is intuitively clear that a desirable property of an estimator is
that its estimates converge towards the true parameter value when the number of
observations is increased. Such a property is called comgiatency.
Mathematically, the estimator t can be said to be consistent if it
camverges in probability to 8. If the estimate 8, is obtained from a sample of

size n, then, given any positive £ and n, an N should exist such that
1>(|an -8l »e) <n (8.2)

for all n > N. In words, the estimator is consistent if, given any small quan-
tity €, we can find a sample size N such that, for all larger samples, the pro-
bability that §, differs from the true value by more than e is arbitrarily close
to zero.

AS an example, we know from the Law of Large Numbers (Sect.3,10.4) that
the arithmetic mean of a sample of n measurements from a population with mean

u and finite variance will couverge towards U as n beécomes large,
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n
t=;=%i§1xi+u when n + =,

The sample mean is therefore a comsistent estimator of the population mean.

Exercise B.1: Show explicitly that the mean x of a sample of size n from the
normal population K{u,c?) converges in probability to u.

8.4 UNBIASSEDNESS

Consistency is a property that describes the behaviour of am estima-
tor when the sample size increases to infinity, but says nothing sbout ite be-
haviour for finite data sets. For example, in the last section we just saw
that the sample mean X is a consistent estimator of the population mean j, but

so would also be

- 1
| I
vt n-a Z X
i=]

where a is any fixed number. Why do we prefer one to the other?

tmbiassedness is an estimator property defined for finite sets of ob-
servations. This property is possessed by estimators whose estimates are not
systematically shifted from the true parameter value but centered around this
value for all sample sizes. As a measure of the centre of a distribution one
can use the conventional mean value, Mathematically, the property unbiassed-
ness is therefore defined if, for all sample sizes n, the expectation value

of the estimator t ig equal to the true parameter value g,

E(t) = 6. (8.3)
1f

E(t) =0 + b (8.4)

and b is different from zero, the estimator is biassed. The bias term b = b(8)
will for all reasonable estimators be of order % or smaller compared ¢o B.

It is rather trivial to see that the sample mean x is an unbiassed
estimator of the population mean p whenever the latter exists, It is also seen
that the estimator x' above will be a biassed estimator of 1 for all a different

from zero.
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Consiatency and unbiassedness are independent estimator qualities, as
»

neither property implies the other. Tt is generally accepted that consistency

is more important than unbiassednesa, partly because bias can often be correc—
ted for. A consistent estimator whose asymptotic distribution has a finilLe
mean will always be asywptotically unbiassed.

?

8.4.1 Example: 8° as an estimator of of

. . . 1 -
We will show that the statistiec s? = ey {.‘.(xi-x)z, the sample variance,
i

is an unbiassed estimator of the population variance 02. We write

1 - -
o7 = 7 1R = o Fogmn - Gew)?
1 1

1
= n_-'i_ E[(xi-u) - %’ g(xj"y))z »

where U is the population mean. Remembering the Ffact that the different x, are
i

independent we get for the expectation value

2y gl 1o -2 - L -
E(s®) E{m E(xi W) } E{TFTTE Ji_(xj u)z]
- IR R - 1 1
e e T EG® = g 0o = oy e e
Hence
E(s?) = o?,

which should be compared to eq.(8.3). It is seen that the presence of the

1 ., . .- .
factor = instead of the more intuitive ;1— in the definition ensures that the
2

gsample variance s is an unbiassed estimator of a?.

A ] - .
The statistic 82 = 3 {I(xi-:it)2 is a biassed estimator of o?, because
i
E(8%) = E{E:i sz] - [1 - 1]02 * o?.
n n

. . 1 .
We see that the bias is b(g?) = - = 0?2, which decreases with increasing sample

gize,
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8.4.2 Example: Estimator of the third central moment

This example is presented to illustrate how ome from the first intui-
tive guess can construct the correct form of an unbiassed estimator.

Guided by the preceding example we consider the following sum,

Poxmx)* = F{Gxgmw) - G}’
i i

= Tk, ® = 3T (e - o) + 3] Gepmwd eud® - LGt
it i’ i i
Recalling the definition of the third central moment My (Sect.3,3.3) and uaing

the independence of the ¥, one finds for the expectation of the different parts,
E(Z (xi—u)a} = JE(x-m)* = nus,
i i
= 1
E(—ag(xi*u)z(x—u)] - —3E[[§(xi—u)2](; Jz(xj-u)]] " =3ss
- 1 1 3
[ spcmn] « st fe o] o] 2o
i i j
- 1 1 1 _ - - 1
] -l el ol e o] - o
Collecting terms lead to

% 3 1 n=1) {n-2
F‘[Z("i"‘)a] = nuy - 3py ¥ S M T U < lom1) (n-2) )r(: ) Ya
1

By comparison with eq.{8.3) it is seen that an unbiassed estimator of uj is
n 2 -3
£= (n-7) (n-2 i£1(xi-x) .

s T n-r
Exercise 8.2: In the binomial distribution B(r;n,p)”(?)p (;-p) » where
ta0, 1, ...,0, €how that the unbiassed estimators of p and p“ are, respectively,
r/n and r(r-1)/n(n-1}.
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8.5 MINIMUM VARIANCE AND EFFICIENCY

The requirements of consietency and unbiassedness do not uniquely de—
termine how to choose a good estimator. One finds, for instance, that both the
sample mean and the sample median are consistent and unbiasssed estimators of
the locatior of a normal population with known variance. However, as it can be
shown that the variance of the mean is smaller than the variance of the median,
the mean is regarded as a better estimator of the central value. It seems
natural, therefore, to use the spread in the estimates as a measure for the
acceptability of an estimator. For most distributions encountered in practice,
the second central moment, or the variance, will be a good measure of the con—
centration of the estimates; this is especially so for the many cases where this
distribution is approximately normal.

Under fairly general conditions there exists a lower bBound on the
variance of the esiimates derived from an estimator. This lower bound is easily
established when considering the likelihood fumctiom defined by eq.(8.1). We
shall assume that the first two derivatives of L(x[6) with respect to @ exist
for all 8, and that the range of x is independent of 9. Civen an estimator t of
some function of 8, say T(®), we define its bias b(8) by the relation (compare
eq.(8.4)),

E(t} = J...Jt(xl,xz,...,xn)L(xl,XZ,...,xnlﬂ)dxldxz,_,dxn = T(8) + b(O). (B.5)

With the assumption that the range of x is independent of § the differentiation
of eq.(B.5) with respect to 6 gives

aL olnL dt &b
f...ftﬁd&'J...J‘t—'a'e-—Ld_x--ﬁil-a—-e-. (8-6)

Since L is the joint probability of the observationms,
JJL dx = 1, (8.7}

we find by differentiating this relation with respect te 6

[...[%dz-f...fa;—gl‘hdi-o. (8.8)
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Multiplying eq.(8.8) by 1(0) and subtracting the result from eq.(8.6) leads to

3lnL 3t , b
J...f{c-r(e)] G5 Ldx =55+ 57 (8.9)

By applying the Schwarz inequality to the integral we cbtain the formula

2
J...J[t—t(ﬂ)]zL dif...J(a;gL)zL ax 2 (% ' %) , (8.10)
which can be written as
2 2
V() 2 (% . %) /E[(—%‘E) ] (8.11)

This fundamental inequality for the variance of an estimator is often
referred to as the (ramér—Rao inequality. When L satisfies the aforementioned

regularity conditions one cam prove the following relation,

aL\? 3?1
E[(B;BL) ] = E(- —a—é-'zll-“—) . (8.12)

Thus an alternative form of the Cramér—Rao inequality, which is sometimes easier

to evaluate, is

3T ab)\? 321nL
vit) 2 (a—e- + '3'5) /E(' —'é—ﬂT) . (8.13)

The lower limit of the variance implied by eqs.(8.11), (8.13) is
called the minimum variance bound, MVB, and an estimator attaining this limit
is called an MVB estimator, or more often, and efficient estimator.

From the derivation above it is realized that the variance of an esti-
mator will attain the MVB if the Schwarz inequality applied to eq.{(8.9) becomes
an equality. The necessary and sufficient condition for this is that [t—T(B)]

is linearly related to BESL for all sets of cbservations; we write

91al

= - ag@) (e -1(®) - v@y). (8.14)

From eq. (8.13) one then gets a simple formula for the MVE,
3T , b
vit) = (‘a‘e‘ + ﬁ)/ﬁ(e)- (8.15)

Efficient estimators exist only for the limited class of problems for
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which the likelihood function satiafies the condition (8.14). Most edcimators
will have a variance larger than the MVB. We therefore define the efficiency
of an estimator as the ratio between the MVE and the actual variance V(t) of the

estimator,

Efficiency (t) = %-‘(%— . (8.16)

It is interesting to note that for distributions where the regularity
conditions do not hold the minimum attainable variance may be smaller or larger
than the MVB,

For the particular case where t is an estimator of the parameter §

. 9T . . -
itself, we have §B-=?, and the Cramér-Rao inequalities (8.11), (8.13) become,

respectively,
2 2
v(e) 2 (1 + g—‘;-) /z[(if;r'“) } (8.17)
H 2
vty Z (1 + g-%) /E(* %é%&) (8.18)

The efficiency condition eg.(B8.%4) then reads

lnL
=5 = A (c - 8 - b(®)}, (8.19)
simplifying the MVB formula (8.15} to

3b
vit) = (? + ﬁ)la(e). (8.20}

gx?rcise 8.3: Prove eq.(B.12). (Hint: Differentiate eq.(8.8) with respect to

8.5,1 Example:; Estimator of the mean in the Poisson distribution

The likelihood for u observatioms KypXzyeoesX from the Poisson dist-

ribution f(x;0) = %T [:'Ixe--B is

n
X _
L(xl,xz,...,xnlﬂ) = I | -lr 0 ‘e &.
i=1 %i°

Hence we have for the derivative of IlnL with respect to the unknowm 8,
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i i i
or
dlnl, o~
38 "8,
- Tu dlnl . . n
where x = = iﬁlxi' Thusa 55 1is of the form of eq.(8.19), with A(9) = B

b{8) = 0. An unbiassed and efficlent estimator of the parameter 8 is therefore
t o= !-(, the sample mean, with variance given by the MVB formula eq.(8.20)},
vit) = E.

n

Exercise B8.4: Explain why the Cauchy p.d.f. £(x;08) = 7r_1[1 * (x—B)z}-1 does
not have any efficient estimator of 0. Show that the Cramér-Reo lower bound is
2/n, where n is the sample size. '

Exercise 8,5: In the binomial distribution for which L(r|8) = [:]pr(‘l—p)n-r

show that the unbiassed estimator t = r/n of p (Exercige 8.2} is also efficient.
What is V(t)?

8.5,2 FExample: Estimators of the mean in the normal p.d.f.

We have seen that the semple mean is a consistent and unbiassed esti-
mator of the mean value in any population of finite variance. To examine
further the properties of x as an estimator of U in the normal distribution

B(u,0%) with fixed o? we write

b 3 n 1 x; - u\? n -
v lnL = e 1n h_r = exp(—i(—L-c;—-) )] = Ez(x = u.
i=1

T

Comparing with eq.(8.19) we see that X is an efficient estimator of M, and that

the variance from eq.(8.20) is
2
- ]
v{x) - (8.21)

This is in accordance with our previous knowledge that the varisble x is distri-
buted as N{u,o2/n).

An alternative consistent and unbiamssed eatimator of p is the sample
median, It can be shown that, when size of the normal sample gets very large,
the median becomes distributed according te N{p,mo2/2n)}; hence the variance of

this estimator of y is
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2z
V(median) = ETI% . (8.22)

This variance is larger than the MVB of eq.(8.21). The asymptotic efficiency
of the median as an estimator of the mean in the normal distribution is there-

fore from eq.(8.16),

2 2
Efficiency (nediam) = /22 =2 = 0.64. (8.23)

Exercise 8.6: Show that the MVB of U in N{1,0%) can also be found from eq.
8.18).

8.5.3 Example: Estimators of ¢? and 0 in the normal p.d.f.

We next consider the normal distribution N(0,062). To find an estima=

tor of 02 we write

o n
3 3 | I 1 24 2 n {1 2 2
=z1nl = =, In [ exp(-{x. fo L g x:-c°},
¥ % i=l VIGT t EAAUF I
n
Again a comparison with eqs,(8.19), (8.20) shows that the statistic t = :T i§1xf

is an unbiassed and efficient estimator of the variance 0? of N(O,crz), with
variance V(t} = 23%/n.

1f, alternatively, we take 0 as the parameter to be estimated we find

9 af1 % 2 2
B3 et - o),
i=1
which ig not of the form of eq.(8.19)}. Hence there exists no efficient estima—
tor for the standard deviation ¢ of the normal p.d.f. N(0,0%). In the frame-
work and formulation of Sect.8.5.1 there exists, however, an efficient estima—
tor t = 1 E x,? for a function of ¢, T{g) = 0? ; from eq.(8.15) the variance of

n i=171
t is geen to be

2 y
V() = g_g%_)_ 12 -2, (8.26)

which is in agreement with our previocus finding.
Note that the results above hold also if the sample originates from a
normal distribution having 2 known mean value | different from zero.

Exercise 8.7t Congider the gamma distribution f(xjo,B) = [I‘(ct)Bm]'_1xm-1e—x‘!B

(a) Assuming O to be kmown, find an efficient estimator and the MVB of B. (b)
Assuming £ to be known, does any efficient estimator exist for o?
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8.6 SUFFICIENCY

8.6.1 One-parameter case

An estimator t is said to be sufficfent if it exhgusts all information
in the observations KisXzseresX regarding the parameter 8. For the normal
distribution we have used the sample mean x = % § x; a8 an estimator of the
population mean U. No extra knowledge on U can be gained from other functions
of the observations, such as Elxi[, gxis etc.; the statistic % is then a suffi-
cient estimator for i. Actuaily anylfunction of % provides a sufficient stati-
stic for U in the normal distribution. Therefore, to choose between the diffe-
rent functigns one may have to test also the qualities of consistency, unbiass-
edness, and efficiency.

To be more precise, let us consider the likelihood function when the

p.d.f. is £(x;6). Suppose that L can be factorized to give

n
L(x|8) = [T £(x,:9) = G{t|9)H{x), (8.25)
- i=1
*
where the function ) G invelves the statistic t and the parameter 0, and H is

independent of @, being a function of the observations x only. Since G only has
reference to the data via t = t(xl,xz,...,x“). and is a known number for the
given gsample, t must supply all the available information in the data regarding
0. It follows that whemever the likelihood function can be written in the form
of eq.(8.25), t is a sufficient statistic for the parameter 8.

One can show that a necessary condition for a sufficient stafistic to

exist is that the p.d.f. belongs to the expomential faomily, defined by
£(x;8) = exp(B(BYC(X) + D(O) + E(x)), (8.26)

where B,C,0,E are functions of the indicated arguments,
For the restricted class of p.d.f.'s satisfying eq.(8.26) one sees
that the factorization requirement of eq.(8.25) implies that a sufficient sta-

tistic must be expressed by the function C{x},

*) In the non-regular situation vhere the range of x may depend on 8, one must
check that the function G is the conditional p.d.f. for t, given 0.

Exercise 8.8: Verify that the Poisson distribution P (x3;0) = iT exe—ﬂ belongs
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n
t= 7 HERE (8.27)

i=1
1t is easily shown that efficient estimators are alwaye sufficient.
To see this we take logarithms on both sides of eq.(8.25) and differentiate with
respect to 8, getting

3lnl _ 31nG
58 "8 * (8.28)

We see that the efficiency condition eq.(B.14) is just a special case of the
more general eq.(8.28), with

3nG

=g = At - O - b)), (8.29)

Under the regularity conditions specified for the likelihood functionm
in Sect.8,5 there is among all sufficient estimators for § only one efficient
estimator. If the p.d.f. belongs to the exponential family and the range of x
is independent of 8, it can be ghown that sufficient statistics always exist
for 8. However, there will be just one sufficient statistiec which will satisfy
eq.(8.29) and thus estimate some functien T(9) with variance equal to the MVE;

compare the example of Sect.8.5.3, Furthermore, for large sagmples, any functiom

of a sufficient statistic will be an MVB estimator.

to the exponential family. Compare Sect.8.5.1.

Exercise 8.9: Show that the Cauchy p.d.f. £{x;9) = ﬁ_1[1 + (;;—E])z]‘1 does not
have a sufficient estimator of €. Compare Exercise 8.4.

8.6.2 Examplet Single sufficient statisties for the normal p.d.f.

We have glready seen (Sect.8.5.2) that the sample mesan % ia an effi-
cient estimator of the mean ) in the normal distribution. According to the
general statement of the previous section x is then alsg s sufficient statistic

for p. We want to show this move directly, and observe that, generally |
Fogmw)? = J{Gw ¢ x-%))? = [Gw)? 26w §(x,m%) + Fxmx)

= aGen? * Fix-x)2
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Therefore, when o2 is known, the likelihood function for p can be written

L(x;07 | 1) =ﬁ : exp.('ﬁ(ﬁ-_u)z)

i=1 /AT o a

b 2 ot x; - x\?
aam oG Mogger =1L (3.

L is now factorized to the form of eq.(8.25), with the first bracket to be

identified with G(x|p), only dependent on the cbservatioms through the statistic
%. Thus x is a sufficient statistic for H. We see explicitly that G(;|u) is
the p.d.f. for the variable x, namely N(u,0%/n). The second bracket involves the
separate sample values, and corresponds to H(x) of eq.(8.25).

It is easy to see that, given a2, the normal p.d.f. is of the exponen-—
tial form of eq.(8.26) for the parameter Y, because
N{y,c?) = exp(géx - g§2 - %;2 - iln(Znaz)).

Thus we can make the jdentification with the functions

Y Uz x? 2
B(u) = 520 C(x) = x, DO =~ 552, E(x) = - 552 - iln(2m0?) .

Tf, instead, u was fixed and 0% to be estimated we would write the

likelihcod funection as
n

L(E;u|02)=T—|- . exp(-i(u)z)

i=1 YIr o g

A enlrs 3 - 2.

i=1

This is again of the factorized form of eq.(B.25), and shows that Z(xi-u)2 is
now a sufficient statistic for o2. One observes that by inclusion of appropri-
ate factors the first bracket can be identified with a chi-square p.d.f. with n
degrees of freedom for the variable E(xi-u)zlcz.

Tt is seen that, estimating o?, we could take for the functions of

the exponential family, eq.(8.26),
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B(0%) = = %2: C(x} = (x - p}?, D(@?) = -4Iln{2ma?), E(x)} = 0.

8.6.3 Extension to several parameters

If the p.d.f. has k parameters 91,82....,9k, there will exist a set
of r jointly sufficient statistics t;,tz,...,tr vhere r may be smaller than,
equal to, or larger than k, provided that the likelihcod function can be

factorized in the following manner,
L(x[01,82,...,8,) = 6(t1,ta,.0u,t [€1,02,...,8)H (). (8.30)

This is seen to be a generalizarion of eq.(8.25).

To have a set of k jointly sufficient statistics for the k parameters,
the p.d.f. must belong to the exponential family., The generalization of eq.
(B.26) to the muliti-parameter case is

k

£ = em [ 3,@0, + p(@) + B0). 8.31)
3=1

where § = {81,62,...,6k}- Writing out the likelihood function one finds by com-
parison with the factorization property (8.30) that the X joint sufficient sta-
tistics of the k parameters must be expressed by the functions C of the obser—

vations,

n
e, = § 0, (%), J = 1020y, (8.32)

1 =

8.6.4 Example: Jointly sufficient estimators for u and o® in N(u,0?)

To demonstrate that two jointly sufficient estimators exist for p and
c? in the normal distribution it suffices to show that the p.d.f. belongs to the
exponential family of eq.(8.31). We write

2 M LI 2
N(u,0%) = exp F2F T TeX T ggr T fln(2mc°) ),

which is of the form of eq.{8.31), with

1
Bl(UsGZ) = g&: Bz(u.vz) - = Tg2

C;(x) = x, Ca(x) = x%,

2
B(u,0%) = - %2 - fin(2mg?),  E(x) = 0.
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Aceording to eq.(8.32) two jointly sufficient statistics for u and a?
are given by

n n
ti= ) C(x) = ] %

i=1 i=1

n n
to= E Ca(x) = z xiz.
i=1 i=1

However, these estimators of 1 and 02 are neither unbiassed nor consistent.
Considering instead {(compare Sect.5.1.6)

n
1 1 -
a=lt, =l Ta =k,
im1

n

27 =3ty -2 6,7) = Lo | (xR =67,
1=1

it is seen that these variables define a one-to-one mapping of t,,t, onto z;,z;.

The statistics z; and z, are therefore also jointly sufficient estimators for

the two parameters. Moreover, these are unbiassed estimators of u and a?,

because
E(Zl) =y,
E(z,) = o2,
The joint likelihood function for u and a? can be shown to factarize
to the form of eq,(8,30), but since
6(x,5%|1:,0%) # 61(x[1)6,(a%|c?)
2

. . . : 2 : Lo
8“ is not a single sufficient estimator of 0° when p is unknown, nor is x a

single sufficient estimator of 1 when ¢ is unknown.

9. The Maximum-Likelihood method

The method of parameter estimation known as the Maximum-Likelihood
(ML) method is very general and powerful. For estimation problems where a
functional dependence can be written down for the observed variables, the ML
method is eminently satisfactory for two reasons: it provides estimators with
desirable properties, and the estimators are easy to find. The ML theory has a
fundamental position in all problems of parameter estimation where the fune-
tional form of the p.d.f, is given. We will therefore treat the ML method
somewhat at length and discuss its theoretical aspects as well as its practical
implications.

In expositions of the ML method aimed for physicists, it is often the
asynmptotic properties of the ML estimators which are emphasized. For large
samples the ML estimates are normally distributed., This nice property makes
the determination of variances on ML estimates very simple. The following pre-
sentation will also emphasize the asymptotic properties, and these should be
fairly easy to extract, without reading the chapter in full. However, it ie in
the framework of aufficient gtatistice that the ML estimators have their most
importent properties. We have already given a somewhat theoretical discussion
of some of the fundamental properties of estimators in Chapter 8, and we will
find in this chapter that the ML estimators possess most of these good proper—
ties.

The reader who wants only a first working knowledge of the ML method,
and who wants mainly to know its asymptotic properties, can select as an initial
reading the eections 9.1, 9.2, 9.5.1, 9.5.4 -~ 9.5.6, 9.6.7, 9.6.3, 9.7.1, 2.9.
in particular ope should note that the very simple graphical solution of the ML
estimation problem, described in Sects.%.6.) and 9.6.3, can be applied in many

practical situations involving one or twe upknown parameters.
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9,1 THE MAXTMIM-LIKELIHOOD PRINCIPLE
Consider a p.d.f. f(x{B) with an unknown parameter § to be estimated
from the set of observations * tl,xz,...,xn. We have already in Chapter 8 en-—
countered the likelihood function (LF)
n

L{x|0} =17 E(x; |®) 8.1

i=1
as the joint conditional prohability of the observations X1aXasenos® at a
fixed 8. Since £(x[0) is a probability density function properly normalized to
one, we see that when the LF is considered a function of the xi's the integra-

tion over the total sample space [} yields

f L(x[8)dx = 3 ‘ (9.2)

Q
for all 6.

In the LF one may regard the observed xi's as constants and the para-
meter © 28 a variable. According to the Maximum-Likelihood Prineiple we should
choose as an estimate of the unkmown parameter 8 that particular § within the
admissible range of 8 which renders L as large as possible.*). This means that

the estimate 8 is such that
L(x[8) 2 L(x|8) (9.3)

for all conceivable values of 8, If L is twice differentiable with respect to 8,

the value 3 may be obtained by solving the equation

*)} Each observation often corresponds to more than one measured variablej for
instance, x can be a set of two angular quantities specifying a spatial
direction (an example is given in Sect.9.5.8). 1In general, x; will denote
the set of measured quantities for event i.

**) This choice of the "best value of a parameter” as the one that maximizes the
conditional probability of x for given &, is not obvious. From Bayes' Theo—
rem, for instance, a more intuitive choice of a "best value of §" would be
the one which maximizes the joint probability of x and O3 compare Sect.2.4.3.
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n
&%ﬂ - %TT £(x,|0) = 0 (9.4)

imi

with the condition that the second derivative evaluated at 8 = § ie negative,

n
’L{x|6 a2
o = oz T—E f(xilﬁ) <0. (9.5)
9=b . 8=

Usually L has only one maximum, and § is unique, If there is more
than one maximum, one should leck for supplementary information to choose be~
tween the solutions.

Since L and the logarithm of L attain their maxima for the same wvalue

of B, the ML solution may be found from the Zikelihood equation

n
3 1 (x]) = 5 I wmrgle) -o. (9.6

i=
This sum is often easier to handle than the product in eq.(9.4). We then re-

quire

3 2 3
55210l (x| 8) - —9—6-2.211nf(xi|6) <o 9.7
B=8 t g0

For the general case with several unknown parameters Bﬂ{ﬁ;,ﬁz,...,ek}

we have to solve the set of k likelihood equations

3 nxe) =0, §om 12,00k, (9.8)

o8
1

to find the ML estimates E - {61,62,...,§k}. A sufficient condition that the LF

is at an abscolute maximum is that the quadratic matrix U(8) with elements

~ 2
v @ = S 9.9)
173 Jeub

is negative definite.

In many practical probhlems the solution of eq.(9.6), or more generally
eqs.(9.8), has to be found numerically. In fact, the numerical procedure cam in
many instancee be advantageous, since it gives also directly the variances to be

associated with the ML estimates; see Sect.9.6.2 for an example.




9.1.1 Example: Eatimate of mean lifetime
let us assume that we observe the production as well ag the decay of

neutral kaons in an infinite detector. The p.d.f. is then

-t/ 0S¢t fw

ge{n =g e T, )

o

where T is the K° mean lifetime to be estimated. From measurements of the K

momentum and the length between the production and the decay pointa, the proper

flight-time t. for each event is determined. For n observed eventa the LF is,
L

according to the definition eq.(9.7),

n
Lt 1) = W—l— /T,

i=1

and from ed.(9.6) the ML estimate T of T is found by solving the equation

This gives

Hence the ML estimate of the parameter T is equal to the arithmetic mean of the
observed flight-times. The solution obtained does correspond to & maximum of

the LF, because

8%1nL ~2
= T“ <0
32 -/ '

~

T=T

in accordance with the requirement of eq.(9.7).

Exetcise 9.1: Instead of having the lifetime T as a parameter in the example
aboye, one can alternatively use the decay constant A = 1ft as tl}e parameter
with the p.d.f. £(t|A} = he"At, show that the ML estimate of A is

Rl )7 - v

Exercise 9.2: Assume that we observe the production and decay of particles
within a finite detector. The p.d.f. is then (compare Seet,6.3.1)

£(e3T]0) = % e_tlr/(1 - e-T[T), 0Df¢e=T.
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Show that the ML estimate for the parameter T can be expressed as
n

=1 "Ei/T/ -Ti/7 -1 % -Ti/t ~13 /7
T i§1[ti + Te 1-e =t 4+ EiZ]Tie /1 ~e 1 s
where T. is the potential flight-time for the i-th event. Note that T enters
on the right—hand aide in the correction term to the arithmetic mean €. The
solution T can be obtained by an itetation procedure, taking F as the atarting
value.

9.2 ESTIMATION OF PARAMETERS IN THE NORMAL DISTRIBUTION
Te illustrate fyrther the ML estimation of unknowm parametere we will
consider some useful examples where the LF is writtenm in terms of normal proba-

bility density functionms.

9.2.1 Estimation of }i; measurements with common error

Let HisXeye ooy X be n independent measurements on the same unknown
quantity J, and assume that the measurement error is U, common to all chser-
vations, We asaume the xi's to constitute a sample of size n drawn from a nor—
mal population N{u,0%}, where p is unknown, ¢? known.

To estimate the parameter | by the Maximum-Likelihood method we
demand the maximum of

Lix;0]w) '}j ‘,i.;c e""(’*(ﬁ_;l)z)

when L is considered a function of p. In this case eq.(9.6) reads

nl 3 o o fx - u\?
au " T)TI 151(-* ln(21ro’2) i(—l_ﬂ-‘—) ) =0

and the solution is

n

I ox =x. (9.10)
w1

L

5.

Therefore, the ML estimate of the population mean u is equal to the sample mean

X.

9.2.2 Estimation of u; measurements with different errors (weighted mean)

We assume now that the weasurements x;,X;,. seaX on the unknown

quantity u have different, but still known errors. If each measurement G is
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*
normally distributed with measuring error G, ), the LF is

n

L(xl,xz,...,xnidl,dz,...,Gnlu) = I [
i=1 /21 ci

The ML estimate for 1 becomes in this siruation
o 2
1 x /o]
LA TL
i=1

~
=

n ! (9.11)

2
¥ 1/,
: i

i=1
which is called the weighted mean of the observations. We note that the
measurements are given weight in inverse proportion to the square of their
errors, {.c. they are weighted in proportion to their precisions Uczi. In the
case that the measurements have the s2ame error, a; = Js it is8 seen that eq.
(9.11) reduces to eq.(9.10), as it should.
It will be shown in Sect.9.5.4 that the variamce on the estimate U of

eq.(92.11) is given by

N n -1
Vi) = ( DIRICH ) . (9.12)
i=1

Exercise 9.3: Show that the ML estimate of o in N(u,0?) for given U is
% 1

n
2 2
g = — }(x.,-u)"-.
nig, i

9.2.3 Simultaneous estimation of mean and variance

It is Frequently not realistic to consider the errors comnected to
the measurements ag known quantitites. Az an example, suppose we have measured
the range of moncenergetic particles in some material. The measurements for n
events are Xi,Xzs..esX , and this sample is supposed to originate from a normal
population N(u,0?). Here py is the true, but unknown mean range, and 0 the com
bined straggling and measuring error, wbich is also not known, but assumed to be
common for all meagurements.

To eatimate hoth y and a2 hy the ML method we write

*} Note that the x; originate from different parent populations, and hence do
not constitute a sample in the usual aense.

-
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n
Lixlu,0%) = § (_ (xi - u)’)
- i=1 /2167 NN '

From eq.(9.8) we should now solve the set of two simultaneous equations

n -
3lnL - E x] v o
i=1 o2
and

AnL ‘Z’ 42 L 2
ECDITANLLIS mil a )-o.
from which the ML estimates are

- 1 B _
I-l’;l' Zx.=x,

1 l)':l . ; 1
0% = ) (xm)? = o T (x.-x)?
n jmi T n i§1 i

We note that the estimate of P is equal te J-(, as we found in Sect.9.2.1, The
. 2 . .

ML est?mate of 0% iz biassed, the relation to the unbiassed estimator

2 _Zy2 2y ol

s =T El(xi x)° of a° being cf = 51_-1— 8%; compare Sect.8.4.1,

The errors on ﬁ and 0® will be derived in Sect.9.5.5.

Exercise 9.4: Show that the estimates 1, o? correspond to a maximum of the LF,

9.3 ESTIMATION OF THE LOCATION PARAMETER IN THE CAUCHY P.D.F,

In the examples of the previous sections the ML golution for the
parameters turned out to be unique. As an example where eq.{9.6) may have
several solutions, consider the estimation of the parameter © in the Cauchy
distribution f(x|8) = l/'rr(l + {x-8)2)"!. With the measurements XipXZareasX
we have the LF ’

n
L(x|e) = J 1 & — 2
.._] i=1 T 1 + (xi-a)z ]
and eq. (9.6} becomes

dlnL _ n 2(x;-0)
56 E 1T+ zxi_e,! =0,

i=1
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This is an equation of degree (2n—1) in &, and up to (2n-1) different solutioms
exist, n of which will correspond to maxima of the LF. Usually the best value,
corresponding to the highest maximim of L, is near to the sample median. The

median of the sample may therefore be taken as the starting value in an itera

tive search for the maximum of L.

9.4 PROPERTIES OF MAXIMUM~LIKELTHOOD ESTIMATORS

The use of the ML method presupposes that the p.d.f. is specified
except for the unknown parameters. Lt may often not be possible to find expli-
cit analytical expressions for the estimators, but by maximizing the likelihood
function using iteration or interpolation procedures the estimates themselves
can be obtained, irrespective of the analytical form of the estimators. More-
over, as will be shown in the following, the ML estimators possess nearly all

the theoretically best estimator properties.

9.4.1 Invariance under parameter transformation

In practice it is often rather arbitrary what physical quantity is
chosen as the parameter 0 to be estimated, For example, in the lifetime deter-
mination in Sect. 9.1.1 we could have used the decay constant A as parameter
instead of the mean lifetime T. Let § be the ML solution for the parameter §.
1f, alternatively, we had chosen to estimate a functionAof 8, say T(B8}, then
the ML solution for this function would be that value T{8)} for which JLfdT = 0.
Since 3L/36 = (3L/97) (37/36) for all 6, and L/39 = O for 6=, it follows when
3T/80 %+ 0 that also IL/et =0 for O = 6; hence we must have

129) - T(8). 9.13

Eq.(9.13} expraesses the invariance of ML estimates under parameter transforma-
tions, We see that it makes no difference to the result for the estimate 8
which veriable, 8 or the function T(8), is used to maximize the LF, Thus the ML
method is free for the arbitrariness discussed in connection with Bayes' Postu-
late, Sect.2.4.5.

An example of the invariance property has already been demonstrated by

Sect.9.1.1 and Exercise 9.1.
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9.4.2 Consistency

It can be shown that under very general conditions the ML estimators
are consistent, This meana that the ML estimates will converge towards the true
parameter values when the sample size increases. This applies to the single-
parameter as well as to the multi-parameter case, However, it may sometimes
happen that the LF has two or more suprema due to some specific form of the
p.d.f. which essentially makes the parameter indeterminable,

9.4.3 Unbiassedness

In favourable situations the ML estimators turn out to be unbiassed,
irrespective of the size of the sample. This means that For any n, the esti-
mates will be distributed with a mean equal to the true parameter value. For
example, it is eas:.ly verified that the ML estimator t = — Et of T in the

p.d. £, £(t|T) = ? e -t/T (Sect.9.1.1) is unbiassed, since

-]
- 1 2 1 1 -t/T
E = E[ - - - = -
(t) E(n Z ti) * = *nE(t) ft —e de =T,
i=]
Q
in accordance with the requirement for an unbiassed estimator, eq.{8.3).
The ML estimators are frequently not unblassed for finite samples.
For instance, the ML estimator of @2 in N(p,0?) is o? -% Z (x, -x)" (see Sect.

9,2,3), and this ie a biassed estimator of 02, because

E(Ui)-(1--—)a * g,

The bias is here - -—02 which is negligible for large n,
From the invariance property of ML estimators, we know that for a

function T(8) of the parameter, T(B) = 1(6) but for expectation values in
general we have

E(T(B)) * T(E(B)). {9.14)

Therefore, although & may have an unbiassed estimator, T(8) need not.

In the asymptotic limit of infinite samples al] ML estimators are
unbiasged.

8 - Probability and statistics.




204

Exercise 9.5: Show that the ML estimator of the decay constant A in the p.d.£f.
£(t[)) = Xe Mt is biassed, Is the estimator consistent?

Exercise 9.6: Show that the ML estimates of i and 0 of the normal distribution

N(,0%) are i = X and G = E% ﬁ(xi—ﬁ)zli, regpectively. It has been shown in

Sect.8.3 and Sect.8.4 that ¥ is a conasistent and unbimssed estimator of Mo Show
that the estimator of o is biassed, but consistent. Compare the estimate 0 with
the estimate of o derived in Sect.9.2.3 and note that this provides another
example on the invariance of ML estimators.

9.4.4 Bufficiency

1t was stated in Sect.B.6 that if the likelihood function can be fac-
torized as

L(x|8) = 6(c|9)r(x), (8.25)

where t is a function of the observations, t = t(xl,xz,...,xn), then t is a
sufficient statistic for 8. This entails that t conteins all information in the
measurements regarding the parameter ©. A condition for a sufficient statiastic

to exist is that the p.d.f. £(x|8) can be wriiten in the expenential form

£(x]8) = exp(B(B)C(x} + D(B) + E(x}}, (8.26)

where B,C,D,E are functions of the indicated arguments.

Since estimating © from L(EIB) of eq.(8.25) is tantamount to estima-
tion @ from G{t|0), it follows that the estimate & depends on the observations
through the sufficient statistic t alone. This also means that if there exists
a sufficient estimator for the parameter 8, the likelihood equation will produce
it. It can be shown that sufficient estimators will have the mintmm attainable
variance. This means that if a sufficient estimator exists, the ML method pro-
duces the estimate with minimum attainsble variance. This fact is probably the
strongest argument in favour of the ML method.

The likelihood function of our example from Sect.9,.1.1 cen be written
a n n__-

w2 (2 (1)),
im?

which is explicitly of the form (8.25). This demonstrates that t= % Eti, or
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any one~to—one function of E, is a sufficient estimator of T, We have already
ghown that the ML estimatox of T is just t.

The present remarks on sufficiency for ML estimators also apply to
the multi-parameter case. For the case with k unknown parameters it can be
proved that r £ k sufficient estimators tl.tz,...,:r can simultaneously have

their minimum attaingble variance,

9.4.5 Efficiency

The variance of an ML estimator can not be grbitrarily small. The
pecessary and sufficient condition that an efficient, or minimum variaice bownd
(MVB), estimator t exists for the parameter 8, is that one can write {Sect.8.5)

9lnl
E5)

(8.19)

=A@t -8-b(@®),

where b(8) is the bias of the estimator. Since the ML estimate 0 for 8 is ob-
tained by equating 3InL/38 to zere, it follows that the likelihood equation

ptoduces the efficient estimator whenever there is one.
The MVB for an efficient estimator t of 9 ie given by the Cramivr—Rac

limit, (compare eqs.(8.17), (8.18), (8.20})},
3by? 3b\? b
(’*35) . (“E) AR )
[ {3LnL}? E(_ lenL) A(8)
38 953

For example, to find an efficient estimator for t in the p.d.f.

fleft) = l—e-t/T, it must be possible to write 3lnL/3v = A(T) (T-1-b(7)). We find
T

(9.15)

v{t)

(Sect.9.1.1}
n t.
31nlL 1 1) n o=
Tl -4 =] == (t-T)
T i§1( T T2 T2 '
which is of the form of eq.(8.19), with A(T) = /1%, b(1) = 0. Therefore, the
ML estimator t = ) ILt, is an unbiassed and efficient estimator of T, with vari-
n “i
afce V(t} = 1/A{T) = t¥/n.
As stated in Sect.8.6 there is among all sufficient estimators of @
only one statistic t which will estimate some function T(8) with variance equal

to the MVBE. The MVB can be found if one can write
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dlnl
BL]

= AC0) {t - T(B) - B(D)]}. (8.14)

Then (compare egs.{B.11), (B.13},(8.15)),
2
-3 G5 52
v(e) = a0 FLE] _ \3e - . (9.16)

ISR

For example, from eq.(8.14) it is easily seen that there can be no

efficient estimator of ¢ in N{0,0?). However, there is an unbiassed and effi~
cient estimator t of T(g) = o?, namely t = % ig1x;’ for which V(t) = 2c"/n
{see Sect.8.5.3).

As will be shown in Sect.9.4.7 tﬁe ML estimate 8 of 8, ﬁor large n,
is approximately normally distributed about the true value g = Bo with variance
equal to the MVB, provided that certain regularity conditions hold. This
implies that ML estimators are asymptotically efficient, and hence also asymp—
totically sufficient, since whenever efficiency holds sufficiency holds too.

In the multi-parameter case it can be shown that, for large samples,
the ML estimates will, under ordinary regularity conditions, tend to a multi-

normal distribution.

-t . -
Exercise 9.7: Explain why the p.d.f. f(t|}) = 2e has no efficient estinma

tor for X 1tself, but only for the function T(R) = 1/A. What is the ML estima-
tor A ? Show that the MVB of A is A%/n.

Exercise 9.8: Show that the weighted mean of eq.(%.11) provides an unbiassed
and efficient estimator of the mean u.

9.4,6 Uniqueness

It is easy to see that, if an efficient estimator exists for some
function T(8)}, then the ML egtimate O is unique. Differentiating the efficiency

condition eq.({B.15) with respect to 0 and ingerting 6 = § leads to

3?1nL _ a1 . b R
55T . A(e)(a‘e' + '36) . = (A(a)) V(t) <0,
8=8 =0

in virtue of eq.(9.76). Thus every solution of the likelihood equation
91nL/38 = O corresponds to a maximum of the LF, Since, for a regular function,

there must be a minimum between successive maxima, it follows that there cannot
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be more than one maximum in the present case, and hence the soluticn 8 is unique.
The proof of uniqueness can in fact be extended to all casea where a single
sufficient statistic existg, If there is no sufficient statistic, then the ML
estimator is not necessarily unique.

For & parameters, when there iz a set of k jointly sufficient stati-
stics, the solution of the set of likelihood equations is unique, provided that

the usual regularity conditions are satisfied,

9.,4.7 Asymptotic normality of ML estimators

Let us conaider again the one—parameter case with p.d.f. f(xlﬁ)
given n observations :;,xz,...,xn. We will outline the proof that for large
samples the estimate § i3 asymptotically normally distributed about the true
value 8 = BO with variance equal to the MVB, provided 1lnlL is twice differ—
entiable in © and the range of x is independent of 0,

A Tiylor expansion about the true value 6 = Go of 9lnl/39 at the ML

estimate © = 0 gives

3lnL 3lnL 4 oy 271nL
0= 5 56| 68 S (9.17)
8 g%

o
vhere 6% is some value between § and 90.
It has previously been established in Sect.8.5 that, when L is suffi-

ciently regular,

JI 2L rax - E(—Ta;"l‘) -0. (8.8
Therefore, from eq.(8.12),
2z 2
v(—a;g") - E[(B;EL) ] - E(— —,—aa;"’“) ) (9.18)
§
Writing
n
—-—B;SL -1 —i-l-lal“fg; a2, (9.19)
i=
8 ]
o o

the right hand aide is a sum of n independent terms Blnf(xi]B)IB&, which has &
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mean value of zero and a variance given by eq.(9.18). From the Central Limit

Theorem the quantity

y - aggL /13(— a;égL)]l (9.20)

at 9 = BD is a2 standardized wariable with asymptotic distribution NW(0,1}. The

quantity

321nL Y/ 9llaf
AT} -1 ('_as?r ’ (9.21)
=1
B* L g%

in view of the Law of Large Numbers, is such that, when n + =,

2
v E(—-— 33;‘2‘1‘) | (3.22)

since 6% lies between § and 8, and the ML estimate § converges towards 60

(consistency). Introducing the asymptotic value of v in eq.(9.17) we obtain

A 5210114 _ 3loL AT
(8 60)[E(— T )] T /TE( =37 )] ' (9.23)

where the expressioms should be evaluated at & = BO. The quantity on the right

is recognized as u from eq.(9.20), which is asymptotically normal with zero
mean and unit variance. Therefore the estimate & must be asymptotically normal-

ly distributed about the true value 60 with variance equal to the MVB,

P 3%1nL{x|9}
V(g = 1IE(- 5 ) (9.24)

For the case with k parameters 9,,8,,...,0 one can prove that the

k

estimates 91,62,. . .,6 are asymptotically multinormally distributed about the

k
true parameter values and with covariances given by

v:; @ = E(— a_z.l_r‘.l'_(é.iﬁ-l) .

aeiaej i, =1,2,,..,k. (9.25)

9.4.8 Example: Asymptotic normality of the ML estimator of the mean lifetime

We have in the last sections indicated that the ML estimator of the
1 —tfT
—e

T

ties: it is unique, consistent, unbiassed, sufficient, efficient, and also

mean lifetime T in the p.d.f. f£(t|T)} = bas a number of optimum proper-
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invariant under tramnsformation to the decay constgnt A = % . The estimator of
T can in this respect be regarded superior to the estimator of A, which is
biassed and not efficient,

We shall now explicitly prove that the ML estimate T = t for large
samples is normally distributed about the true value T with variance equal to
the MVB. The function f£(t|1)} is twice differentisble with respect to T and the
range of variation for t is independent of T so the conditions for asymptotic
normality are fulfilled, Writing x for the variable instead of t, the p.d.f.
£(%|T) has the characteristic function ¢x(t),
itx

o (t) ZE(e™ ) = (1 - eyt

n
The characteristic function *i‘}_((r.) for the variable x a% Z x; with the p.d.f.
n i=1
Lix[ty =TT ! f(x, |7 is
i=

.- n
- itx f US|
fb)_:(t) E(e } = E\ex'p(lt a Z xi)) '
i=1
Since the observations are independént this may be written

50> = T Tefems(s £2)) = (o () - (1 - 22

i=1

-

When n goes towards infinity, fb}_((t} + exp(itT), which according to Sect.4.8.4 is
the characteristic function for & normal variable with mean value T and variance
zero. Hence the absolute limiting distribution for the ML estimate T = x may
be interpreted as an infinitely sharp peak at 1.

If we want to say something ebout the distribution for n large, but
not necesgarily infinite, we must study the expansion of ¢.(t} in more detail.
We have *

(1 - —i—:il)-“ =1+ itT + $Cie)2(r? + t3m) + ...

and may compare with the characteristic function for a normal variable with

mean ¢ and variance U",

exp(itu + Q(it)luz) =1+ ity + J(it)2 (i) + ...
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Tt is seen, therefore, that T = %, for large but finite n, will have a normal
distribution with mean value T and variance T%/n, which is equal to the MVB.
Accordingly, the standardized quantity

11

T/
is N(0,1) for large samples.

u =

9.5 VARIANCE OF MAXIMUM-LIKELIHOOD ESTIMATORS

How to make the best determination of the errors in the Maximum—
Likelihood estimates will depend on the properties of the probability demsity
function and on the size of experimental sample. Since the variances for the
estimated parameters are so important, we will explain very explicitly under
what conditions the different methods for wvariance determination should be used.
Some formulae are valid only for large samples, which means that they are exact
only in the limit when n goes towards infinity., However, many of these socalled
large sample formulae give good approximations also when n is finite but reason-
ably large. Other formulae are valid for samples of all sizes; these are often
referred to as small sample formulae.

When the experimental resclution has been folded into the p.d.f. (see
Sect.6.2) the errors calculated from the likelihood function will contain the
statistical as well as the experimental uncertainties. If the resolution is not
included in the p.d.f., the errors estimated from an ideal theoretical distribu-
tion obviously only reflect the statistical uncertainty and not the errors in
the measurements. When the estimation of the errors is done directly from the
cbserved data as for instance by the graphical method described later in Sect.
9,6, these errors will clearly contain both the experimental and the statistical

uncertainties.

9.5.1 General methods for variance estimation n

Let us now regard the likelihood function L(x|8) = I ! f(xi[e) as the
1= -

joint p.d.f, of the n variables LIFEITRTE for the k parameters 91,92,...,Bk.
If the estimates can be written explicitly as functions of the xi's, Z.e.

Bi -éi(xl,xz,...,xn), the covariance term between éiand aj may be defined as

Vi) = f(ei»ei)(aj—ej)x.(gig)dz, (9.26)

where the integration is over all n xi's and 8 = {B:,Gz....,ﬂk} represent the
true values of the parameters. The formula above can be used to find the co-
variance matrix from the given f(x|g) alone without having any data available.
An example on the use of eq.(9.26) is given in Sect.9.5.2.

With eq.(9.26) an equivalent formula for the covariance terms can be
obtained where the integrations are to be done with E a8 variables, The joint
probability L(E'E)di with n variables must be transformed to the joint preb-
ability L'(Ejg)dﬁrwith k variables. Introducing the Jacobian for the chosen
transformation and integrating out a number of (n-k) dummy variables the result
is

.

ORRIOERICE R ECR (9.27)

where the new likelihood function L' includes the Jacobian. The transformation
from the variables x to the variables E is often complicated, and it may be
easier to find the covariance from the former expression eq.(9.26). It should
be noted that the analytical integration of formulae (9.26), (9.27) can only be
carried out in rather favourable cases. They will lead to the covariances
expressed as functions of the true (constant) parameters.

Let us now consider the likelihood function L(§|§) as a function of §
for given x. Since L(§|g) is normalized to one over the sample space, it is
generally not normalized over the paramiter apace. The variances may then be

)

evaluated from the alternative formula

i ;(ei-'éi)(ej-ej)L(x_:I_Q)dg

v, (&) (9.28)
1 JLix{8)ds

vhere the integrations are extended over all k parameters. Again, in fortunate

situations, it may be possible to carry out parts of the integrations analyti-

cally, or remove common factors in the denominator and numerator. In the gen—

eral case, approximative values of the covariance between any pair of parameters

*) Equations (9.28),(9.29) formally consider the LF as providing a measure of
the distribution of the variables §; a discussion of the conceptual diffi-
culties on this point is deferred to Sect.9.7.
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ig found by numerical integrations of the type

v, - ool (0,783 (8,76 )L (x|0)40, + -+ 48 (9.292)

N ™
Ae‘l ABm
where the AfS's are the proper bin widths for the required integrations over

the different parameters, and

T Lixleyngy e a0 (9.29b)

aB, a8
is a common overall normalization factor.

1f, in the last formulation, some of the parameters are not inte-
grated over but kept fixed at their estimated values, this will correspond to
obtaining cond £ onal errors and covariances for the remaining parameters.
This procedure, which gives smaller errors than the preceding appreach, is com
putationally simpler and is, in fact, the standard used in some popular optimi-

zation programmes (see Chapter 13). Whenever such a procedure is adopted, this

should be explicitly stated to avoid misinterpretation of the numerical results.

9.5,2 Example: Variance of the lifetime estimate

Using eq.(9.26) the variance of the ML estimate 1= % ig‘lti for the
one—parameter p.d.f. £(t|1) = % e-t/‘r is
© = n
V(1) = ff (?—T)ZW% e'ti/Tdci.
o 0 i=1

This can be written

n
~ 1 B 1 B 1 -t /T
v(1) = KE k£1tk)(— ) t.) E Te ilde

n j=1 ]
n / 8}

_ 1 l “ty/T z
ZTJ(H kiltk) Te de, + 1 f l [

—t:
e /gy s
: i
i=1
where the integrations are from zero to infinity for all the n variables t,, 4
i

1
isl T

straightforward computation gives
~ 2 -
v = (B2 o2} et v () - e,

This V(T) is the same as the MVB derived in Sect.9.4.5 for the efficient esti-

ML estimates §
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mator t. The alternative formula, eq.(9.28), gives

= n @ n

V(7) = ”(%—r)z(l [ ::'E-ti'h)d'tl/”(l [1 e‘ti“)dr] ,
s im gri= T

which leads to

s 148

v(%) -1, n
n 1 =23

n n

Thus, only for infinitely large n do the results of the twe procedures, eqs.
(9.26) and (9.28), coincide.

Exercise 9.9: Consider the p.d.f. f£(t|}) = Ae-}\t. Show, using the approxi-

Xercist .2 .
mation of eq.(9.28), that the variance of the ML estimate X is

0 ()
n

Compare this with the result of Exercise 9.7. '

Exercise 9.10: Show, using eq.(3.26), that the variance V(ﬁ) of the ML esti- !
mate {j* X of the mean in the normal distribution N(u,0%} iz equal to the MVR, !
(Sect.8.5.2), What is the result cbtained from eq.(9.28)1

Exercise 9.11: E‘rom eq.{(9.26), find the variance V(0?) of the ML estimate
g? = 170 L(xi-u)* of the parameter o® in N(u,0%). (Compare Exercise 9.3)).

Exercise 9.12: Find, using eq. (9.28) the covariance matrix of the simultaneous |
-'!, 0% = 1fn L(xj~%)" of the mean and variance in N(u,oz),
(Sect.9.2.3). Hint: The LF can be written

t
alne®s = ] Tt et 0y2010%) ) = @0t e cinomio? - ooy
1= L)

9.5,3 Variance of sufficient ML estimators

The formulae given in Sect.9.5.1 are generally valid for all ML esti-
mators, irrespective of the sample size, In specific cases more convenient
formulae may be developed, and wé turn now to the situation where the ML esti-
matore are sufficient.

When the p.d.f. £(x|8) provides a single sufficient statistic, and

congequently an efficient estimator, for the parameter 8, we have already seen
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in Seet.9.4.5 that the variance of the ML estimator is given by the minimum

variance bound,
n aby? 3% 1nL
v = (14 ‘a"é‘) /E(‘ —aeT) -

where b{8) is the bias of the estimator. However, it is not necessary to evalu-

ate the expectation wvalue of -321nL/99% in this case. From the efficiency con-

dition
28 - A0) (e-6-b(®)) (8.19)
one finds
221nL b 5 1nL
( aa?)""(s)(Hﬁ) T ser |
6=0 !
i
Thus,
2 3pY* 4_ 3%1nL 9.30
i (B2, -
or, for an unbiassed estimator simply
a - 321nL 9.31
(- 28, o

]
It should be noted that these relations hold for small samples as well as for
large samples, and in particular eq.(9.31) is very useful in practice.
In the multi-parameter case the situation is not so simple. If, how-
ever, there exists a set of k jointly sufficient statistics Eiatayeaanty for the
k parameters 9;,0z,...,0,, it can be shown that the inverse of the covariance
matrix of the ML estimates in large eamples is given by

-1 A aZlnL )
V<8 ( 9,36,

(9.32)
et

1>y

This is a natural generalization of eq.(9.31). In situations where we do not know
k jointly sufficient statistics for the k parameters and where the number of
observations is not large, the covariance matrix of the ML estimates may still

be found by one of the general methods described in Sect.9.5.1.
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Exercise 9.13: It was shown in Chapter 8 that x is an unbisssed and efficient

estimator of U in the normal dietribution, Find the variance of the ML esti-

mate Y = X from eq.{9.31).

Exercise 9.14: The distribution of gap lengths x between adjacent bubbles

formed along the tracks of charged particles in a bubble chamber is given by
£(x|g) = g e 8%, DS xLw.

The mean gap length 1/g is often used as a measure of the ionization. Show
that the relative gtatistical uncertainty for n measured gap lengths is

A1/ BY/ (1fg) = 1.

9.5.4 Exagple: Variance of the weighted mean

In Sect.9.2.2 we found that the ML estimate for the unknown mean W of
the normally distributed observations ST ZPRURIE with errors 01,02,...,Un is
given by the weighted mean of the X,

n

2
e i (3.11)
2
'Z o, :
im1

Since the weighted mean is an unbiassed and efficient ML estimator of U {(compare

Exercise 9.8) and

inL = i§1(-i1n(2nui) i(fiﬁézﬂ)z).

the variance can be found from eq.(3.31),
- a%1nL 2o
V) - 1/(— e )u /I 5 -

=1 (9.12)
=) i=1 71
When the errotrs o, are all equal, Ui = g, eq.(9.12) leads to the well-

known expression for the error on the mean, Aj = a//m.

9.5.5% Example: Errors in the ML estimates of u and o? in N(p,0%)

In Exercise 9.12 we suggested that the approximate relation eq.(9.28)

be used to find the covariance matrix of the ML estimates ﬁ and o2 of the mean

and variance in the normal distribution N(u,52). Instead of carrying out the
integration of the likelihood function over the parameter space a much easier

way to obtain the covariances is to use the fact that ﬁ =% and g? = 1/n2(xi‘;)z
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are two jointly sufficient statistics for the parameters in the nomrmal p.d.f.
(compare Sect.8.6.4). 1t is therefore appropriate to apply eq.(9.32) in the
present case, provided n is large. We have now

n . {xi - u\2
InL = § (—;m(zﬂ) - lng? = j—A—"iV ),
i=1 o
so that the elements of the inverse of the covariance matrix V(a,cz) become
from eq.(9.32),

-1 1ol _n
Vu =" =57

v—l . 3%1nL U - W 1 E (x,-m)? = - o, ne? ..n
22 ale2)? 20" T Ot joq 1 0" Gt = v !

~1 -1 321nL
Vip =V = -
12 1 ag?

n
1 n ~
=7 ¥ (xi-u) = a;'(U‘U):
i=1

where it is understood that the expressions should be evaluated for u = it and

0% = g2, Accordingly, the inverse of the covariance matrix is
n
1A 5 T 0
v o(pat) = s
f
¢

(o2
" L
viu,o?) = |M (9.33)
0 2g"

It is interesting to note that this asymptotic covariance matrix for
the ML estimates |I and éE is diagonal. This need not surprise us since we know
that X(= i} and 82 (= EgT Qz) from normal samples are independent variables
(Sect.4.8.6), MNow, since x is N(y,02/n}, it is clear that the ML estimate ﬁ
will, for all n, have a variance ag2/n, the MVB. From Sect.5.1.6 we know that
(n-1)s2/02, and hence n&ijuz, is distributed ac%grding to ¥2(n-1), and has a
variance 2{n-1). Therefore, V(é}) « (@2/n)?V(ng?fa?) = (c%/n)?2(n-1)
= 20%(n—1)/n?, which holds strictly for all n. This is close to the result

20/t implied by the asymptotic formula (9.33).
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9.5.6 Variance of large~sample ML estimators

It was shown in Sect.9.4.7 that the ML estimare, under very general
conditions, will be asymptotically normally distributed about the true value
and with variance equal to the MVB, The MVB formulae eqs.(9.31) and (9.32) can
then be reformulated in terms of the p.d.f. and used, on the planning stage of
the experiment, to predict the errors that must be expected.

For the one-parameter p.d.f. £(x|0) the negative of the second

derivative of InlL with respect to € can generally be expressed as

_#nL E _ 3%ng(xg 8))
ELLPES 8 !

and the expectation, or average, of this variable is

21l 2/ a%ng . 3%1nf
E(‘ aez)'fig’(' ge7 Jtdx = ) |~ 5z jax .
For the first part of the integrand on the right-hand side we have
(_lenf)__a_(_‘l_ _iif_)-l 9N _ 1 9%

L 98 \f 36/ T fZ\3@ f 262 '

and, provided the integration limits for x are independent of 6, therefore

E(_ af1ary 1 (3£Y?,

387 " E \ee) WX

Substituting this expreseion in eq.(9.31) we find the following convenient for—

mula for the average of the inverse of the variance,

-1 1 (af)*
VvV (®) =nf = [ .
® “f £ (ae) dx
In the multi-parameter case the corresponding formula for the covari-
ance terms, expressed by the p.d.f., is

—1oa 1 {3f Yfaf
@ o (Eéi)(aej)‘."‘ '

The fact that the ML estimate is asymptotically normally distributed

(9.34)

(9.35)

gbout the true parameter value can, in view of the formal symmetry between

variable and mean value in the normal p.d.f., be formally expressed as the




218

patrameter being asymptotically normally distributed about the ML estimate,
with a spread around this mean value as implied by the MVB. Writing the LF
for the one-parameter case as
(6-8) 2)
L x ex (— ——
o~ P! % V(G) >

we find at once the simple relationship

. 2 (9.36)
V() =1/(-3-3—;;l’:) ,

which should be compared to eq-(9.31).

Clearly, a normal-shaped LF corresponds to a parabolic dependence of

1nL on 8, and a constant second derivative.
In the mylti-parameter case the LF has asymptotically a multinormal

shape. The covariance matrix for & is found by inversion of the matrix with

elements given by the constants

2z
Ly = - 2ink 5.3
Vi@ 78, 30,

9,5.7 Example: Planping of an experiment; polarization (1)

In the preceding sections several methods have been presented on how
to find the variances of ML estimates. Some of these methods can only be used
after the experimental data have been collected, while others may be applied
already con the planning stage, prior to the data taking.

Suppose we want to study the polarization of antiprotons in antipro-
ton-proton elastic scattering from a double scattering experiment measuring the

angle ¢ between the normals of the scattering planes. The p.d.f. is
f(x|a) =} + ox) -1 < x <1 (9.38)

where x = cos$, o = P2, We ask: How many events will be needed to obtain a
prescribed accuracy on the estimate of a?
For large n the variance of 4 can be calculated from the asymptotic
formula, eq.{(9.34). We first evaluate the integral
+1 +1
J % (gé)zdx = J } T’%EEE dx = E&y (ln(1+a) - 1n(1=a) - Za}.
_‘l _1 Ly

ﬁ—ﬁ‘ .
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Hence, from ed.(9.34),
-~ 1 20’
V) = o Tate) = (e =I5 ° (9.39)
When o<<1 this can be written
v 2l -242 .. (9.40
= : eedd s .40)

1f, prior to the experiment, o is asgumed to be approximately 0.1 and we wish to
determine the parameter with an wncertainty Aa = 0.0%, we find from eq.{9.40)

that more thaz 3-10% events will he needed.

Exercige 9.15: In the preceding example, what can be said about V(g) if n ie
not very large?

9.5,8 Example: Planning of an experiment; density matrix elements (1)

We will now look at a gpecific example to illustrate how the ML
method can be applied to problems where the p.d.f, has a physical origin rather
than being of a standard mathematical type.

Consider a meson resonance with spin parity JP -1 decaying into two
pseudoscalar mesons with JP =0, The angular distribution of the decay partic-
les, described in the Jackson reference system by the polar angle 6 and the azi-

muth angle ¢, is
£(cos8,8]0g,,0,-1Re01g) = 2-(4(1-Dag) + §(3pg,=1)con?8
- p,_18in23c032¢ -7 Replosin26c03¢], (9.41)

where f is properly normalized, since

2n +1
f d¢ f dcosef(cose,¢|pun,pl_l,Rgp,n) =-1.
o -1 ‘

For each event there are two measured quantities, cosei and ¢i. The
dengity matrix elements to be estimated are Pgq. py_y, and Rep;gq. The three
simultaneous likelihood equatione are of order n in the parameters, and the ML
estimates can therefore not be found analytically, Hence a numerical procedure

18 necessary to find the estimates p,,, P1-1, Rep,, and their errors. We may
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now ask: Can anything be said about the covariance matrix of the parameters
before data are available? It can be verified that for the distribution (9.41)
there exists no set of jointly sufficient statistics for the three parameters,
or for any combination of two of them. HNor is there a single sufficient stati-
stic for any of the parameters alone., For small samples of data, therefore,
little can be said about the errors from the theoretical p.d.f. For large
samples, however, the asymptotic covariance terms may in principle be calculated
from eq,(9.35).

Alternatively to the above description of the density matrix elements
in the Jackson reference system, the spin structute can be described in the so-
called dynamic reference system where the "observable" part of the denmsity
matrix is diagonal. For vector particles the density matrix can be diggonalized
by rotating the Jackson reference system a certain angle @ about the y-axis.

The three independent parameters in the dynamic reference system, ate called a,
B, and 6. The decay distribution is of the form

£ 2o (aee)? + Bler))? + (1-0m8) (evR)?) s ©.42)

where e is a unit vector along the decay direction, and i, j, k are unit vectors
along the axes of the dynamic reference system. In terms of the polar angles in

the Jackson frame and the rotaticn angle ® this distribution can be expressed as
f(cos0,d|a,B,8) = %; [a(cos¢sin6cose - cosBsing)?
+ B(singsing)? + (1-a-B) (cosBeus + cos¢sindsing)?). (9.43)

The ML properties of this p.d.f. are the same as those of the p.d.f. eq.(%.41).
In particular the solutions for the ML estimates a, é, and & have to be found
numerically by some optimization procedure.

We shall in Sect.11.2.3 discuss how the parameters in eq.{(9.41) can

alternatively be obtained by the moments method for parameter estimation.

Exercise 9,16: Show that neither of the two marginal distributions obtained

by integrating the p.d.f. (9.41) over ¢ and 0, respectively, will provide any
sufficient statistic or any set of jointly sufficient statistics for the unknown
parameter(s]. Show that the same situation applies for the p.d.f. (9.43).
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9.6 GRAPHICAL DETERMINATION OF THE MAXIMUM-LIKELIHCOD ESTIMATE AND ITS ERROR

In many practical problems neither the ML estimate nor its variance
can be found analytically. The numerical behaviour of L(Kiﬂ) as a functiom of
O can, however, be used to determine the estimatevﬁ as well as its error QE

graphically when the number of parameters is limited to one or two.

9.6.1 The one-parameter case

When the estimation problem involves a single parameter, one can
simply plot the likelihood L for the given observations as a function of 6 and
read off the ML estimate 3 from the graph as that particular value of 9§ for
which the curve peaks., Except for rare situations the curve will have a single
maximum, and hence a unique solution for the ML estimate é. If more than one
maximum show up within the physically admissible range of 8, one will usually
take 8 as that value of & which corresponds to the highest maximum.

In the case of a single maximum, or one dominant maximum well separ—
ated from other smallet maxima, one deduces the error in the ML estimate é by

95 of its

looking up the values of © for which L has fallen by a factor of e
maximum value L(max), as indicated by Fig. 9.1. For a strietly normal LF,
shown in Fig. 9.1(a), the two values 8 = 8 + A will correspond to p £ ¢ for a

variable distributed according to N(p,0%). The true value of the parametet

L 4L
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€95 (max)
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Fig. 9.1. Graphical determination of the ML estimate O and its error
from the cne—parametric likelihood function; {a) a symmetric, normal
(Gaussian) LF, (b) an unsymmetric LF.
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then has a probability 0,683 of being larger than 6 - AB and smaller than
8 + pf,
A strictly normal-shaped LF is never attained in real experiments,

where the number of observations is finite. In the general case, with an un-

symmetric LF, the two values of B for which L = L(max)e "%

will give unequal
errors on the upper and lower sides of 6; see Fig. 9.1(b). The probability
that the true value of € lies between é - Aﬁa and 8 + Aéb will gtill be

approximately equal to 0.68, This will be discussed further in Sect.9.7.1.

9.6.2 Example: Scanning efficiency (3)

We have on two earlier occasions examined the question of how to
determine the efficiency in a scanning procedute when two scans have been per—
formed, for example, to locate specified types of events in a batch of bubble
chamber films. In Sect.2.3.11 we saw how the efficiencies of the individual
scans as well as the overall scanning efficiency, and thereby the total number
of events, could be determined from the number of events detected in two
independent scans. Error formulae were derived in Sect.4.1.3. The reasoning
in these sections rested on the assumption that the numbers of events were
large, and also that the efficiencies were not too small.

We will now see how the Maximum-Likelihood method can be used to
estimate the scanning efficiencies and the total number of events from the
double-scan data. The procedure, intreduced by D,A, Evans and W.H, Barkas, ex—
tracts more information from the data at hand than does the conventional method
described earlier. <Contrary to the earlier method the ML approach is also app~
licable to experiments with low statistics.

We shall assume, as before, that the filwm has been subjected to
two independent scans, and that in each acan all events have the same probabili-

ty of being detected. The two scans have led to the following results,

Nj; events were found in scan 1 as well as in scan 2,
N; events were found in scan 1 but not in sean 2,

N, events were found in scan 2 but not in scan 1.

Then,

||IIIIIIIIIIIIIIIIIIlIIIllIIIIIIIIIIIIIlIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIlIII'||III||||IIIIIIIIIIIII|I|I||||IIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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N1 = Ny+N;, ia the number of events found in scan 1,
NZ = N,+N,, is the number of events found in ecan 2,
N12 = N;+N,+N,, is the total number of events found,
N (unknown) is the total number of events in the film,

K-K12 is the number of undetected events in the film.

» The scanning process is binomial, since an event is either found
by the scanner, or it is not. Therefore, if £; is the probability to observe
an event in scan 1, the probability for finding just M1 out of N events in this
scan is, according to the binomial distribution law,

_ A! N1 R-N1
By (N1H,e,) = NITORNT)T & (1-€1) .

For the second scan, the observed N2 events can be divided into

{9.44)

two groups, (I} the N;; events that have already been found in scan 1, and (II)
the N, events that have not been recorded in the previous scan. For each of
these groups we can apply the binomial distribution law.

probability to observe N;; out of N1 events is

Thus, for group I the

N1l

Biz, .
PI(leTN1.Ez) WraTINI=N. 27 B2 (1-g32)

For group LI the probability for seeing just N; from a total of (N-N1) events

R1-N12 (9.45)

that were undetected in scan 1, is

___ (N-M1)! N2,

Py M [WN1.e0) = orgrnnyT £ (1)
I and PII above the quantities N, €,
The joint probability for seeing N1 events in scan 1, N2 events

NN-N2 (9.46)

In the expressions for Fi1, P
€2 are unknown,
in scan 2, and Ny; events in commom in the two scans, is the product of the
three probabilities,

P = PN1,N2,N1;|N,€)5€2) = PyBPoL o

Organizing factors this can be written

Nl N1_ N2 N-N1 N-N2 1
2 {1-€1) (1-£3)

- N 9.47
P WminT € Ny N, TN, T (9.47)
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which is symmetric in the indices 1 and 2.

The joint probability P may be interpreted as the likelihood
L(NT,NZ,N12’N,€1,E2) of the observations N1,N2,N12 = N1+N2-N,; for the parameters
N,ey,€;. One can therefore solve the three simultaneous likelihood equations for
these parsmeters to find their ML estimates ﬁ,gl,gz.

The likelihood equations 91lnL/3g; = 0 and 3lnL/3e, = O give as

expected for the efficiencies of the individual scans

g, =¥ LR,
N
The likelihood equation 31nL/3N = 0 can, unfortunately, not be
sclved anmalytically. Since, however, we are primarily interested in the number
N rather than the individual efficiencies we can integrate the joint probability
of eq.(9.47} over the "nuisance" variables e;,e, to obtain a likelihood function

involving only the parameter N. The result of this integration is

NIQ-N1) (N-N2)! = WNj/N2!

O e = M (e LD HE T TH TP (9.48)

This form is not particularly suitable for numerical evaluatiom
when the observed numbers are large. However, the expression can be formulated
in terms of a recurrence relation,

N(N-N1) (N-N2)

LW = N

* L(K-1) , (9.49)

which is very convenient for numerical calculation. BSince the number N of
events in the film must be at least as large as the number of events found from
the two scans, one can take L(N-1) = L(N12)} = t as a starting value and proceed
stepwise to generate as much of the LF as desired.

For a numerical exsmple, suppose that the two independent scana have
yielded N1 = 43 and N2 = 48 events, réspectively, with Nj; = 25 events in com-
men. The total number of events recorded by the acans is then Ni2 = NI+N2-N;p; =
66, Thus we put L{66) = 1 and generate new values of L{N) from eq.(9.49) start-
ing with N = 67, The result of this computation is shown in Fig. 9.2, From the
shape of the LF we conclude that the ML estimate of the unknown number of events
iz

8
N =811% 6 *
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Fig. 9.2. The likelihood funmction L(N) of eq.(9.49) generated with the
numbers N1=43, N2=48, N, 3;=25, starting from N=67 (L{66)=1).

The estimated efficiencies are

€1 =%T3=o.53, e =-;Ta=o.59.

Exercise 9.17: With the observations of the example in the text, what is the

total number of events and the scanning efficiencies estimated with the conven—
tional formulae?

9.6.3 The two-parameter case; the covariance ellipse

For the two-parameter case the likelihood function L(5|81,82) becomes
a three-dimensional surface which is less trivial to display. However, the
shape of the function can conveniently be visualized by plotting level curves
for constant values of L{x|8,,8:) in a (8:,%2) plane, equivalent to drawing
intersections between the surface and a set of parallel planes. In the vicinity
of a maximum of the function these level curves will be a series of smooth,

closed contours around the maximum point (81,82) which can thus be localized to
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a required accuracy-.

With two parameters the LF will often have more than one maximum.
Usually, however, there is little trouble in identifying ome particular maxi-
mum with the desired ML solution for the parameter estimates. For example,
some of the maxima may occur inm vophysical regions of the parameter space and
can therefore be eliminated right away, or the principal maximum can be over-
whelmingly favourable compared to the secondary maxima from the numerical
magnitude of theit likelihoods. With ill-behaved likelihood functions having
two or more maxima of comparable magnitude the ambiguities of the solution
may have to be resolved by leoking fer additional information. An example is
given by the case study described in Sect.9.12,

For a regular LF with a single maximum in the parameter region of
interest the errors in the M estimates of the two parameters cam be cbtained

“%5,  The tangents

from the specific likelihood contour for which L = L{max)e
to this contour parallel to the coordinate axes provide a set of upper and
lower errors for the two parameter estimates, as indicated in Fig. 9.3(a).
1f the LF has the shape of a binormal distribution the errors deduced this

way are identical to the standard deviations, as will be demonstrated below.

9,1

i
|
I
o
6

|
|
L
8

Fig. 9.3. Graphical determination of the ML estimates and their errors
from the two-parametric likelihood function; {a) the tangential method,
(b) the intersection method (conditional errors).
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A second approach determines the "errors” in the parameter estimates from the
intersections between the same contour and the two lines 0, = 61 and €z = 52 as
indicated in Fig. 9.3(b). With this intersection method the "arrors™ in either
parameter are thus deduced by keeping the other parameter at its estimated
value, making these "errors" in general smaller than the errors obtained by the
tangential method. Since an asymmetric orienmtation of the contour L = L(max)é'ﬂ'S
relative to the coordinate axes reflects a mon-zero correlation between the
estimates, these two approaches to error determination will cbviocusly produce
identical results in situationms with uncorrelated parameters only.

In the asymptotie limit of infinitely large samples the LF takes the
binormal form

~

a7 a \2 ~
L(8,,08z) = L(max)exp{- 2(1192){(81;?1) + (82;?2) - 2p (Elé%l) (93%2&)]} (9.50)

2 2 . . -
where 07 and G5 are the variances for the two ML estimates 6; and az, and p

their correlation coefficient, as can be verified by calculating the matrix

- R - . ’
elements Vij(g) according to eq.{9.37} and inverting the resulting matrix. The
-0.5

contour L = L{max)e is now given by a quadratic equation in H; and 8.,

! [(91“61)2 8,-8,\2 61—31 8,-8,

- (9.51)

This is the covariance ellipse for the binormal LF. The ellipse is cencred at
(8;,92), and its principal axes make an angle o relative to the coordinate sys—

tem, where

tan 2g = —2PT10z

9.52
32 - of (9.52)

Figure 9.4 shows a few examples of covariance ellipses with a common
centre and common values of ¢},02 but with different p. As can be verified
from eq.(9.51), the ellipses with such properties are all inscribed in the rec—
tangle defined by the straight lines 8; = 61 t 0 and 6; = az t gy, In other
words, regardless of the value of p, the tangents to an ellipse parallel to the
coordinate axes will always have distances % 0y, % 0; from the peint (al,az);

this serves to justify the tangential method for graphical error determination
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i
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Fig. 9.4. Covariance ellipses for binormal likelihood functions'with
common maximum (B;,02) and common variances ai=4, ol=1, The ellipses
for different values of the correlation coefficient p all touch the

rectangle defined by 0;=8,%0;, 8,00, at four points; for p = + 1
the ellipses degenerate into the diagonals of the rectangle.

(Fig. 9.3(a)). The intersection method for determining the errors, consisting
in drawing lines 8, = By and 8, = éz,ls here seen to give intersections with
the covariance ellipse at distances !Ul/f:gﬁ, tszT:BT from (6,,8;). The last
observation should make it clear why one must be careful in using this method,
since merely quoting the intersection distances as errors will be incomplete,
and perhaps even misleading, without a specific statement expressing that these
errors are indeed conditional,

It can be shown that determining the errors by the tangents to the

contour L = L(max)e™"®

corresponds to having a probability 0.683 for including
the true value of one of the parameters in the interval [ai*Aéi,§i+A6i] when
the second is ignored. The region enclosed by this contour does not represent
2 joint 68.3% probability for the two parameters, but corresponds to a much
lower joint probability, in fact less than 40% in the ideal asymptotic case;
this will be discussed further in Sect.9.7.4,

#
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9.7 INTERVAL ESTIMATION FROM THE LIKELIHOOD FUNCTION

The Maximum-Likelihood Principle produces point estimates of the un-
known parameters, As it is recognized that there should be a margin of uncer-
tainty associated with an estimate, we have in the previous sections discussed
at length how to evaluate its variance. We have seen that the approach to the
variance determination is not unmique, and that somewhat different results are
obtained from the various methods. Thersfore, in quoting a result 8 * Aa for
the ML estimate one should indicate how the error was obtained.

Instead of giving the result of an experiment in terms of a point
estimate 6 and its error A8 one can summarize the outcome of the experiment by
performing an interval estimation for the unknown parameter 8. For such a
purpose we introduced the concept of a confidence interval in Chapter 7. We
associated an estimated interval with a probability content Y, and called it a
100y 7 confidence interval for the parameter. The meaning of this was that if
the experiment were repeated many times under the same conditions, then, in
the long run, the estimated intervals would include the true value of the
parameter in 100y 7 of these experiments. To arrive at these inferences about
the parameter we had to invert probability statements about some function, or
statistic, of the observable quantities, whose distributional properties were
known. Thus, for instance, inverting a probability statement about the sample
mean x, known to be distributed as N(u,02/n) with u unknown, o2 known, we oh=~
tained a statement expressing that the probability was 0.954 that M would be
larger than x - 23%- and smaller than X + ZJ% ; hence we called the random
interval'[i-Zgg, §+2J§] a 95.4% confidence interval for p.

In the asymptotic limit, with Znfinite sample sizes, we can argue in
a similar manner to obtain confidence intervals for the unknown parameter 6.
We know then that the ML estimate 8 has the property of being normally distri-
buted about the true parameter value B, with a variance given by the minimum

variance bound, and this allows us to write down probability statements like
P(8 - 20 <8 <8+ 20) =0.95, (9.53)

The random varizble 8 here has a probability 0.954 of falling within distance

+20 from the true but unknown 6, where o is implied by the MVB. Rewriting the




230

inequalities we get the expression

P(a - 25 <8 < a+ 20) = 0.954, (9.54)

gtating that the probability is 0.954 tbat the interval {6-26, Be20] will
cover the constant 8. According to the definition of the concept in Chapter 7
the interval [B-20, 6420 ] is therefore a 95.4%7 confidence interval for 6. We
note that the inversion of the probability statement (9.53) was particularlf
simple here, due to the algebraic symmetry between variable and Tean value in
the normal p.d.f. This asymptotic symmetry persists in the mu1t1-pafaTeter
case, and hence permits a similar reasoning with inversion of probablllty'
statements to obtain confidence intervals (regions) in the general case with

several parameters; see for example the presentation in Chapter 9 in the book

by Eadie et al. - R
For finite samples we do not know the exact distribution of 8. We

can therefore not write down statements iike eq.{(9.53), invert them, and next

interpret the results in terms of exact confidence intervals for the unknown
constant as we did above.

, .
In the following we shall make use of the likelihood function te

perform an interval estimation of 0. We resume and extend our point of view

from earlier in this chapter:
the LF is maximal as the "most likely" value of the unknown parameter; other
8 values will be considered less likely of being the true value of the para-
meter, in accordance with the fall-off of the likelihood. Thus, for the set
of observations at hand, we shall regard the likelihood function itself as
providing a measure of the intensity of our credence in the various con- '
ceivable values of the unknown 6. This means that we make an interpretation
of the likelihood function as measuring our "degree of belief" in the possible
values § can have, based on our particular observations X aXyserey X Where-
as the confidence interval gave a measure for the probability that the true
value of the unknown parameter im the long run would be included in the esti-
mated interval, an interval estimated from the likelihood function will
measure our belief that the particular set of observations was generated by a

parameter belonging to the estimated interval.

not only shall we regard the 9 value for which -

-~
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As soon as the likelihood function has been given the intuitive
meaning of expressing degree of belief in possible values of 9, it is only
natural to associate an interval in B with a numerical measure of our

belief, in proportion te the integral of the LF over this interval. Let us

Then

20, 84201,
ete. would be propertional to the coustantg 0.683, 0.954, **+, Thesge

for simplicity assume a normal-shaped LF of mean 8 and variance o2.

our belief associated with the specific intervals [@-g, §+0], [ﬁ_

numbers therefore provide relative measures of our belief in the specified

intervals for B8, We could write, for example,

Rel. belief (8 - 2 < 5 < 8 + 20} = 0.954, (9.55)

which is an expression of the same formal structure as the inverted probabi-
lity statement eq. {9.54) used to define the 95.4% confidence interval for 8.

In the following sections, when we refer to the likelihood function and write

!’(9a <8< Bb) =y, (9.56)

we shall take this probability statement to mean “relative belief" in the
above sense.

It is customary among physicists to refer to all intervals derived
from the likelihood function as confidence intervals. This is in many in-
stances unfortunate, since the meaning is differemt from what is usually

understood by a confidence interval. Intervals obtained by a specific pre-

scription from the likelihcod function were originally named fiducial intervals

by R.A. Fisher. Following a suggestion by D.J. Hudson we shall denote all

intervals derived from the likelihood function as Iikelihood intervals to
indicate their origin and to distinguish them from confidence intervals which

have an entirely different conceptual content.

Finally, let it be mentioned that the use of the likelihood function

in statistical inferemce is by no means a trivial matter. In fact, there has

over the years been a great deal of controversy among the specialists, due to

their different attitudes to Bayes' Theorem. To indicate how confusion can

arise on the subject, let us recall that the likelihood L(5|B) expresses the
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probability to obtain the particular set x = {xl,xz....,xn} of observed
values, on the condition that the vatue of the parameter is 6. This prob-
ability is connected with the inverse probability P(Bli) for a particular
value of 0, given the observations X, through Bayes' Theorem, which states

(eq. (2.26))
p(a\x) = L(x|e)P(8),

where P(8) is the prior probability for 8. In addition to knowing the likeli-
hood L{x|6) of the observations x in our experiment we must have some prior
knowled;e of the parameter, expressed by P{8), in order to obtain the new,
posterior probability P(8{x), which in this scheme forms the basis for statis-
tical inference about 8. Thus, we may want to undertake an experiment to get
some information on the parameter &, but unless some previous knowledge al-
ready exists on 8, or is simply guessed at, it is not even ir principle poss-—
ible to gain in knowledge by carrying out the experiment. Clearly, the re—
quirement of having previous knowledge in order to learn something new is
philosophically disputable. The reader who is interested in underlying phil-
osophies and the relationship between Bayesian and other approaches to inter-—

val estimation should consult Kendall and Stuart, Chapters 20 and 21, Vol. 2.

9.7.} Likelihood intervals; the one-parameter case

Under very general conditions, when the number ofnobservations
becomes infinitely large, the likelihood function L(§18) =ignf(xile) gats
1
independent of the sample values X1,Xz,...p3 and takes the shape of a norma

= . z . - LW
distribution in B with mean value B aod variance o’ as implied by the MVB e

write
Lx]® » L&) = Lmaxy ¢ 19, (9.57)
ar
1oL(8) = InL(max) - #Q, (9.58)
where
6 - By (9.59)
o (55

—Trl—*
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With an asymptotic LF of Gaussian form or, equivalently, a parabolic
InL functiom, intervals for € can be constructed to correspond to a specified
probability content Y, as described for the normal variable in Sect.4.8.3. In

general, two limits Ga and Bb can be chosen such as to make

gp=8Y _ .. (€a-f
P, cB6<6) =6 (—b-—o ) G (——«_ao ) (9.60)

whetre G is the cumulative standard normal distribution. Particularly convenient
are the choices which make the intervals symmetric about é, since these are the
shortest imtervals which have a given probability y and alse preduce equral tail
probabilities §(1-Y) in the ends of the distribution *); these can be obtained
by simply intersecting the LF or InL function by straight lines. Thus, the

probability statement

P(d - wo <6 < B+ mi) =2 6(m) ~ 1 = (9.61)

corresponds to obtaining the symmetric and central m standard deviation likeli-
hood interval [é-mo, Bemr] of probability y. The interval is constructed by
intersecting the Gaussian L{f) by the straight line L = L(max)e_a, or what
amounés to the same, by intersecting the parabola InL by the straight line at

distance a below maximum, where a = }Q = im?, Specifically,

a = 0.5 gives a 68,37 likelihood intervalt for 9,
a=2.0 " " 95,47 " " won (9.62)
a= 4.5 " " 99,77 " " LI

This is illustrated in Fig. 9.5(a).

The above procedure can also be applied when the LF is not of a normal
shape (and, equivalently, lnL is not parabolic). Let us assume that Le(ﬁle) is
a continuous unimodular function of © and that there exists some transformation
g = g(B) of the variable 6 which transforms the function LB(§|9) into a Gaussian

of unit variance and mean value g. In terms of the new variable g the LF is

- -y 2
Ly Gxle) « MBS

*) We use the word "symmetric' to characterize the interval limits relative to

@, and "central" to indicate that the interval has been chosen to give equal
probabilities in the two ends of the distribution.

- A, I
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ML

InL{max)-05—~————

InL{max)-20--—-—

InL{max)-45———

Fig. 9.5. Likelihood intervals for a one-parameter IulL functien,
obtained from intersection with straight limes lnlL = 1aL (max)=~a;
(a) a symmetric, parabolic Inl function, (b) an unsymmetric 1lnL
Ffuncticn,

and in accordance with the invariance property of ML estimates (Sect.9.4.1)
the ML solution for g is E = g(f€).

From L (xig) one can find likelihood intervals for g in exactly the

g~ : . .
same way as in the case of & normal-shaped LF. If the likelihood interval for
B is [ga’gb]’ the cotresponding likelihcod interval [Ba,ﬂb] for the original
parameter O can be found by taking the values Ba, Bb as implied by the trans-
formation g = g{(9_ ), g = g{f }. Thus we should have to make an inverse trans-
a a b

formation to obtain Ba and Bb explicitly.

The elaborate process of performing a transformation and a subsequent
inverse transformation is in fact unnecessary. Since the likelihood itself

gives the joint probability for obtaining the observations X1yK2yerep X and
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this probability must be the same whether the parameter is expressed directly

as 0 or in an implied form g(8), we must have, for all &,

Loxi®) = L (xle).

It follows that since, for example, a 95.4% likelihood interval for g is found
from the intersections of Lg(ﬁlg) with the line Lg = Lg(max)e_za, the corre-
sponding 95.4% likelihood interval for 8 can simply be obtained by finding the
intersections of Le(ﬁ'e) with Le = Le(max) e_2£. Similarly, intersecting the
non—normal LF by any straight line at a multiple e ? From maximum will directly
produce likelihood intervals of probabilities as given for the case with an
ideal, normal LF,

Strietly speaking, the last assertion can only be approximately
correct. This is so because the assumptions underlying the argumentation above
will not be satisfied in the general case. The existeuce of the transforming
function g(€) is not granted and will, in fact, only be fulfilled to some
appreximation, depending on the functional form of the p.d.f. and the sample
values, which determine the actual shape of the LF. For practical work this
need not disturb us; as long as the graph of the lnlL function has a single
maximom in the region of interest and does not deviate too much from a parabola
we may find its intersections with the straight lines to obtain likelibood
intervals of approximate probability contents as given by eq.(9.62); see
Fig. 0.5(b).

Because of its simplicity, the intersection procedure is the ome
most frequently used for interval estimation by physicists. An alternative
procedure, equally justified from the intuitive point of view that the like-
lihood fupction gives a measure of our belief in the possible values of the
unknown parameter, consists in explicitly integrating the LF. For example, if
we should choose to have equal probabilities in the two tails of the LF, we
could divide the total range for 9, 8, £ 8 28, into a number of cells AB; and

determine numerically two wvalues Ba and Bb such that

8, 8,
I Lexlodae ./ 7 L(x|e)as. « J(1-y)
z A S

i L ei BL

and

9 - Probability and statisties,
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v, o By
(x i)Aei/e g L(x|8,)80; = }(1-y).

)
870, =8
This would correspond to taking [ea,eb] as a 100y Z central likelihood interval
for @.

Although sufficient for most practical purposes, the methods de-
scribed above may sometimes mot provide an adequate summary of the experiment.
This can be the case, for instance, if the LF is very skew, and produces large
likelihood intervals which are unsymmetrically positiomed relative to the most
likely value of the parameter. Tn such a situation one will ysually state the
point estimate § in addition to the interval estimate [ea,eb]. In more extreme
cases, when the LF is particularly ill-shaped, as is sometimes experienced in
low-statistics experiments, it is more informative to present a graph of the
whole LF.

Exept for the ideal situation with a strictly normal LF we shall not,
in general, be ensured that the intervals obtained directly from the LF (or,
equivalently, from 1lnL) are the shortest intervals for 8 corresponding to the
given probability Y. TIf we are interested in obtaining intervals which give as
accurate information on the parameter as possible, we should lock for some
explictt transformation into a new variable which is more close to the normal
approximation than is the LF, and which will therefore, in the long run, pro-
duce tighter intervals, consistent with the minimum variance bound. An example

on such a transformation is discussed in the subseguent sections.

9.7.2 Confidence intervals from the Bartlett functions

It was shown in Sect.9.4.7 that the standardized variable

2
s = - g [of- )]

becomes distributed as N(0,1) when n goes towards infinity. One can therefore,
as suggested by M.S. Bartlett, use 5(8} to find the ML estimate 0 as well as
any confidence interval for 8. This is suggestive, since S(8) is usually close

to being normally distributed also for finite n.
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For small samples an even more applicable function is
5,(0) = 5(8) - v - 1, (9.64)

where the last term is a skewness correction to the ordinary Bartlett functien
of eq.(9.63). The asymmetry coefficient is defined (see Sect.3.3.3) in terms

of the second and third central moments of 5lnL/36&,

Yo F (uLz;S"Z ) (3.20)
where

o) ] )
and - s . _

ts = E[(B—T;gi) J - za(%é-'}]i) +33 E(— %‘,‘E) i (9.65)

In these expressions the expectations are to be evaluated for the jeint p.d.f.

L{x|0).

Exercise 9.18: Derive eq.(9.63).

9,7.3 Example: Confidence intervale for the mean lifetime

To illustrate the use of the Bartlett functions from the previous |
section let us consider again the ideal lifetime distribution law

tf1

f(t]m) = % e For n cbservations,

n -
-tj nt
1oL = 1n| 1 tl!T) = -nlat - — ‘
(! 1 T T .
i=

and the ML estimate becomes T = t = & Zti as we saw in Sect.%.1.1. The asymme-
try coefficient is cbtained a8 Y, = 2/¥8 and the Bartlett functions take the

forms

T-1 (9.66)

S(1) =
/v '

and
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-1 1 [f1=1 \?
S (1) = -— { H"——) - 1] . 9.67
Y oW W \T/ﬁ? ¢ )

The first of these functions appeared already in the example of Sect.
9.4.8, where it was shown explicitly to be a standard normal variable for large

n. A probability statement may therefore be written as

p(_zsﬂ s2) - 0.9
. 9.68
e / ’ ( )
which ran be inverted to read
?( T stz T2>=0.954
' L

This gives the 95.4% confidence interval for T,

1 1 ‘ (9.69)
| . E_ » - 2_ . .69
v v

To order %—this interval is symmetric about T,
Taking instead the function SY(T) the analogue to the probability
statement {(9.68) is

P{-zsiil-l_r-%lz—1sz}=o.954. .7
/v o i-('r//ﬁ') } (9.70)

If we now want the limits of the corresponding confidence interval for T a
second-order equation must be solved for each of these limits, Of the two solu-
tions of each equation we take those which, when n + =, coincide with the limits
obtained above with the function §(T), since SY(T) + 5(T) when n becomes very
large. The result is that SY(T)' for n not too small, provides the 95.4% con-

fidence interval for T

1 T
s 9.71)
% - % 1 - -E—-+ T % - % Y1+ _E_ + i~
T " wr o

This interval is more symmetric about T and also shorter than the interval of
eq,(9.69},

The intervals of eqs.(9.69), (9.71) are the results of inversion of
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prnbability statements about specified functions of 1. They express the prob-
ability that the true value of the parameter will be included between certain
limits given by the random wvariable T=T and the sample size n, and therefore
correspond to confidence intervals in the sense of Chapter 7. These intervals
will be more symmetric and, in the long run, more accurate than intervals de-

rived directly from the likelihood function.

Exercise 9.19: Using the one-standard deviation limits for the two Bartlett

Functions S(1) and S_(T) in the text, show that the 6B8.3% confidence intervals

obtained for 1 are identical.

Exercise 9.20: In a laboratory exercise to measure the mean lifetime T of A

hypercns preduced in a bubble chamber a student has for 14 event candidates

measured the following proper flight times in units of 107'° seconds:
2.4, 1.7, 1.9, 4.5, 0.5, 10.2, 2,7, 0.8, 1.4, 1.6, 1,0, 1.2, 2.8, 0.7,

Assuming the chamber to have infinite dimensions and perfezt detection condi~
tions, what is the ML estimate for 1?7 Plot the 1ol function from these assump-—
tions and determine the 68.37 and 95.4Z likelihood intervals. Compare these
with the corresponding intervals obtained from the Bartlett functions S(T) and
SY(T).

Exercise 9.21: Consider the p.d.f. f(t;TiA) = Ae'At/(l-e_kT) for 0 fe =T,
{compare Exercise 9.2), Show that the Bartlett function defined by eq. (9.56)

becomes iy
SO = A=A .
by [ 1 2, =ATy -T2
LS ToTe M - e 1)2]
AR
Note that when T, + =, S(3) + AA
e

3.7.4 Likelihood regions; the two-parameter case

In a situation involving two parameters we shall regard the likelihood
function L(§|61,82) obtained for a set of observations as containing all infor-
mation available on the unknown parameters and use it to make inferences about

them based on probability statements of the type

Po? <0, <0, 0F <0 < 82) =y . ©9.72)

We will start with the assumption of asymptotic conditions. In the

limit of infinitely large samples the LF will be the binormal distributicn
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_ANZ Y _A .a
L(B1,82) = L{max) exp{— 2(1102){(910?1) + (920?2) - 2 (510?1) (Gchz)]} (9.50)

equivalent tc

1nL(8,,82) = lnL(max) - 1¢ (9.73)

.1 8,-6, % 92‘62 . 91—61) (92’62
RN BT [( o1 )+( A ) S s P (9.74)

Curves for constant likelihood will then be ellipses with centre at the ML

where

estimates é],éz, as shown in Fig. 9.6. Specifically, we recognize @ = 1 as
giving the covariance ellipse of eg.(9.51).

The quadratic form ¢ of the twe normal variables 6; and €; has the
remarkable feature that its distributional properties are independent of all
five constants 61,52,01,02,0; in fact, Q is distributed as a chi-square variable
with 2 degrees of freedom (compare Exercise 4.48). For such a variable we can

express a probability by the cumulative integral

QY
P(Q = QY) = J E(Q;v=2)dQ = v . (9.75)
4]
where f£(Q;v=2)=}exp(-4Q), according to Sects.5.1.1 and 5.1.2. The integration

can therefore be performed explicitly, giving
PQ<Q) =1~ Ty Ly (9.76)

Clearly, the condition Q < QY is 'equivalent to having both variables 08;,8; at
the same time within the region enclosed by the ellipse Q = QY' Writing
P(6,,0, within ellipse Q = QY about 6,,8:}) =y

we have arrived ar a probability statement of the type (9.72), The ellipse
Q= QY centred at the ML estimates 61,62 has a probability ¥ of covering both
0, and B, similtanecusly and therefore represents a 100y % joint likeliheood
region for the two parameters.

1f the two-parameter LF is of a strictly binormal shape we shall

consequently have a simple interpretation of the elliptic likelihood contours
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cbtained by imtersecting InL by parallel planes 1nL = InL(max)-a: they are the
boundaries of joint likelihood regions for the two unknown parameters, and have
probability contents as implied by eq.(9.76), where iQY = a,
LA 0.393 and thus repre-

In particular, the
covariance ellipse has a probability comtent v = 1-e
sents & 39.37 joint likelihood region for 0, and 6;. The following list of

pumbers should be compared with its one-parameter analogue, eq.(%.62),

a = 0.5 gives a 39.3Z joint likelihood region for #; and 8,,
a= 2.0 " " 86.5% " " 1" "N [T . (9-?7)
a=4.5 " " gg.97 r n " "o roon

0.5)
2.0)
45)

~—Q = 12 (a
l\O.= 2 (a
~a=3 (a

8, 6,

Fig. 9.6, Likelihoocd regicns for a binormal likelihood function. The ellipses
are obtained by intersecting the lnlL function by planes at distances a below
the maximum point (8;,8;) and define joint likelihood regions for 8y and €, of
probabilities as given by eq.(9.77). The vertical band of width 201 around 8
Fouching the covariance ellipse ¢ = 1 is a 68.3% likelihood interval for 8,,
irrespective of 8;; similarly, the horizontal band is a 68,37 likelihood inter=
val for 8, ignoring 0;. Within the covariance ellipse the 68.3% conditiocnal
likelihood intervals of length ZUi/T—pZ for either parameter are indicated.
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From the preceding arguments it is also evident how a joint likeli-
hood regicn of specified probability ¥ can be found for twe parameters, given
a binormal LF. One chooses the elliptic region Q = 2a bounded by the contour
InL = InL{max}-a, where the number a is deduced from eq.{9.76) for the speci-

fied v,

a=-1n(l - y). (9.78)

Thus, for example, if we were interested in a 68.3% joint likelihood region
for the two parameters, this would correspond to taking a = 1,15 and the
ellipse Q = 2.30.

Although appealing, choosing elliptic areas as joint likelihood
regions for two parameters does not represent the only possibility. For in-
stance, the rectangle circumscribing the covariance etlipse gives another
convenient joint likelibood region for 8; and 8,. It corresponds to a prob-

ability statement of the type of eq.(9.7%),
P(By-0y < 8y < Bi+oy, 8202 < By < §,402) = vip) . 9.79

Evidently, the probability content of the rectangle must be larger than that
of the covariance ellipse; in fact, it is found to depend on the correlation
p. With the LF of eq.(9.50) the probability (strictly speaking: our relative
belief) of having €; and 8, within distances #0) and 0 from the estimated
values is given by the integral

62+07

[ d6;d6,L(8;,02) ,

2=

61+01
(2HG102/I—02' L(men()}]_1 j
é]’U (s )

D

which can be reduced to a function of p and determined numerically., The same
procedure can obvicusly be applied to determine the probability v(p,m) of any
other rectangle specified by 81 = 812m01, 8; = Ootmoz. It is left as an exer—

cise to the reader to verify that this probability is given by the formula

Y{o,m) = 7%; Imdy e_iyz [ C(;?E%%) - G(ﬁ?;%%)] (9.80)

=M

where G is the cumulative standard nermal distribution, As expected from
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symmetry reasons, Y{-p,m) = y(p,m). The following table summarizes the
numerical values of the probability content for a set of ellipses as well

as their citrcumscribing rectangles for different values of \D|.

reor | - . S -
ellipse, ! Probability of circumscribing rectangle, y(p,m}

m oy=t-e ™1 o] 0.0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99 1.00
0.5 L1175 147 2149 158 165 .176 .191 .216 .258 .294 .343 ,383]
1.0 .3935 466 671 .486 .498 .574 .534 .567 .596 .62 .655 .683
1.5 .6753 .751 .754 .763 770 .778 .789 .802 .821 .834 .851 .866
2.0 L8647 911,912 .915 .917 .920 .924 .929 .936 .941 .948 .954
2.5 .9561 .975 ,975 .976 .977 .977 .978 .979 .982 .983 ,986 .9as
3.0; .9889 995 995 .995 .995 .995 .995 .995 .996 .996 .997 .997

The table values show that y(p,m) is a rather sensitive increasing
function of |p|, particularly when o] = 1 and m is small, but becomes almost
independent of |p| when m > 3. The numbers imply that, given the size of a
circumscribing rectangle, it represents a probability which depends on the
magnitude of the correlation between the parameters. On the other hand, all
eltipses which can be inscribed in the rectangle, cortesponding to any value
of the correlation, represents one common value for the joint probability.
These findings may appear somewhat surprising, since one's first impression,
say trom glancing at Fig. 9.4, is likely to be otherwise and, in particular,
that the probability associated with ellipses inscribed in a given rectangle
should depend on their size.

It is rather trivial to construct likelihood imtervals for each of

the parameters considered separately. Writing a probability statement like

P(81-mo; < 8 < Bi+mo) = v (9.81)

for the first prameter would imply ignoring the second, which means that it
can have any value, For this situation, integrating L(8:,0;) with the ap-
propriate normalization over all Dz gives the marginal distribution in 9:,
which becomes N(ﬁ,,of) (see the derivation of eq.(4.81) in Sect.4.9.2). From
this distribution one finds the likelihood intervals for 91 in the usual
manner. Specifically, the cne—standard deviation (68.3%) likelihood interval
[gl—ﬂl, §1+0]] for 8) becomes the infinitely long vertical band touching the

covariance ellipse, indicated in Fig. 9.6; similarly, the long horizontal band
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is the one-standard deviation likelihood interval [62—02, 8,+0:1 for 8. Im
the event of independent parameters {p = 0, a symmetrically positioned ellipse),
when the joint probability factorizes into the two marginal probabilities, we

therefore find

é2+02) =

1A

P(al—cI < By 61+01, 52—02 < 8,

P(lé;—ﬂl < 8, é["‘G])'P(éz‘Gz < B,

LI

~

0,+0;) = 0.683% = 0.466.

M
A

In a similar manner one can establish conditional likelihood inter-—
vals for one parameter when the other parameter is kept at a fixed value, For
instance, specifying the first parameter to its estimated value 9, = 51, the
second has the conditional distribution N(éz,og(l-oz)}, (compare eq.(4.82)),
showing that [aZ—OQVT:EE, 8,+03/7pZ] in this case is a 68.3% conditional
likelihood interval for this parameter.

Our discussion has so far been based on the assumption of an ideal,
binormal likelihcod function. In real life, with finite samples, the two-
parameter LF will not comply with this requirement. As in the one-parameter
case we can, however, assume that the departure from asymptotic conditions is
not too severe. If the LF has a single maximum and is sufficiently regular in
the region of interest we shall again take for granted the existence of scme
transforming function which brings the LF pvetr to the ideal binormal shape,
thereby enabling us to reason about transformed likelihood regions like we did
in Sect.9,7.1 for the one-parameter intervals. Consequently, by intersecting
the 1oL surface by planes Inl = inL{max}~a we shall take the region enclosed
by the contour as an appreximate 100y 7 joint likelihood region for the two
parameters ©; and 6, where, as before for the ideal binormal case, Y = t-e 2,

For an irregular LF, where the existence of a transforming function
is an obviously inadequate assumption, it will not be justified to take the
numbers ¥y = T-a 2 ag approximate measures of the probabilities to be associ-
ated with the joint likelihood regions. This applies, in particular, if the
LF has more than one maximum and the intersection 1nL = lnL{max)-a produces
twe or more disconnected regions in parameter space. In this situation the
experiment is only poorly summarized by specifying the particular regions,
and it is more informative to display the LF graphically by a whole set of

likelihood contours.
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9.7.5 Example: Likelihood region for p and 0% in N{u,o%)

We have earlier established that the joint ML estimates of the mean
and variance ip the normal p.d.f. N(u,0g?} are given by a - %= % b x; and
a? = Eil g? = % E(xi-}_()2 (Sect.9.2.3) and that, for large samples, their co-
variance matrix is diagonal with elements Vy; = ¢?/n and V,, = 26"/n (Sect.
9.5.5). If in these elements we replace the parameter o2 by its estimated

value o° we find that the variable Q of eq.(9.74) is given by

_n__
2(52)2

which describes ellipses centred at (a,az) in the (u,0%) plane, with half axes

Q= (u—ﬁ)2%+ (52 - G%)2

proportional to G//E and 27/ In particular, the ellipse which gives the 95%

joint likelihood region for 1 and 6 corresponds to taking Q = 2a where, from

I
- )
2 100(p-x)2 f

22372 Ny

——

\ s

2.0 ‘/

2. 99
I e = 7305
0.5 \ i
\ /
i \\ /
/
\\..f’
T | T T T T ' T T T T [ -

Fig. 9.7. Likelihood region (ellipse) and confidence region
(intersected parabola) for u and ¢ in N(u,ci).
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eq.{9.78), a = — 1n{1-0.95) = 2.996; hence its half axes are

¥5.99.2(3%)2/n .

It is interesting to compare the elliptic joint likelihood regiom

/5.99-6%/n ,

obtained in this manner with the findings of Sect.7.4, where we used the inde-
pendence property of the statistics % and 8% to comstruct a joint confidence
region for ¥ and ¢?, illustrated by the shaded area of Fig. 7.2. A sample of
size n = 100 with x = P, s = 1 gives the 95% joint likelihood ellipse of
Fig. 9.7. This ellipse is slightly smaller in area than the particular 952
joint confidence region shown in the same figure, bounded by the parabeola and
the two horizontal lines. These have been determined by demanding equal tail
probabilitjes = 4 (1-v0.95) in the ends of the N(0,1) distribution ( for the
variable ;%}%) as well as the ¥ (n-1) distribution ( for f ﬁ%;iz ). This
requirement fixes the values of the constants a, b, b' in the probabiiiry
statement eq.(7.18); we find a = 2.237 in the usual way, and b = 67.5, b' =
130.5 by approximating the chi-square variable to a normal variable of the

same mean and variance.

9.7.6 Likelihocd regions; the multi-parameter case

To genetralize the arguments of Sects.9.7.1 and 9.7.4 to a situation
with several parameters we are now looking for the possibility to formulate

probability statements of the type

(o} < 0y g Oy, ee, 8 .82)

S )
on the basis of a k-dimensional likelihood function L = L(5|91,92,---,B y. If
all parameters are considered to lie between two different limits, the span in
parameter space will be a 100y % jeint likelihood region for all the k para-

meters. 1f some of them are kept constant, say at their estimated values, the
region spanned by the remaining parameters will be a conditional joint likeli-
hood region (if there are at least two parameters left) or a conditional like-~
lihood interval (if only one parameter remains). In any case, our purpose is to
find a region for chosen Yy, or conversely, to find the value of ¥ corresponding

to 2 specified region,

e ™
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Unless we make the simplifying assumption of asymptotic conditions
we shall not be able to pursue this subject very far. In doing so it should
be noted that with an increasing number of variables (parameters) the approach
to "apymptopia" becomes increasingly slow. Thus larger sample sizes are in
general needed to attain a given accuracy in the approximation to normality
when the number of parameters goes from ome to two and beyond., In other words,
comparing real life to the ideal conditions will generally imply rougher ap-

proximations in the multi-parameter case.

A Taylor expansion of lnl about the ML estimate § = {ﬁl’éz‘,__‘ék}
reads, in general,
ko ko k
= AL : P2 Lal « .
InL = 1nlL + 7 = ‘ O.~0.) + ) l } al, .
& sbo98, oA 2 . Lm0 (0,-0,) + =0,
0=6 =1 -9 AR LI B T M T

Here the first derivatives vanish identically. If the sample size is large

enough the second derivatives are the negative of the elements of the inverse

covariance matrix for the ML estimates (eq.(9.32)). Hence we may write

k k
1oL = loL(max) - 6.-8,)V71 (D -8, TR
g121 jZ1( 78IV @O0 ©.83)

When higher-order terms are neglected this gives the asymptotic LF as the multi-
normal distribution in 8,

L(® = Limax) exp [-4(0-8) " (0) (2-0)] (9.84)

where we have written v"(e) instead of V_I(é}.
Intersecting the hypersurface L(8) by hyperplanes L = I..(max)e_a will
now give contours of constant likelihood which define hyperellipsoidal regions

in parameter space. Since the quadratic form

Ay Ty o
Q= (8-8)yv (8 (e-0) {9.85)
for multinormal 9 is distributed as a chi-square variable with k degrees of
freedom (Sect.4.10.2), we can express a probability by integrating the p.d.f.
of the x?(k) variable between 0 and some value QY; we write
¢}
Al

Pz o) = i £Q;v=k}dQ = F)_ Q=0 sv=k) = v . (9.86)




248

where F is the cumulative integral of the chi-square p.d.f. as defined in
Sect.5.1.4. Clearly, Q < QY is here equivalent to having all parameters 8;,8,,

++4,0 simultaneously within the region enclosed by the hyperellipse Q = Qy-

This :yperel]ipse, centred at @ and obtained by the intersecting hyperplane at
distance a = QQY below !'uL(max), will therefore be the boundary of a 100y Z
joint likelihood region for all k parameters. Corresponding values of Y can be
found from graphs or tabulations of the cumulative chi-square distribution, such
as Fig. 5.2 or Appendix Table A8, It is important to observe that, for a fixed
value of the intersection constant a, the probability associated with the like-
lihood region drops very quickly when the number of parameters increases. For
example, the choice a = 0.5 (QY = 1}, which produced v = 0.683 for the one-para-
meter and ¥ = 0.393 for the two-parameter case, leads to chi-square probabili-
ties = 0.20, = 0.10, = 0.05 for k = 3, 4, 5, as one can see from Fig. 3.2.
Likewise, to obtain a specified probability content Y, one will have Lo take
increasingly large values of a for increasing k. Specificaily, to have 68.3%
joint likelihood regions, the intersecting hyperplanes must be taken for
a=1.15, 1.77, 2.38, and 3.00 when the number of parameters is k = 2, 3, 4, and
5, respectively.

To obtain likelihood regions or intervals which are conditicnal or
independent on some of the parameters we must carry out appropriate integrations
of the multinormal LF. The background for cur remarks here has been presented
in Seet.4.10.1, If some of the parameters, say the firse % of them, are without
interest and can be ignotred, the marginal distribution obtained by integrating
the LF over these is a multinormal distribution in the k-£ remaining parameters
with the same mean values and covariances as they had in the full LF; this
marginal distribution will then provide joint likelihood regions for the k-2
parameters, independent of the £ first, in the manner described above. If, on
the other hand, m parameters are kept fixed at their estimated values, the
conditional distribution in the remaining variables is also multinormal, of
dimension k=-m, but with new covariance terms as determined by the covariance
matrix V¥, which results by deleting the appropriate m rows and columns from the
original v ' and inverting the resultant matrix. This distribution would then

provide joint likelihood regions for the k-m parameters, conditional on the m

L
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first. More odd situations, in which some parameters are ignored while others
are kept fixed, can alsc be thought of. We leave it to the interested reader
to contemplate this matter Further and to work out the relevant formulae. The
lesson to be learned from our considerations here is that it is extremely
important to state explicitly which parameters have been considered jointly
estimated and which have been integrated over or kept constant at their esti-

mated values.

9.8 CGENERALIZED LIKELTHOOD FUNCTION

With the assumed functional dependence f(x|8) between the observable
x and the unknown parameter 9 we have, given n events (observations)
X1sX2seaenX written the likelihood function as L(x|@) -iﬁ1f(xi|9). If it is
possible to write the total number v of expected events as a function of 8, say
v = v(8), this "information" may be utilized by constructing a gemerailized
Llikelthood fumection as

n =y -v .2

S Lix|®) = "n:,v T £(x,|8). (9.87)

toim

vV

L(n,x|0) =

This expression describes the joint probability for observing just n events,
and that these give the regults HipXzyeeosX s when the number of cbserved events
is agsumed to be Poisson variable with mean value v,

The advantage of introducing the generalized £ is that the number of
observed events n adds an extra constraint im the determination of 6. In pro-
blems where the shape of f(x!6) is of primary interest one will, however, in
general gain fairly little by using [ instead of L. The use of £ is suggestive
only in cases where the expected number of events v(8) can be calculated with

considerable accuracy. An example is given in the case study of Sect.9.12.

9.9. APPLICATION OF THE MAXIMUM-LIKELIHOOD METHOD TO CLASSIFIED DATA

When the number of cbservations is very large the numerical evaluation
of the likelihood function may become quite laborious, especially if the p.d.f.
f(xlB) has a complex form. 1In such situations one may reduce the amount of

computation by grouping the data into subsets or classes and write the
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likelihood function as the product of a smaller number ot "averaged" p.d.f.'s.
A similar grouping of the data is frequently imherent in the experimental set—up
itself, as for instance when a counter combination is used to register particles
within a certain angular interval, It is clear that the grouping of the data
into categories necessarily implies some loss of information; this loss will,
however, be modest if the variation of the distribution is small over each
interval.

Let the total number of events n be grouped into N classes for diffe-—
rent intervals of the variable Xx. The joint probability tc have n; events im

class 1, n; events in class 2, and so on, is given by the multinomial distribu=
tion Iaw,

N
. 1 .
L(nyng,.. ,n |8) = ! 7L p, (9.88)
ie=1 iC

where By is the probability for the class i. This probability can be found by

integrating the p.d.f. over the width Ax, of the i-th interval,

b = 2@ = [ rexloox .
hx,
i
Since L depends on B only through the P, the ML estimate for the parameter is

found by seeking the maximum value of the expressiom

N
InL(ny,nz,...ny|8) = § n; lup. (8)
i=1

in the usual manper,

It is obvious that when the number of classes is large, corresponding
to small intervals Axi, this method is equivalent to the ordinary procedure for
unclassified data. It is alsc evident that if the p.d.f. varies significantly
over each interval, corresponding to few classes, large Axi and/or a rapidly
varying function, the average 17 will not be a pood approximation for the proba-
bility of each class. ([n any case, the grouping of the data inte classes
implies a lose of information about the parameter and should therefore be
avoided if possibie,

Exercise 9.22: In the classification above, assume that, for clasg i, the number
of events n, is a Poisson variable with mean value vy - The joint probability,
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or likelihood, for observing just ni,nz,...,m, events in the § classes is then

N

i ‘ 1 n. -V
L(nl,ng,...,nNiB) - ! T Vi 1e ’

i=1 71

- f events
where v, = ™ !’ £ (x| 9)dx, zvi - ):ni n. Show that, when the number of e

in each class if large, n > 1,

N ' F
1nL = z (ni]_n(ni-t) - In(ni.]) - jx*,
i=1

N S=V.N2
2 i i
¥ o= ] ————-) .

i=1 v’ni
The maximization of 1oL as a function of 6 is now the same as minimizing X;. N
Hence the ML estimation becomes equivalent to a Least~Squares estimation of the
patameter; sec Sect.10.5.1.

where

9.10 COMBINING EXPERIMENTS EY THE MAXIMUM-T.IKELIHOOD METHOD

Consider two independent experiments with the purpose of determining
the gsame physical parameter & from two sets of observations x and y, correspond-
ing to the likelihood functions L{x[8) and L(y|6), respectively. The joint

probability of all observations is
Lzl = 1] e0xgie) TT feglo) - walongio, 9.89)
Ko X i ;

and the ML estimate of 8 from the composite experiment is found by maximizing
this combined likelihood in the usual manner. Thus the coubined estimate 0 can
be found whenever the likelihood functions of the two experiments are known.

In particular for low statistics experiments, when the LF's are far from being
of Gaussian shape, this procedure iz better than taking some weighted average
of the ML estimates from the individual experiments.

Tn the limiting cases when the LF's are of espproximate GEUSSJT.EI.D shape,
the combination of several experiments becomes very simple, because the combined
LF will be nothing but a product af normal p.d.f.'s. Bence the formulae from
Sect.9.2.2 for the weighted mesn can be applied.

The prescription for combining independent experiments by eq.(9.89)

follows &3 a consequence from Bayes' Theorem. From Sect.2.4 we recall that if
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P(9) represents the prior knowliedge sbout 8, the posterior knowledge P(BIE)

about 8, given the observations x, is given by (compare eq.{2.26))

peo|x) = LEOPE) ot iuforpcer.

[L(x[e)P (818
Before the second set of observations y is made P(§|9) is the new prior know—

ledge, and the new posterior knowledge becomes
P(0|x,y) = L(y|6)P(x|8) = L{y|8IL(x|0IP(0).

For the combined observations we must alsc have
P(0|x,y) = L(x,y|8)E(8),

and the two expressions are seen to lead to
L{x,y|6) = L(x|8)L{y|e).

The present remarks will obviously hold also for the multi-parameter

case.

9.11 APPLICATION OF THE MAXIMUM-LIKELIHOOD METHOD TG WEIGHTED EVENTS

It has 8o far in this chapter been tacitly assumed that the p.d.f.
used to construct the likelihood function gives an adequate description of the
experimental data, We know, however, that quite frequently will the theoreti-
cal, ideal p.d.f. cover unphysical regioms for the measurable variable, or the
experimental situation be such that the data will be distorted compared to the
ideal expectation. We saw in Chapter & that it is possible, in favourable
cases, to modify the ideal p.d.f. to include corrections for these effects, and
construct a modified p.d.f. which will be directly comparable to the raw experi-

mental data. Specifically, we saw that one can take into account

- random cbservational errors, due to measuring uncertainties,
handled by “smearing" the ideal distribution by the experimental

resolution function (Sect.6.2),

- systematic effects, due for example to imperfect detection ability

(Sect.6.3).
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For both types of effects, the new, corrected p.d.f. should then be used in the
construction of the LF, and the parameters estimated as before. An example on
the effect of folding-in the experimental resolution is given by Exercise 9.23
at the end of this section.

When we have not succeeded in correcting the p.d.f, for experimental
biasges, we are in a less fortunate position and have to rely on the approximate
method (1i) of Sect.6.3, consisting in applying weight factors to the observed
events before comparison is made with the ideal model.

Suppose that we have a biassed sample of observations, due to an
uneven detection efficiency. Essentially this means that at the value x,, where
we have observed one event, there should have been W, events, where v, i: the
reciprocal of the detection probability for the observed event. A fairly

obvicus construction of an approximate likelihood function in this situation is

n
L' (x[B) = ]—!—[f(x“_q)]wi , (9.90)
im
or, equivalently,
n n
L' (x(8) = ] w,Inf(x; |8 = ] w; Iaf; (9.9
i=1 i=1

which can be maximized with respect to 8 in the usual way.

It can be shown that this approximate method will lead to estimates
E'which are asymptotically normally distributed about the true parameter wvalues.
Since, however, L' is not in a simple way related to the true (unknowm) likeli-
hood function of the problem, the usual procedures to determine the errors are
no more valid., 1In particular, taking the inverse of the second derivatives of
-1nlL' would underestimate the errors, since it implies the obsetvation of
Zwi > n events,

In the one-parameter case a crude procedure for the determination of
the error would be to take the error as deduced from L' by the ordinary methods
(for example, the graphical method) and multiply it by a factor equal to the
square root of the average weight of the events, This would correspond to
having the variance

~ n 2 1
v =1 .51"i’(‘ 2 ) , (9.92)
=
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which simplifies to the usual large sample formula {9.36} if all wveights are
equal to one.
For the mulei-parameter case with k unknowns it has been shown by

F. Solmitz that the variance matrix for é is asymptotically given by
v(d) = uintwm, (9.93)

where H™' is the variamce matrix to be deduced from L',

I T

Hkm =" sgas g.m = 1,2,.,.,k (9.94)
L m

and where the matrix H' is defined by
L Blnfi Blnfi .
s .Z "’i(T)(T) , 2,m = 1,2,...,k, (3.95)
1=1 2 m

It is seen that eqs.(9.93) - (9.95) reduce to eq.(9.92) if there i{s only one
parameter, and the special case with all wi = 1 reproduce our earlier asympto-

tic result, eq.(9.37).

There is always loss of information involved in the weighting proce-
dure, but this will be serious only if very large weights occur. As very large
weights may arbitrarily increase the variance V(E), one will sometimes improve
the precision in the parameter estimates by excluding some events from the
sample. In bubble chamber experiments, for example, one can usually avoid the

unwanted large weights by a suitable choice of fiducial volume.

Exercise 9.23: (The effect of experimental resolution}

&n azimuthal angle ¢ is distributed according to the ideal theoreti-
cal p.d.f.

£olw) = 3= (1 + a cosd), 0543 om,
where o is unknown. Measurements on ¢ are associated with Gaussian distributed

random errors, t.e. the resolution function is of the form
{d';¢) ~ exp(—§(¢'—¢)2[R2) where R is the resolution width (compare eq.(6.4)).

(i) If R << 27, show that the resolution transform can be expressed as

£ (¢ ;Rla) = %F {1 + 0 exp(—le)cos¢'), 0 £ ¢'s 2m.
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(ii) Show that the ML estimates o and o' For the unknown parameter obtained
using the uncorrected p.d.f. £(¢|a) and the "smeared” p.d.E. f'(¢;R|u), respect-
ively, are related by

o' = o exp(~}R%),

Thus, random observational errors on the data will affect the ML estimate of the
parameter. With reasonable good resolution, however, the change is small., For
example, a resolution width of 10° will cause only a 1.5Z correction.

9,12 A CASE STUDY: AN TLL-BEHAVED LIKELIHOOD FUNCTTON

We will now give an example, from a low statistics experiment, on an
ill-behaved likelihood function in two parameters. We will show that the intro-
duction of the generalized LF improves the shape somewhat, but only to a very
small extent. The real cure of the problem can only be obtained after a close
look at the physics involved. In fact, for the present problem two experiments
described by slightly different p.d.f.'s should be combined to give a well-
behaved LF in the two parameters.

The physics question is the follewing: Is the decay K s r°
due to the decay of the long-lived KE only, or is it partly due to the decay of
the short-lived K; ? In the latter case, CP is viclated, and the reaction can

give information on the complex CP-violating parameter N, defined by the ratic

Amplitude (KD -+ =1 1%

= Rerj + Imn .,
. o + = o
Amplitude (KL + T W)

(It should be noted that the decay Kz + W+ﬂ-ﬂo has already been observed and
that ita decay rate F(KE + "0 1°) is known.)
The random variable (observable} in the problem is the proper flight-

time £ of the K° between production and decay, and its p.d.f. is given by
No o * =0 2 =Aot =Art
£(e[n) = c Neeln) = € o2 LR > A0 [|n| 278 4 0T
+ 2(Rencosdt ~ Imnsinét)e-i(ls+AL)t] (9.96)

fort , < < . i i i i
rt. <t tmax C is a normalization factor, given by
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t
max
Ca 1/[ N(timdt
t .
min
and

No = number of K 's produced at t=0 (known),

AS' AL = the total decay rates of Kg and KE (known),

§ = mass difference between KE and K; (known},

For 180 observed events a contour plot of the likelihood function

180
Ly = 11 e;nee, ©.97)

i=1
in the (Ren,Imn) plane is given in Fig. 9.8(a). The LF has two maxima, one
pronounced maximum at Ren = — 2.68, Imn = 0.55 and one less pronounced maximum
at Ren = 0.15, Imn = -0.06. The difference in lnL between the maxima is 2.18,
We next consider the effect of imposing an absclute normalization
given by the known decay rate F(Kz *’W+ﬂ_ﬂ°). We write the generalized likeli-
hood function as

v180e—u
L(n) = T8 L(m), (9.98)

where v is the expected number of events, which can be calculated when the de-
tection efficiency is known.

The contours of the generalized likelihood function are shown in
Fig., 2.8(b). One finds still two maxima, they are slightly better separated,
but their difference in InL is now only about 0,24. There is, therefore, nc
real justificatiom for favouring one solution above the other. Refetriﬁg to the
physics of the problem, cne solution suggests the existence of a huge CP-violat-
ing effect, while the other solution is comsistent with no CP-violation.

One might wonder if the ill-behaved LF and the two seluticns are just
bad luck in this particular experiment, and due to some large statistical fluc-
tuation in the data. To check this point, many artificial samples consisting
of 180 events each, were generated by the Monte Carlo method for Ren = Imp = 0
and the likelihood function constructed. The contours of the LF for a typical
artificial sample are shown by the full drawm curves in Fig. 9.8(c). In
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(b) |
7
k]
Ren i
|
Imn |

Ren

Fig. 9.8. Maximum likelihood points and likelihood contours for the experiment
described in the text. (a) The LF of eq.(9.97). (b) The generalized LF of
eq.(9.98). (c¢) Monte Carlce generated LF's assuming decays of initially produced
K° (full curves) and K® (dotted curves),

addition to the maximum at Ren =~ Imn s 0 we chserve a pronounced tail in the LF
favouring large negative values of Ren and Tmn. Thus, in a hand in the

(Ren, Imn) plane the proper flight-time of the £° is little sensitive to the
values of n. The shape of the full likelihood contours of Fig. 9.8 (c) indicates
that the experiment cannot easily distinguish between a broad range of values
of the parameter n., The indeterminacy can, however, be solved by performing a
new, but very similar experiment. This rests upon the following chservation:

. . =0 + -
If one starts with K-zero with strangeness equal to -1 to study K + % 7 f e
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the last term in the p.d.f. (9.96) changes sign, whereas everything elee ie
unchanged. The contours for a typical LF obtained from 180 artificial K® events
are shown by the dotted curves in Fig. 9.8(c). The dotted curves correspond
simply to the full drawn curves reflected at the origin. We conclude therefore,
that if 1 is close to zero a good procedure to determine the parameter would be
to combine K° and ¥° data. This has in fact also been done, and it is found
that n is indeed close to zero, and conmsistent with no CP-viclation in

] * =0
K"+ 1 mmn decay.

10. The Least-Squares method

In this chapter we shall discuss the estimation of parameters by the
Least~Squares (LS} method, probably the estimation method most frequently used
in practice.

The popularity of the LS method may partly be ascribed to the fact
that it has had a leng history during which it has been applied to a number of
specific problems as well as to problems of more general nature. Besides this
importance gained by tradition, the acceptability of the LS5 method, as for any
systematic estimation principle, depends on the properties of the estimators to
which it leads. Unlike the Maximum—Likelihood method the Least-Squares method
has no general optimum properties to recommend it, even asymptotically. However,
for an important class of problems, where the parameter dependence is linear,
the LS method has the virtue that it, even for small samples, produces unbiassed
estimators of minimum variance.

In the following we consider first the simple case with linear para—
meter dependence, then we proceed to the non~linear case, and further to situa-
tions of increasing complexity inwolving first linear, and later general con-

straint equations.
10.1 BASIS FOR THE LEAST-SQUARES METHOD

10.1.1 The Least-Squares Principle

Briefly, the basis for the L% estimation method may be gtated as
follows:
At the observational points XipRases ¥y We are given a set of B

independent, experimental values ¥1,¥3,..-,¥ The true values My,Mz,...,Ny of

p
the observables are not kmown, but we assume that some theoretic model exists,
which predicts the true value associated with each X, thtough some functiomal

dependence,
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£, 0= £(01,02, 000,80 5%,

where 81,82,...,9L 13 a set of parameters, L £ N, According to the Legst-

Squares Principle the best values of the unknown parameters are those which make

N
x? = PR R
i£1wi(yi £) winimum , (0.1

i-'her:el\w.1 is the weight ascribed to the i~th observation. The set of parameters
~ ~ ~

8 = {61,62,...,BL} which produces the smallest value for X° is called the Least~
Squares estimate of the pavameters.

The welght w, expresses the accuracy in the measurement Y- I'n many
situations Cne assumes that all observations are equally accurate. In such
cases the L5 solutiom for the parameters is found by determining the minimum of
the unweighted sum of squared deviations, 7.e. one minimizes the quantity

(yi—fi){

, ¥
- .E (10.2)

1=1

This is called wweighted LS estimation.

If the errors in the different observarions are different but known
the weight of the i-th observation is usually taken equal to its prectston,

2 . s .
w. = lfoi The quantity to be minimized is then

X - ? (yi_fi)2
i;1 Ui (10.3)

T

Quite frequently when the observations are known to be of different
dccuracy one can not claim a precise knowledge about the errors. Instead one
must estimate theerrorin the individual measurements. Suppose for example,
that the measure i i i

urement ¥; sives the number of events in a class i. One could then
use the approxi i ? i ider}
ppreximation Oi Ry fi’ equivalent to considering the true ni a Poisson
variahle, with mean value aud variance equal to f., ,¢. one puts
i
N {y.-f.)?

%2 = Z (yl f1)

i=1

£, (10.4)
i

When fi is a complicated function one can alse for computational comvenience see
the approximation d; &y be used, with

N (y.-£)°
NCI i (10.5)
Ly

Y3

This can be called a simplified LS sstimation.
If the observations are correlated, with errors and ceovariance tetms
given by the (symmetric) covariance matrix V(y), the Least-Squares Principle for

finding the best values of the unknovm parameters is formulated as

X = ig1 jg1(yi-fi)v;;(yj-fj) = minimum . (10.6)
It has in all formulations above been tacitly assumed that the x, are

precise values, with no errors attached to them. Each x; may have a preassigned

value, or it has been measured withanerrorwhichis negligible to the error of the

"gbservational point” x; can stand for a

corresponding y, . Altematively, the
wall-defined region from X, to xi+Axi’ say. Whatever the meaning of % the
crucial assumption is that it is possible to make a precise evaluation of the
predicted value f, corresponding to X;» OT the region from x; to xi+Axi. Simi~
larly, the experimental value ¥; may be considered as the outcome of a single
measurement, or more measurements (an average, say) at the peint X eventually
in the region from x; to x;+Ax . We may well speak of x as an independent, and
y a8 a dependent variable.

Finally, it may be worthwhile to emphasize that the L§ estimation
method makes no requirement about the distributiomal properties of the observ-
ables. In this sense the LS estimatiom is diatribution=ree. On the other
hand, if the observables are normally distributed, the minimum value x;in will,
under certain conditions, be distributed as a chi-square variable; it will then
be possible to give a quantitative measure of the overall fit between cbserva-
tions and medel based on the properties of the chi-square distribution, This
may explain why chi-square (or x*) minimization in common pariance is used

(erronecusly) as synonymous with Least-Squares estimgtion.

10.1.2 Connection between the LS and the ML estimation methods

Let us now assume that we want to gain information on the true values
ni of the observables on the basis of the observed numbers ¥i-
We can then show that the Least-Squares and the Maximum-Likelihood

Principles are equivalent under certain conditions. If we assume that the indi-
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vidual measurements y; are normally distributed about their true, unknown values
n; with variance Oi' 7.n. the variable ¥y is N(ni,oi), then the likelihood for

chbaerving the series ¥15¥25+05¥y is

2 -y =T,
L= I:I 7%;L;; exp('i(YIgzl)z) = exp('!ig1(zlagi)z).

1

According to the Maximum-Likelihood Principle the most probable values of the
unknown ni's are those which make L as large as possible, Evidently, L is at
maximum when
o 2
Yny ..
= = minimum ,
i

i=1
which is equivalent to the Least-Squares Principle, provided the weights are
identified with the precisions in the individual, independent measurements,

2
W, = P
1 1/’31

10.2 THE LINEAR LEAST-SQUARES MODEL

The LS estimation of unknown parameters becomes especially attractive
if the theoretical model implies a Ilinear dependence on the parameters and the
weights are Zndependent of the parameters. As we shall see in the following
the IS method then provides an exact solution for the parameters, which can be
expressed in a simple closed form. Moreover, the L3 estimatar in the linear
case possesses the theoretical optimum properties of uniqueness, unbiassedness

and minimum variance.

10.2.1 Example: Fitting a straight line (%)

As a simple example on an unweighted LS estimation, suppose that we
are given a set of experimental points (x1,y1), (xz,yz),...,(xN,yN) and that we
want to find the "best" straight line passing through these points., We try the

parameterization
fi = 91 + xiez. (10-7)

If we assume that all errors can be neglected the LS solution is obtained by de-

termining the minimum of the unweighted sum of squared deviations, eq.(10.2),

N
X2 = ¥

N
Lm0 = § (y-0imx 60) 7.
1 i=1

1

When the derivatives of X with respect to ©; and 8, are put equal to zero

we get the two equations

1

N
36, i§1(‘2)(yi‘91—x182) -0,
\ (10.8)
58, ° izw(—ZXi)(Yi‘el—xiﬁg) = 0.

This set of linear equations can be written in the form

N

N 8; + E x,02
. 1 :
1=1 1

n
ne-1z
g
"
-

(10.9)

N
.z]xie‘ +
= 1

N N
E xfBz = .E X.¥. .
=1 i=

The solution for the parameters becomes

2 -
5, - ExiEyi Exiinxi
nxx§ - (r.xi)2
(10.10)
. Ninyi - inZyi
By = —2 1+ 11
’ NEx? = (Ix.)}? ’
i ‘i

where the summations are over all observations.

10.2.2 The normal equations

Let us now see how the independent observations (viro1), (¥2202),4.-5

(YNiGN) at the points X1Xz,y ... Xy CAD be fitted by the weipghted LS method to a
linear model with L parameters,

L
£, = £,(01,02,...,8,5x;) = Rg]ailel' i=1,2,...,N,

(ro0)

where L £ N, Here a5 is the coefficient appearing with the f-th parameter:
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usually a,, is a function of the xi's.
1

We now seek the parameter values which minimize the quantity of eq.

(10.3),
N y.-f. 2 N 2
1 1 1
X’ = .2 ( o ) = ¥ “2( ( S 311 E)) . (10.12)
i=1 i i=1"1
By equating all derivatives axzfaek to zero we get the L conditions
o, § ! 0 k=1,2 L,  (10.13)
38, 7 ; (_z)alkc( zala 1) ’ = Tfeeenaly .
k i=1 L=
which can also be written as
L N a, a. Na,y.
ik“ifk ik’ i _
E( —U?—)%:_z i) k= 1,2,...,L. (10,14)
g=1vi=1 1 1=1 1

We see that eqs.{10.13), (10.14) are the generalizations of eqs.(10.8),
(10.3) for the simple unweighted straight-line fit of the previous section,

It may be illuminating to write eqs.(10.14} out:

N a,.,a; N a..a, N oa,. y,
11711 1 452 i17iL i1’i
F Il o, [TTL, Lol
i=1 9F B i=1 %% L s %
. N a.,y.
?aizau o e YZEZ G 1; ity o 5 Z2Ti
. 7 ) = 5
i=1 % i=1 9% i« 90t s %0 4 0.15)
so a8, N oa, vy,
N a3, 21?2 Y23, 8 = ) 31Yy
b e e + 1 ez L a2
i=1 i i= i i=1 1 i=1 i
These are the normal egquations for the L unknown parameters. Since

there are L iphomogeneous linear equations for the L unknowns the normal equa-
tions provide an exgct and wnique sclution.

When the number of parameters is small, L 5 3, and the number of obser-
vations is not too large the normal equations are easily solved "by hand". If
there are more than three parameters, or there are many observations, most people

would probably use a computer for the calculations.

Exercise 10,1:

¥1,¥2s++.,¥y have errors 0,,0;,...,0

four points (x;,y,) as (0,2}.(25),(5,7),
relative ervor of 10X.

10.2.3 Matrix notation
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In the example of Sect.?0.2,1, assume that the observatioms

. Find the weighted LS solution for the
parameters @; and B of the straight line

=81 + x9;. Numerlcally, take the
(B, 10) and assume all Yi ‘s to have a

We shall rephrase the formulae for the linear problem of the last sec-

tion in terms of matrix notation.

We order the measurements and
£, both with N elements, and let 9 be a
(L £ W),

¥1 f1
¥z fa

r=| | £ - 8
¥ fy

The errors in y are given in a diagonal

vations were assumed independent),

01 0. 0
0 ci 0
V="V = .
. . .
\ 0 o . 9

predictions in two column vectors ¥ and

column vector with the L parameters,

8,
:P)

. {10.16)
eL

N by N matrix (diagonal, since the obser-

(10.17)

and the coefficients are organized in a matrix A with N rows and L columns,

211 12 . . ETL
421 423 . . . a
A= . . 2L

I w2 v -

The linear dependence of the theoretical

(10.11), is then expressed as

(10.18)

predictions on the parameters, eq.
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f =418, (10.19)
and the quantity to be minimized is
K = (y - A V(Y - A9) - (10.20)

By putting the derivatives of X* with respect to § equal to zero we have the

short-hand equivalent of eqs.{10.15),

T = - 2(aTV g - ATVAD) - 0, (10213
from which

(a6 = ATvly (10.22)
This compact form should be compared to the mormal equations {10.15). Provided

the matrix (ATV—IA) is non-singular, it can be inverted and the solution for §

written in the closed form

5= Tty talv iy . (10.23)

One observes that to find the solution E of eq.(10.20) it is sufficient
that the covariance matrix V = V(y) is known up to a multiplicative factor.

This is also seen directly from eq.(10.23).

The equations written down and sclved in matrix notation are in fact
more general than indicated, since they hold also when V(y) is a matrix with non-
2ero covariance terms. This corresponds to giving up the assumption introduced
in the beginning, when it was stated that the measurements y should be indepen—
dent. Relaxing this requirement corresponds of course te the more general for-
mulation of the Least—-Squares Principle by eq.(10.6),

We must next find out what can be said about the uncertainties im the
lirear LS estimate é,Of the parameters, eq.(10.23). From Sect.3.8 we realize
that the errors in the observed quantities y are carried over to the derived
quantitiesg %. Applying the general formula for errer ptopagation,Aeq.(3.BU), to

eg.(10.23) we find that the covariance matrix for the LS estimate 0 is

Wy - ((ATV"A)“ATV"‘)v(x)((ATv“A)“ATv'I)T .

e
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which simplifies to

v - avial, (10.24)
Clearly, to find V(@) the matrix ¥V = V(y) wmust be known completely.

Equations (10.23) and (10.24) provide the solution to the linear LS
problem for the unknown parameters E. It is worth noting that the (symmetric)
matrix (ATV']A)-1 which constitutes the covariance matrix V(@), appears 48 a ge-
parate part in the expression for g. Thus, no extra calculation is necessary to
determine the errors on ﬁ, ag the matrix (ATV—]A)_l bas already been found in

obtaining the selution §.

Exercise 10,2: Verify eq.(10.24).

10.2.4 Properties of the lipear LS estimator

It should be stressed that the LS estimation problem in the general
case of a linear functional dependence on the parameters, as discussed above,
has been given an exaet solution by the closed form of eq.(10.23). The matrix
algebra involves no approximations and the solutiom is wnfque as long as the mat-
rices are non-singular.

We have found that the Least-Squares Principle has produced E as
lingar estimators, since E come out with a linear dependence on the measurements
¥. From the definition of unbiassedness, eq.(8.3), the E are also unbiassed

estimators, as can be seen by applying the expectation operator to O:

E(9) - E((ATV_IA)'IATV—‘X) = e A Ry {10.25)
=V ae - g
when we use the fact that E(y) = f = AQ.

A further optimum property of the linear LS estimators is contained in
the Gausc-Markow theorem: Among all unbiassed estimators which are linear func-
tions of the observations the LS estimators have the smallest variance.

To prove the Gauss-Markov theorem, consider a vector t of estimators,

linear in the observations y,

10 - Probability and statistics.



268

t=Sy. {10.26)

These estimators have expectation E(t) = SE(y) = SAB where § is the original
vector of parameters. If the new estimators are to be unbiassed for a set of
linear functions of the parameters, say for C8, then also E(t) = CO for all 9,

hence we must have
C =SA. (10.27)
We want to find out when the covariance matrix V(t) for the new estimators,
T
V(t) = SV(y)$ (10.28)

has minimal diagonal terms. For this purpose we consider the identity (V = V(y))

SV(y)S| = (C(ATV—IA)_lATV_l)V(C(ATV_IA)_lA:V'l)T

+

(S—C(ATv'lA)‘lATV")v(s-C(ATv“A)‘IATv")T. (10.29)

Here each of the two terms on the right-hand side is of quadratic form UVUT,
which implies non-negative diagonal elements. Only the second term is a func-
tion of 5, and the sum of the two terms will have strictly minimum diagonal ele-
ments when the second term has vanishing elements on the diagonal. This occurs
when

s = c(alvlay~talve,
Therefore, the unbiassed, minimam variance estimators for CE is

t=c VI oAy ly - ch, (10.30)
where E_is the LS estimator for 8. Also

v(t) = caly it (10.31)

10.2.5 Example: Fitting a parabola

We shall work through an example of a limear Least-Squares fit to

measurements of different accuracy, which requires a welghted LS estimation.
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We want to fit the parabolic parameterization

£(01,82,0335x) = 81 + x8; + x%0; {10.32)

to the following observations:

i 1 2 3 4
x; - 0.6 - 0.2 0.2 0.6
y.to. [ 522 3:1 5:1 8+2
i i

Thus the problem involves three unknown parameters and four obser—
vations,
From eqs.(10.18}, (10.19) we can write down the matrix A of Jdimension

4 % 3 from the observations,

T ox X 1 =-0.6 (-0.6)?
| 1 % ox .| 1 -0z 0.

1 x, x5 1 .2 0.22

1 ox x 1 0.6 0.62

The independent measurements define the column vector y = {5,3,5,8} and the diag-

onal covariance matrix

[== R
-
o o
L]
f=
oo~
w2
-
3
[=T =]
= =}

(=]
L)
-
5]
o

0 o] gy 0
ai

(=)
o
o
[==]
o
h::

Because of its diagonal form the inverse of V can easily be written

down. We find therefore for the product




1 1 1 1 0.250 0 0O 1 -0.6 (-0.6)°
-0.6 -0.2 0.2 0.6 |j0 1 0 O 1 -0.2 (-0.2)%
0 0 1 0 10.2 0.2%
((-0.6)? ¢(-0.2)2 0.2 0.62J| 0 0 o o0.25)\1 0.6 0.67

ATyl =

2.5 0 0.76
0 0.26 0 .
0,26 0 0,068

The resulting matrix is of dimension 3 x 3, it is non-singular, and can be in-

verted. The inverse becomes
0.664 0 -2.54
@hvimt =) o0 3.8 0 |-
-2.54 0 24 .42

From the formula (10.23) we find the LS solution § by carrying out the

multiplication of the matrices,

5= (aviaTalvy

0.250 0 0 5

0.664 0 -2.54) 1 1 j 1 o 1 3

= 0 3.85 0 -0.6 -0.2 0.2 0.6 0 0 1 0 5

—2.54 0 24.42)1(~0.6)? (~0.2)% 0.2 0.6%] 0 0 0 0.25)\8
3.68
= 13.27
7.81

Thus the LS solution for the parabola through the given data points is
F= £(8%) = 3.68 + 3.27x + 7.81x%.

The accuracy of the estimated parameters can be found from the covari-
ance matrix V(E), which according to eq.(10.24) is nothing but the matrix
(ﬁ"TV"l.*\)_1 above. Hence the estimates of the errors are given by the square

roots of the diagonal elements of this matrix,

40, = 0.81, 28, = 1.96, 88y = 4.94.

The paramaters §; and 8, are correlated, with the estimated correlation coef-

ficient

@7l
A, AD,

~

- - 2.54

T 081595 T T

0.63.
Exercise 10.3: Derive the soluticn § for the problem in the text by solving the
normal equations.

Exercise 10.4: Derive the LS solution and its errors for the same problem with
all measurement errors equal, o. = 2.
i

10.2.6 _Example: Combining two experiments

To teast the AS/AQ = 1 rule in weak interactions one can measure the
complex quantity

. - Amplitude ®° » 1*37%)
amplitude (k% » n1™gtv)

which gives a measure of the "violation" of the rule. TLet the true values of
the observables Rex and Imx be denoted by Ny and Nz. Experiment A has measured

both variables, and obtained the results
A
v = 0,12, vh = - 0.25
with errors given by

0.01 -0.01
=0.01 G.04

V(lé) =

Experiment B measured n, only, with the result
B B
y1 * o, =0.01 + 0,08,

We want to find the best combined outcome of the two experiments.
We have two unknowns in this problem, 1, and N2, and three meagsure=-

A 4 B s
ments, ¥y, ¥, and y;. In accordance with our formulation of the linear LS prob-
lem we put
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1 0
A= 1011,
{1 0

The measurements are collected in a column vector y with 3 elements, and the co-

variance matrix extended to dimension 3 by 3,

0.12 0.0% -0.011 0
y = [-0.25 |, vy = | 0,01 0.041 0 .
0.01 o 0 !0.0®?

Carrying out the matrix operations we find

0.052
~ Ty, -1, T
n=(aviaTiaty = [-0.183]

and

vy = (aTy-lay-!

[}

0.0039 -0.0039
-0.0039 0.0346]

It is worth noting that due to the correlations the estimate of

Imx (= n2) has changed, although this guantity was only measured in one experi—
ment,

10.2.7 General polynomial fitting

We have in two previous examples considered least=Squares fits to
first-order and gecond-order polynomials in the variable x (Sects.10.2.1 and
10.2.5 respectively). It is frequently necessary to consider fits to higher-
order polynomials of the general form

L
_ =1
L, = Z *; BR'

ok (10.33)
Since the parameter dependence is still lipear, such a problem has an exact solu-
tion of the form of eq.(10.23). However, as the power of the polynomial in-
creases the inversion of the matrices involved becomes increasingly intricate,
Serious numerical inaccuracies may occur when the degree of the polynomial gets

as large as, say, 6 or 7.

r—

10.2.8 Orthogonal polynomials

Tt is possgible to avoid serious rounding-off errors in the matrix
operations by rewriting a linear model of the form of eq.(10.33) in terms of
orthogonal polynomials of x. The effect is to produce matrices of diagomal form
which can easily be inverted.

Let us consider a case where the measurements are uncorrelated and
have the sam@ error O. The covariance matrix and its inverse are then multiples
of the unit matrix Iy of dimension N x N, V(y) = OZIN, iy = éZIN' With the

1inear model

L
= |
£ ¥ ailsﬂ (10.11)
=1
the solution of the equivalent unweighted LS problem is given by

T .-1,T
A) le,

5=
where A is the matrix of coefficients ag,

Suppose now that we have a set of L polynomials ER(x), which are ortho-

gonal over the observations,

N
= = . P .34
ika("i)‘El(“i) 8p ko= 1,2,...,0 (10.34)
We will take as our new model
L
£ - 1§1££(xi)wl, (10.35)

. . P
where wy are the L new parameters. The matrix A and its transpesé A now have

elements
g, = (A = ay, = E0x)
ig £ ik [
The product matrix ATA is such that
T N T . N
W = LA Wy = 1 ROOE ) = f

Hence ATA =1 the unit matrix of dimension L x L. The LS solution for the

LI
parameter vector w simplifies to
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w = ATz ' (10.36) Tox ¥
1 Xa = X
or, on compenent form, A= .
. . N 1 ;;N-Q
wy = (Ay), = iz1gz(xi)yi. 2= 1,2,...,L, (10.37)

. Because of the relaxation of the normalization condicrion the product matrix ATA
The covariance matrix for w becomes . . . . . .
) of dimension 2 x 2 is not a multiple of the unit matrix, but rather

V() = ATV(DA = 0?1, (10.38) R
L S 0
7.¢. a diagonal matrix. ATa = 1_ 1_ T 1_ Toxpmx |
' We see therefore that the LS estimates of the parameters are easily | 17X FTE eee RTR Co 0 T(x.-%)2
! derived in this case, with the errors on the uncorrelated estimates given di- ! XN'; '
: rectly by the {(common) error on the measurements. , This matrix can trivially be inverted, giving

=1
- 10.2.9 Example: Fitting a straight line (2) N 0

|
. . . ’ (ATA)'I =
Let us illustrate the use of orthogonal polynomials by reconsidering
l

_Ty2e -1
the problem of fitting a straight line through the points {(x;,¥;),{x;,¥2),..+s 0 (E(xi x°)

which was first treated in Sect.10.2.1. . .. i
(XN,YN). i The LS soluticn for the coefficients w is therefore
The model is now to be written in terms of two parameters wy,uw; and !

] Ly.
two orﬁhogonal functions El(xi),Ez(xi). From the definition of the mean value E —ﬁi
, %= %’E x; we realize that orthogonality is ensured if we take E w = (ATA)'IATZ = ... = - .
it ' Exiyi - x:yi

El(xi) =1, Ez(xi) =X T ; + E(xi - B2

. R . . . s . where the summations go over all measurements,
This choice is, however, not quite in accordance with the formulation of the & 1 sur 8

| previous section, since the polynomials are not normalized to one, but pive
. . " Exercise 10.5: Show that the result obtained in this section is consistent with
- the solution found i t.10.2.1,
L [E(x ]2 = &, } k]2 = § (-2, uet n Sect 10.2-1
i=t i=1 i=1 - .
Exercise 10.6: If the (independent)} observations y:; have a common error o, what
The parameterization for the straight lime is are the errors on the parameters for the straight line using (a) the model

£, %01 ¢ xiez (Sect.10.2.1}, {b} the model £, 0=+ (xi—i)mz?
£(x) = & + (xX)wa, ‘
0.3 THE NON-LINEAR TEAST-SQUARES MODET

ix A i i by 2
and the matrix A, of dimension N by 2, We turn now to a more general problem when the predicted values fi

have a non-Iinear dependence on the parameters. It is then not possible to
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write down an exact solution as was done for the linear case. Instead one has
to perform the minimization by an iterative procedure to find increasingly
better approximations for the unknown parameters.

Several iteration methods to locate the minimum values of a general
function are outlined in Chapter 13. Here we describe only one method, which

goes back to Isaac Newton.

10.3.1 Newton's method

According to the Least=-Squares Principle the best estimates of the un-

known parameters are the values which minimize the quantity

X o=y - E)TV'](.\L)(X -0, (10.6)

where y is the vector of measurements with covariance matrix V(y), and f the

vector of predicted values,

f=£(8; 0, (10.39)

which is now non-linear im 9.

Suppese that we have found a set of approximate parameter values

8” = {87,63,...,6,}, (10.490)

which corresponds to the v-th iteration with the function value Xé, and that a
better approximation is needed. We then evaluate the derivativesof X* with re-—
spect to the parameters at the point 8 = gv (remember that these would vanish if
the minimum had been obtained!). In the case of independent measurements, when
-1 2 ;
L' = ; T
ll(x) 1/01, we can write
|

L) G 2 _ i -
Bp(8) 255 = ) ( d$><yi £) 55 » £=1,2,...,L,

where fi and Bfi/aﬁﬂ are evaluated for g;g“. If we can find an increment QQU to

gv which will make the gradient vector g equal to zero,
g8 + 8% = 0,

the probtem has been solved, because then the corrected value

(10,41}

{10.42}

will be the desired solution {provided, of course, that the extremum of %2 is a
mi nimum) .
To find the correction Agy to the approximate parametetr wector 0¥ we

expand the -9} of eqs.(10.41) about g“ and keep terms up to first order. Then we

demand
g 3g ag
W 2
2,(8" + 5 ae) +ﬁ-;’:ae}’ s ﬁ%ae}j =0, 2=1,2,...,L, (10.43)

where the derivatives are evaluated for 8= EU. Equations {10.43) constitute a
set of L inhomogeneous, linear equations which can be solved for the unknown
AB“ s, £=1,2,...,L in the usuval way. The coefficient appearing before AB; in the
f-th equation is
3 g, e N( , Bf; A, azfi
DR ARRAC) B AR AR

and may be found either analytically or numerically, depending on the problem.
In eq.(10.44) it is understood that all expressions are evaluated for 8 = av.
Obviously Gep = Gpps implying that G is a symmetric matrix.

In vector notation the solution for the corrections QQ“ is (compare
the formulae of Sects.90,2,2 and 10.2.3)

v - A¥)

a8Y = - ¢ 1(9“)5(2 ). (10.45)

This relation assumes that G is non-singular, but is valid also when X% is con—

structed for correlated measurements.

1 v
=8 + Agv are next used tc find the

The new parametey values §v+
corresponding Ké+r, and if this guantity is smaller than xé a better solution
has been obtained. The ptocedure is then repeated taking gv+1 as a new approxi-
mate sclution, a new correction A§y+1 is determined, and so on. The iterations
are continued until the improvement in X? between two consecutive iterations be-
comes smaller than some preset number.

If it is found that a new iteration gives Xs > xé the minimum value

+1
has been passed over. One may then redefine the correction to the w—th step by

taking a smaller value, say Agy = SAQP and repeat the procedure with this step.
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It will be seen that if the theoretical value f is of second order in
the parameters the matrix G will become constant, independent of 8, and the

exact minimum is found in the first iteration.

10.3,2 Example: Helix parameters in track reconstruction

As an example on an iterative %’ minimization we will discuss the de-
termination of track parameters for a charged particle moving in a magnetic field,
for instance in a bubble chamber or a streamer chamber. We will for simplicity
assume that the particle has a constant momentum over the track length con-
sidered (neglect ionization loss) and that the magnetic field is uniform. The
particle trajectory in space will then be a helix with axis parallel to the
direction of the mapnetic field. oOur problem is to determine the best para-
meters of this helix on the basis of a series of measured poiﬁts along the path
of the particle.

Let us assume that the N points in space (xi,Yi,Zi), i=1,2,3...,N have
been accurately measured with respect to a fixed coordinate system {xyz} with 2
axis along the direction of the magnetic field. Let us further for the moment
assume that the starting point (A,B,C) of the track has been precisely measured.
We take this point as the origin of a second cocrdinate system (x'y'z') with 2'
axis parallel to the z direction, and with the y' axis along the direction of
the tangent to the track projection in the xy plame, see Fig. 10.7. In this

relative coordinate system the helix can be parameterized as

x' = pleosp - 1)
y' = psind
z'" = pg tank,

where p is the radius of curvature of the projected (circular) path in the x'y'
plane, and A the angle between this plane and the tangent to the helix (the “dip"

angle}. In the fixed coordinate system the helix is expressed as

x = A+ x"cosB - y'sinB

B + x'sing + y'cosp

b
i

z =C+ z',

where B is the angle describing the relative oriemtation of the two coordinate
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systems. With ¢-values corresponding to the measured points, evaluated as indi-
cated later, we have therefore a set of "predicted” points for i=1 2, N
L] sy ¥
% = A+ p(cos¢i ~ 1)cosp - psin¢isinB
y; = B+ p(cosd>i - 1)sing + psin¢iCOsB (10.46)
C + Q¢itank,

i

and the LS solution for the unknown parameters is obtained by seeking the mipi-

mum of the (unweighted) expression
. N
X - —x. )7 -y.)? -z,)?
izi[(xl x )7 Oyypd® o+ (272 (10.47)

The minimization is most conveniently done in terms of the parameters
P, and tand. With the formilation of Sect.10.73.1 the gradient vector g and the

matrix G can be calculated from eqs.(10.41), (10.44). One obtains for the compo-
nents of g,

. S
B "3 = 5 g[(xi'xi)(xi_A) + (Yi—yi)(yi—B) + (zi-zi)(zi_c)]
_ax%
gB = B -2 E[— (Xl-—xl-)(yi‘ﬂ) + (Yi_yi)(xi_A)]
__ax?
B\ = Fraax - " 2P Z (2209,
1

The matrix G has the following non~vanishing elements,

_ o'k _ 2
Cop ™ BT T 2 E[(xi'A)z t Y r (2,07 ]

2
Gop = Cgo = 5 LLX %)y -B) - (¥3=y ) x4y ]

Gop = Gy = 2 ?[(zi-c) - (220 )4y

5 S
Sap " 35 < 2 LKA om) + (om o) ]

G = a’x? = 2p? 2
M 3an? T §¢i,

AR = 0.
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The starting values for the iteration procedure can be found as
follows:

For the dip angle we take tanir® as the value obtained by a LS straight
line fit through the N pairs of points (si,zi).where zi is the measured z—-coor-
dinate expressed in the in the (x'y'z') system, and s{ the distance from the
origin of this system to the measured point (xi,y{,zi).

For the radius of curvature p° and the rotation angle g% we can take
the values obtained by a linear LS fit to a circle through the measured projec=

ted points (xi‘Yi’o)' Writing the equation for the circle as
(x—a)% + (y-B)% + 2a(x-A) + Zb(y-B) = O,
the fitted values of the parameters a and b give the starting values

The azimuthal! angle ¢i can then be expressed for the measured points as

REsN (B-b) o
¢i = tan ;;—:TE:;T -8,

Y-

i=1,2,...,N,

When the starting values have been obtained the gradient vector go and
the matrix G° are evaluated according to the expressions above. The correctiong
ApO,ABO,AtanAD are then evaluated from eq.{10.45) and the starting values re-

placed by the new approximation

o

pl = p% + ap°, gl = g% « ap”, ranA! = tand® + Aram)®.

A new iteration can then be made with this set and the process repeated until a
satisfactory stationary value of X2 is obtained. The iterations are stopped
when the sum of the absolute values of the correction terms gets below a preset
value, or after a preset maximum nuymber of iterationms has been performed.

In practice the assumption of a known origin of the track is not made.
Instead one allows the coordinates A,B,C to vary and makes a helix fit with the
parameter set A,C,p,B,tan}, or B,C,p,B,tank. The starting values for A, (or B),
and € are then taken as the coordinates of the first measured point, and the
starting values for p and B must be found by a non-linear LS fit of a circle to

the mesasured projected points. ..
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Tt should also be mentioned that in practice the measured points are

not known with full precision, but are connected with errors, AX,,AY,,AZ. and
i i i

correlation terms. The minimization is accordingly carried out for a weighted

3 . .
X function, rather than with the unweighted x? of eq.(10.47). The problem then

implies more complicated formulae for the gradient vector g and the matrix G of

. . 2
second derivatives of X*. As g result of the complete minimization one will {n

this situation, in addition to the fitted helix parameters, obtain a set of

s :
improved measurements", or fitted values of the coordinates of the N space
points.

z

>y
- Projection of helix
~.a Tmeal in the xy plane
[ Ty
1 ~“’,’
Helix axix : ~7o (%Y. 0) Prgjeciion of measured
. point in the xy plane

(A,B,0)

I
X (XY, Z;) Measured point,

L equivalent to (xi.y; z;)
- in the (x'y’z) system

Fig. 10.3. Track reconstruction with helix parameters (see text).
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10.4 LEAST-SQUARES FIT

10.4,1 "Improved measurements” (fitted variables) and residuals

In the preceding sections we have regarded the lLeast-Squares Principle
as providing a prescription for how to find the best values of the unknown para-
meters 8, which are supposed to be connected to the true observables n through
some functional dependence.

In many situations the basic unknowns are in fact the observables n
themselves; this was for instance the case in the example of Sect.10.2.6. Char-
acteristic for many situations is that the n are directly measureable. We may
take the observations y with covariance matrix V{y) as our initial estimates of
the true, but unknown n. According to the Least-Squares Principle we should

then adopt as our best estimates of n those values which minimize the quantity

T -

X2 = g'vle, (10.48)

where £ is the difference between the measured and true values, and may be
called the error duc to measurement,

=y-n. 10.49)

When the LS minimization has been performed the final estimates ﬁ of the true 1y
are called the "improved measurement:", or fitted variables.
The residuals é of the LS estimation are defined as the differences

between the original measurements and the "improved measurements' from the fit,

(10.50)

In other words, the residual is the estimated errer due to measurement.
The minimum value obtained for X* can be called the weighted sun of

squared restduals in the fit,

A g AP o ~
Kin " EVE= () Viym- (10.51)

If the covariance matrix V(y) is known only up to a constant multipli-
cative factor a2, t.2. if
Vi(y) =

gzvc(l), (10.52)

283

where Vo(l) is known, we define in a similar manner a quantity which is usually

referred to as the residual sum of squares,

2 o fTom1l o gy Ty—lpg-n
Qin " E VG E= @DV, . (10.53)
The connection between the two quantities X2, and Qf, is
min min
2 1.2
Xnin ™ 7°%in- (10.54)

The definitions above make no reference to any specific type of model.
In the subsequent sections we shall derive, or merely state, som results which
are exact for the linear model, and approximately valid for any general model in

which the parameter dependence is not tco far from linear.

Exercise 10.7: For the linear parabola fit of Sect.10.2.5, find the "improved
measurements” 1 and the residuals €. What is the weighted sum of squared resi-

duals X°. 1in this case?
win

Exercise 10.8: (i) For the linear LS model of Sect.10.2.3, in which ﬁ = Aﬁ, show
that the "improved measurements" and their covariance matrix are given by, res-—
pectively,

Con = ATy Tl Yy V()
(ii) Show that the residuals can be expressed as é
due to measurement and
1, - ATV TV
(1ii) Show that the weighted sum of squared residuals for the linear model re-
duces to

aaTvlay~taT.

= De, where £ is the errcor

D=

2 = JT1n
xmin rve.

Exercise 10.9: With uncorrelated measurements of common error g and the ortho-
gonal polynomial formulation of Sect.10.2.8, show that the residual sum of squ-
ares can be calculated from the simple formula

2 2 2 T ATn
T yo - Wy =y ¥y~ wu.
len Fpabag 51,1’7'

10.4.2 Estimating o> in the linear model

We have emphasized that to obtain the solution 8 (or N} of the limear
LS problem the covariamce matrix V(y) = szg(y_) of the measurements need only be
known up to the multiplicative factor o?. However, to find the errors on the

estimates the matrix V(y) must be completely known.
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It cam be shown that, with Vc(l) known, the unknown 0% can be estimated

from the residual sum of squares Q;in’ since

2
sz = Q'I'l.'l]..'ﬂ
N - L (10.56)
is an unbiassed estimator of g?; here, as before, N is the number of obgerva—
tions and L the number of parameters EStimated*).
We shall prove that s? of eq.{10.56) is an unbiassed estimator of o2

for the simplest case where the uncorrelated measurements have a common error.
Then

V(y) = o'y, (10.57)

where IN is the unit matrix of dimension N X N, The residuals ércén now be ex-
pressed in terms of the errors due to measurement &, Writing ¥y = A8 + ¢ we have
(see Exercise 10.8)

lm s

=y - 1= (aB+e) - AWM AT (ABee) = De , (10.58)
when we identify
- - T,.-1,T
D=1, - AT 1Al {10.59)

The matrix D is ddempotent, satisfying p’ = D, D'D = D. The residual sum of

squares therefore becomes

(10.60)

ATa T
=5§=(D§) (De) = & De
len ., E i3 g E DIJ i%5-

i%j
If we take the expectation value of this expression the contributions from the
last sum will vanish, since we have assumed uncorrelated measurements, for which
E(eisj) = 0 when i#j. Hence

(Qm ) = E(gnu 1) = czgnﬁ = ¢%trD. (10.61)

*) If the L parameters are constra1ned in K Ilnear algebraic equations the
unbiassed estimator of o2 is given by s = Q /(N—L+K), see Exercise 10.16.
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From the definition of D we find by commuting the matrix AATa) ! by a7 under

the trace operation
erd = eef1.} - tr{ATA(ATA)_’} = te{r,} - er{i }
N N Lre

where IL is the identity matrix of dimension L % L. Thus, trD = ¥N~L, and eq.

(10.61) leads to
E(Qfﬂin) = g?(N-L). (10.62)

By comparison with the definition of an unbiassed estimator (eq.(B.3)) we see,
therefore, that Q;in/(N—L) will be an unbiassed estimator of o?, as was stated

above.

Exercise 10.10: Prove that, for any N x N matrix G and a general covariance
matrix V,
E(ETGE) = tr{VG)

in virtue of the definition of the covariances, E(Eiej) = vij'

Exercise 10.11: Generalize the proof in the text and show that 8= Q2, J(§-1)
is an unbiassed estimator of o also if the measurements are correlated and
have unequal errors. (Hint: with V(y)} = UEVO(X) and V_(y) known, the residual
sum of squares can be expressed as

2 _AT—1A= T.~1 - T,.T.-1

Qin = EV €= (0e) V(e (DY De,
where

D=1 -A(ATV‘ A) ‘Av

This matrix has the property that D VGID

= Vg D = D V 1, so that with the result
of the preceding exercise, E(Q;ln) = o%trD =

% (N-1).)°

10,4.3 The normality assumption; degrees of freedom

For linear models the LS method produces estimators of the unknown
parameters § which are unbiassed and have minimum variance (Sect.10.2.4) and,
as we saw in the previous section, it also provides an unbiassed estimator of o2,
In terms of the error duve to measurement € the only assumption made in deriving
these properties is that E(g) = 0, which is required for the proof of unbias-
sedness, To prove that Q;inl(N-L) is an unbiassed estimator of o we also
assumed in Sect.10,4.2 that the measurements were uncorrelated, with E(Eisj) =0

for i#}, but this restriction is not essential (Exercise 10.11). Thus, except
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for the fi i
st and second moments, ne distributional assumptions have been made

about t J's; i i
he €, 83 1n other words, the optimal properties are distribution

Let us now make the further assumption that the

~frae,

uncorrelated €. 's are
i

Zy ri wit a i 111
normel dist buted h me n value O and variance U » As correlated, normal

variables are independent (Sect.4. 10.1) this amounts to assuming that the ¥
e N mea-

sure
ments Y. are tndependemt and noveally distributed with variance g?
the true values n; '

about

f the Observables 'l T t ti &7 uld 1 that
1 were known the assumption mply
s above wo i a
the quantlty

e 3 (-] By
i=1\%/ gz 9 (19-69

woul be a s N a t uared st 4t W e
d um of ind penden Squar andard normal ariabl 5,

definition (Sect. 5.1 e

-1) be a chi-square variable with N degrees of freedom.

Sinc v Y =
e, however, we do not know what the prec1se alues of the true L1y}

known
N; are we must be satisfied with adopting their estimated values n
tained Erom the minimization of X%, :

as ob~

Inserted in X? this
gives the w
of squared residuals, elghtEd -

N 3.2 N Y. N
2 1
i 15 - 1

i=1

) . (10.64)
U
sing the normality assumption about the W independent ¥; it can be shown, i
. in

the case of a 1i
near model with L paramete
p rs, that x° in €an be expressed as a

sum of
of (N-1) independent terms, each term being the square of a standardized

normaily distributed variable. H
. ence Kmin is ¥? (N-L), a chi-square variable

with (N-L) degrees of freedom*).

It h i
as been tacitly assumed so far that the L parameters are indepen-

dent. i
If the parameters are internally related in K linear algebraic equations

onl -] i ivi

" ¥ (LK) of them are independent, giving (N=(L-K)) independent terms in the

nin O €q.(70.64). In this situation x;in is distributed as yZ(N-L+K). Th

i - . us
number of degrees of freedom im the constrained as well as in the uncon—

strai i it 1 i
ned linear fit is equal to the difference between the number of independent

*3
If
the £, 's have mean values different from zero Xz

chi-square élstrlbutlon, compare Exercise 5.12, in FiLLheve @ non-cencral
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measurements and the number of independent parameters.
{f the measurements are not independent it cam be shown that the above
gtatements will still be true provided that the measurements are el tinovrmally

distributed about the true values. When the error due to measurements € = y-N

is multinormally distributed with mean value 0 and constant (non-singular}

covariance matrix V¥, the weighted sum of squared residuals

N
R TS B ERYAIRN (10.65)
min - - 1=1 J51

will be chi-square distributed as before, with {N-L+K) degrees of freedom in the
case when there are K constraint equations restricting the L parameters.

It is essentially the optimum properties of linear estimaters that make
%2. a chi=-square variable for normally distributed variables. In a ron=linear
LS estimation the situwation is not so simple; the LS estimator is then in general
biassed and not of minimum variance, and the exact distribution of X;in is not
known. Asymptotically, for large N, it can be shown, however, that x;i“ is
approximately chi-square distributed also in this general case.

Finally, let us stress again that for the estimation problem the Least-
Squares Principle involved no assumption about the distributional properties of
the chservations. The commonly used terms "chi-square (or ¥*-) minimization",
"yE-fiteing", ebe., the origin of which is evident from the above considerations,
are therefore somewhat misleading and should be avoided. As lonmg as the subject
is parameter estimation as such one should instead use the appropriate tewmino=
logy with "Least-Squares...".

As we shall see immediately below the normality assumption about the

observations is essential only when it comes to the question of judging how re-

1igble the estimated parameter values are.

Exercise 10.12: For the linear LS model of Sect. 10.2.3, show that, in general,

P g2 L S
% Koot (8-9) ATV A(S-B).

For normally dlstrlbuted observations each of the three terms is chi-square dis~
tributed, as }*(¥), x?(¥-L), and ¥2(L}, respectively.
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10.4.4 Goodness~of-fit

The fact that the weighted sum of squared residuals X2, s for normally
distributed measurements, has a known (Z.e. chi-square) distri:::ion has an
important practical consequence. It implies that the X2. value obtained in 2
particular minimizarion can be used to give a quantitat?i: measure of how
close the overall agreement is between the fitted quantities B and the measure-
ments y. In other words, X;iu will provide a measure of the goodness-of-fit.

For definiteness, let us assume that the problem invelves v degrees of
freedom; in common parlance we aye then dealing with a "v-eonstratned Fit", or a
"wC-fit". By cowparison with a graph (for example, Fig. 5.2) or a table (for
example, Appendix Table AB) of chi-square probabilities we can then deduce the
probability corresponding to the contents of the chi-square p.d.£. F(u;v) bet-
ween the walues u = X;in and u=e, Obvicusly this chi-square probab{lity P .,
then gives the probability for obtaining, in a new minimization with gimilar
measurements and the same model, a higher value for x;in' A small value of X;i“

corresponds to a large P_z, or a "good" fir, while a very large value X, im-
plies a small P », or a “bad" Ffiet. e

We have
o
P o= | flu: -1 = 2,
" Jz {u3v)du = 1 F(Xmin.u), (10.66)
Xl'ni n

where F(X;in;v) is the cumulative chi-square distribution for v degrees of free—
dom. Since a cumulative integral is itself a variable which is uniformly distri-
buted between 0 and 1 {compare Sects.4.5.1 and 5.1.4} the chi-square probability
ng will alse have a unt form  distribution over the interval [ﬂ.l].

If, in a series of similar minimizations, P_, turns out to have a non—
uniform distribution, this indicates that the assumpzions specified in Sect.
10.4.3 are not fulfilled. One may then suspect the measurements or the model,
or both, to be unsatisfactory and should examine this further. For example, if
sznls st:ongly pedked at very low probabilities this may reveal a contaminatiom
of wrong events. Similarly, a skew distribution for P 2 with an excess on the
high (or low) probability side may indicate that the errors in the measurements
have systematically been put roo high {low).

28%

It is a unique feature of the LS method that assertions cen be made
about the quality of the fit, and hence of the estimated parameters, from the
final numerical value of the optimized quantity. The other estimation methods
do not provide this possibility. We shall come back to the question of goodness-
of-fit in connection with the subject of hypothesis testing in Chapter 14,
where in particular we shall discuss how cme can make goodness—of-fit statements

when the unknown parameters have been estimated by the ML method (Sect.14.4,3).

10.4.5 Stretch functions, or "pulls”

As discussed in the previous section the weighted sum of squared resi-

duals, x;in’ gives a measure of the similarity between the observations and the
fitted values. Specifically, a very large x;in’ or equivalently, a low chi-
square probability P o expresses a rather poor averall agreement between data and
fitted model, and may lead one to suspect that the model is unsatisfactrory.

Quite frequently, however, one finds that an unexpected large value of
X;in not necessarily has to be ascribed to a wrong model or hypothesis, as it
can simply be due to a large contribution from one, or a few, of the N points.
Thus, rather than immediately abandoning the model from a "bad" x;in a quick
look at the data points is recommended. Sometimes this inspection shows at once
that one of the input values was incorrect, and a satisfactory fit can be ob-
tained when the mistake is corrected.

A closer study of the fit can be done by looking at the residuals
Ei = Yi-ai’ which directly measure the deviations between the observations and
the fitted values. To allow for different accuracies it is reasonable to judge
an Ei relatively to the uncertainty, or standard deviation U(Ei), in this quan-

tity. Thus the examination of the fir should be done in terms of the variables

L i=1,2,...,N. 10.67)

z; is called the stretoh fmetion or Mpull” for the i-th observation. Consider-

ing uncorrelated observations and a sufficiently linear estimation problem we

have
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0F(E;) = Vi (rm) = V() - Zeov(zD),, ¢V, (D

(y) - v..(ﬁ). (10.68)

i1

=V

ii

Hence, the i-th "pull" can be expressed as

TS —————— T (10.69)
Pt - ok

Clearly the minus sign in the derominator here has its origin in the fact that
the two quantities in the mumerator are completely (positively) correlated.
The “pull" z; is anticipated to have a distribution which is fairly

close to N(0,1}. If, in a particular fit, one of the zi's deviates very much

from the others in magnitude the corresponding data point should be examined, and

perhaps abondoned if it looks suspicious (Sect.6.1), This critigue of the data
is most likely to be useful when the number of degrees of freedom v is fairly
large. For 1C-fits (v=1) one sees that all "pulls" are of the same magni tude,
and they contain no more information than the value x;in'

In the long run, if the shape of the observed distribution of a "pull"
7 is shifted relatively to zero this demonstrates a certain bias in the i-th
observation. Similarly, if the observed "pull" distribution is substantially
broader (narrower) than N(0,1) the error in the i-th observation has probably

consistently been taken too small (large).

10.5 APPLICATION OF THE LEAST-SQUARES METHOD TO CLASSIFIED DATA

10.5.1 Construction of X°

In practice one often groups the measurements (events) accotding to
some classification scheme, for example by pletting a histogram, before the ac-
tual estimation of the parameters.

Let the raunge of the variable*) x be divided into N mutually exclusive
classes (bins) and denote by n, the number of the n cbservations x,,xz,...,xn
belonging to the i~th elass. We assume that, with the parameters

8= {8,,82,...,9L} we know the probability p; = pi(g) of getting an observation

* . . . P s :
) In this section x may denote a one-dimensicnal or a multi-dimensionat
variable.

in class i. In the case of a continuous variable x we may have to find p; by
integrating a probability density function over the width Axi of the i-th class.

The expected number of observations in this class is

£,(® = ap(®), (10.70)
N
and the normalization condition p; =1 implies
i=1
) ; 1)
= = 10.
Z“i Z £,(8) = n. {

For a given n the numbers of observations n, are multinomially distri-

huted over the N classes with covariance matrix

np1{1-p1)  -npipz see TAPIRy
“npip2 ap2{(1-p2) ... ~mpapy

viy) = ; . (10.72)
P, Py “npzPy cen npN(1-pN)

Because of the normalization condition this matrix is singular (|¥| = 0) and
can not be inverted. The Least-Squares Princiéle as formulated by eq.{10.6) is
therefore not applicable to this case. However, if we omit ‘one of the n,, say
Nys a8 i: is redundant, the remaining (N-1) n, will correspond to a covariance
matrizx V which is simply V(y) with its N-th row and column deleted. We could
then reformulate the Least-Squares Principle for finding the best values of the
parameters O by demanding the minimum of the quantity
_ N-1 N-1 .
X% = (y=np) (V) Yy-np) = § 1} (n;-np, ) (V)5 (nnp ) . (30.73)

i=1 j=1

*
It can be verified by the reader that the inverse of the matrix V is

R L PO S
-1 =1 -1 -1
. o Pzt Py .- Py
vy =2 : ) . (10.74)
n .
- I -1 L~1
. Py PN o Pyey Py
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The double sum in X above can therefore be written as

N-1{n.-np,)? N-1 N-1
1 i i 1
X2=*{ ——+— § ¥ (n,-ap.){n,n }
. : :"np.)
Tl Py Py i1 j=o 20 1T
-1 - 2z -
= l‘{N[ (ni npi) + —L'[Nil(n -np )]2}
LI Py Loy i R
- - 2
=4 {NET(ni np;) v nnp )2}
mliar Py Py WP
or,
X = = ( ) . (10.75)
i=1 Py i=1

v’npi

The last expression restores the symmetry in all N classes and corre—
sponds to the formulation of eq.{10.3) with fi=npi, Gi=/EE;. The expression
(10.75) could have been written down at once, from the agsumption that the
number of events o, is Poisson distributed with mean and variance equal to np; .
The algebra above thus demonstrates again the mathematical equivalence between
two different points of view, the first considering N (dependent) multinomially
distributed variables conditioned on their sum, the second considering N inde-
pendent Poisson variables; compare Sect.4.4.4.

Generally, in the covariance matrix of eq.(10.72), if the number of
classes is large such that all pi's are small, the off-diagonal terms become
negligible, and

- 2 _
Vi) = oy =np, (I-py) ~mp, = £, {10.76)

Therefore, vhenever the LS estimates of the parameters are found by minimizing

— 2 - z

i) N nymfp)

2 “.2 (0.7
i i=t fi

the method implies a Poisson approximation for the individuat n;, (mean and vari-

ance = fi)' Equating the derivatives of X% to zero gives now the following set

of equations,

’——m
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2 N m,-f, n,-f. 2y 9f,
xR, g(l 1+;(‘ ‘))—‘:0, £=1,2,...,L, (10.78)
=1

Even for simple models it may be difficult to selve eqs.(10.78) analy-
tically, and often a numerical minimization of eq.{10.77) is used instead. It
can be shown, however, that for large number of events n, the influence from the
second term in the parentheses of eqs.(10.78) becomes small. Neglecting this
term corresponds to regarding the fi in the denominator of eq.{10.77) as con-

stants independent of 0 and leads to a simpler form of eqs.(10.78),

G ¥on,-f 9F
R e el LR Be L, (10.79)
3 i= i B

which may be easier to handle.
The variance UE is sometimes approximated by n. instead of by £ 1f,

rather than eq.(10.77), we minimize

N (ni—fi)2 N (ni—fi)2
xt = = ] — ) (10.80)
i=1 of i=1 i

the solution for § is more sensitive to statistical fluctuations in the observed
data. It can be shown, however, that for large numbers of events the solutions

obtained from the two formulations (4,e, eqs.(i10.77), (10.80)) coioecide. 1t can
further be shown that the formulations correspond to estimators which, for large
samples, possess optimum theoretical properties: they are consistent, asympto-

tically normal, and efficient (f.e. give minimum variance).

Asymptotically, in the limit of large numbers, the X% of eq.(10.73) will
if E(ni) = 1p;. be distributed as xz(N—1), as will also the altermative and
approximate expressions for ¥? given above. Compared to the situation of
Sect.10.&.3N0ne degree of freedom has been lost because of the normatizatiom
condition iE!ni = n, which leaves only (N=1) of the observations independent.

When the minimization has been performed the minimum value x;in can
therefore be used to give an approximate measure of the goodness—of-fit, by com—
parison with the chi-square distribution with (N-1-L} degrees of freedom. Here,
as before, L is the number of (independent) parameters estimated. From egs.
(10.77) and (10.80) it is clear that X;in is x2(N-1-L) to the extent that the
numbhers are large enough to justify the assumption that (ni-fi)/J?I and
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)

*
(ni-fi)/./ni are approximate standard normal variables °.

10,5.2 Choice of classes

There is to date no generally accepted prescription for how to subdi-
vide the variable range into categories or classes. In many experiments, how-
ever, the set-up of the apparatus itself implies a grouping of the data, for
example defined by the angular acceptance of an electronic counter. When the
grouping of the data is not a priori given, essentially two different approaches

are used for the subdivisien of the range of the variable,

(i) the equal-width method, where the range is divided into classes

of equal width, and

(ii} the equal-probgbility method, where the range is divided inte

classes of equal expected probability.

We have already assumed that the pumber N of classes is large to justi=
fy the approximation ci = £, in eq.(10.77}, or U; ~n, in eq.(10.80). 1If x;in
is furthetr to be used to measure the quality of the fit, a few more conditions
have to be fulfilled.

Firstly, it is not allowed to choose the limits of the classes in such
a way as to make x;in as small as possible. This follows from the fact that the
statistic x;in will only be an approximate chi-square variable if the class
boundaries for x are not randem variables., In mest practical work, the group-
ing is made from computational convenience. The secend condition, already men—
tioned, is that the number of expected observations within each class must be
"layge”, which is necessary to approximate (ni—fi)//fz'(or (ni—fi)/fgzﬁ to a
standard normal variable. Fortunately, for practical purposes the expected
numbers need not he very large; in fact it is customary to require a minimum of
five entries in each class. It has been verified, using the equal-width sub-
division, that one or two classes may be allowed to have expectations even less

*) Estimating parameters by minimizing eq.(10.77) is known in the literature asg
the @il mun Xz mrthod, whereas minimizing eq.{10.80) is sometimes called the
raeti winimgn x® omthod,  In accordance with our remarks at the end of
Sect.10.4.3 we disconrage the use of these terms. In particular, we shall
refer to the estimation by eq.(10.80) as the simplified Least-Squares method.

]
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than five, provided the number of degrees of freedom is sufficiently large, say
at least six. S5ince the probabilities frequently drop off at the ends of the
variable range, one may often have to use wider widths at the extremes of the

range to get sufficiently large expected numbers in these classes.

10.5.3 Example:; Polarization of antiprotons (2)

Let us use the simple polarization example described under the Maximum—
Likelihood method in Sect.9.5.7 to illustrate how the diffarent Least=Squares
formulations of Sect.10.5.1 lead to minimizations of varying complexity.

We assume that n double-scattering eveunts have been observed and plot—
ted in a histogram as a function of x £ cos¢, where ¢ is the angle between the
normals of the two scattering planes. The histogram has N bins, and the i-th
hin, extending from %, to xi+ﬁxi, containg ny observed events. The expected
frequency for this bin is found by integrating the p.d.f. of 2q.(%.38) over the

bin width; hence the expected number of events is

x, +AX,
i
fi =n f (1+ax)dx = n(ai+hiu),
x,
i
where
a; = E&xi, b, = ;Axi(xi+lﬁxi).

With the Poisson approximation, ci ~ fi’ the exact and the simplified
consequence of eq.(10.77) (Z.e. eqs.(10.78) and (10.79), respectively) lead to
equations of degree 2N and N in the parameter o. The parameter estimate & and
its error must therefore be found by some numericazl method.

With the alternative approximation, Ui =n,, however, we have, fram

eq.{10.80} for the simplified LS method,

- 2

< § [ni n(ai+bia)]
P — N (106.81a)
i=1 1,

which is a function of second order in @. The solution of the eguation dXZ/da=0

can therefore be stated explicitly as

N 1 N naibi N b;
a = 7 (bi_ ~ )/.E = (10.82)
i=1 i i=1 i
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Since X? can be expressed as
anbi\ .
X2 = X2, o+ ( 7 — o= ? (10.81b)
min A
i=1 i
the variance of the LS estimate & is exactly given by the inverse of the coeffi-
cient to the parabolic term, compatre Sect,10.9.2. Hence an analytic fermula can

~
also be given for the error Ac,

(10.83)

The reader may find it a rewarding exercise to rephrase the last example

in terms of the linear model formulation of Sect.10.2.3, and verify that the
expressions for o and AG above correspond to the general formulae egs.{10.23)

and (10.24), respectively; compare also Exercise 10.12.

10.5.4 Example: Angular momentum analysis (1)

Suppose that in a preliminary study of the pion-nucleon interaction we

want to examine the production and subsequent two—pion decay of a boson B, viz.

T +N-+B+N (10.84)

br e,
If little is known about the interaction a good way of starting an investigation
is to study the angular distribution of the decay pions in the rest frame of the
system B as a function of the mass of this system.
Let the decay angle =(8,¢) be defined as the direction of the T, mor
mentum in the B rest frame relatively to the quantization axis. The angular
decay distribution can then generally be expressed in terms of the spherical

. . m - a
harmonic functions YJ(cosﬂ,¢), and the density matrix elements pmm' as

m m' *
£(cosd,9) = ¥ ¥ (cosD,d)p Y (cosd,d} , (10.85)
r J mm’ " J
m,m
where J is the spin of B. From the properties of the spherical harmonics
1 * = &
JY}"(W?. @ ae ~ fjr St
4n (10.86)

( ¥ do = 0,
J N
4
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the distribution can alsc be written as a linear combination of the YT,
J
i=2J m=+j m
[(cos8,¢) = W) = § 1o @, (10.87)
§=0,2,4, ... m=-j IM I

In eq.(10.87) only spherical harmenics with even values of j occur,
implying that in the two-picn decay of a spin J boson the angular distribution
will be a polynomial in cosO of degree at most 2J; this is known as the mazimum
complexity theorem.

The expansion coefficients cjm in eq.(10.87} constitute the set of
unknown parameters which we want to estimate. Since, for a given J, there are
(J+1}{2J+1) terms in the double sum this gives the number of elements in the
parameter vector ¢. The C]m are not all independent, since they must satisfy
the normalization condition

fwm)dﬂ = 1. (10.88)

&

For the chosen mass region of the two-pion system B in (10.84) we
classify the events in N angular intervals Aﬂi. The probabilicy for the i-th

interval is
pile) = J W(ae = § ©in J Y‘J.“(sz)dﬂ, i=1,2,...,N, (10.89)
29, JoM 7 An
i i
where the summation goes over all (J+1}(2J+1) combinations of the indices j,m.

With a total number of n events the predicted number for the i-th interval is

£.(e} =np,(c)y ) i=1,2,...,8,  (10.90)
The vector of observed numbers of events in the N intervals is X={“1'“2""’“N}'
where

N
In;

1{
= f,(c) =n.
i=1 1=

i=1

(10.91)

If the number of intervals is sufficiently large to justify the approxi-
mation that each n, is an independent Poisson variable with mean and variance
equal to fi' the unknown parameters would be found by minimizing eq.(10.77), or

rather eq.(10.80) if the approximation 0; >0, is acceptable. Clearly, with
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either formulation, 2 general numerical minjmization procedure is called for
In actual experiments the determinaricn of the coefficients c. as

functions of the mass of the system B can serve different purposes. Firstly, it
may be used to determine the spin of the decaying boson from the masimum com—
plexity theorem in the following mannes: Starting from the lowest possible spin
value one evaluates consecutively the sets of coefficients &. for increasing
values of J. From a certain J value on, say from J=J N thimgoodness—of-fit
Yill not become significantly better with increasing ??xand all cocfficients
Cim fer 3 2 ZJmax will be compatible with zerc. The value J then determines
a lower limit for the spin of the boson B, Secondly, the berzziour of the coef-
ficients with different j,m may sometimes give evidence for the presence of
more than one resongnce in a certain mass region. Finally, £f the spins of the
produced resonances are well-known, the magnitude of the coefficients o for

- - - j ! ’
equivalently, the density matrix elements P ) can supply information o: the

preduction process, and be used to test production models
.

Exercise 10.13: Derive eq.(10.87) from eq.(10.85). (Hint: Use the property

T (- "
) ¢ and the product theorem for spherical harmonics,

m' 28+1 T
Y™ . . 4 mm’
278 T Tdw %‘Q-N-R’W'IJ-m+m'>\ TS ™ <2,032,0]§,0>

with the fact that the CI - iei j
v ebsch—Gardan coefficieunts <£,0;£,0|],0> vanish for odd

10.6 APPLICATION OF THE LEAST~SQUARES METHOD TO WEIGHTED EVENTS

So far we have in this chapter tacitly assumed that the predictions of
the theoretical model are directly comparable to the experimental observation
In practice, however, the ohservations are frequently known to be biassed. A;
was discussed in Chapter 6, the observational biases can be divided into random
{or statistical) errors and systematic errors. We recall from Sect.6.2 that
random observational errors can be taken care of by “smearing" the ideal p.d.f
with the experimental resolution function to obtain a modified p.d.f. (“re;o;u:
tion transform'") which can then be directly compared to the observations.
Further, from Sect.4,3, systematic observational errors can be handled by two

basically different approaches. The first of these is
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(i) the "exact methed", in which one modifies the ideal p.d.f. (Z.e.
the theoretical model) to give an "observable p.d.f.", which is
subsequently compared to the observations, This approach requires
that the experimental detection ability is known over the whole

tange of the observables.

When method (i} is not applicable ome has to resort to

(ii) the "approximate method”, in which one modifies the raw obsetva-
tions by assigning different weights to the individual observed
events. The weight LA assigned to an event is equal to the in-
verse of the probability (or detecting this event; in other
words, if one event was observed one assumes that there would

have been w, events if the detection had been perfect.

Clearly, whenever the theoretical model can be properly modified, by

folding-in of the experimentral resoluticn or by the "exact method", there is no

furthetr need for changes in the LS estimaticn procedure as described in the

previous sections of this chapter. In fact, the most essential restriction we

have put om a theoretical model is that it should give predictions which cein=
cide with the expectation values of the observations. With the "approximate
method”, however, specific problems arise for the LS parameter estimation, in
particular it becomes more difficult te get reliable values of the errors on the
estimated parameters,

Let us assume that the observations have been clagssified into N bins as
in Sect.10.5.1, and that it is pow not meaningful to compare the predicted num-
ber of events fi directly to the observed number of events n, in the i-th bin.
Using the "approximate method" we would say that with a perfect detection appar-
atus we should have observed in bin i a number of events equal to

nj
n; = .E W
=1
where w.. is the inverse of the detecticn probability for event j within the

. (10.92)
i]

i-th bin. It is then suggestive to write down the following two alternative

expressions te be minimized in the case of weighted events,

11 - Probability and statistics.

N
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N (n]-£.)°
X7 = — 10.93)
1=1 i
and
N (ni—fi)z
X2 = 3 — . (10.94)
i=1 %

These expressions are the analogues of, respectively, eqs{10.77) and (10.80) .
Again, if E(n{) = f, and the normality assumption is reasonably fulfilled,
X;in is expected to give an approximate measure of the goodness—of-fit,

If the weights wij are not too large and not too different, either of
the alternative expressicns (10.93) and (10.94) works satrjsfactorily. Experi-
ence shows, however, that curious results may sometimes be obtained for the
parameter escimates and their errors if some of the events have very large

weights. One should therefore be cautious and verify that the weights of the

individual events do not deviate too much from the average. 1f the weights are

large mainly in one or a few bins one may improve the reliability of the para~

meter estimates by simply omitting these bins in the minimization. In general,

the inclusion of events with large weights tends to increase the estimated
errors on the parameters.

Finally, let it be mentiomed that an approach between the "exact" and
the "approximate" methods consists in using the expression
LEty2
< - B (ni fi)

7 (10.95)

with

: 'ni :

|- . = — —_—

£~ £ 0Dy, D, = 'E o (10.96)
L j=1 "ij

This would correspond to adopting the philosophy behind the "exact method",

where the observations are kept unchanged and the model adjusted to account for

the imperfect detection. However, the procedure is mo longer exact since the

modification of the ideal model rests on an estimate of the average detection

efficiency Di for the i-th bin, as obtained from the observed events in the bin.

Since an error is inherent in this estimate it is likely that the use of

eq.{10.95) implies a reduced reliability of the parameter estimates, Clearly,

the method is most reliable for small weights, or nearly equal weights. If all

weights are identical eq.(10.95) and 97q.(10,93)} give the same results.

—
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10.7 LINEAR LEAST-SQUARES ESTIMATION WITH LIMEAR CONSTRAINTS

‘ It frequently happens that the observables n in an LS estimation
are related through algebraic constraint equations. While the original m?asure-
ments ¥y are subject to experimental inaccurafies and may not strictly satisfy
the constraints the "improved measurements’ r, the estimates of the true, un-

should do so.

e values;n general, two different approaches can be used to solve a Tinimi-
sation problem where the observables are restricted by algebraic cnnstraln?s.
The first is the elimination method, in which one makes use of the constraint
equations to eliminate a number of the variables and subsequently performs the.
minimization in terms of the reduced number of unknowns. The second approach is
the method of Tagremgion multiplices, in which one increases Fhe.number offun
knowns in the minimization by adding a set of Lagrangian multlpl].ersr onexzur
each constraint equation. Thus both methods reformulate the constrained .
minimization to an {ordinary} uncomstrained minimization, which can be carried
out according te the procedures outlined earlier in this chapter.

In the following sections we will first (in Sect.10.7.1) see how the
two methods work on a simple example before we proceed (Secf.10.7.2) to-deve1:2
the general formularion of the methed of Lagrangian multipliers for a linear ’
minimization with linear constraint equations. As we shall see an exact solu

R R Cficas
tion is obtained for this problem, with closed formulae expressing a modific

tion of the unconstrained linear LS solution.

10.7.1 Example: Angles in a triangle
To illustrate the two approaches to a linear LS estimation under
The three

linear constraints, let us consider the following simple example:

i ivi the results
angles of a triangle have been measured independently, giving the

y1 = 63, yo = W7, ¥: = 85°.

=1° the
We assume for simplicity that all measurements have an error ¢g=1". We want
LS estimates of the true values ni,M2,Ns of the angles, which must satisfy the
requirement that their sum be equal to 180°. .
We o?serve that the measurements ¥, fail to satisfy the conftratnt

° < 2° i "i d measurements' 1,
by the amount v - 180° = 2", To find the “improved m i

i=1
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according to the L3 Principle we seek the solution of the constrained minimiza-

tion problem

X% (ny,nz,73)

[}
R e TV

(10.97)

- 180"

n
o=

n
1

I~

LA

1

Adopting first the eliminiation method we use the comstraint equa-—
tion to eliminate one of the unknowns, say n,, substitute in X* and minimize
with respect to the remaining two variables; thus we consider the unconstrained

case

2 7 2

Yi=m {yz-nz ¥ {180%-ny—n2) L
X3 {n1,n2) = ( 5 ) + ——M) + (—Lﬁn?;ﬁﬁwu——) = minimum . (10.98)
1 s 3

This trivial minimization preblem has the sclution

~ 1 10
m o= 5 (180742y1-y2=y3) = 625,
- 1 o 10
nz =3 (180 =y 1+2y2-y,) = 33

and from the constraint equation we find

. N . .
My = 180% =y - nz = 8417,

We find therefore, not unexpectedly, that the "improved measurements™ are ob-—
tained by subtracting the measured "excess" of 2% equally from all three obser-
vations,

If, instead, we adopt the methed of Lagrangian multipliers we will

reformulate the problem (10.97) to the equivalent form with the Lagrangian mul-
tiplier A,

(10.99)

=
T
-
[
|
-
w
e

3 n.
X (n1,nz,n1,3) = ~ ) + ZA( 5 ni-1800) = winimum.
= i ?

i=1
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This is a linear LS problem for the four unknowns N1.N2sMash. Explicitly, the

normal equations become

2 2
0= %%T = - Ez(Y1‘ﬂ1) + 23,
0 =3 oL gmny + 2,
a'ﬂz a
} (10.100)
2 2
o = %%3 = - az(Ya'na) + 23,
3
ax? o)
D S -180%} .
S 2(.121”1 8

1 .
daltiplying the First three cquations by -1 and the last by ., we find by add-

ing all expressions an equation for A, !
3
2 o
0 = 52(.2 y; 180 ) - 6k,
1=1
which leads to
3
3 11 _ o
. X o= 532( i y;m180 )
The estimates for the angles, obtained from the three first equationms, are
~ 1 3 o
= — g2} = - = —180
n. =y, - g% ¥i T3 (i£1y1 18 )_

] 1

These relations, symmetric in all indices from 1 to 3, show in a transparent way
how the original measurements are corrected by subtracting equal amounts of the

o
total measured "excess" of 2= from each of the measyrements.

Exercise 10,14t Show that the covariance matrix for the estimates N can be ex-
bressed as
1 1 /3 -1/3 -1/3
~ k3
v = v(y) -502 1{1,1,1) =0 1/3 2/3 =1/3),
- 1 /3 =13 2/3)

showing that the "improved measurements™ become correlated but have smaller

ertors (diagenal terms) than the original measurements. Compare eq. (10.112) of
the next section.

’
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10.7.2 Linear LS medel with linear constraints; Lagrangian multipliers

We will consider a general lipear LS estimation problem with linear

constraint equaticns, in the form

X2(9) = (y-AB) V"' (y-A8) = minimum,

(10.101)
By -b=0.

Here the L parameters B are restricted through the K constraint equations ex-
pressed by the matrix B of dimension K x L, and the K-component vector b. The
other symbels are the same as used before for the unconstrained linear case.
We introduce a K-compornent vector A = [hl,Az,...,AK} of Lagrangian
multipliers and reformulate the problem (10.101) to an unconstrained "linear

minimization for the L + K unknowns 8 and A,

X2(8,1) = (y-A0) V" (y-AB) + 21" (BO-b) = minimum. (10.102)

If we here equate to zero the derivatives of X? with respect to 91. £=1,2,...,L

and A, , k=1,2,...,Kk we get the normal equations, which in vector notation can

K?
be written as

- 2T AT gy + 2Ta -0, (10.103)

=]
b
R
]

(10.104)

<]
L]
)
]

2(89-b) = 0.

These are L + K linear equations for the unknowns. Obviocusly, egs.(10.104) are
the constraint equations regained, whereas eqs.(10.103) are the analogues of eqs.
(10.21) for the unconstrained case, now modified by the A-term due to the con-
straints. It will be seen that eqs.{10.100) of the previous section represent a
special case of the formulae above.

Let us introduce the abbreviations

¢ = ATV la, e = ATV 'y, (10.105)
which bring the simultaneous linear equations to the form
ca+ 8- e,
(10.106)
BY =b-
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1f the inverse of C exists we can premultiply the first of these equations by
-1
BC

volving the unknowns A only,

and substitute for B8 from the last equation. This gives an equation in-

b+ BC_‘BTA = BC 'c .

Writing

-15T
= 1
VB-BC B

(10.107)
and assuming that this symmetric matrix has an inverse, the solugion for the
Lagrangian multipliers becomes :
A= V' (BC 'e-b) . (10.108)
When the Lagrangian multipliers are substituted back in eq.{10.106) we obtain the

solution for the paraweters 0,

8 =c7'c - ¢RIV (BCT e-b). (10.109)

Equations (10.108) and (10.109) provide an exact solution, since all ma-
trices and vectors are known quantities. It is interesting to observe that the
combination €”'c, which is nothing but the sotution of the unconstrained minimi-
zation, enters in i as well as in E. In fact, the parenthesis (BC"IEfE) meas—
ures how much the observations y violate the constraint equations; compare the
example of the previous section. As for é we see that the effect of the con-
straint equations has been to correct the solution C_IE of the unconstrained
minimization by an amount proportiomal to the "violation" term (BC-lng).

We note further that the Lagrangian multipliers i as well as the para-
meters § have a linear dependence on the observations y through the vector c.

It is seen by application of the expectation operator that

E(C'e) = ¢T'B(c) = C-’ATV_lE(z) =calvtag - 0.
Hence the expectation of the term (BC“E;@Q vanishes in virtue of the constraint

equations, giving
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Bh =0,
(10.110)
R(B) = 9+

The last result shows that the parameter estimates are wnbiassed, as they were

in the unconstrained case.
The linear dependence on y permits us to establish the covariance mat—
- 0
rix for the estimates 8, by applying the usual law of error propagation. From
L T -
eq.{10,109), recalling that c = A"V 'y, we have

T T

—1 1T
- - - 1. T ~10.-1,T -1] -1, Tym1 _ pmtplom1nen=1,T 1].
V(g)=[c U IR A v[c1aTy G Tl T
Using the definitions of C and VB together with the fact that these matrices,
and hence also their inverse matrices C 'and VEI are symmetric, this expression

can be simplified to
v(8) = ¢M(I, - BvI'ECTY)
— N B !

or

v = ¢! - (BC'I)TVE‘(BC”). (10.111)

In eq.(10.111) ¢~' is the covariance matrix for the unconstrained parameters, and
as the diagonal elements of the term (BC_l)TVEI(BC-l) are always non-negative,
we See that the constraint equations will lead to a reduction of the parameter
errors (+.e. the diagonal terms) compared to the unconstrained case. For the
of f-diagonal terms no similar statement can be made in the general case, as the
covariances between different parameters can be smaller or larger than in the
unconstrained case.

The "improved measurements” ﬁr= Aé and their errors are given by the
formulae

) ISR, SN )
i = afee - o Yy (W ew ) " (10.112)

- - - - I
v(n) = AC 1T - acee ‘)TVB‘(BC AT,

which should be compared to the corresponding expressioms for the unconstrained

problem, given in Exercise 10.8.
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Exercise 10.15: Show that the estimates for the Lagrangian multipliers 3} of
eq.(10,108) correspond to a covariance matrix V(i) = V-1, and that the estimated
parameters and Lagrangian multipliers are uncorrelateg, cov(a,i) =0,

Exercise 10.16: (i) With the notation of Sect.10.7.2, show that the residuals
for the linear LS fit with linear constraints can be written as € = D& where £
is the vector of errors due to measurement, and - - -

D=1, - ac~talvr o AC"BTVE’BC"ATV"‘.

This matrix D d%ffers from the corresponding expression for the unconstrained
case {see Exercise 10.8) only through the last term.

(ii Ifzthe measurements are uncorrelated and have equal errors, 7.e.
V(y) =0 IN’ D simplifies to )
=1 = oaeaTay 1T Toy=15Tn ) Tay=15T] 7 -
D= Ty - AT A TTAT 4 a(A A) IB[B(AA) IB]B(ATA) ‘AT.
which represents Fhe extension of eq.(10.59) valid for the unconstrained case.
Show that this D is also an idempotent matrix satisfying D*=D, DID=D. Follow

the reasoning of Sect.10.4.2 and verify that E(QZ, )=o? (N-L+K), showing that
Q;in/(N-L+K) is an unbiassed estimator of o?. mn ’ F

(iit) Generalize the proof that Qz.n/(N-L+K) is an unbiassed estimator of g2
to the case when the measurements hine correlation terms and not necessarily
equal errors. (Hint: See Exercise 10.11.)

10.8 GENERAL LEAST-SQUARES ESTIMATION WITH CONSTRAINTS

We have in the preceding sections discussed how the LS method can be
used to estimate unknown parameters in various problems of increasing complex—
ity. We will now turn to the most general situation, where the estimation prob-
lem involves observable quantities as well as unobservable unknowns, which are
connected through a set of general, 7.e. non-linear, algebraic restrictions.

We shall in the following section develop the formulation of the iter-
ative procedure using the method of Lagrangian multipliers, without making any
reference to a special physical problem. The reader may find it useful to have
in mind the kinematic analysis of a particle reaction (am example follows in
Sect.10.8,2), where the momentu» and energy conservation laws constitute a set
of restrictions relating the various momenta and angles for the particle combin-
ation defining the kinematic hypothesis. Some of the quantities have been meas—
ured to a certain accuracy {say, the momenta and angles of curved tracks in a

bubble chamber), and some are completely unknown (the variables fer an unseen
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particle, momenta for short, straight tracks, ¢te .). The purpose of the LS es-
timation is to investigate the kinematic hypothesis; for a successful minimiza-
tion the constraint equations will supply estimates for the unmeasured variables

as well as "improved measurements" for the measured quantities.

10.8.1 The iteration procedure

We will, as before, let n be a vector of N observables, for which we
have the first approximation values {measurements) y, with errors contained in
the covariance matriz V(y). In addition we have a set of J unmeasurable vari-
ables E = {51,52,...,51

related and have to satisfy a set of K constraint equatiouns,

}. The W measurable and the J unmeasurable variables are

fk(nl.nz,-..,nN.El,E;z,..-,iJ) =0, k=1,2,...,K.

According to the Least-Squares Principle we should adopt as our best estimates

of the unknowns n and £ those values for which

R = (=) V() (y-n) = winimum,
(10.113)
£n,0) = 0.

The general, constrained L5 problem of eqs.(10.113) can be solved by
eliminating K unknowns Erom the constraint equations, substituting in *? and
minimizing this function with respect to the N+J-K remaining variables. The
elimination method, however, has the disadvantage that it does not give any
preseription on which variables one should eliminate from the constraint equa-
tions. If these are non~linear, the actual minimization of the function X may
develop quite differently, depending on the elimination made. The Lagrange
multiplier method, on the other hand, avoids the preference of any of the un-
known variables and treats them all on an equal footing. Accordingly, although
this approach implies more variables in the minimization, its feature of symme-
try in the variables is considered a greater virtue, and is preferred in prac-
tice.

We proceed therefore to solve the problem of eqs.(0.113) by the method

of the Lagrangian multipliers. We introduce K additional unknowns A = {A.,..,AK}
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and rephrase the problem by requiring

T
K2 (60 = (1) VHY (gen) + 22TE(1,E) = minimom. (10.114)

We now have a total of N+J+K unknowns. When the derivatives of X? with
respect to all uoknowns are put equal to zero we get the following set of equa-

tions, written in vector form,

R i (yn) + ZF;A =0, {N equations)

2 . T i
VEX = ZFEl =0, (J egquations) (10.115)
VAXz =2 f(n,5) =0, (K equations)

where the matrices Fn (of dimension KxN) and FE (dimension KxJ) are defined by

FT (10.116)

Thus, removing the nuicance factors 2, the equations are

T
Vi (v} +FA =0, (10.117)
T
Ped =0, (10.118)
f(n,5) = 0. (10.119)

The solution of the set of equations (10.117) ~ (10.119) for the N+J+K
unknowns must in the gemeral case*) be found by iterations, producing success-—
ively better approximations.

Let us suppose that iteration number v has been performed and that it
is necessary to find a still better solution. For the w-th iteration the
approximative solution is given by the values Hy'ﬁy'éy‘ corresponding to the

. \Y
function value (X%)". We perform a Taylor expansion of the constraint equa-
tions (10.119) in the point (3?.5“),

*} The set (10,117~ (10.119) reduces of course to eqs.(10,106} for a linear
problem with no unmeasurable variables.
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f\)

N ,8f Vv kY el v _ -
ME (&AE\ v+1,_nY] . E‘\§4;> (g £+ . =0, k=1,2,000,K.
i=1 -

i j j
Bni} i

When the terms of second and higher orders are meglected this can be written

+1 |
£ ) e B -5 - o (10120

i indi A 8 luated at the
where all superseripts v indicate that j_,Fn,F are to be eva

point (n”,E%), the v-th iteration. Equations (10.117)and (10.118) now read

1
VIR -y YA -0y (10.121)
GNP (10.122)

These equations, together with the expanded constraint equations (10.120) will
make it possible to express all unknowns of the (v+1)—th iteration by the quan-
tities of the preceding iteration.

If we eliminate nu+1 from (10.1217) and substitute in (10.120) we get a

s v+1 v+l
relation involving only X and £ >

£+ F:{(z - v(Fﬁ)V W - DYJ + Fé{§”+1 -g9) =0,

or,
t o+ Fg{§Y+1 - = sV, (10.123)
when we introduce the notation
rzf s e (rn (10.124)
s = Foyarh Y. (19.125)
n n

Clearly, S is a symmetric matrix of dimension K x K. Multiplying eq.(10.123}
1 . s
from the left by 5 ! gives an expression for ly+ that can be substituted in
. . v+l
eq.(10.122), which in turn leads to an equation with only & urtk oW 5

(fz)vs-l{i . F§(§y+1_§y)} - 0.

Solving this equation for §y+1 and substituting back into eq.{10.123) we find
AU+1

+ = " -
, and finally eq.(10.121) will give DY 1. Thus we find in succession
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R o S e iy (i 0.1
E E (F(Es FE) FES E . ( 0 26)
Av+] _ S'l[z . FE[§v+w_§}j], (10.127)
HU+1 Y- VFa iv+1- {(10.,128)

The linearized equaticns are therefore solved in such a way that the
"completely unknown" §V+1 are found first, next the Lagrangian multipliers iv+1
and finally'the "improved measurements" BU+1.

In eqs.(10.126)-(10.128) the matrices Fn'FE’S and the vector r are
evaluated at the point (nv,év}, We note that in deriving the Formulae it has
been tacitly assumed that the inverse of the matrices § and (FES“F

1 vk £
v 1’£v T and iv*1 we rateulate the value of

) exists.
With the new values For q
. vt . . . R

the function (Xx%) for the (v+1)-th iteration and compare it to the previous

¥ . N . . + +
value (X*)°. With an improved sclution the new point v 1,£v !

) is used for

a new Taylor expansion of the constraint equations and the process {s started
over again. The iteraticns should be continved until a satisfactory solution
has been found, Usuvally one would repeat thc calculations until the change in
x? between successive steps becomes Small. One may alse have to check that the
differences An, Af converge properly. General convergence criteria can hardly
be given, but must be decided for the separate problems. It is generally valid,
that in order to optimize the convergence of an iteration procedure gne should
be careful in giving good starting values DP’ §? for the iterations, since Lhese
determine how many steps will be necessary to reach the desired minimum.

The distinction between the two types of variables n and § lies in
fact in the choice of starting values. For the weasurable variables 1 one
should start with ﬂ? = ¥» the measured values; for the unmeasurable variables £
the starting values §° should be evaluated from the most convenient constraint
equations imserting the measurements ﬂo for n.

To summarize, an iteration will consist of the following items:

(i} Evaluate the vector't from eq.(10.124} and the matrix § from
eq. (10, 125).
(ii) TFind the new vector EUH

£ of unmeasurable variables from
eq.(10.126) .
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(iii) Find the new vector }?*1 of Lagrangian multipliers from
eq.(10.127) .

(iv) Find the new vectar_ﬂv+1 of measurable quantities from
eq.(10.128).

(v) Calculate the new value x? )

(vi) Compare results with previous iteration.
Proceed to (i) if new iteration is required.

Stop, if satisfactory solution has been obtained.

A~

When the final step has been made the covariances of the estimates N

and § should be found; see Sect.10,R.3,

Exercise 10.17: Show that the value of %x? for the (v+1)-th step is

T
(X,)v+1 B “+1)TSA“+1 . 2”\\JH v+1

where the matrix § is evaluated for the v—th iteration.

10.8.2 Example: Kinematic analysis of a y° event (1)

Let us apply the previcus formulation to the kinematic analysis of a y®

as seent in a bubble chamber. We suppose that the two tracks have been measured
and that the track reconstruction has provided for each track a first approxima—
tion for the kinematic variables 1/P (inverse momentum), A (dip angle), and ¢
(azimuth angle) as well as a covariance matrix for these variables. We want Lo

analyze this event for the kinematic hypothesis
N>p+ T .

1f the arigin of the A is unspecified the magnitude of the momentum as
well as the direction of the decaying particle are unknowns. The problem there-

fore iavalves three completely unknown variables,
£ = {PA’ Ao ¢A}’
and six measurable unknowns,

[l 1 S SPRE- S SN W

The algebraic constraints are the four equations describing momentum and energy

313

cons »
ervation, which are obtained by equal:lng the fnllowulg EXP!ESS]'O[IS to zero
’

fy = - PAcos)\Acosd:A + Ppcoslpcos¢p + Pncoskncos¢ﬂ,
f, = - ?Acos?\AsimtsA + Ppcoskpsin¢p + Pﬁcoslnsin¢ﬂ,
f3 = - PAsinAﬂ + Ppsin?\p + Pﬂsinln.
f? = - «?i_:—;ﬁf + ; + nﬁ + /g;—:rjg;.

" i

Sine i i
e the problem involves 4 constraints and 3 unmeasured unknowns we are th
fore dealing with a 1C-fit. =

F
‘ rom the definitions of eqs.(10.116) we see that the matrice F
dimension 4 X &) and F ) \

of
(dimension 4 % 3) as obtained from the derlvatlves of

the Four constraint f
Ul'lCth
ns fk with respect to the measurable and unmeasur-

able variables, are, respectively,

[cosh_cosp -P sink cosg ~F A si ;
P o Tp p ¢p peos psln¢p coslnc05¢“—Pﬂ51nl“cos¢“—P“cusA“sin¢“-
cosh_sing -P_sink_sing +P A i i
.. ‘ p o o o o Epeos pcos¢p cosA"s1n¢"-P“s1nlﬂsin¢"+chosAncos¢“
bl SLnAP P_rosh Q sini
P P oAy PNCOSAW 0
P
P 0 0 Py Q 0
T ATinT
T m ]
and
~cosXAcos¢A PAsin}\Ac05¢A PAcos;\AsindJA |
FE . -coaAA51n¢A Pf\sinJ\Asin@A -Pncns)\hcostbA
—51nlA —PﬂlcnslA 4] '
0
i

To start the i i
lterations we take the measurements as the initial n0
-~ o 0 ,0 _o '
y = {P°, A o o
p* Apr o0 Pro AL 673,

For @ W
£ ve would take, for example, the value £° = {PR. lx ¢}, where the co
by o
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ponents are ohtained by demanding the first three constraint functions equal to
zero, %.¢. momentum conservation satisfied. The fourth constraint function
will then in general not be strictly gzero. Thus we will have an initial value

of the vector r from eq.(10.124),
== (0, 0,0, £2).

Inserting the approximations (D?,g?) we can find Fz, Fg and obtain the 4 x &4

matrix 5 from eq.{10.125),
o] T, 0
5 = F WF
n ( W) .

Inverting this matrix we can next find the values of £!, Al

R ﬂl in succession
from eqs.ﬂO.lZ&)'ﬂO.]Z?L calculate X? with these first estimates, and continue
the process.

1f we had measured the coordinates of the origin of the A in additien
to its decay point the line-of-flight of this particle would have been known,
equivalent to including AA and ¢A among the measurable unknowns Hi The only
completely unknown variable would then be P the magnitude of the momentum,

corresponding te a JC-fit in this case. See also Sect.14.4.5.

10.8.3 Calcylation of errors

The errors in the final estimates of the measurable and unmeasurable

variables from the general LS fit of Sect.i0.8.1 are found by applying the law
: . . ~ Y+ % v+
of error propagation., Let us consider the estimates N = n and £ = £ as

functions of the measurements y,

ﬁ E(X) [

(10.129)

H

£ = hiy)s

where the actual forms of the functions g and h are found from egs. (10-126)-
(10.128), using eq.(10.124) for r,

i

[, _ Teorg y-1pTgm1 Y - ]
Y - VES [‘K B (1 ST F)TIRST RE Y P ),

o pTem “1;T - -
&= (ES ]Fg) Fgs ’{f *F (y _q)].

3 (10.130)

-
[]
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In these formulae N and &, as well as the function f and all matrices F and §
are evalvated in the last, Z.e. the v=-th iteration. To the approximation of a
linear dependence on y the covariance matrices for ﬁ and é are given by eq.(}.BOL

the law of propagation of errors, as

~ d de AT
v - (Ero(G)
o dh h
@ - (Hro(@). (1013

cov(n,B) = (:ig)v(x) (g.%)T

where the derivatives of g and h with respect to y denote matrices of dimensions

N % N aad J ¥ N, respectively. From eqs.(10.130) we can express these quantities

as

T T

dg _ _ Te-1 _ -1 -1p y~1pl
H%_IN V(X){Fns Py = F S P (FeSTIETIF

-1
n n £ Fn] '

(10.132)
dh _ _ T —1.T=1
T = (Fe8™IR) IR STF
In these expressions we observe that the matrices FH'F enter only piq the three
possible combinatiens of the type FTS—‘F. One of these, FTS_]FE, appeared al-
ready as a part of the solution for the unmeasurable variables E, eq.{10.126).

With the abbreviations

= Te=1
= FS
¢=FsTE, £
_ T -
vl =zprsT! (10.133)
£2 Fer

HzrslF
n

we find after a little algebra that eqs.(i0.131) lead to

v - v(,-v_)[IN ~(c - HUHT)V(x)],

wh = v, €10.134)

cov(i,B) = - V(y)HU.

These error formulae imply that the errvors on the fitted quantities ﬁ
in general are smaller than the errors in the observations ¥> and that the fit-

ted quantities will be correlated, even if the measurements were independent.
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Exercise 10.18: Show that the covariance matrix for the residuals E =y -1,
to the approximation of a linear relationship between n and y, is

V(E) = V() + V(ﬁ) - 2cov(y,n) = viy)} - V(n) = V(y_)(G-HUHT)V(x)-
10.9 CONFIDENCE INTERVALS AND ERRORS FROM THE X2 FUNCTION

10.9.1 Basis for the determination of LS confidence intervals

With a theoretical model which is linear in the parameters 6 we have

the general expression for the X? function

X = (X*AQ)T v l(y-48), (10.20)

where V7! is the inverse of the covariance matrix V(y) for the N observed quan-
tities y. When V(y) is independent of the parameters we found (in Sect.10.2.3)
that the minimization of X*(0) with respect to 8 led to the LS estimate

5= vyl , (10.23)

and, from the law of error propagation, the covariances of these estimates were
found to be

v = v €10.24)

Simple algebra then leads to the following relation (see Exercise 10.12):

X2@ = x2. + @B T (@) e-d).

min (10.136) |

Equation (10.136) provides the basis for the determination of confi-
dence intervals (regions) with the LS method. When the observations v are multi-
normally distributed about the true values n = A¢, the estimates E. which are
linearly related to y, will also be normally distributed (compare Sect.4.8.5).
Under these conditions, each of the three terms in eq.{10.136) will be chi-square
distributed. For example, with N independent observations and L unconstrained
parameters, X*(8) is x*(N), X:lin is ¥?(N-1), and the quadratic (covariance) form
(g:@)Tv‘lgﬁ)(g;ﬁ) is x2(L). In the case of constrained parameters the last term
will be distributed as xz(L—K), where K is the number of linear constraints. 1Inp

general, the confidence regions we are seecking will be Found by intersecting the
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X2(8) surface by planes

X0 = X2+ oa, (10.137)

where the constant a is appropriately chosen. The corresponding probabilities
are determined from the chi-square distribution with a number of degrees of
freedom equal to the number of independent parameters.

When ngg) is not a quadratic function in the parameters, for example
if the model is not a linear function of the parameters and/or the covariance
matrix is not independent of 8, it is still customary to use the intersection
approach (the “graphical wethod"} to establish confidence regions for the para-
meters. However, since the exact distribution of the gquantities is then not

known, the associated prebabilities as deduced from a comparison with the chi-

square distribution will enly be approximately correct in these cases,

70.9.2 1S errors and confidence intervals, the one-parameter case

We assume that the LS estimation problem involves a single parameter 0.
When the X° function is Taylor expanded around the extremum {minimum) point

B = 6 where the first derivative vanishes we have in general

(10.138)

2 2 d’z? Ay2 4
X0 = X, o+ SgEE Bt e .l

i~

0=0

Here the second derivative of X* must be positive to ensure that the extremum is
a minimum value. Clearly, to the extent that the higher—order terms can be ne-
glected the second derivative specifies the "width" of ¥*(8) around the minimum
point §, that is, it determines how “precise” the minimum has been located. Thus
the error in the LS estimate é must in general be related to the second deriva-
tive of the function X? evaluated for & = 8.

For a [lingar LS problem fulfilling the conditions specified in Sect.
10.2.3, with a constant covariance matrix V(y) for the obsetrvations, the function
%t is strictly of second otder in the parameter §. The second derivative of X?
with respect to 0 is then a constant and the series expansion (10.138) termin-

ates with the second term, so that we have the parabelic dependence

42x? N
KO) = KL+ b Ty (8-9)%. (10.139)
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Since, from eq.{10.136) we also have

X2(8) = X2, 4 —n (9-8)2
) S e (9-d)?, (10.140)

1t 1s seen from the two last equations by identification of the coefficients of
the quadratic terms that
n d?x2\-1
V(D) = 2( .
) g7 (10.141)

This expression for the variance of the LS estimate B can be compared
to the similar expression obtained for the large-sample ML, estimate, eq.(3.36).
It should be emphasized that the formulae (10.139) - (10.141) are exact under
the conditions specified above. ‘

In the case of a non-Iimear LS problem, or in general, with an ¥?
funetion which is not of strictly parabolic form, one cam still expect to find
the variance - and hence the error - of the estimate 8 from the formula

- 2 ,2%\=1
A4
e

(10.142)

which will be correct to the approximation that the higher-order terms of eg
(10.1138) are small.

Ynder the assumption of unbiassed and normally distributed observations
we can find (exact or approximate) confidence intervals for 8 by seeking the
lntersecyions of the {exact or approximate) parabolic funmction X*(9) by the
straight lines

XP(8) = X2, +a.
min {10.143)

Here, in the one- ?
, ne-parametet ¢ase, the values a = 17, 22, and 3% for the inter-

section distance from minimum lead to confidence intervals aof probablhtles 68.3
3
95.“, and 99.31, rESPECtIVE]Y, which correspond to one, twe, and three standard

deviation intervals when X2(8) is strictly parabolic in 8. Hence there is a

close analogy between the interval estimation from the X2 function considered
here and the likelihood function as described for the one-
Sect.9.7.1.

parameter case in
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180.9.3 LS errors and confidence regions, the mylti-parameter case

The generalization of the preceding section to the situation with more
than one parameter is quite straightforward. The Taylor expansion of the x?

~
function around the minimum value 8 = € reads, in genersal,

. 2y 2
o a%x A ven B
X3¢0 = Kmin + ii§ (§€;§§E)G=é (Oi Bi)(ej Bj) + (10,144)

By comparison with eq.{10.136), which is valid for the ideal case with a lipear
parsmeter dependence and constant covariance matrix for the observations, one
finds that the elements of the covariance matrix for the LS estimate § can be

expressed as

v @) = i (ﬁ) . €10.145)
i BBiBBj E=§

This formula is alsc exact to the extent that %% has a quadratic dependence upon

8. Tt can be compared to the similar expression cbtained for the covariances of
ML estimates, eq.(9.32).

In the simplest situatior with a linear model and a parameter indepen—
dent covariance matrix for the normally distributed observations, the double sum
in eq.(10,144) - which is identical to the covariance form of eq.(10.136) - is
a chi-square variable for which the number of degrees of freedom is equal to the
number of estimated parameters minus the number of linear constraints, if any.
Specifically, with only twe independent patrameters the intersections between the
xz(g) surface and the parallel planes at distance a from the minimum Kiin will
be a set of concentric ellipses which define joint confideace regions for the
two parameters, whose probability content is determined by ¥2(2). Hence the
elliptic confidence regions obtained by taking a = 12, 2%, 3% will have associ-
ated probabilities 39.3, 86.5, 98.9%, respectively, in complete analogy with the
joint likelihood regions for the asymptotic two-parameter case digcussed in Sect.
9.7.4. In the general multi-parameter case, the intersection between the Xz(g)
hypersurface and the hyperplane at distance a above the minimum will produce a
hyperelliptic joint confidence region for all the parameters, for which the con-
fidence coefficient is exactly given by the cumulative integral, up to the value

a, of the chi-square p.d.f. with a number of degrees of freedom equal to the
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number of independent parameters. Evidently, the associated probabilities for
Fixed values a = 1%, 22,--- will decrease quickly when the number of parameters
increases. Conversely, to have a specified probability content for the jeint
confidence region, larger values of a must be taken for increasing number of
parameters.

From the joint confidence region for all parameters considered simul-
taneously one can also deduce conditional confidence regions (intervals) for
subsets of the parameters, by seekimg the intersections between this region and
lines for fixed values of the remaining parameters, for example their estimated
values. The arguments are the same as in Sects.9.7.4 and 9.7.6 for the agymp~
totic likelihood function. The specific choice a = 12 will as before supply the
errors in the parameter estimates by the hypersurface circumscribing the joint
confidence region, as well as the conditional errors obtained by keeping some
parameters at their estimated values. In particular, with two independent para-
meters the situation is completely analogous to that described in derail for the
binormal likelihood function, Sects.9.6.3 and 9.7.4.

Irrespective of whether the actual minimization of Xz(g) involves a
linear model or not, the errors in the LS estimates are by cenvention determined
from the intersecting hyperplane at one unit above the minimum x;i“, and confi-
dence regions deduced with the choices a = 12, 2%,+**. 1n all situations when
Xz(g) is not of second order in the parameters and/or the observations are not
normally distributed, a comparison with the chi-square distribution will obvi-
ously provide only approximate values for the probabilities associated with the
different regions. How good the approximation is will in general depend on the
magnitude of the higher-order terms in the series expansion of Xz(g) and the

validity of the normality assumption for the observations.

11. The method of moments

The parameter estimators comstructed by the method of moments (MM) are
consistent but in general neither as efficient as the Maximum-Likelihood estima—
tors, nor sufficient. However, although the qualities of efficiency and suffi-
ciency are important an estimation method should not be judged from its theore-
tical optimm properties alone, but also for its applicability to practical pro-
blems. In particle physics, the moments method because of its feasibility has
been widely used in experiments to determine polarization and density matrix
elements. The MM estimates can be easily obtained, since their evaluation only
involves calculation of expectation values and averages of specified functions

over the experimental sample.

11,1 BASIS FOR THE SIMPLE MOMENTS METHODR
Given a probability density function f(xlﬂ) with unknown parameters
8= {61,92,....Bk} we want to estimate these parameters from a set of observa-
tions ApsKpyeoesX The r-th algebraic moment of the population is defined by
(see eq.(3.13) of Sect.3.3.3)
ul(e) = J *"£{x|8)dx, = 1,200, (1.1
Y]
where 0 is the domain of x. A reasonable estimator of U;(Q) is then the arith-

methic mean of the r-th power of the observations X,

! v r=1,2,... (11,2)

L] X

1

W13

d4|=
[

1
By equating the different moments of the parent population, which are functions
of the unknown 0, to the numerical values of the corresponding sample moments we

get
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ui{®) = m
Hi(®) = m (11.3)
ni(8) = my

etc.

A set of equatiens (?1.3) can therefore be found and solved to give the
MM estimates ﬁ = {61,62,...,§k}. As a limited number of moments usually will
not centain all information about the p.d.f. the MM estimators will in general
be less efficient than the Maximum-Likelihood estimators.

The estimator m; of eq.{11.2) is an unbiassed estimator of u;. since

T 1 2 = _

E(my) = E(; iin)-ur , (1.4

in accordance with the requirement (8.3) for an unbiassed estimator.

To evaluate the variance of m; we observe that
n n
1 ry1 r
E[(— E x.)(— E x)] -
®og=r VAR 5]

g+ oD

vim') = E((m! - uD?*) = B - !

2E(Exzr + Z ¥ x J) - péz

i j*i
where we use the fact that the x; are independent. Hence

V(m') = %{uér -, (11.5)

which shows that the variance of the sample moment of a given order is dependent
on the population moment of twice this order; V(m;) may therefore, even when n
is large, be of considerable magnitude for higher moments if the p.d.f. has
substantial tails. This explains why the simple method of taking the moments of

the variable x itself (Z.e. eqs.(11.3)) is rather seldom used in practice.

Exercise 11,1: Show that the covariance between m; and m; is given by

LI —l — "
covim ,m) = (”r+s urug)-

Exercise 11.2: Show that the MM estimators of the first algebraic moment and

the second central moment of any p.d.f. are u = = Ex = x and 02 = Z(x -3
respectively. Show that the varlance in the MM estlmate u is

V(u) = ;\ui—uiz) = g?fn = o%/n.
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11.2 GENERALIZED MOMENTS METHOD

Instead of using a set of powers of the variable x to estimate the
unknown 8, one can select a set of independent functions of x and proceed in a
similar way to comstruct estimators for these functions in terms of appropriate

*)

averages of the functions evaluated for the sample values XppXgaeenaXy

11.2.1 One—parameter case

In. the simplest situation, when there is only one unknown parameter,
it will suffice to consider a single function g{x). The expectation of g(x),
or the first moment of this function, for the p.d.f. £(x]0) is defined by (com-
pare eq.{3.6) of Sect.3.3.1)

Ela(x)) =vy(®) = J g(x) £(x|B)dx. (11.6)
2

An estimator of v(B) is now the average of g(x) over the sample,

Yo =3 == ] alxp)- (1.7

1
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i

The variance of this linear combination is

v = ( ) ( 1 elx, >)= % vigix))» {11.8)
where for V(g(x)] we may insert its estimated value obtained from the sample,
n
V[g(x)] = s; = ;1—1 i§1(g(xi) - g(x))z. {(11.9)
Thus we take
~ 1 n 2
V{y) = - g(x.) - g(x})2. (11.10)
e L e - T@)

An alternative form, convenient for numerical computation, is obtained after a

little algebra,

V(§)=n(n—]_1y{2g(x)-—(Ig(x))} (11.1%)

*) We will in the following allow x to have several compomnents; x5 will there-
fore denote all measured quantities for the i-th event.
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To summarize, eq.(11.7) will produce the MM estimate for the function
¥(8), and eq.{11.10) (or alternatively. eq.(11.11}) an estimate of its variance.

These estimates must next be "inverted” to give the desired & and its error.

Exercise 11.3: Verify that the choice g(x) = x reduces the formulae of the

last section to the previously established expressions for the MM estimate of M
and its variance (Exercise 11.2).

11.2.2 Multi-parameter case

Let us now assume that the estimation problem involves k unknown para-
meters, and that we have selected a set of k linearly independent functions

g1(x)y ga(x},...,g (x). With the p.d.f. f(x|8) the functions have expectation
values given by

E(g (x)) = v,(8) = J g, (x) f(x|9dx, r=1,2,...,k. (11.12)
Q

These expectation values are functions of the unknown 0, and for their estimators
we may take

n

~ _ 1 -
Y (8 = g;(kj == iZ]gr(xi), r=1,2,...,k, (1
These expressions are of course similar to the formulae writtem down for the one-
parameter case. For the covariance terms between the gr(x) we generalize eqs.
(11.10}-(11.11) to give the elements of the covariance mateix for i:{§1""’§k}’

n

Sy —
VeV = 5oy L (gr(xi) - gr(x))(gs(xi) - gs(xj)

i=1

1 n ! n
n(n~1){ E1gr(xi)gs(xi) - E(i£1gr(xi))(iz1gs(xﬂ)}' (11.14)

i=
In practice cne will employ functions gr(x) for which the exwpectations
have simple relationships to the parameters B, and which are such that the vari-

ances on the estimates § will not become too large.

11.2,3 Example: Density matrix elements (2)

We ghall see how the generalized moments method can be used to find the

density matrix elewents in the example which was introduced in Sect.9.5.8 in

-
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connection with the Maximum-Likelihood approach to the estimation problem. We
assume that a sample of n resonance events has been obtained, each event corre-
sponding to two measured quantities COSBi, ¢i' The theoretical distribution for

the decay of a vector meson into two pseudoscalar mesons is

£(cos0,9|PousPi-gsREDy ) = f%(!(1-poo) + 1(3pp0-1)cos?0

- py-ysin’Beos2g - V2 Rep, psin2Beosd) , (9.41)

where -1 % cos9 £ #1, 0 £ ¢ S 27, and Pgo,D;-) Repye are the three unknown para-
meters.
Guided by the form of the p.d.f. we now define three function g;,g.,8;

of the angular variables as

g, (cosh, ¢} = cos?d,
{11.15)

gz(cost,d) = sin?8cos2d,

g3{cosf,¢) = sin2Bcosd.

Calculating the expectation values of these functions for the p.d.f. of eq.{9.41)

and equating the expectations to the corresponding sample means we get

1 -

E(gl(CDSas¢)) = %(1+2000) =4 Ecoszei =&
1 . =

E(gz(cosd,d}) = - % Pi-t et ESlﬂzeiC°31¢i = g1 (11.16)
1 - -

E(ga(c059,¢)] = - %45hep]n= 5 Esznzeicos¢i = gy

where the summations are extended over all cbserved events,
The set of linear equations can easily be inverted to give the MM esti-
mates of the density matrix elements. To find the errors in these estimates let

us for convenience write the linear relationship as

fZc+Sg, (1.7

where é = Ipgospi-1,Repan}, E = {El,gz,gaf. ¢ = {-4,0,0}, and
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5/2 0 i}
s = 0 -5/4 0 . (11.18)
0 0 -5/4/7

When the variance matrix V(;) = V(é) has been calculated from the measurements
using eq.(17.14), the law of prepagation of errors, eq.(3.80), applies and

gives the variance matrix V(E) of the density matrix elements as
~ - T
vip) = sv(g)s, (11.19)
or, explicitly

8V,, =4Vi2 -2/7V;,
v =2 v, v VIV, |
=2¥2V, 5 VIV2s Vi,

where vrs is short for Vts(é) from eq.{11.14).

The previous comsiderations. assume that our sample consists of n events
that all represent true decays of the specifiec type 1 0 + 0. Most often
it is not experimentally possible to obtain a pure sample of resonance events,
and it is pecessary to perform some kind of background subtraction. One popu-
lar way of doing this is to determine the density matrix elements 0, using all
the n events in the resonance region of the effective mass plot, and then to
calculate the same quantities Py using the events in two adjacent mass regions.
The number n, of background events within the resonance region can be estimated
from the shape of the effective mass spectrum. Under the assumption that this
background is well described by the events in the neighbouring regions we can
estimate the density matrix elements p of the resomance by the approximation

no-
a

The uncertainty in this quantity is estimated as

1
Ap = T;;:—E;T /(naApa)2 + (nbﬂpb)z f (11,21)

where Apa, Apb are the errors connected to the estimates of PPy
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Exercise 11.4: The two-body decay % + % +0 can in the Jackson reference
system be described by the p.d.f.
3 1 1 2 2 . 2 .2
f=41z (1+4pgq) + E-(1—4933)0.03 & =~ ~- Repi;sin2fcosp - — Repy—,sin’Bcos2d ),
V3 Vi)

where 8 is the polar angle, 0 £ 0 £ 7, and ¢ the azimuth angle, 0 £ ¢ £ 27.
Show that the three density matrix elements p;j;,Reps;,Reps—) and their errors
can be obtained by the moments method using the trial function of eq.{11.15).

Exercise 11.5: The decay 2+ +0 +0 has the distribution

1 N

f= 75% {3poo(cosze— %Ji + 4p;1sin*Bcos?e + prosin®e

- 2costsin28(Repyysind + VERep;o(cose- )

- 2cos2¢sin’0{2p1_1c0s?0 - BRep, (cosif- %)]

+ 2Rep,_jcos3bsinfsin20 + pz_zcos4¢sin"8}.
The nine density matrix elements are not all independent since the normalization
condition requires pyo+2py; + 2p22=1. Discuss how a set of trial functions
can be chosen for this p.d.f., which will lead to MM estimates for the parameters.
Exercise 11.6: Show that the formulae for the decays 1 + 0 + 0 {eq.(9.41)}

——eTT T, e .
and 27 + 07 + 07 (Exercise 11.5) follow from the general formula eq.(10.85).
(Hint: The density matrix p is Hermitean,)

11.3 MOMENTS METHOD WITH ORTHONORMAL FUNCTIONS
The method outlined in Sect.11.2.2 becomes especially simple if the

p.d.f. can be expressed as
k

f(x|0) =1+ § 8.6 (%), 0<x s, (11.22)
=1

where the Er(x) constitute a set of k orthonormal functions, satisfying
1

JEr(x)ES(X)dx = GrS, r,s=1,2,...,k, {(11.23)
0

and
1
Jg(mdx=0, r=1,2,...,k. (11.24)
0

Then eq.(11.12} yields the expectation of Er(x) simply as
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E(gr(x)] = er . (11.25) estimator of @' is therefore giver by (eq.(11.26))

Therefore, an unbiassed estimator of Br is provided by the average value of the ol = ¢ =%
i

Il o153

ﬁ(Z}'i‘U »
function &r(x) over the sample, 1
for which the variance is asymptotically (eq.(11.27))

~

n
1
B, = L.00 == § £ (x), r=1,2,...,k, (11.26) . . .

i=1 Via") = F (1=’ )-
Since the functions E,r(x) are orthogonal the covariance terms between

different ﬁr‘as vanish. The error in er can be Found from the approximate for- In terms of the original variable cos¢g the estimate of the parameter

mula for the variance, eq.(11.14), which becomes ¢ and its variance become.

, ~ 1 1B ~ 1 A U AT |
v sz=-'"'-(; {g;(xi>-n§):;:l-[1~ AR (11.27) “ o=

[t =]

cosd, » (11.29)
1 1

(K1}

Ty — T n-1 i i
1=1

~ ~ 1 ~
Vim) = 3via') = — (3-a%). (11.30)
11.3.1 Example: Polarization of antiprotons (3)

We reconsider the polarization example described under the Maxioum— It is interesting to compare this last result with the corresponding

Likelihood method in Sect.9.5.7 and under the Least-Squares method in Sect.10.5.3. result for the variance obtained with the Maximum-Likelihood method. For large

The distribution of the angle ¢ between the normals of the two scattering planes n the variance of the Ml estimate of @ takes the smallest possible value, given

is given by by €q.(9.39}. Hence the asymptotic efficiency of the moments estimator is

o3
f(cost|a) = §(1 + acosd) » -1 2 cosp £ 1, (9.38) ~ 1 2o
- . i@ P ) - 1001-8) - 24
Efficiency (am) = — = (11.31)
where the unknown is a=P?, the square of the polarization. VMM((!) 1 (3-22)
The p.d.f. is not of the form of eq.{11.22). However, in terms of a n=1
new variahle which for large n and << gives
v = b(cos$ + 1}, Dsyst, (.28 Efficiency (@) = 1 - A G, (11.32)
15
we can write the p.d.f. in the required form Thus, for small polarizations P, the MM estimator is nearly fully efficient.

Numerically, the asymptotic efficiency is 0.99997 for P = 0.10, and 0.998 for
£'(yla’) =1+ a'E(y)

P =0.30.
if the new parameter is taken to be @' = u/¥/3 and See further Chapter 12,
E(y) = Y3(2y-1). Exercise 11.7: Show that a more general expression than eq.(11,30) isg
. L. V(d) = A k] li 24 .52
The function £(y) satisfies the two conditions of eqs.{11.23}, (11.24). Hence n-1 . 1“’5 LR
i=
the results of the previous section can be applied directly. An unbiassed : This variance formula is wvalid for all sample sizes.
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11.3.2 Example: Anpular momentum analysis {(2)

We go back to the example of Sect.10.5.4 and write the formula (10.87)
for the angular distribution of a two—pion decay of a spin J boson in the form

23
+ e Y, (11.33)
) im

Wi = i
=24y s

s
41
where the YW(Q) are the well-known spherical harmonic functions. All conditions
specified in Sect.11.3 for the use of orthogonal functions are satisfied, except

for the trivial difference in variable region. We have now

fw(sz)cm =1,

4

JfY?(Q)Y?(Q)*dR = sjj.amm. , (11.34)
47

Jr’j“(sz)cm = 0.

47
Hence the results of Sect.11.3 apply, giving the unbiassed estimates of the ex—
pansion ccefficients ij as the average values of the Y? over the experimental

sample, (eq.(11.26))

n

iZ1Y?(cosOi,¢i) , (11.35)

~ m 1
ij = Yj(Q) =4

where n is the number of events. The estimates are uncorrelated and have vari-

ances given by eq.(11.27),

V(Ejm) "“B'lT (1-23“1). (11.36)

It will be seen that estimating by the moments method with orthogonal
functions, as described here, is computationally much simpler than the Least-

Squares estimation of Sect.1(.5.4.

11.3.3 Confidence intervals for MM estimates

Working with orthonormal functicns has the further advantage that con-
fidence intervals can be obtained for the parameters independently. For the

r-th parameter we have from the Central Limit Theorem, when n becomes large,
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n
.E1gr(xi) - nBr § - Br
1 = L > N{0, 1), (11.37
ng? orlﬁ?
r

where ér is the MM estimate of Br from eq.{11.26), and where 0; is the (unknown)
variance in the distribution of gr(x) around Br' For large n, Or/VG-may be
approximated by sr/ﬁ;, where s; is the sample variance of gr(x) from eq.(11.27);

hence

B -0
T r

+ W(0,1) when n + © . (11.38)

s_ [/
T
The standard normal distribution can therefore, whes n is not too small, be used

~
to derive approximate confidence intervals for each Br from the observed Br, s

T

11.4 COMBINING MM ESTIMATES FROM DIFFERENT EXPERIMENTS
Suppose that two experiments have estimated the parameters 8 by the
moments method using the same sets of orthogonal functions. The experiments

have been based on n, and n, events, respectively, and have given the estimates

§F1) and E(Z). The result of the combined experiment for the r-th component in
0is
“lgnz
8 - L B ) " 5 (2
er n,+n, i=1gr(xi) T ooy tng er * ny+n, er '

which is nothing but a simple weighted combination of the MM estimates from the

individual experiments. The variance of this combined estimate of @r is

~ 1 /‘2
v o e — {1- .
(Sr) n;+n, -1 @ 9r)

If the two experiments have used the more general moments methad of
Sect.11.2.2 the MM estimates of each experiment will be associated with a non-
diagonal covariance matrix. The combined estimate and its error must then be
found by a more elaborate procedure, for example by a Least~Squares approach as

described for the example of Sect.10.2.6.

i 12 - Probability and statistics.




12. A simple case study with application of
different parameter estimation methods

In practical problems to determine numerical values of physical con—
stants on the basis of sets of experimental data the physicist may have the
opportunity to choose between different estimation methods. His actual choice
of estimators will usually depend on statistical as well as other criteria,
General statistical properties that should be possessed by good estimators were

considered in Chapter 8. These optimum properties are: .

- congistency, which means that the estimator gives rise to estimates
that converge towards the true parameter value when the number of
observations is increased;

- unbiassedness, which means that, regardless of the sample size,
the estimator produces estimates that are not systematically shifted
from the true parameter value;

- efficiency, which means that the distribution of the estimates has
miniman variance about the central value (equal to the true value
of the parameter for unbiassed estimators);

- gufficiency, which means that the estimator exhausts all information

in the observations regarding the unknown parameter.

In choosing between possible estimators the physicist will alsc take

other factors into consideration, Preferentially,

- the establishing of necessary formulae for computation should be as
simple as possible;

- the computer programming should not be too complicated; for example,
relevant software should be available for matrix inversion and
function optimization;

- the method should make economic use of computer time.

Some of the ideal theoretical properties and the practical demands

will frequently be conflicting. In practice one will therefore have to give

T
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pricrity to certain factors and sacrifice others which are assumed less import—
ant.

In this chapter we will consider a particularly simple example with
simulated polarization experiments where the estimation involves a single para-
meter . The purpose is, firstly, to recall how the parameter estimate and its
error can be obtained by the different estimation methods described earlier and,
secondly, to demonstrate that these estimators produce mutually consistent re-—

sults.

12.1 SIMULATION OF POLARIZATION EXPERIMENTS

We will take for a case study the simple one—parameter example of
Sects.%.5.7, 10.5.3, and 11.,3.1, describing the polarization of antiprotons in
EP elastic scattering. The theoretical distribution for the angle ¢ between the

scattering normals is given by
flx]ay = §(1 + ax) (12.1)

where x = cosd is restricted to the interval [-1,+1]. For this class of under-
lying distributions we have generated artificial event samples corresponding to
specified values of the parameter o by the "hit-and-miss" Monte Carlo method
using a computer equipped with a uniform random number generator. The number
generator delivers numbers r which are uniformly distributed between 0 and 1.
An event candidate can be constructed from two consecutive numbers r; and r;

from the generator by definimg the angle ¢i through the relatien
cos¢i =2ry - 1, (12.2)

and this candidate is accepted and included in the artificial event sample if,

for the specified &,
f(cos¢i|a) = (1 + acosd,) > ra. (12.3)

We have carried out simulations using two different values of the
parameter a, 0=0,09 {corresponding to a polarization P=/3=0.3) and 4=0.25
{P=0.5). For each @, four independent, artificial samples were generated with

n=10, 100, 1000, and 10000, giving altogether & independent, simulated experi-
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8
g ments. Figure 12.1 shows histograms in x=cos$ for the "events" from these 8 "ex-
§ periments", together with curves showing the underlying "theoretical" distribu-
-g tions f(x|a) with the a-values used in the simulations, nomalized to the number
3 of events in the "experiments”. It is seen that all histograms match well with
< the "theoretical" diseributions, and it appears justified to comsider the gene-

rated event samples as fairly typical for physical events origimating from the

cortesponding distributions. We will therefore, in the following, regard the
generated samples as if they consisted of real, observed events in 8 different

experiments, and use them to estimate the unknown parameter o by the usual esti-

mation methods described in Chapters 9-11.

Number of events /0 2

12.2 APPLICATION OF DIFFERENT ESTIMATION METHODS
We proceed now to see how the data of the simulated experiments can be

used to chtain estimates of the unknowm parameter and its error. In the follow-

3
<
¢ - A .
g ing sections we briefly recapitulate how o and Ax, or V(at), can be found by the
g different estimators using explicit formulae and graphical methods. The numeri-
g cal results obtained by the different methods for the 8 experiments are all sum—
3 marized in Table 12.1, and will be discussed further in Sect.12.3 below.
12.2,1 The method of moments
The present example was treated in Sect.11.3.1 using the moments
method with orthogonal functions. The MM estimate of o is simply given by
120 (eq.(11.29))
{12.4)

~
o =

2w

n
Z X
i=t *
and for large samples the error in & can be found from the asymptotic expression

for the variance, (eq.{11.30)),

Vi) = ;1-]— (3-a2). (12.5)

Number of events /0,02
=3
o

80 a=00%
n=10000
be obtained from the more general variance for-

For small samples the error can

mula (Exercise 11.7)

-10 00
X
Fig. 12.1. Histo rams i = - n ~
4 in x=cos$ for 8 Monte Carlo simulated polarization vin) = EéT (% ) xi - az) (12.6)
i=]

experiments generated with the indi
] indicated val
b o 3 ues of the paramet
da esd(]zr?;ght lln?s correspomd. to the theoretical dissributisz—;ixfhe
. . normalized to the generated number of events n ®)
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The last formula has been used to obtain the errors for the generated samples
with n not exceeding 100, althcugh one may expect the numerical result for V(&)

to be rather sensitive tc the particular sample values X given n,

12.2.2 The Maximum-Likelihood method

The likelihood function is given by

T
L{xiaxos.nn,x |o) = W F+ox)
i=1

from which

n
InL = -nla2 + } Ln(1+ax,). (12.7)

i=]

In Fig. 12.2 1nL is shown as a fupction of a for the 8 experiments.

For each experiment the ML estimate a corresponds to the peak of the Inl func-
tien, and the error in o is determined by intersecting the function by a
straight line at a distance 0.5 below its maximum value. As can be seen from
Fig. 12.2 the InL function, even for the smallest samples, has an almost symmet-—
ric and parabolic shape. The error 4 can therefore for each experiment be
taken as the average of the distances A&L and A&U defined by the lower and upper
intersection peints; see Fig, 12.2(a).

In addition to the estimated errors obtained by the graphical method
Table 12.1 also gives the errors deduced from the large-sample formula (9.39)
derived for the present p.d.f. in Sect.9.5.7,
1 20
n In(T+a) - In(1-0) - Za '

via) = (12.8)

12.2.3 The Maximum-Likelihood method for classified data

When the events are classified in N bins with n, observed events in the
i-th bin the ML solution fer the unknown parameter o is found by maximizing the

expression {compare Sect.%.9)

N
lnL(n;,nz,...,nN$u) = .E]nilnpi(u),
i=

InL |

{a)

InL 4L 1D_L1m<i_>9__

-c4 00 04 08 a

00 010

inL |

-~ == ————

008 009

010 a

024

025

Fig. 12.2. 1oL of eq.(12.7) as a function of the parameter o for the 8
simulated experiments.
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where pi(u) is the probability for the i-th bin, given a. For the bin extending

from x, to x. *+ Ax, we have
i i i

x, +Ax,

i
pi(u) = J P (v + ax)dx = a + abi, {(12.9a})
X,
1
where
a, = iAxi, b, = iﬁxi(xi + {Axi). (12.9%)

Hence we can write

N
lnL(nl,ng....,nNEa) = Z niln{] + u(xi +£Axi)} + const (12.10)
i=1

where the argument for the logarithm is taken at the central value of the i-th
bir.

Although the ML method with classified data was introduced to save com—
putation, and only is of practical interest when n is large, we have applied it
here for demonstration purposes for n as small as 100 (10 classes). The results
obtained are given in Table 12.1, together with the errors in the estimates as
deduced by the graphical method using the points where the lnL functien is 0.5

below its maximum value.

12.2.4 The Least-Squares method

With n events distributed in N bins the usual form for the function to

be minimized is
s (12.11)

vhere pi(u), the probability for the i-th bin, is given by eqs-(12.%a,b}.

The quantity X% is shown graphically in Fig. 12.3 as a function of o
for the B experiments, with their minimum values indicated, corresponding to the
1S estimates G. Also indicated in each graph is the straight line at distance

1.0 above the function minimum, which determines the error in each estimate.
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Fig. 12.3. X? of eq.(12.11) as a function of the parameter a for the 8

simulated experiments.
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12.2.5 ‘The simplified Leagt-8quares method

As we saw in Sect.10.5,3, the simplified LS method with
X2 If {ni"“"i @]*
= _r
4 n (12.12)

and . i i i i
npl(ﬂ) linear in the parameter o, implies that X% ig of second order in o

H . . .
. ence the analytical solutions can be written down for the L§ estimate and itg
error [eqs.(]O.BZ), (10.83)]

N N na.b. N b?
a = % I (b. -2 1)// ) Ei
i=pv 1o i=y M 7 (1219
. N bZ -y
! Ay = 1 ( —1) .
n g (12.14)

| Table 12.1 gives the numerical results cbtained for the estimated para-
meter and i i i ifi
} tts error with the simplified LS method as well as the ordinary LS

method applied to ali 8 experiments, including the two ex

' periments with gample
S81ze n=

10, which do not fulfil the usual requirements on the number of bins and

their contents as discussed in Sects.10.5.1, 10.5.2;

' . for the latter the numbers
are given in parenthesis,

12.3 DISCUSSION

12.3.1 The estimated parameters and their errors

From the numerical values of Table 12.7 the follewing conclusions may
be drawn:

= for each generated sampie (experiment) the estimated
par

values of the
ameter by the five different procedures are generally in good
agreement, except when the sample size is very small (n=10);
E]
= within each sample the parameter errors estimated by the different
procedures are roughly equal;

= the estimared errors are inversely proportional to the square root
of the sample size.

For 1 . . .
\ the larger samples the first resulr is not surprising, since all
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rable 12.1 Summary of results from estimatiouns
I
Generated Estimation Numyer Estimated | Estimated parameter error A
sample methed of bins| parameter
{experiment} ] value & | Analytical Graphicaﬂ MVB
v
Moments - 0.42 0.62 -
(a) ML - 0.38 0.52 0.47
o=D.09 ML, classified data - - - - 0.54
1.5, ordinary (4) (0.15) - (0.53)
n=10 LS, simplified (4) (0.16) {0.55) -
IR
Moments - 0.172 0.175 -
(b) ML - 0.170 0.171 0.173
a=0.09 ML, classified data| 10 0.177 - 0.174 [0.173
100 1S, ordinary 10 0.175 - 0.172
n=10 LS, simplified 10 0.188 5.165 -
Moments - 0.078 0.055 -
(e} WL - 0.080 0.054 0.956
a=0.09 ML, classified data| 50 0.080 - 0.056 |0.054
L5, ordinary 50 0.075 - 0.054
n=1000 | is simplified 50 0.109 0.052 -
Moments - 0.093 0.0173 -
@ ML - 0.093 0.0173 | 0.0173
a=0,09 ML, classified data| 100 0.093 - 0.0172 |0.0173
10000 | LS» ordinary 100 0.092 - 0.0175
n=100 LS, simplified 100 0.095 0.0172 -
Moments - 0.21 Q.44 -
(e} ML - 0.40 0,52 0.71
a=0.25 ML, classified data - - - - 0.54
=10 LS, ordinary (4) {0.05) - {0.69)
W LS, simplified (4) (0,40) (0.43) -
Moments - 0.215 0.164 -
) ML - 0.240 0.170 0.178
o=0,25 M., classified data| 10 0.251 - 0.180 {0,170
=100 L8, ordinary i0 0.250 - 0.180
n=10 LS, simplified 10 0.224 0.154 -
Moments - 0.211 0.055 -
(&) ML - 0.210 0.054 0.054
a=0.25 ML, classified data 50 0.207 - 0.054 |0.054
00 LS, ordinary 50 9.200 - 0.057
n=10 15, simplified 50 0.215 0.054 -
Moments - 0.262 0.0171 -
(h) M - 0.258 00170 | ©.0172
a=0, 25 ML, classified data| 100 0.259 - 0.0168 [0.0170
L5, ordinary 100 0.258 - 0,0170
| O=10090 ¢ simplified - 100 0.260 0.0169 -
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five estimators are consistent and asymptotically unbiassed. For the very small
samples with n=10, even the methods which utilize all information in the (un-
binned) data, 7.e. the moments and the ML method, give numerically different
values for the estimated parameters; however, considering the magnitude of the
estimated errors, these results are not incompatible,

The dependence of the estimated errors upeon the sample size is as ex—
pected. For the p.d.f. of the present example, eq.(12.1), the minimum variance
bound, MVB, can be evaluated from the fundamental Cramér—Rao inequality (8,11);
one finds

298

A
Vi = v < Ta0ey = %5 °

which is nothing but the ML large-sample variance of eq.{12.8). The correspond-
ing MVB error A obtained for each generated sample is also given in Table 12.17,
It is seen that the errers estimated by the different procedures are close to
the MVB error for all sample sizes. This means that all five estimation pro-
cedures have a high efficiency alse for small n. (However, no estimation pro-
cedure for a can be fully efficient for all n, since the p.d.f. of eq.(12.1)
does not belong to the exponential family and therefore does not have any suffi-
cient estimator for g Sect.B8.6.1.)

Some of the estimated errors in Table 12.1 are somewhat smaller than
the corresponding MVB error. This need not disturb us, since the MVB is to be
understood as the lower limit of the expected value of the estimated variance,
and thus represents no absolute minimum for this quantity. Hence if many new
samples were generated, with similar number of events, these could give smaller
or larger estimated errors than the actual table wvalue for the given methods,
but in such a way that their average value, for any method, would always be at

least as large as the MVB error.

12.3.2 Goodness=of-fit

As was emphasized in Chapter 10 the Least-Squares method has an ad-
vantage over other parameter estimation procedures in that it can provide a di-
rect measure of the goodness-of-fit between a fitted model and the experimental

data, since the minimuym value obtained for the optimized Function, under certain

—
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conditions, has welldefined distribution properties. Specifically, if the number
of events is not too small, x;in is a chi-square variable with a number of de-
grees of freedom equal to the number of independent terms in the X? sum minus
the number of independent parameters estimated; the corresponding chi-square

min
than that observed, and can be found, for example, from the graph of Fig. 5.2.

probability sz is then the probability for obtaining a higher value of X2,

Table 12.2 gives the minimum wvalue x;in and the deduced chi-square
probability sz for the ordinary and the simplified LS fits to the generated
samples of size n % 100. 1In each fit the number of degrees of freedom is

(N-1) = 1 = ¥-2, where N is the number of bins used.

Table 32.2.
[ Generated sample Number of bins Ordinary 1§ Simplified LS
(experiment) N x;in P2 X;i“ sz ;
1
(b) ©=0.09 n=100 10 4.6 0.80 4.5  0.82
{e) ©=0.09 n=1000 50 38.5 0.82 47.3 0.56
(d) «=0.09 n=10000 100 49.0 >0.99 47.9  »0.99
(£) ©=0.25 n=100 10 11.7 0.18 11.8 G.17
(g) @=0.25 n=1000 50 9.5 0.80 417 0.72 !
{h) a@=0-25 n=10000 100 39.¢ >0.99 39.5  >0.99

The numbers of Table 12.2 show that the chi-square probabilities from
the ordinary and the simplified LS methods are simitlar, The high probabilities
indicate that the LS fits are "good". In particular, the exceedingly high
probabilities obtained for the large sample experiments in this case are very
likely just a reflection of a well-behaved random number gemerator, which has
produced artificial event samples which are extremely close to the ideal con-
tinuous distributions of eq.{(12.1).

For small samples the distribution of the K;in statistic is not known,
and the LS estimation is not associable with a chi-square probability expressing
the goodness—of-fit. Similarly, regardless of the sample size, the moments and
the ML estimation methods provide no direct measures for the goodness—of-fit.
One may of course calculate a corresponding X? valee from eq.(12.11) or {12.12)
using the fitted parameter values by these methods and a reasonable binning of

the data, but the X® statistic constructed this way is generally not simply chi-
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square distributed, and one will therefore in general not be able to assign a
chi-square probability for the goodness—of-fit, Only if there is a very large
number of observations, corresponding to a substantial number of events in the
separate bims, can the X° statistic as obtained by inserting the ML estimates
for the parameters be regarded as approximately chi-square distributed (see
Sect,14,4.3), and a chi-square probability for the goodness—of-fit be deduced
from, for example, a standard graph of the cumulative chi-square distribution,
In principle, the numerical value obtained for lnL(max) could also be
used to supply informatien on the goodness—of-fit if the distributional prop-
erties of the statistic lnL(max) were known. This is generally mot the case,
One can, however, construct an approrimate probability distribution of 1nL(max)
cotresponding to the specific & and n by using the Monte Carlo technique to
generate a large number of event samples, all of size n, and determine for
these {independent) samples the frequency distribution of the values obtained
for InL(max). Since lnL{max) depends on the parameter ¢, only simulated ex-
periments producing fitted parameter values very close to the specific @ should
be used in deriving this frequency distribution, The probability to obtain a
smaller value than the actually observed lnL(max) for the specific a can then
be estimated as the integrated value from -« up to lnlL{max) of the derived
frequency distribution, thus providing the desired measure of goodness-of-fit.
Figure 12,4 shows the frequency distribution for I!nL(max) and the
corresponding cumulative distribution F obtained this way on the basis of 100
independent simulated experiments with n=10 which all gave estimated parameter
values in the intervai [0.37,0.41], We take Fig. 12.4(a) to represent an
approximate distribution of lnL{max) for the two small sample experiments (a)
and (e) from Table 12.1, for which the ML method gave the estimated parameter
value & equal to 0,39 and 0.40, respectively. $Since the actual values obtained
for InL(max) were -6.68 for experiment (a) and -6.79 for experiment (&), we
find from Fig. 12,4(b) that the corresponding estimated ML probabilities become
0,46 and 0.04 for these experiments, Proceeding in a similar manner to obtain
the approximate lnL{max) distributiens for the two experiments (b} and (f) in
Table 12,1, both with n=100, we estimate theix ML probabilities to be 0.55 and
0.12, respectively; these numbers compare reasonably with the chi-square prob-

abilities as given in Table 12,2, being =0,80 and =0,18 for these experiments.
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Fig. 12,4, {a) Distribution of lnL(max} obtained for 100 simulated
experiments with n=10 and & € [0,37,0,41]. (b} The cumulative inte-
gral of the distribution in (a).




13. Minimization procedures |

There exists a variety of problems which require the optimization of
Some function with respect to a set of parameters. The Maximum-Likelihood and
the least-Squares methods have in common that the optimum values of the unknown
Parameters are determined by seeking the extremum of a function for which an
explicit dependence on the parameters has been written down. Since maximizing
the likelihood function is equivaleut to minimizing its negative value we may
formulate the ML as well as the LS methods for parameter estimation as problems
of minimizing a function with respect to its variables.

The numerical minimization procedures to be outlined in this chapter
are of rather general applicability, the only assumption being, for some methods,
an approximate quadratic behaviour of the function in the immediate vicinity of
its minimum. In particular, when minimizing the negative logarithm of the like-
lihood function or the sum of squared deviations Dy the Least-Squares method,
the function is often to a good approximation quadratic in the variables near
its minimum.

Effective use of the techniques described in the following presupposes
that the procedures have been programmed for high-speed computers. Although much
of the basic theory dates back to Newton's time or even earlier, it is now hardly
conceivable to apply these techniques for hand calculation. One may conmveniently
think of the procedure as a programmed subroutine or algorithm which is called
with assigned values of the variables {parameters) and which returns the funetion
value and sometimes its derivatives.

The remewed interest in the minimization problem during the last years
has resulted in new minimization procedures as well as improvements and exten-
sions to old ones. We shall empﬁasize the principles behind selected methods and
describe how they work. The reader who needs more detailed information and
further theoretical justification should consult more specialized literature.

s s e . *
Several very good and flexible minimization programmes ) of rather

*
) An example is MINUIT of the CERN Program Library.
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neral nature are presently available as more or less standard equipment of
e

: pDue to the finite work length of digital computers

1atge computer installations.
r may sometimes have to worry about numerical imaccuracies arising from

a use ] » - .
Difficulties of this kind require

rounding-off errors, underflow and overflow. i
ecial attention and can be handled by various elaborate methods. A discussion
sPp

f these more technical points is, however, outside the scope of the present
o

text.

13.1 GENERAL BREMARKS N . )
Io this chapter the real function to be minimized is demoted by F{x),

i i n parameters.
with the variable x = {xl,xz,...,xn} corresponding to tl:le pa o
A minimum point x” of F{x) is defined as a point where F(x} > F(x

i ° 8 know that a minimum point
for all points x near x . From elementary calculus we

must be of one of the following types:

(i) a stationary point, where all the derivatives aF/axi are zero,

(ii) a cusp, where some of the derivatives are zero and others do not
s

exist,

(iii) an edge point, that is, a point lying on the boundary of the

aliowed variable region.

We will here consider functions for which an explicit analytic expres—

gion is not specified or is very complicated. The usual way of finding the ex~

trema of a function by equating all its first derivatives to zr?rn is then not
d¢irectly applicable. A reasonahle approach in this sltuat;lc:')n is to perform : .
mapping or search over the variable gpace to locate the winiwa of F(x). Suc
search can be done in many ways, defining different minimization procedure?-
The function to be minimized often has more than one minimum. Since
it seems to be rather difficult to define minimization procedures which will ‘
surely produce the absolute minimum of a function, or the global n:rir:timun, we will
at first anticipate the procedyres to lead to the nearest local minimum. .
To be able to propose "intelligent" minimization methods let us first

i i itd all
study the function F(x) near some arbitrary point ¢. Intvitively we expect
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the derivatives of a physically meaningful F(x) to exist in the region of inter-

est. We may therefore perform a Taylor series expansion of F(x) around the point
c and write

Fx) = F(@) + 2 Gro) + hx-o)Totxe) + ... (13.1)
where _g_T is the transposed gradient vector with elements gi=BFIBxi, and the
matrix G has elements Gij==E}21"‘/l§x]._é)xjl with the indices i,j running from 1 to n,
The derivatives are to be evaluated at x=2c,

In eq.(13.1) F{¢) is a constant and therefore supplies no information
about the location of a minimum. In the second term the vector & is expected to
vary considerably over parameter space, being close to zere in the neighbourhood
of a stationary minimum. The components of the product ET(I'E.) will tell us in
which direction F(x) changes most rapidly, but not how far we should g0 to poss-—
ibly reach the minimum. Information about the required step size can be gained
from the third term of eq.(13.1). The matrix G, derived from the second deriva-
tives of F(x), will usually have a modest variation over parameter space, being
constant for 2 function F(x) of strictly quadratic form. Clearly, if F{x) is to
possess any minimum value at all there must be some restrictions on the symmetric
n x nmatrix G. At a stationary minimum G is positive-definite.

For a specified problem the choice of minimization method should depend
on the information available on the function F(x). In general, the more informa-
tion gbout F(x} actually used in the minimization, the more efficient we expect
the method to be. One can conveniently consider the following situations in

levels of increasing koowledge about F{x),
(1) only F(x) is known,
(ii) F(x) as well as its first derivatives are known,

(iii) F(x}, its first and second derivatives are kmown and reasonably

continuous.

We shall in the following consider minimization methods which assume

different knowledge about F(x). If the derivatives are not known analytically

they may have to be obtained numerically.

r
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The minimization procedures we describe can copveniently be divided
into two main classes, the step methods and the gradient methods. The step
methods do not use any information about the derivatives of F(x) when the step
length and step direction have been chosen, whereas the gradient metheds do. .

Common to many methods is that they need the repetition of a certain
procedure to make the function converge towards a minimum. One must therefore
formulate convergence criteria which will ensure that the process is brought to
an end as s‘oon as the criteria are fulfilled. The repetitions can be stop?ed,
for example, if the change in the function value for two congecutive iterations
is smaller than a preassigned number.

When 2 minimum has been obtained for F(x) it remains to find the er-
rors on the parameters. For the last of the minimization procedures described
here, the Davidon variance algorithm, the covariance matrix is obtained by the
algorithm itself. For the other minimization methods special variance algo-
rithms must be applied, based upon reasonable assumptions about F(x) and the
ideas of Chapters 9 and 10, whenever these are applicable.

In Sect.13.6 we will discuss the situation which arises when the fune-

tion F{x) is constrained through limited allowed regions for the parameters.

f=2|0 I | | 1 1 -

10 15 20 25 30 35 X2~
=05

f=0.0

2,2 _ 2
Fig. 13.1. "Rosenbrock's curved valley", F(x1,x2)=100(x2-x7) +(1-x1)",
(Exercise 13.1}.
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Exercise 13.1: An often used function for testing the efficiency of minimization
procedures is "Rosenbrock's curved valley™

Fx;,xz) = W00(xz~x{)? + (1-x;)2.

This function defines a narrow parabolic valley as indicated by the contour dia—-
gram of Fig. 13.1. Show that

(i) the minimum of the function is given by F(1,1) =0,

(iit) the components of the gradient vector g at an arbitrary point (x,,x%;) are
) & B
given by
B1= 400x] - 400x;x» + 2x, - 2, g2 = -200x7 + 200x,,
(iii) the elements of the matrix ¢ are given by

Gii = 1200%; - 400x, + 2, €, = G5y = - 400x, , G,, = 200.

13,2 STEP METHODS

The step methods presented below are more or less empirical and do not

have any real theoretical basis. Nevertheless, for many minimization problems

simple step methods perform equally well as the better grounded gradient methods.

13.2.1 Grid search and random search

The most elementary minimization procedure comsists in mapping the func-
tion values in a grid over the eatire parameter space and keeping the poinr with
the lowest functionm value as the best point.

in a one-dimensional grid search ome just calculates the function values
F{x) at points equally spaced Ax apart. One of these points must them lie within
$Ax from the true minimum, but since the minimum need not be closest to the point
with the smallest F-value it is for reasonably smooth functions assumed that this
simple grid search in one variable will only localize the minimum to within a dis-
tance Ax.

In two variables a grid search locates the minimum within a rectangle

Ax1Axp, in three variables within a volume Bx18%24x4, ete. With more variables the

grid search obviously requires a rapidly increasing number of function evalpations.
For example, to localize a minimum to within 1% of the range of one variable by
this technique, 100 function evaluations are necesgary, while with five variables

the npuwber of evaluations required is 10%%. Clearly, therefore, a simple-minded

grid search should only be used for a rather crude mapping over the parameter

space when more than two or three parameters are involved, The best point found
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in the crude scan can then be used as a starting point for a more refinfd minimi-
zation method. Indeed, whenever complicated functions are involved an introduc—
tory grid mapping is recommended to find good starting values for a subsequent
jteration method.

The mapping procedure runs into obvious difficulties if the parameter
range is very large (infinite). 1In this case one can in practi?e start the
mapping with a reasonable interval for x within the allowed reglon, and later
shift the range if the smallest value of the function turns out te be at the

poundary of the chosen interval. .
The simple grid search can be characterized as 2z blind or umintelligent
method, since it does not take account of what could be learned about the ffnc~
tion along the way. Assuming a reasonably smeath function the method certainly
involves many redundant function evaluations in regions of the parameter space
where the function values are net small. By performing the grid search in more
stages, however, the method can be made more efficient. .
A mylti-stage grid search can be done in the following way: in the first
stage a crude grid mapping is made all over the parameter space, conf?ning the
minimmm to a restricted volume element. In the second stage a new grid search

is performed within this volume, limiting the minimum to an even smaller reglonm,

and so on.

With wany parameters, instead of performing a systematic grid search all
oyer parameter space, good results are often obtained by a Monte Carlo search,
choosing points x randomly in that region of parameter space where one efpects
the minimum to be. The Monte Carlo mapping is usually made with a Gaussian ran—
dom number generator comstructing a set of trial points x around some first—guess
value x, of specified width. The point giving the lowest function value is then

retained and can be used as a start point for a more advance minimization tech=

nique.

A function of four variables defined within_a finite'spéce is to
be minimized by & grid search. ‘The minimum should be }oeallzeg to w1th1?o?gefﬁsz_
mille of the range in each variable. Show thﬁt in a s%mple grid search 10

tion evaluations are necessary, and that 3.10" evaluations are necessary 1n a
three—stage grid search.

Exercise 13.2:
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13.2,2 Minimum along a line; the success-failyre method

In the one-parameter case and in variation methods wvarying only one para-
meter at a time the problem is to search for a minimum in one direction, ' The
following prescription for finding the minimum along a line, the succass-fat lure
method, has been given by H.H. Rosenbrock.

Let F(x) be a function of the variable (parameter) x and suppose that a

first guess of the minimum is x = X,. For a given step of length s we evaluate

F(x+s) and proceed according to the new functionm value obtained:

(i) If F{x*s} S F(x) call the trial a success, replace x by x+s and s

by ts, where the expansion factor o satisfies o > 1.

(ii) 1f F(x*s) > F(x)} call the trial a failure, replace s by Bs, where

the coutraction factor B satisfies -1 < g < 0.

The procedure is repeated until the difference between the function values of the
two last successes is less than a specified amount. Good empirical values for
the expansion and contraction factors are a = 3,0 and B8 = — 0.4.

It should be noted that when a success is immediately followed by a fail-
ure the middle one of the last three points corresponds to a smaller function
value than the ocuter two, and hence a local minimum must 1lie somewhere between
the outer points. This suggests the formulation of an alternative convergence
criterion: 1If the distance Ax between the outer points is smaller than a pre—
assigned value the procedure should be stopped; the best point then corresponds
to the last success and the true minimum will be less than a distance Ax from
this point.

In this situation when a success is immediately followed by a failure one
can, in fact, do even better. Since experience indicates that functions often
have an approximate quadratic behaviour near a minimum we predict F” to coincide
with the minimum of the parabola passing through the last rthree points xi,x,
(success), x3 (failure). Denoting the corresponding function values by Fy,F;,F3
the interpolated minimum is at xo, gpiven by

o (FimF2)(xi=x3) + (Fy—F2) (xi-x3)

x =4 (F1-F2}{xz-x3) + (F3~Fz) (x1-x2) ~ (13.2)

353

The success-failure method combined with & quadratic interpolation
appears in practice to be very efficient and is therefore well suited to find the

minimym of a function of only one variable.
Exercise 13.3: Prove eq.{13.2).

: o
Exercise 13.4: Show that an alternative form for the interpolated value x of

L(13.2) is
& (F,-Fzla(2x+2s+as) + (F3-Fz) (2x+3)

(F1-Foya + (F3-F2)

x° = 4

Exercise 13.5: The function F(x) = x’—x-1 with the true minimum F=-1.25 foF
0= 0.5 is to be minimized by the Success=failure method using the start point
%, = 3, an initial step size s = 1, and the comstants & = ?.0, B = - D.4L. Show
that after four function evaluations (three steps} the minimum is brackel:.ef:l be-
tween x ==0.6 and x =+2 (& = 2.6), and verify that the mterolated minimom
oceurs at the correct point x° = 0.5. Ignoring the intet?o].atlon, show that
after seven function evaluations (six steps) the minimum is bracketed between

x =-0.168 and x = 1.08 (hx = 1.248).

Exercise 13.6: The results of the first few steps in minimizing some functiom

F(x) according to the success-failure method are given below (o = 2.0, B =-0.3):
Step i 0 1 2 3
x -1.5 -1 0 2
F(x) 4.75 2 1 17
s 0.5 1.0 2.0 -0.6

.. - o
Show that the best estimate of the minimum is x == 1/3.

13.2.3 The coordinate vatriation method

An intuitively simple method for finding a minimum of a function of sev-
eral variables, F(x) = F(xl,xz,...,xn) is to seek a minimum along each coordinate
axis in turn. This is the idea behind the one-by-ome variation method or the
single-parameter—, or the coordinate vartation method, which works as follows:

Starting at a point Py one first finds a minimum P, parallel to the x
axis, for example by the success—failure wethod. WNext, from this minimum one
finds a minimum P, along the x, axis, and so on for all coordinate axes. Of
course, when the minimum along x has been obtained after ome full cycle or stage,

the function is no longer at a minimum in the other coordinates. One therefore
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starts searching along x; again, and completes a new stage. The process i8 con-
tinued until some specified coenvergence criterion is fulfilled. A reasonable
stopping criterion could be that the difference between the best function values
in two subsequent full cycles should be less than some prescribed amount.

The one-by-one variation method is illestrated in Figs. 13.2(a) and (b)
for two two-dimensional problems involving, respectively, weakly and strongly
correlated variables. Curves have been drawn for constant values of F(x;,xs).

Starting at Py the successive minima along the lines parallel to the X1,Xp axes
are found at Py,P;,...

A A

X2 (b)

X2

X, XI

Fig. 13.2. The one-by-ome variation method for finding the minimum of a function
of two variables; (a) weakly correlated variables, (b} strongly correlated vari-
ables.

Although the one-by-one variation method usually does converge, it may
require a large mumber of steps before the convergence is reached. In cases with
strongly correlated variables the method is unacceptably slow, since the approach
towards the minimum goes by an inefficient zig zag curve cressing the sides of

the "valley" to which the minimum belongs; see Fig. 13.2(b}.

13.2.4 'The Rosenbrock method

Rosenbrock's algorithm is an extension and improvement of the one-by-one
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gariation method and has been found very useful in practice.

The principle of this method can be illustrated for the case of two vari-
ables by referring to Fig. 13.3. Starting at the point P, the minima P; and P,
are first found by searching along the coordinate axes x; and xz, respectively.
The idea is now to search next along a "best" line, defined by the direction
from P, to P;. This line corresponds to the direction of the overall improvement
in the first stege and is accordingly expected to be a good direction for further

search. The coordinate system is therefore rotated so that one axis, x; say,

f

Xy

Xy

Fig. 13.3. Illustration of the Rosenbrock method for a case with two variables.

éb ‘\h“““'--fFﬁ

points along the "best” line. When a minimum P; has subsequently been found along
the "“best” line a new search is made in a perpendicular direction, giving a mini-
mum Py. The process is repeated along a new "best" direction defined by the line

joining P2 and Py, and so on until the convergence criteria are fuifilled.

In n dimensions the Rosenbrock recipe is as follows: Let Ei' i=1,2,...,n
denote the set of n erthogonal directions. We find the minimum of F(x) along
each of these directions in turn, starting from the point Py and after completing
the cycle reaching the point P;. Let 8; be the size of the step taken to reach

the minimum along Ei' The n steps of the first stage can then be characterized
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by the n linearly independent vectors

n

2, = 1 sy i=1,2,...,0 (13.3)
j=i

It is seen that a; is the sum of all steps in the stage, 7.c. the vector connec-
ting Py and P, a, is the sum of all steps except the first, ete. Obviously the
result of all n steps could have been obtained with one single step in the direc-
tion M = aiflai|, the "best" direction. According to the Gram-Schmidt orthogon—
alization method we can construct a whole set of n orthogomal directions by de-

fining the other vectors N2s...,0, a8

9; = b/l 1=2,3,..0,n (13.4)
where
1=1
b, = ei-jzﬁ(éinj)nj , i=2,3,...,n0 (13.5)

With this set of orthogonal directions the procedure is repeated for the point P,
giving P2, and so on.
The Rosenbrock method usually works well if the number of variables is

not too large, but when the number increases its efficiency goes down.

Exercise 13.7: Verify that two different unit vectors n;-0; defined by eqs.{13.4),
(13.5) are orthogonal. J

13.2.5 The simplex method

A frequently used step method for minimizing a function of many variables
is the simpler method invented by J.A. Nelder and N. Mead. The method is based
on the evaluation of the function value F(x;,xz,..-xn) at n+l1 points forming a
general simplex*), followed by the replacement of the vertex with the highest
function value by a new and better point, if possible. The new point is obtained
by a specific algorithm, and leads to a new simplex better adapted to the func-
tiom.

Let us assume that the points Py,P;,...,P defining the current simplex

n+1

*
) A simplex is defined as the simplest n-dimensional geometrical figure speci-
fied by giving its n+i vertices. It is a triangle for n=2, a tetrahedron for

n=3, eite.
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are given. For short we write F(P.) for the function value at P_.
We start the procedure by evaluating all F(PQ and determine the "high-

est” point P, and the '"'lowest” point Py in the simplex, where

Ph is such that F(Ph) = max{F(Pl),...,F(Pn+1)},

P

{13.6)

, is such thac F(P)) = min{F(Pl),...,F(PnH)}.

Next we define the centroid ("centre-of-mass') P of all points in the simplex

except P, ,
n+ 1
1_’=;1{(§P1'Ph)‘ (13.7m

The recipe is now to replace Ph by 2 new point with lower functional
value lying on the line through Pl and P. Three operations can be used, reflec~
eton, contraction and expansion.

The first trial is done by reflecting ?h about P, defining a new point

P* by the relation

P* = (1+q)F - oF (13..8)

b’
where the reflection coefficient o is a positive constant. Three situations are

possible:

(i) If F(P*) < F(Pl) the reflection has produced a pew minimum. To
see if we can do even better we make an expansion along the line

and go beyond P* to a new point P**, defined by
P¥* = yP¥ + (1-7)P , (13.9)

where the expansion coefficient y i3 greater thsn unity. If
F(P**) < F(P,) we replace P, by P** and restart the process. If
F(P**) 2 F(Pl) the expansion has failed and we replace P by P*

before restarting.

(ii) If F(Pl) = F(PY) « F(Ph) the reflection has given a better point

than the previcus highest value. Pp is replaced by P* and the

process is restarted.
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(iii) If F(P*) 2 F(P ) the reflection has failed and P* is unaccept-
able. With a contraction along the line we try a new point P**

between Ph and ?, such that

PE* = SPh * (1_8)5 , {13.10)

where the contraction coefficient § lies between 0 and 1, If

F{P**) < F(Ph) Ph is replaced by P** and the process restarted.
If F(P**) > min{F(Ph),F(P*)} (the contracted point is worse than
the better of Py and P*) the whole attempt has failed. The sim-
plex is then contracted towards the lowest point by replacing all

Pi's by i(Pi+P1) before restarting the procedure.

How the simplex method works is illustrated for the two-dimensional
case by Fig. 13.4, where contour lines have been drawn for constant values of
F(x1,%x2). A simplex (triangle in this case) with vertices P;,P;,P; is shown to~

gether with the calculated points P, P*, P** {n one iteration. The point Ph=P1

X, |

.

X

Fig. 13.4. Illustration of the simplex method for a case with two variables.

will in this iteration be replaced by P* and the next simplex will have the ver-
tices Py=P¥ ,P; ,Ps.

The procedure with reflections, expansions and contractions runs into
difficulties if the new point, P* or P**, falls too close to P, since the simplex
then collapses into a surface of smaller dimension from which it can never re-
covet. Recommended values for the coefficients «,B and Yy are, respectively, 1,
0.5 and 2., Initial values of the simplex may be chosen at randem or evaluated
from a given point according to a prescribed algorithm. For this methed a con-
venient convergence test is to calculate the difference F(Ph) - F(Pl) for each
iteration and to stop when this difference falls below a preset value. Finally,
after convergence, P and F{P) are calculated, and the minimum point is taken as
P1 or 5, whichever produces the lowest F-value.

The simplex method does not directly produce the covariance matrix at
the estimated minimm. It is, however, a rather effective method: it requires
few function evaluations, one or two per iteration, ¢ach search is made in an
"intelligent” direction pointing from the highest function value to the average
of the better values of the simplex; furthermore, as the method is designed to
take as large steps as possible it is rather insensitive to shallew local minima
or fine structures in the function, implying a generally good adaption to the

landscape and a quick contraction to the overall minimum,

: . 2 2, . : s
Exercise 13.8: The function F(x;,x;) = xj + x3 1is given together with an ini-

tial simplex defined by P= (1,1}, P= (1,-2}, P,= (~1,0). Show, using the sim

plex minimization procedure with coefficients ¢ = 1, B = 0.5, v = 2, that
F(Py,) - F(P)) < 1 after three iterations, and that the estimated minimum at this
stage is at (3/8, 5/16).

13.3 GRADIENT METHODS

The gradient methods utilize the derivatives of F(x) in the minimiza-
tion process to predict new trial points relatively far away from the last point.
They have a better theoretical foundation than the simple step methods, they are
also more complicated, but do not always produce better results.

In this section we will present two gradient methods which both use the
first derivatives of F(x) and which have been widely used in practice, the classi-
cal steepest descent method invented by Cauchy, and Davidon's variance algorithm.

& third gradient method, Newton's method, which uses also the second derivatives
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of F(x) to calculate the step sizes, was described already in Sect.10.3.%.

13.3.1 Numerical calculation of derivatives

In maty cases the analytical expressions for the derivatives of the
function are very complicated or can not be found at all. General programmes
minimizing by the gradient methods should therefore be supplied with algorithms
for determining the derivatives of a function from finite differences.

The gradient g(x} of F(x) can be estimated numerically at each point x
of parameter space by performing repeated calculations of F(x) varying one para-

meter at a time. For the i-th component of g, with a positive increment Axi, we

may take
_9E F(xl,....xi+Axi....,xn) T FRr e axgee ) 1311y
81 7 9x; Ax, . ’ :
i
or, alternatively,
L F(xl,...,xi,...,xn) - F(xl,...,xi—Axi,...,xn) (1312
B Bxi Axi -12)

Either alternative requires n+1 function evaluations to give g. In choosing the
size of the increments one should keep in mind the finite precision of the com-
puter and avoid too small Axi. A third and better alternative for estimating g,

i

is to take the average of the expressions above,

F F(X1.---,Xi+Axi,...,xn) - F(xl,...,xi-ﬂxi,...,xn)

& " x, T SSERE)
1 1

which, however, implies 2n evaluations of the function to obtain g. For func-

tions having a nearly quadratic dependence on the parameters the last formula

gives approximately correct derivatives, independent of the size of the increment.

The numerical evaluation of the second derivatives Gij = BzFlaxiaxj is
even more time-consuming. However, the diagonal elements of the matrix G come
out as by-products when estimating the gradient by the symmetric method, ©.2.

eq.(13.13), since one may write
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o . 2% _ F(Ryypeeoydg e gensx ) = FlX1yeen® "800 5000,%) — 2F(x) (3.1
ii 2 " .
ax; (A=)

For the off-diagonal elements of G we get, using symmetrical steps,
G .= . Jo {Pix,+0x, ,x, +hx.} + Flx,=8x_,x ~Ax,)
ij Bxiax. 1 1?73 3 i i*%j j

J (13.15)

- F(xi+Axi,xj-ij) - F(xi—&xi,xj+ﬂxj)]f&Axiij .

where we have simplified notation and only specified the dependence on the Xj»x;
variables. Equation (13,15) shows that four new function evaluations are required
for each off~diagonal element. Since there are n{n-1)/2 independent off—diagonal
elements in a symmetric n x n matrix we see that 2n(n-1) extra function evalua-
tions have to be done to estimate G.
1f the second derivatives can be assumed approximately constant over

small regions near x, symmetrical steps will not be necessary to find G. The off-
diagonal elements may then be calculated from the formmla

3%F

Gij = BT]._BTj_ = (F(xih’lxi,xj'hﬁxj) + F(xi,xj)

(13.16)
- F(xi+Axi,xj) - F(xi,xj+ﬁlelfﬁxiﬁxj,

rather than from eq.(13.15). With eq.{13.16) only one new functiomn evaluation is
needed per off-diagonal element of G in addition tv thouse required for the first

derivatives.

Exercige 13.9: Show that the error in the i-th component of the gradient vector
g as calculated by the unsymmetrical expressions egs.(13.11), (13.12) to the low-
est order in the Taylor expansion is } Axi(BZFIBxi).

Exercise 13.10: Consider the simple functionm F(x) = x2 with glope 2 in the point
x = 1. Calculate mumerically the gradient at x =1 by the three expressions
given in the text, eqs.(13.11),{(13.12),(13.13) in turn, using (i) Ax = 1, (ii)
bx = 0.1,

Exercise 13.11: Verify the formla eq.(13.14) for the diagonal elements of the
matrix G by applying eq.(13.13) twice.

L —
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Exercise 13.12: Verify the expressions given for the off-diagonal elements of G,
eqs.(13.15),{13.10).

Exercise 13.13: Consider the quadratic Funmction F(x;,x2) = x}+x;x:42x3 for
which the matrix of second derivatives is constant and equal to

2 1
o(21).
Show that all numerical expressions for the second derivatives calculated for the
point (1,1) with step sizes Ax; = Ax; = 1 in this case produce exact results,

Exercise 13.14: Given the function F{uy,x2) = x13+x1xz+x1x§+x§. Calculate the

first and second derivatives im the point (1,1) analytically and numerically,

using (i) Axy = Ax, = 3, (ii1) Axy = Ax, = 0.1,

13.3.2 Method of steepest descent

The steepest descent method can be thought of as a natural improvement
of the one-by-one variation method in situations where the derivatives of F{x) are
known.

From the starting peint Py we here seek a minimum of F(x) along the
direction in parameter space where the function decreases most rapidly. When the
minimum P, in this direction has been found the process is repeated searching a
second and better minimum in a direction orthogonal to the first, giving P, and
so on until a satisfactory convergence has been abtained.

The direction E of the steepest descent in the point Pg=xo has compo—

_F & far 2\ -
Ei - 5. /(E (ﬁ) ) , i=1,2,...,n (13.17)
173 =1g

nents

where the derivatives are evaluated at Po. If the search along the direction
has lead to the minimum P; the new direction n of steepest descent in the point
P1 is perpendicular to the previous direction £. To see this, introduce a varia-
able s on a line along the direction § through Pg. All points on this line then
satisfy x = xo+sf. The minimum point Py on the line is defined by the require-
ment JF/9x=0. With the derivatives evaluated at P1 we have
n n
& i§1(%i)(%l) i 121(%1)% "ok

which implies that two consecutive directions of search will always be orthogonal.

S N
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The steepest descent method is illustrated for a case with two vari-
ables in Fig. 13.5. In this situation the method is equivalent to the one-by-
one variation method except for a rotation of the coordinate axes; in the gene-

ral case with more than two dimensions the two methode are not equivalent.

xl\

X, :
Fig. 13.5. Illustration of the method of steepest descent '
for a case with two variables.

The method of steepest descent ensures a better convergence than the
simple one—by-one variation method. Still it may be rather slow when the vari-
ables have a complicated interdependency in F and the choice of starting peint

P, has nct been fortunate.

Exercise 13.15: For the "Rosenbrock curved valley” of Exercise 13.1, show how
different choices of the starting point Py for the steepest descent method will
lead to minimizations of different efficiency.

13.3.3 The Davidon variance algorithm

The essential feature of Davidon's variance algorithm is that the func-
tion is made to approach its minimum by letting the covariance matrix V(x) = ¢!
undergo successive approximations. This means that a simultaneous convergence is

obtained towards the function minimum and the true covariance matrix. In this

13 - Probability and statistics.




364

process the variances are never calculated directly, as must be done with other
methods, and thereby one saves the evaluation of second derivatives and the in-
version of the resulting matrix. Instead successive approximations are made for
V(x) using only the function F(x) and its gradient g.

In the following we merely give the prescriptions of the method without
any comments on its theoretical foundation. For complete proofs the reader is
referred to the original paper by W.C. Davidon. )

Before starting the iterations the method requires the knowledge of an ‘

approximate minimum point x° with corresponding values F°, go known and a first |
estimate V° of the covariance matrix. For the latter it wiIl suffice to have the ‘
diagonal elements only, and if these are completely unkpnown one may simply start
with ¥° as the unit matrix; in general, the better the estimate of V° the faster
the convergence. Initially given is also a set of Step constants o, B, which
from computational experience may be reasonably taken as o = 1073, 8= 10, and a
conivergence constant, £ = 0.1, say.

i
o . i
Suppose that an iteration has yielded the values x, F, £ and V and that |
a further iteration is needed to obtain a new set, x*, F*, p*¥, V¥, The algorithm

then consists of the following items:
(i) Define x*=x-v §» and compute F* = F(x*) and g* = g(x%),

(ii) Define a residual vector £ =V g* and a number p = g5r (r
will vanish if the exact minimum is found, because then g* = 0;
p is a measure of the perpendicular distance to the minimum),

If p < e, stop, The final estimate for the minimum is then :

LI o
If p 2 g, proceed to (iii).
(iii} Define y = - grrip.

a Q@ N

if —m$~(< =g define ) = o.

B < o i

If m_y(—m,defme A--YH.

B

If -FSY‘(-B%, define ) = B,

If none of these three, define A = Y—IT
Define V¥, = V, . -
efine 1; \.’1J + (A 'I)rirjlp.

(iv)y If F* <F, define x =x* F =F% g =g% V=V
If F* 2 F, define V = V¥,

Proceed to (i) for a new iteratiom.

It should be stressed that this minimization algorithm gives an exact
covariance matrix V if F(x) is a quadratic function.

Experience shows that the method leads to a fast convergence for vari-
ous types of problems, 1In fact it can be proven that when F(x) is of quadratic
form in the n parameters the true minimum of the function and the exact covari-

ance matrix are always found within n iterations; see Exercise 13.16.

Exercise 13.16: The function F(x) = %% is to be minimized by the Davidon vari-
ance algorithm from the starting value (approximate winimum) x =2, V' = 1 for
the constants o = 1073, g = 10, ¢ = 0.1. Perform the calculations of‘the steps
(i) = (iv) in the text and verify that the method finds the true functiocn mini-
mum and exact variance after only one full stage. Make a sketch of the function
and mark the quantities calculated.

13.4 MULTIPLE MINIMA

One of the most basic problems in the field of minimization is that of
deciding whether the correct minimum has been found. It has in the previous sec-
tions been mote or less implicitly assumed that the different iterative opera-
tions will eventually lead to just onme local minimum of the function, and that
this minimum is identical to the desired point. It is, however, not at all evi-
dent that the procedure wiil end up with the global (lowest) minimum of the fune-
tion, nor is there any guarantee that the minimum found is the nearest to the
starting point for the minimization.

In minimizing a function with several minima the task usually belongs

to one of the following three categories in descending order of difficulty:

(i} A1l winima are of interest and should be found. An obvioua
although rather primitive way te lock for all minima is to make a cotplete mapping
of F(x) over the entire parameter space, but this may imply a large number of
function evaluations and be prohibited for economical reasons. Another approach
is to perform the minimum search from several starting values. This may, however,
lead to arbitrary results unless ome has some prior knowledge as to the location

of the possible minima, For the general case there seeme to be no exhaustive and
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practical guide on how to find all minima of a complicated function of many vari-

ables,

(ii) Only the global minimim is of interest. Many authors have des-—
cribed procedures to search for the global minimm of a fumction. It seems, how-
ever, as if no safe and simple method has been invented vet. For details on this
advanced subject the reader is referred to more specialized literature, for exam~

ple L.M. Gelfand and M.L. Tsetlin, and A.A, Goldstein and J.F. Price.

(iii) Only one minimum corresponds to a physical solution and is of
interest. In fact, in many physics problems approximate values of some of the
parameters may often be known in advance. An appealing approach is then first to
fin these parameters at their assumed values and minimize the function with rTes-—
pect to the remaining parameters. The parameter set corresponding to the minimum
for this simplified problem is next used as a atarting point for a complete mini-

mization involving all the parameters.

13.5 EVALUATION OF ERRORS

Implicit in the previous considerations is that our primary interest
lies in the particular set of parameter values which minimizes the function F(x)
rather thar the function minimuwm itself. It remains now to discuss how one can
evaluate the uncertainties (errors) associated with these parameter values.

With the Davidon variance algorithm the error determination becomes
especially simple, since the covariance matrix is obtained directly in the mini-
mization process as part of the algorithm itself. The errors, derived from the
diagonal elements of this matrix, are even exact for functions of quadratic form.

For the other minimization procedures the parameter errors can be found
for specially constructed F's, using the ideas of Chapters 9 and 10. For instance,
for a Least-Squares minimization with one parameter a one-standard deviation con-
fidence interval is derived from the points where the sum of squares is 1.0 above
its minimum value F°. Similarly, in a Maximum-Likelihood estimation of a single
parameter the error corresponding to a one-standard deviation confidence interval
is determined from the points where the negative log likelihood is 0.5 above mini-
mum. Thus for both methods the computational problem involved in the determina-

tion of the errors is to find the parameter values that correspond tothe function
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galues F = F° + a, where the constant a is chosen so a8 to give the desired
confidence interval. With the ML method it is important to remember that the
conEidence intervals obtained in this way have the meaning of likelihood inter-
yals, as discussed for the cme-, two— and wulti-parameter cases in Sects.9.7.1,
g9.7.4 and 9.7.6, respectively. The numerical problem itself is trivial when the
f;nction, as is often the case, is approximately quadratic around its minimum.

1f one suspects that the minimum region is not sufficiently quadratic the deter—
mination of the parameter values that make F = F° + a is not simple.

A special technique for the handling of ill-behaved functioms, used for
example in the MINUIT minimization programme, can be sketched as follows:

Suppose that a crude estimate of the covariance matrix exists and that
the minimum value F° of the non-parabolic function F(x) :as been located at EO:
We want to find the error G(xi) in the parameter value x; corresponding to an in-
crease in F by the amount a from the minimum when only the parameter Xy is
varied and all the others are kept fixed at their values at the mi nimum,

ICS S S o

Let us refer to Fig. 13.6, where the minimum point of the function is
called A, Tf the crudely estimated covariance matrix implies am error oy inoxz,
the parabola F(x;) = o adaz(xi—xg)z intersects the straight line F=TF + a
at the point B. The function value for ¥ = B corresponds to a lower point B'.

A second parabola with minimum at A, passing through B' intersects the straight
tine at the point C, with & corresponding function value C', above the line. A
third parabola through the points A, B', €' gives an intersection with the
straight line at D and a new point D' on the curve, which also is below the line.
A new parabela through B', C', D' gives an intersection with the line at E, and
this time the function wvalue E' coincides with E within some given tolerance.
Hence the required point has been found and c(xi) can be determined.

This method can handle rather pathological functions, but will then be

time~consuming.

13,6 MINIMIZATION WITH CONSTRAINTS
The parameters of the function to be minimized are frequently restricted
to a limited region in parameter space through constraint equations or inequali~

ties due to physics requirements. In our discussion of minimization se far the
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Fig.

13.6. Error determination for an ill-behaved function (see text)

X

r
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yariables have been assumed to be without restrictions. We will now see how dif-
ferent types of constrained problems may be handled.
The general problem in this section is to minimize the function F(x)

gubject te one or more of the following conditions:

f1(x) =0

(i) f:(x) =0 constraint equations
a; S x;) £ b,

(ii) ay < %2 <, simple constant limits

11(x) £ x; S hy(x}
(111} 1200 € xp § hy(x) simple variable limits

ur(x) 5 vi(x) £ wi(x) L . o
Gv) 4 up(x) S valx) € wa(x) implicit variable limits

In {i) - (iv), a, bi.’ i=1,2,...,n are constants while all functions
depend on x. The general conditicnms of type (iv) actually include all conditions
of the types (ii) and (iii), but Ffor practical and illustrative purposes they may
be separated as above.

In the special field of Ii{near programming, where the function F(x) and
its constraints are linear in the parameters, the ideas discussed in the follow-
ing are not of practical use. When F(x) is linear it is the constraints that make
it possible for the function to take a minimum value at a finite point at the
boundary of the allowed region. Thus, in the field of linear programming the
constraints are essential to cobtain a minimum, whereas in our problems the con-
straints are more or less regarded as nuisance.

Constraints can be taken care of by applying special procedures for
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constrained minimization., We will, however, only consider techniques for modi-

fying the function F(x) in such a way that ordinary, unconstrained, minimization

procedyres may be applied. Well-known techniques are

elimination of variables using the constraint equations,
- introduction of Lagrangian multipliers,
- change of variables to eliminate comstraints,

- introduction of penalty functions.

In particular, when F(z) ia to be minimized under k constraint equa-
tions fi(i) =0, i=1,2,...,k, corresponding to case (i) above, one may use the
comstraint equations to eliminate variables im F(x). An example on the elimina-
tion approach was given in Sect.10.7.1. Altermatively one can, as discussed in
Chapter 10, introduce Lagrangian multipliers X = {A,,Ag_,...,?\k} and construct a

modified function T(x,\), where

k
T = F(x) + ] A £ (0

(13.18)
i=1

The method with the

Lagrangian multipliers obviously suffers from the drawback of aun increased

which is then minimized with respect to x and A.

number of parameters in the minimization, but has otherwise virtues of its own.
In the following sections we will see how the two techniques involving

change of variables and penalty functions can be applied to the situations (ii) -
(iv) above.

13.6.1 Elimination of constraints by change of variables

An important practical case of constrained minimization occurs when
some or all variables are bounded by constant limits, a; = Xy b3 bi.' In a mini-
mization by a grid search such inequality constraints are easily taken care of by
limiting the search region. With the other minimization procedures one may elimi-
nate the explicit inequality constraints by changing to a new set of unrestricted
variables. To find the minima one simply expresses F(x) by the new variables y
through a straightforward substitution and minimizes with respect to ¥. The
minima obtained in y-space are then transformed back to x-space. The errors in fc
must be found from an ordinary computation of error propagation.

371

If, for instance, X, has to be non-negative, 0 £ x; £ =, either of the

wwo following variable changes can be applied,
or X, =e L. {13.19)

For problems which require 0 < x, £1

i
el
f 2

X. = sS1n° Y. or X, = g (13.20)

i i i eY1 -t
will remove the constraint. With general constant limits a; 3 X, s b, an often
ysed transformation is

- -a.)sinty, - 13.21)
X = a; + (bi al)sln ¥ (

The variable changes above will not introduce new minima in x. The
transformations involving si.nzyi actually produce for each minimum in x-space
many equally-spaced minima in y-space. This should, however, not cause difficul-
ties provided that the minimization procedure used does not involve so long steps

that intermediate hills are crossed.

Exercise 13.17: A function F(x,,%x7,%x;) i8 to be minimized under the constraints

0 < x,
OSKZ

With the substirutioms

© s
1

1A I

Y1

x, e’ x, = sin’y,; Xy = ¥

verify that the minitmum can be obtained by an unconstrained minimization in y-
space followed by the transformation of the minimum point back to x-space. 1f the
covariance of the minimum point in y-space is V(y), show that the covariance of
the minimum in x-space is V(x) = SV(X)ST, where

eyl 0 0
5=10 sin2y, 0 .
0 0 1

Exercise 13.18: The minimum of a function F(x,,X;) subject to the constraint

DSx, Sx, S

can be cbtained by an unconstrained minimization with direct substitution of
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Ky = ¥y + ¥, "

Consider the explicit function Fix,,x,;) = - xf - X %X * x%. Show analytically
that the minimum is at x; = x; = 0.

2
X =¥y s

13.6.2 Penalty functions; Carroll’s response surface technique

When one has simple variable limits, 11(5) £ x; 2 hi(i)’ or implicit
variable limits, ui(ﬁ) b vi(i) < wi(z), it may be difficult to find transforma-
tions which will eliminate the constraints. However, it is possible tomodify the
function F{x) by adding a so-called penalty function to it 8o that the function
value becomes large at the boundary of the allowed region. In this way one "fools"
the minimization procedure to search only inside the allowed region provided that
a permissible starting point was chosen. The penalty function should have an
effect just on the boundary, to ensure that no new minima are introduced and that
no minima are lost.

To be specific, consider the minimization of F(x) with the constraint

p(x) 2 0. We can then define a modified function T(x)} such that

T(x)

(o) (13.22)

F{x) if p(x) 20,
F(x) + cp®(x) if p(x) <0,

and minimize T(x) as before. The constant c should be chosen large compared to
F{x), and F{x} should be continuous at the boundary. This method can easily be
extended to more constraints.

One sees from the example above a useful feature of introducing the
"penalty" cpz(g) in T(x}. Without the penalty function the constraints p(x) 20
could be used as a test criterion during the minimization of F(x), but then a
point for which p(x) < 0 would supply no information about the direction for the
continued search. When the "penalty" is incorporated in T(x) the knowledge gained
on the gradient will help speed up the return to the allowed region of parameter
space.

Another popular way of introducing penalty functions is by Carrcil’s
response surface technique. Suppose the constraints are redefined to the form
pi(i) 2 0, for i=1,2,...,m. The modified function T{x,r} to be minimized is then

defined by
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m
T(x,r} = F( + r | c;/p, (00 . (13.23)
i=1

where the sum represents the "penalty". The ci's are positive weights of the
individual "penalties", while r(20) weights the sum relatively to F(x). The mini-
mization is then handled as a succession of unconstrained minimizations for dif-

ferent values of r, starting with a (finite) r>0 and reducing it stepwize to zero.

Exercige 13.19: The function F(x)} is to be minimized within the region a £ x £ b
—_— T T, - '
using Carroll’s response surface technique. Show that the function T(x,r) of
eq. (13.23) with equal weights c; can be written
T(x,r) = F(x) + r(L + —‘_) .

x—a b-x

13.6.3 Example: Determination of resonance production

; + - .
An effective mass spectrum of the ® ™ system in the reaction
- - 4 -
5 p~>mpn M shows enhancements corresponding to the production of p(765) and
£(1260) . The experimental spectrum iz to be compared with the theoretical distri-

bution
£f(M,0} = apBwD(M) + o BW 0+ o BOO,

where BWO(M), Bwf(M) are Breit-Wigner functions describing the resonances and
B{M) a background term, all of which are normalized and known. The production
fractions ap’af’ab are the unknown parameters, which must satisfy the following

constraints:

0= £
%
0 = 1
4p] 0<af<1
-ub_
o +a

o £ + o 1.

The last {normalization) condition can be used to eliminate o from

f(M,a), leaving two unknown parameters ap and o 1f now the fractioms ap,af are

s
to be estimated, for example by the Least-Squares method, this correspomnds to
minimizing a function F(up,uf) of summed squared deviations, subject to the con—

straints
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0%o_ £
p
(2) 0 fa =1
0 s

T -0 —o S 1,
P E
To make use of an unconstrained minimization procedure with Carroll's
response surface technique we must rewrite the constraints (2) to the form

pi(ﬂ) 290, i=1,2,...,m. The equivalent set of constraints is

(A%

1
Q R _®
w

»

-
1

=

v Iy
o o Qo o

1
®
T T o B = T =

One constraint, 1 - &y " % 21, in (2) is implicitly givenby the others, leaving
five comstraints in (3). Thus the modified function of eq.{13.23) with equal
weights ¢, can be written
T{a,r) = F(ap,uf) +r (&o + Tl_ap + . + -1-]Ef + ‘!#af) .
From this example it is realized that, depending on which variable is
eliminated from the normalization condition,somewhat different estimates may be
found for the production fractions. The differences will, however, be reflected

by the errors comnected to the estimates.

13.7 CONCLUDING REMARKS

The merit of a minimization method is often judged on its ability to
handle problems of large complexity. The sophisticated methods designed to search
in "intelligent" directions with variable step sizes may in this sense be consid-
ered superior to the more simple-minded step methods. However, which of the many
minimization procedures is the best for practical use, depends to a large extent
on the actual function to be minimized. It is therefore difficult to give speci-
fic recommendations. With simple functions of only a few parameters the simple
methods are often found to produce satisfactory results. With complicated func—

tions involving many parameters the more refined techniques are necessary, and
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the choice of procedure should be made also considering where in the region of
parapeter space the minimization is to be started. Quite often a method which
works well in the distant reglons is less efficient when approaching the minimum.
This suggests that the different methods be applied in sequence, depending on the
convergence reached. Indeed, the general purpose programmes available incorpor-
gte several minimization techmiques and allow the user to change from one methed

to another in cne rum.



14. Hypothesis testing

14.7 INTRODUCTORY REMARKS

In the preceding chapters main emphasis has been on the area of sta-
tistical inference which deals with parameter estimation, that is, point esti~
mation and interval estimation of the parameters of a distribution. This chap=-
ter will be devoted to another domain of statistical inference, namely that of
testing statistical hypotheses. This subject is closely related to parameter

point estimation and to the determination of confidence intervals. While the

estimation problem generally amounts to seeking estimates of unknown parameters,

our concern under hypothesis testing will be to decide whether, from a statis~
tical point of view, some given mathematical model with pre-assigned or esti-
mated values of the parameters is acceptable in light of the observations.

Suppose for instance that we have measured the proper decay time of
a sample of g° hyperons and from these measurements estimated the =° mean 1ife-
time. We may then ask the question: Does this estimate agree with the predic-
tion of the Al=} rule that the 5% lives twice as tong as the £ 7 In different
words, do the obgervations throw doubt upon or even disprove the validity of
the Al=} rule?

Instead of giving answers "yes" or "no" to questions of the above
type it is customary to rephrase the problem in terms of a test of a statisti-
cal hypothesis which follows as a consequence of the assumed physical law, In
the situation above let T, be the mean lifetime of the 5% as implied by the
hi=} Tule and the known = lifetime, and let T be the value indicated by an
experiment. We may then explicitly want to test if T is equal to T, within the
experimental errors; we write

and call HO the null hypothesie. The other possibility, v is different from
T, can be called the alternative hypotheais to “o' and is written

J
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Hy: T # TO.

When the experiment has been performed the actually cbserved lifetime Tobs
should enable us to express a probability or "likelihood” that the null hypo-
thesis 1-10 is correct. Whether the null hypothesis should be rejected as false
will in general depend on the alternative hypothesis te which it is compared.

It will be our copcern in this chapter to digcuss how various hypo-
theses can be put to test. If the hypothesis under test involves only specified
yalues of certain parameters, as Ho in the case considered above, the test is
called a paremetric test. The formulation of such tests follows closely the
1jnes of thought for the construction of confidence intervals for unknown para-
meters as discussed in Chapter 7.

Yon-parametric teats deal with questions like: 1Is an experimental
distribution of a specific shape? Or, are two Biven experimental distributions
of the same form? In the former case the null hypothesis can be that the obser-—
vations come from, say, a normal population while the alternative hypothesis can
be that they originate from any other parent distribution; for this kind of
problem one can formulate goodness=of-fif tests for Ho' In the comparison of
experimental distributions the null hypothesis need not make any specific
assumption about the shapes of the parental distributioms, except that these
are equal. If the test formuiation is made independent of the form of the
underlying distributions, and therefore is valid for all distributional forms,
it is called a distribution-free test.

Our discussion in the following will be limited to a rather elementary
gurvey of the general principles involved, which should, however, be sufficient
te tackle many practical problems met in the everyday life of an experimental
physicist.

1t should be stressed from the outset that an experimentalist will
often, on the basis of his own observations only, not be able to prove or dis-
prove a fundamental theoretical idea or hypothesis which motivated his experi-
ment, This is particularly true in particle physics, which commonly calls for
higher statistics than can be obtained in a single experiment. In essence the
individual experiment determines the probability to obtain the observed result
assuming the hypothesis to be true, and quite often the experimentalist will

have to leave the problem at this stage. Further measurements or other types of
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experiments may have to be awaited before a final statement or decision can be
made. For instance, repeated experiments may be necessary to get a sufficiently
low overall probability to justify the rejection of some theoretical hypothesis.
The decision is not taken until it has been demonstrated with overwhelming plau-
sibility that the thecretical idea was wrong.

This is a somewhat different situation compared to the practice in
industry, insurance companies etc., where quite often decisions have to be taken
even though the risk of making the wrong decision can be rather high. High-risk
decisions alse occur in particle physics, but then on a more elementary level.
For example, for anm individual particle reaction a selection is made between the
kinematically permitted hypctheses on the basis of the probabilities of the
various fits. The physicist, however, will usually have the possibility to cor-
rect his final sample of accepted events for the possible "background" of incor-
rectly assigned kinematical hypotheses., Therefore, although the decisions about
the individual events are taken with a rather large risk of being wrong, one

tries in the end to correct for the wrong decisions made.

14,2 OUTLINE OF GENERAL METHODS
To introduce the concepts involved in hypothesis testing suppose that
we have two hypotheses completely specified by two different values of a para~
meter § enterihg ap.d.f. f(xle)*). The null hypothesis Ho agssumes & = BD, and
the alternative hypothesis H, assumes © = &;. When a hypothesis is completely
specified, as both H, and H, in this case, it is called a simple hypothesis. A
hypothesis is called composite if any parameter is not specified completely, '
For instance, an alternative Hy: B > 8; is a composite hypothesis.
We shall now define criteria for when to accept the null hypothesis 1-10
(and reject Hi1}, and when to accept the alternative hypothesis H; (rejecting HO),
on the basis of a given observation X bs®
Assuming the null hypothesis Ho to be true we can find a region R in
the sample space W for the observation x such that the probability that x belongs ‘

to R is equal to any preassigned numerical value. The region R is called the

*) In this section x can be a directly observable quantity or more penerally
some function of the observables, corresponding to the notion of a statistie
{compare Chapters 7 and 8).
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region of rejection or the eritical region for Ho, while (W-R) is called the

1 . i ted by the eritical value
acceptance region for Ho The two regions are separated by
x ; see the illustration in Fig. 14.1. The implication is that if the observed
¢ . ) n
value X . o falls in R (Z.e. X bs exceeds x, in Fig. 14.1) we shall reject Ho’

otherwise we shall accept it.

1\f(xleo)

W-R R

ya

X
C

Fig. 14.1, Illustration of critical region R (rejection region)
and acceptance region W-R for the test statistic x.

x\b

The preassigned probability o that the observation x will belong to
the region R is called the significance, or the size of the test, and determines
the significance level at 100a %.

From this definition there is obviously a probability o that the obser-
ved value Xibs will fall into R alsc when Ho is true. Therefore, in 100q % of
all decisions H will be rejected when it shoulq, in fact, have been accepted,
The mistake we do by rejecting H when it is true is called a Type T error, or an
error of the firet kind. Since we want to commit such an error as rarely as
possible a low numerical value should be taken for a.

There is, however, another possible mistake which can occur, namely
that we accept H_ as true when it is, in fact, false, This is called a Type IT
error, or an error of the second kind; the probability of its occurrence B de-
pends on the alternative hypothesis H;. With reference to the illustrations in

Fig. 14.2 we can in an obvious notation state the above definitions as follows,
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Prob(Type I error) = g = Jf(xiﬂn)dx - Jf(xleo)dx , (14.1)
R X
[
%
(

Prob(Type LI error)= B = Jf(x%ﬂl)dx = If(x|81)dx. (4.0
W-R -

A {x18,)

0

N (x18,)

X %

Fig. 14.2. Illustration of Type I error o and Type II error B.

The power of a test is defined as the probability of rejecting a hypo~
thesis when it is false. We have for the power of the test of the null hypoth~

esis H_ againat the alternative H;:
o

Power = 1-§ = If(xl&;)dx = [f(x|91)dx. (14.3)
R x;
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From the previous considerations it seems reasonable to choogse the critical
region R such that, for a specified significance level, the power gets as high
as possible. This vague statement about the choice of the best eritical region
can be given a more quantitative form in terms of the Neyman-Pearson test and
the likelihood-ratio test to be discussed later. Before we proceed to discuss
these explicit tests we will illustrate with a specific example from particle

physics some of the concepts introduced above.

14.2,1 Example: Separation of one—1° and multi-n° events

A wellknown situatiom involving decisions between different hypotheses
occurs in the identification of particle reactions based on kinematical fitting
of measured events.

Let us consider antiproton-proton annihilations into four—pronged
events in a hydrogen bubble chamber. A large fraction of the events do not
satisfy the kinematical constraints imposed by the energy and momentum conserva—
tion laws if one assumes that only four charged pions were created in the anni-
hilation process. In these events probably one or more neutral particles were
produced, and the missing-mass as deduced from the measured visible particles
(tracks) is consistent with the production of at least one % . From the meas-
ured missing-mass values one wants to separate these events into twe groups, one
sample consisting of events where there iz a single ° (the '"1C~chammel"), the
second sample consisting of events in which twe or more %15 were produced (the
"no-fit channel™),

In the language of hypothesis testing the problem is phrased as follows:
The individual events are to be put to test for the null hypothesis

- P,
Ho: pprUTAWN w°

against the alternative hypothesis
Hy:pprnnmaM,

(here M denotes "more than one neutral pion"), and the missing-mass squared m’

2

is to be used as a test statistic., The critical value m? is most reasonably

taken somewhere beyond the squared n° mass, corresponding to a one-sided test
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|
|

for H . If the missing-mass squared for an event comes out smaller than m: the
hypothesis Ho is accepted; we then call the event a one—ﬂp event. If m? >mé the
hypothesis H is rejected and the alternative H, accepted, corresponding to a
multi-n" event.

In choosing the critical value mé we are faced with a dilemma. Sup-
pose, for example, that the observed missing-mass spectrum for the total event
sample has the shape of Fig. 14.3(a). 1If the critical value is set at a low
mass, not much larger than m;O, we shall be ensured that relatively few true
multi-1" events will wrongly be taken for one-m° events, but at the same time
many true one-T° events will then be lost from the final one—ﬂosample. On the
other hand, if the critical value is taken at a high mass, the loss of true one-
1° events will be small, hut the contamination of multi-1° events in the one—g°
sample will with this choice be considerable. Clearly, the decision of a criti~
cal value requires a two-way consideration of the conflicting demands of & smal-
lest possible loss of true one-n" events and a smallest possible contamination
of mwulti-T° events in the final one-m° sample.

This example illustrates the general situation when it is desired to
minimize the probability o for rejecting Hy when it is true, <.e. commit a Type
I error (corresponding to losing true one-T events) and simultaneously minimize
the probability B for accepting Ho when it really is false, Z.2. commit a Type
IT error (contamination of multi-m" events). To keep the significance o at a
low value and at the same time have an optimum of the power (1-f) of the test a
compromise is called for.

With reference to Fig. 14.3(b) suppose that we know the distribution
f(mzlﬂo) in the variable m? for true one-n° events and the cotresponding distri-
bution f(m2]H1) for the true multi—'rro events. For any chosen significance o we
can then, by numerical integration of f(m2|H°) according to eq.{14.1), determine
the critical value mé and subsequently, by integration of f(m2|H1), determine B
from eq.(14.2). The result of this computation for the power considered as a
function of the significance is that {(1+#) from the value zero increases
very rapidly with increasing values of o up to about 0.1. For any significance
greater than, say, 0.15 the power is practically equal to 1. Thus, depending on

whether it is the purity or the size of the one-1° sample which is of greatest

1200

T

10C0

T

800 |
600}

400

Events / [0.2(Gev)?]

200+

(a)

10000 events

f(m2)
10

(b)

-2

g
0 2 4 .6 .8 1.0

Missing-mass squared mz(GeVZ)

Pig, 14.3%. {(a) Distributicn of the missing-mass squared m? in PR
annihilations into four charged pions plus at least one neutral
pion; data from an experiment with 1.2 GeV/c antiprotons incident
in a_hydrogen bgbble chambher. (b) Probability demsity functions
events (full curve) and multi-n" events (dotted

in m“ for onme-rm

curve) .
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importance one would in this case probably fix the significance level somewhere
between 2 and 107, corresponding to taking the critical value mz in the region
0.2 to 0.1 GevZ,

For completeness it should be mentioned that in the present example a
better test statistic exists for the test of the hypothesis HO against the al-
ternative H). When the uncertainties on the measured angles and momenta are
known a Least-Squares minimization can be performed as described in Sects.10.8,
10.8.7 with contraints from emergy and momentum conservation assuming an unmeas-
ured . The X? function then contains more information than the missing-mass
alene, and as x;in will be an approximate chi-square variable with one degree of

freedom, it can be used as a test statistic for a goodness-of-fit test; see also
Sect.14.4.5.

14.2.2 The Neyman-Pearson test for simple hypotheses

The Neyman—Pearson lemma states that, for a fixed significance level,
the best critical region R should include those values of x for which f(x|8;) is
25 large as possible relative to f(xlBo).

It can easily be verified that this choice of R maximizes the power of
the test Ho: a6 = 60 against H;: 6 = By. Consider one measurement x and define
the significance @ of the test by the integral of eq.{14.1). The region B should
obvicusly include all points where f(xiﬁo) = 0 and £(x|8;) > 0, since these
points do not contribute to a., For f(xleo) > 0 the power of the test of H_
against H,; may be written {(from eq.(14.3))

g - If oy £(x|81) | £(x|81)
= ! (x|8y)dx = i(f(x BD)) f(xl-ﬁa)dx = f(_xi_e‘;)_g Jf(x[ﬁo)dx, (14.4)
x=

where £ is a point within R. Since the last integral is nothing but the con—
stant o, the power of Hb will be maximal if the region R is chosen such that the
ratio f(xlelhﬁ{XfBO)is as large as possible. The best critical region therefore

consists of points satisfying the inequality

f(x|el)

£[6) ky

where k is determined by the preassigned significance a.

(14.5)
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For the case with a series of measurements EIVE S FRPETL N the p.d.f.

£(x]0) is replaced by the joint distribution function, the likelihood function
n
Lix|e) = T f(x;[e).
i=1

The criterion (14.5) now becomes

L(Elel)

THEY ¢ (14.6)
—
with the condition

[L(glﬂo)dg = q
R

(6.7

which replaces eq.{14.%).

The critical region constructed in accordance with the rules eqs.
(14.6), (14.7) will provide the maximum power of a simple null hypothesis against
a simple alternative hypothesis for the given significance level. Equivalently,
this region minimizes the probability of Type 11 errors,

For the case with many measurements the critical region R in x-space
may be difficult to find since eq.(14.7) constitutes an n~dimensional integral.
In practice one will seek the critical region for some test statistic, expressed
as a function of the x; . For instance, it will be convenient to seek the criti-
cal region for the sample mean x when testing on a population mean u, or the
sample variance s? when the test involves the population variance ¢, 1In any
case, to determine the critical regiom one will have to integrate cver the proba~
bility density funmction for the test statistic actually uged.

It should be noted that the Meyman-Pearson test is applicable only in
testing asimple hypotheses. For composite hypotheses ome can only rarely find a
test which is more powerful than any other test. The latter type of problem

will be discussed in Sect.14.2.4 in connection with the likelihood-ratio test.

0 . R
14.2.3 Example: Neyman—-Pearson test on the = mean lifetime

For the =° lifetime problem introduced in Sect.t4.1, consider the two

following simple hypotheses about the mean value T, both with the functional
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form f(t|1) = %-eXP(-t/T), {to get simple relations the lifetime is here expres—

sed in units of the theoretical prediction from the A=} rule},

BT = 1,
Hy: T = 2.

The condition given by eq.(14.6) now reads, assuming n observations,

n
L(t] =) 121* exp(~t;/2) u n
e 8 D7 e e > ke
M exp{-t.) 1=
. i
i=1
- 1 n
In terms of t = a ¥ s this can be written,
i=1
- 1
t>2(~;1nk+1n2)ETn. (14.8)

The best critical region in t space is therefore the set of values satisfying
the inequality (14.8), where T, is a constant which can be caleulated for any
given significance a. We see that the sample mean t is & natural test statistic
for this test about the population mean 7, However, to find R {or Tn) it is
necessary to know the p.d.f. fn(t) for t. This p.d.f. is particularly simple
for the two limiting cases, n=! and n very large. Fixing the significance level

to 5% we will now study these extreme cases.

(i) n=1. The p.d.f. for the test statistic t i8 in this case the same ag the

p.d.f. for ¢,
- 1 -
£,(0) = T exp{-t/1}).

The significance o determines the tower limit T; of the critical region for t

through the definition, eq.(14.1),

0.05 = o = Je-tdE .
T,

Hence the lower limit is
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T, = - 1lnoa = 3.00.

The power of the test Heit=1 against Hy: T = 2 becomes

b Y2 - Jr w022,

1

1-8 =

g — §

With just one observation of the 2% lifetime we will therefore reject
the null hypothesis Ho if the cbserved value Eobs is larger thamn T;% 3.00. The
probability that we accept Ho when the alternative hypothesis H), is true (Z.2. we

commit a Type LI error) is very large, namely B = 0.78.

{ti) n large. In this case the p.d.f. for the test statistic t can be approxi-
mated to a normal p.d.f, with mean T and variance 12/n (this was shown in Sect.
9.4.8),

fn(E) = N(t,T%/n) =

1 ex (-§ _g______?;—-r)z) .
f7n T//E Tzfn

The lower limit T, of the critical region for t is now implied by the integral

®

1 - " 1 - Tn_1
0.05 = a = [N(1,; Jde = 1 - IN(1,; ydt = 1 - G(1I/-)’
n

T -0
n

where G is the cumulative standard normal distribution function. From Appendix

Table A6 we find the value of the argument of G to be 1.645; hence

T =1+ 1.645
/o
The power of the test H:tT=1 against Hy: T = 2 now becomes
T
T4 - Db = T2
-8 = In(z,; ydt = 1 - JN(Z,; ydt = 1 - c( 2 ).
T - 2/Vn

Thug, both the critical value T, and the power (1-R) depend on the number of
100-1.16 and (1-B)=0.99999.
The fact that the limiting value of the power is unity expresses that the test

observations n. Numerically, with n=100 we find T

B against H, is consistent,
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From the points (i) and (ii) we see, therefore, that for the fixed
significance a=0.05, the power of the test H against H; increases very rapidly
with the number of observations. If instead we had fixed the significance at
a=0,01 we would have found {1-8)=0.10 for one ohservation, and {(1-B)=0.9994 for
n=100. Thus the power of the test H against W, is weakened when the signifi-
cance level is lowered.

Exercise 14.1: For the 2° lifetime example, consider the twe simple hypotheses
| Ho: T=1, (AT = § rule),
(AL = 3/2 rule),

Hi: T = 1/4,
For the significance #=0.05, show that the power of the test H agalnst "y with
only one observation is 0.19,

14.2.4 The likelihood-ratio test for composite hypotheses

The Neyman-Pearson test is only applicable when the null hypothesis Ho

and the alternative H; are both simple. In situations where either Hn or Hy, or

both, are composite hypotheses one may apply the likelihood-ratio teat.
We will censider a p.d.f, f(x|§) with parameters §={61,62..

..,Bk} which
belong to the parameter space {1,

We assume that Ho puts some cooditions on at
least one of the parameters. If H is true the parameters are therefore restric-
| ted to lie in a subspace w of the total space 1. On the basis of a sample of

. size n from f(x}@) we want to test the hypothesis

HO: Qrbelongs to Ww. (14.9)
Given the observations LITL YRR the likelihood function is
n
L= T £(x,]9).
N 1~
i=1
The maximum of this function over the total space f is denoted by L(ﬁ) Within

the subspace w, specified by the restrictions from H » the maximum of the likeli-

hood function is L(m) We then define the szelzhood-ratzo by the quotient

= L(m)

(14.10)
L(Q)
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Thig ratio is obviously non-negative, and since the maximum of L within the sub-
space W camnot exceed the maximum value over the entire space I, A must be a
quantity between ¢ and 1,

The likelihood-ratio A is a function of the cbservatioms. If X turns
out to be in the neighbourhood of 1 the null hypothesis HO is guch that it
renders L(G) close to the maximum L(ﬁ), and hence H will have a large probabi-
lity of being true. On the other hand, a small value of X will indicate that H,
ig unlikely, The variable A is therefore intuitively a reascnable test statistic
for Ho' and the likelihood-ratio test primciple states that the critical region

for A is given by

€14.11)
0< i< Aa.

Here ) must be adjusted to correspond to the chosen significance o, where
(1

Ao

a= Ig(k!ﬂo)dl
0
and g(RIHD) is the p.d.f. for * under the assumption that Ho is true.

(14.12)

1f the p.d.f. B(K]HO) is not known it is still possible - as will
become clear from an example in the next section - to use the likelihood-ratio
test provided that one knows the distribution of some function of A, which has 2
monotonic behaviour in A. Let y = y{A) be a monotonic function of X and, assum—

ing H_ true, let the p.d.f. for y be h(y]Ho). Then the relation

% YOy
a = ]g(xlno)dx = h(y]H )dy (14.13)
0 y(0)
gives the critical region in terms of the variable y,
(14.14)

y(0) < ¥ < ¥A),

and this again can be inverted to give AG.
It frequently occurs that it is not possible to put the likelihood-
ratio A in a unigue and exact correspondence to a statistic whose distribution

is known exactly, Under such circumstances it will be more complicated to
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construct a valid test for Ho’ and approximative procedures must be tried.
Fortunately a satisfactory solution often exists when one is dealing with large
samples. For example, if the null hypothesis fixes the wvalues of r of the para-
meters it can be shown that, for Ho true, the statistic -2 1n A tends asymptoti-
cally to a chi-square variable with r of degrees of freedom, The statistic
-2 1ln A can therefore be used to test Ho’ taking the critical region at the
right-hand tail of the appropriate chi-square distribution.

It should be stressed that the asymptotic behaviour of the likelihood-
ratio depends essentially on the same conditions that give the optimum proper—

ties of the Maximum-Likelihood estimators.

14.2.5 Example: Likelihood-ratio test on the mean of a normal p.d.f.

To get acquainted with the terminology and idea behind the likelihood-
ratio test let us consider a common practical problem. Suppose we want to test

whether the mean B; of a nermal p.d.f.

8,,8 : ( ) Gon)”
N N = -
1.9, JIma =*P 8, )

2m8,

has a specified value uo, given a gsample of n observations x;,xg,...,xn. The

null hypothesis to be tested is then

Hot By o= U (14.15)
and the alternative is
H]: e] * UO- (14-16)

For both hypotheses the second parameter 8, is some positive mmber., The total
parameter space ( is here the set of all points in the positive half plane span-
ned by ©, and ©,, where —» ¢ 9, < « and B, > 0. Under the null hypothesis HB the
parameter 0y is fixed to take the value Wi thus the subspace w is the line de-
fined by 0y = u, for positive values of 9,.

The likelihood function is

noy (x;-81)?
L{x|8:,02) = T exp(—i ———e—-) .
i=1/2m8, 2

(14.17)
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The ML estimators of B, and 92 over the entire parameter space § are as found in
Sect.9.2.3,

&, = (14.18)

ERE
e

and

A 3 B -
8 = o 121(xi'x)’. (14.19)

The absolute maximum of the likelihood function is found by inserting 61 and éz

in eq.(14.17), giving

Ly = (_u_)“” .2

- (14.20
) (x; 1) 2 )

~Within the subspace w the ML estimator of 8; is found by inserting 0 = M, in

eq.(14.17} and maximizing with respect to 8;; one finds

1]
a 1
8, =1 y IR LN (14.21)

i=1
We note that the ML estimators of 0, are different in the two spaces w and &,

For Ho true, the maximum of the likelihood function is

L(;ﬁ - ( n )nlz e-nfz.

—n (14.22)
amy(x-u )’

From the definition, eq.(14.10), the jikelihood-ratio is, therefore,
)

A.(E(“i") )

32
JEISIN

Since

n/2
(14.23)

n n
.5'1(“1-\'1())2 = -21(31-;)2 * “(;-uo)z'
i= i=

we may write

1 n/2
A (—--—-Ht_,) .

n=1

{(14.24)

where the variable t is defined by
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/A o
L i oI7s

—— TN '
Hxi—x)zf(n—1) fiLE—é%E—)/(n—1)

With reference to Sect.5.2.1, remark 2, we see that this is a Student's t=-vari-

(14.25)

able with n-1 degrees of freedom. The variable has the p.d.f. £(t;V) of eq.
(5.15) with v = n-1.

The p.d.f. g{A) for A may now be derived from the t-distribution, and
thus provide the critical region for A with a given significance &} compare eq.
(14.13)., However, this variable transformation is not necessary, because A is a
monotonic funetion of t?. Since Ho false corresponds to A small and t? very
large, we see that a critical region defined by 0 < X < Au is equivalent to
t? > t;. Thus the critical region for t corresponding to the significance o

consists of the two intervals

-® < t < _tu/2 s tyla < £ <400, (14.26)
Here tu/Z iz defined by
_tal2 oo
of2 = [f(t;n—1)dt = Jf(t;n—1)dt. (14.27)
- talz

With the critical region consisting of two separate parts we are here

dealing with a two~sided test. If the observed value t = ¢ satisfies one of

obs
the inequalities (14.26) the hypothesis Ho is rejected. If the observed value

satisfies

T Y2 0T tay2

the hypothesis HO is accepted.

Consider, for instance, an experiment with n=20 and a chosen signifi-
cance a=0.05, For this case Appendix Table A7 gives t.025-2.093. 1f therefore
the observed ]t|—va1ue computed from eq.(14.25) is larger than 2.093, the pull
hypothesis should be rejected. The corresponding critical value for A is found

by inserting t =2.093 into eq.(14.24), giving A 05-0.125.

025
Let us compare this exact calculation of the critical region for A to

2 erm—

T
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the approximation introduced at the end of the preceding section. According to
the statement made -2 1n A is approximately chi-square distributed with a number
of degrees of freedom equal to the number of parameters which were fixed by the
hypothesis “o' In the present case Ho fixes one parameter, and eqs.(14.24),
(14.25) give
n(x-u)?
=2 1lnA=nln G + E:;Tti;z)-
i

Wwhen a Taylor expansion is performed and the sample variance replaced by o? for
n large we get the asymptotic expression

-2 1n )= (x_u")z.

o/ Vo

For a chi-square variable with one degree of freedom we find from Appendix Table

A8 that a one-sided test for the significance 0=0.05 cotresponds to the critical
value =2 1In A.DS=3.841, from which R_05=0.147. Comparing this to the exact value
0.125 obtained above, we see that even for a sample size as small as 20 the asym-
totic =2 1n A approximation is reasonable.

Te compute the power of the test we have to consider the alternative
hypothesis Hy: 8, # u,- The variable t as defined by eq.(14.25) may still be
used as & test statistic, but if H; is true, the statistic has a mon-central
Student's t-distribution (compare Sect.5.2.1, remark 1 and Exercise 5.20) with
non-central parameter

B1=n
5 2,

— (14.28)
alvn

It is seen that § gives a measure of how much the alterpative deviates from the
null hypothesis, )
In accordance with the definition of the power of a test the power

function is defined as

Ay “tyr2 -
1-B(8) = Ig(A|H,,6)dJ\ - If(t;n—hﬁ)d: + Jf(t;n-hﬁ)dt.
0 - taf2

where g(A|H;,5) is the distribution of A for a given § when H, is true, and

f{t;n-1,8) is the non-central t-distribution with n-1 degrees of freedom. The
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cumulative distribution of f£(t;n-1,3) has been tabulated for various parameter
. . Y
combinations in, for instance, "Tables of the non-central t-distribution" by

G.J. Resnikoff and G,J. Lieberman, In Fig l4.4 the power function is shown for

-8 (6)
-1.0

Fig. 14.4, Power function for Student's t test on the mean
valuej cutves are given for sample sizes n=20 and n=w, and

for significances o=0.05 (full curves) and o=0.02 (dotted
curves) .

different values of a and n, The following features emerge from the figure:

(i) The power function is symmetric about 670, as already suggested by
the proposition we are checking.

(ii) The power is atr its minimum for &§=0 when it equals the significance,
and increases with increasing magnitude of |§],
(iii) The power increases with increasing significance.

(iv) For a given § the power increases with the pumber of observations.

These results would obviously also be found if, instead of testing on t, we had
considered an upper-tail test with the statistic t?2, which has a gon-central

F-distribution if the alternative hypothesis is true,

Exercise 14.2: For the % 1ifetime example introduced in Sect.14.2.3: consider
the test of the simple null hypothesis Ho: = 1 against the composite alter-—
native hypothesis H;: T # 1, Show that with the sample ty,tz,...,t the

likelihopd-ratio becomes
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A = exp(-n(t-D),

where t = Lt./n. For n reasonably large, when t is N{1,1/n), show that a=0.05
corresponds to a critical region 0 < A < A 05 where

n
Aos ™ (1 + 1'645) exp(-1.645/1),
n

and that A 05 approaches unity when n + =,

14,3 PARAMETRIC TESTS FOR NORMAL VARIABLES

We shzll now concentrate on various test problems which invoelve the
parameters of the normal distribution. The first of these is the following:
Given a set of ohservations, assumed to represent a random sample from a notmal
population, we want to test whether these observations are in agreement with some
particular value of the mean or variance of the normal distributien. Simple
tests of this type are treated in Sect.14.3.1, 1In the subsequent sections we
will be concerned with constructing tests for the comparison of parameters of
two normal distributions. In Sect.14.3.7 we discuss how the mean values in more
than two normal distributions can be compared,

The main point in all the exsmples considered below is to construct an
appropriate test atatistic, that is, some function involving the sample vari-
ables but no unspecified parameters, and which has a known distribution function.
This distribution will emable us to determine a critical region for the test
statistic in question, the size of the region being determined by the chosen

significance level of the test.

14.3.1 Tests of mean and variance in N{u,g?)

Let KlaXzsooenX be a random sample from the normal population W(u,o?).
We want first to see how the mean value of the distributioen can be put to test

and write the null hypothesis as

“:u-uo.

o (14.30)

where U, ie some specific nutber. The alternative is the composite hypothegis
Hy: p * Y (14.31)

We then have aproblem which involves a reasoning quite analogeus to that used in

establishing confidence intervals for the mean of a normal distribution, which

14 - Probability snd statistics.
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was carried out in some detail in Sect.7.2. Depending on whether o

is a known
quantity or not, the appropriate test statistic to test H = U is (see Sect,

7.2,1 and 7.2.2 for the arguments)

X}
2 N which is N(0,1} (a? knowm)
afvn (16.32)
i—-uc
. which is t(n=1} (Uzunknown)
s/vn

Here N(0, 1) is the usual abbreviation for a standard normal variable, while
t{n-1} is a Student's t-variable with n-1 degrees of freedom; x and s? are the

wellknown sample characteristics,

x =

Bl

n 109 =2
2 Lt -

.E Xi» s n-1 .E (xi X}

i=1 i=1

In testing the mean we are likely toc reject H0 (and accept H;) if the
observations are such that the sample mean X is either much too small or much
too large compared to the hypothetical value Wos therefore a two-sided test is
applied. Fixing the significance ¢ we will use the appropriate distribution
(Z.2. the standard normal or the Student's t, depending on whether 0? is known
or not) to determine the two critical values of the test statistic, which corre-
spond to a probability 4o in either tail of the distribution. If it is found
that the observed value of the test statistic falls in any of the two tails
({.e. it belongs to the critical region) then we shall reject the hypothesis
Ho: =1, at the significance level 1000 Z; otherwise the null hypothesis is
accepted.

A similar procedure is applicable if we want to test the variance of

the normal distribution. The null hypothesis is
v o2 s qf
H: o =al, (14.33)
where c; is specified, and the alternative (composite) hypothesis can be

Hy: of *G;. (14.34)

The technique developed earlier {see Sects.7.3.1 and 7.3.2) for estab-
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1ishing a confidence interval for the variance of a normal distribution can now
be used. We recall that a variable constructed from the sample variance s as
(n-1)szlo; will have a chi-square distribution with n-1 degrees of freedom. If
we should happen to know what the true mean U of the population is we may replace
% by & in the evaluation of s, and the chi-square variable (n—1)92/U; will then
have n degrees of freedom, Thus the appropriate test statistic to be used for
testing Hoi o? = Gi is
n
(n—i)szfué = ‘E (xi-u)zlcz, which is x2(n) (y known),
1= (146.35)
n
(n-1)e?/0? = i§1(xi—§)2/o§. which is x*(n~1)} (1 ucknown).
In testing the variance we are likely to reject Ho (and accept Hy) if
s? from the measurements is either much too small or much too large compared to
the value Ué specified by Ho' Therefore, again, a two-sided test is appropriate.
Since the chi-square distribution is unsymmetric the choice of the two eritical
regions is not unambiguous, but common practice is to take equal probabilities

(= {0} at both ends of the distribution.

In general, two-sided tests for the null hypothesis HD will always be
appropriate whenever the alternative hypothesis are of the forms of egs.(14.31),
(164.34). If the alternatives are formulated as, for example,

Hy: u>u0-
or

Hi: o? > o2,

o

one-sided tests must be applied to test H_ .

14.3.2 Comparison of means in two normal distributions

We shall assume that KysXzpeoaX ) is a sample of size n from N(u:.G%)
. 2
and Fis¥2y e ¥y @ sample of size m from N(U2,02). We want to test the hypo-
thesis that the twe normal distributions have the same mean,
HO: Yy = Uz, (14.,36)
against the alternative that the means are different

Hit Uy lg, (14.37)
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The formalism covers situations frequently met in practice when it is desired to

check whether two series of numbers really are measurements on the same physical

quantity. Alcthough simply stated, the null hypothesis is not always easily tested
unless some simplifying assumptioms can be made about the variances o} and d%.

We shall consider the following situatioms:

(i) o? and ol are known,
(ii) ai and o} are unknown, but equal,
(iii) of and o} are unknown and different. !

(i) U% and af are known

We know that the arithmetic means x and ¥ will be normally distributed
as N(ul,of/n) and N(Up,02/m), respectively. According to the addition theorem
for normal variables, (Sect.4.8.5), the difference ;-; will alsoc be normal, with
mean (u;~H;)} and variance (0%/n+u§/m). Thus the wariable

(=) = (u1=u»)

v alfn + od/m

will be N(0,1). To test the null hypothesis of equal means, when p;=u,=0, we

consequently use the test statistic

N Sl S (14.38)

Y ol/o + oif/m

which is N(0,1) urder H . The problem is therefore reduced to a wellknown one,
Q
being exactly analogous to the testing of the mean of a normal distribution when

its variance is known, which was discussed in the preceding section,

(ii) o} amd of are unknown, but equal

If the variances of the populations are not known it is still possible
to carry out the desired test, provided that it can be assumed that the two vari-
ances are of equal size. To construct a test statistic for this case we recall
that with the two samples x1,xz,...,%, from N(ii,0}) and 1s¥2ss00,y, from

N(ug,cg) we can immediately write down a set of four variables which are all
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independent and have wellknown distributions:
i

P
%, which is N(u1,0%/n}, (n-1)s}/a?, which is y*(n-1),

2412 : : 2{m-1Y.
y, which is M2 ,0% /m}, (m=1)s3/c}, which is ' (m-1)

These variables are the entities from which we must try to build up a new vari
ble that may serve as a test statistic. The two normal variables can be com-
al E

bined in the usual way such that

oy = (ui-e) is N(O,1).

J 6ifn + o%/m

Adding the two chi-square variables gives a new chi-square variable with a oumber

f degrees of freedom equal to (m=1)+(m=-1)=n+m—2 (the addition theorem for chi=
(o]

square varisbles, Sect.5.1.5), thus

(n-1ysi/0} + (m-1)s}/c} s X (mad).

The standard normal and the chi-square variables constructed this way are fur—
thermore independent, and according to Sect.5.2.1 they can be used to form a

Student's t-variable by the prescription of eq.(5.14}. Hence

(R—i) = {u1-Uz)
m (14.39)

J {ta-1stict + @nsdicd)/ (asm-2)

will be a Student's t-variable with (n+m—2) degrees of freedom.
Note that the complicated expression (14.39) is no test statistic vet,
since it includes the patameters Uf and g3, which were assumed to be unknown.

. i ps . ala-
However, if 6} = of, the expression can be simplified further since the pop
E]

tion variances drop out, giving
(x-y) - (n-p2) (14.40)

le+;1||

’ 2 2
s s . a = _0%)
vhere §? ig the pooled estimate of the population variance (=01 ’
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s? = —1—((:.-1)52 + (m-1)sz) = —"J——(%l (x.-x}2 + :5 ( -;)2) (14.41)
T n#m-2 1 2 wm-2 N 5 4o Y : )

Therefore, to test the hypothesis of equal means in the case of unknown, but
equal variances, we shall take as our test statistic

F

, (14.42)
1
n

S

i

g1

which is t(n+m-2}. Thus the problem is analbgous to the one discussed previous-
ly in Sect.14.3.1, when we tested the mean of a normal distribution with an un-
known variance.

It is seen from this rather lengthy derivation that unless the two un=
known population variances o and 02 are equal, we shall in general not be able
to obtain a variable for which we know the explicit distribution. The general
case 0f#03 can in fact not be treated exactly, and approximate methods must be
applied.

(i11) of and g are unknown, and different

Given two samples from assumed normal distributions, one does not usu-
ally have any exact knowledge about the population variances 0f and o2, nor does
on: have any particular reason to believe that they are of equal size., Thus the
conditions specified in (i) or (ii)} above are not fulfilied in general,

When the samples are reasonably large, it is fair to say that the sam-
ple variances are good estimates of the population variances. Replacing of, ol

by their estimates s, s} in eq.(14.36) gives
(%-¥) = (ur=uz)

. (14.43)
Y 3i/n + s/m

To test the hypothesis B : W=z one will therefore in this situation use the
test statistice

_y

' (14.48)
Vsi/n s sifm

which is approximately standard normal if H is true.
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The approach described above can be used for the practical purpose of
checking consistency between two sets of obsefvatigns. If the first set
PR TTERRYS implies an experimental result (x % Ax) and the second set
F1,¥2s 0¥ similarly (; + Ay) a test for the hypothesis that the twe experi-
ments have measured the same physical quantity (Z.e. iy=p2) can be based om the

test statistic
e XY
D+ (49?2

vhich is assumed to be N(0,1).

L} (14.453)

In fact, this is the prescription used by most
physicists to test if two experimental results are compatible. Thus the assump-
tion of normally distributed observations is implicit whenever the above pre—

scription is used, although this is seldom explicitly stated in practice.

. 0 2 i
Exercise 14.3: Experimental values (as of April 1976} for the & and E 1life
times are, respectively, 1o
(2.96 + 0.12 } » 10 sec

19
T_ = (1.652 % 0,023) x 10 sec .

e
Q

i : = diction of the A=} rule) can
Show that the null hypothesis H : T 21_ (pFe A n
be accepted at a significance 1e%e1 8f 0.5% against the alcernative hypothesis
Hi: To ¥ 2T_.

14.3.3 Comparison of variances in two normal distributions

2
For the two normal samples, x),Xz2,.«.»%, from N(u3,01) and y1,¥2,..-2¥
from N(ua.ci) we can also be interested in testing the hypothesis of equal vari-

ances.,

46
H:of =of, (14 .46)

againgt the alternative
Hy: 0% >0, (14.47)
For the moment we assume thai both u} and U2 are unknown. Since we know that the

population variances are estimated by the sample variances it is reasomable to

try to establish a test statistic using the by now wellknown properties that
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(n-1)s} ; ? -,
—— 7 ) W is x*(o-1)
of of i=1 * ’
s owm
— = Lo is x* (1),
o2 g3 i=1

With two independent chi-square variables it is natural to construct an F-vari-

able by dividing each of them by its number of degrees of freedom and then take
their ratio,

{n-1) s}
——/(n-1)
af 5§ o}
—_—_— - .=, 14,
(m-1)s2 s of (449
. / (w—1)
oz

which, according to the definitiom in Sect.5.3.1, gives an F-variable with
(n~1,m1) degrees of freedom, For the test of Ho against H, we shall therefore
use the simple test statistic

2

¥

8% 1 n _ 1 m -
— = = (x,-x)2f— (y,~y)2 14,
sg n-1 i§1 1 /;r1 iZ1 1 ( 49)

and take the critical region at the upper tail of the appropriate F-distribution.
Conversely, if the alternative were

Hy: o} < o2, (14.50)

we would take the critical regiom in the lower part of the distribution.
If the population means U; and ¥y were known one could reason in &
similar manner; it is readily seen that the appropriate test statistic in this

case is obtained by replacing in €q.(14.49) the sample averages x and ¥ by the
population means |; and y,, giving

L L]
M -

1 T ./ 1 3 2
- L igl(xi—ul) / i;q-izl(yi-uz) . (14.51)

This statistic will be distributed as an F-varigble with (n,m) degrees of free-
dom.
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14.3.4 Summary table

Table 14.1 summarizes relevant details about different tests involving
the mean and variance of normel distributione under various specified conditions

a8 discussed in the previous sections and exemplified in the following.

Table 14.1 Tests for the mear and variance of normal distributions

. s Test
Ho Conditions Test statistic distribution
g® known X Ho ¥(0,1)
afva
=y -
% unknown X“Ho t{n=1)
s/vi
o 2
p known (n~1)sle§=‘z (xi*u)’log K (n)
i=1
Uzﬂog 0 _ 2
¥ unknown {n=1)s%/0d= E (xi'x)zfcg X (1)
i=1
0§=0§=02 known =
a/lsl
N om
_— - N(0,1)
0% and 0% known L
Volin + af/n
Hy=uz=0 il

od=03=20? unknown

—:7=;¥== t{n+m-2)
s/ L

not exactly

2 2
gi *# ¢ unknown kno"n’ggN(o’])

fs?/n + sglm

n n
st -4 a2t 1132
M1 and pa knowym P 3:7121(xi H1) /;:Ti§1(yi Hz) F(n,m
o
hid
ot g2 1 n _ 1 m -2 N
= — -2 f— - F(n-1,m-
py and pz wmknown o n—1i§1(xi x) /;_1i21(y1 ¥} (n-1,
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14.3.5 Example: Comparison of results from two different measuring machines

As a first example on tests involving parameters of normal distribu-
tions, suppose that we want to compare measurements on beam tracks in a bubble
chamber from two different measuring devices with unspecified precisions,

For definiteness we assume that a moncenergetic beam of momentum
Po=2ﬁ.90 GeV/c is incident in the bubble chamber, 2nd that the multiple Coulomb
scattering on the tracks can be considered negligible. Then the error on the
measured track momentum will be due solely to the inaccuracy of the measuring
device. From the geometrical reconstruction method applied to the measured
tracks one expects that it is the inverse of the momentum — rather than the mo-
mentum itself ~ which is an approximate normal variable. Suppose that 20 tracks
have been measured with the two machines A and B, giving the mean values and
standard deviations for the inverse momentum 1/P as displayed ih the following
table.

20 20
(3= w.l3 o= [ - &y
Machine B/ 20, 24F; ;0—1i=1(Pi P )
? in units 10 +(GeV/c)™!

in units 10 °-{(GeV/c)™!

40.12 0.46

A
B AJA 40,32 0.25

let us first check the supposition that each machine really measures
the incident momentum, which corresponds to 1/Pon40.16-IO-S(GeV/c)_l. For each
machine this implies a test on the mean value of a normal distribution, with the
condition that the variance is unknown. With the formulation of the present

chapter we write

According to Sect,.t4.3.1 the appropriate test statistic is

LA
¢ = (F) Py |
s/v20
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which has a Student's t-distribution with 19 degrees of freedom. If we choose
a significance of ©=0.05 we find from Appendix Table A7 that the critical region

for the two-sided test with equal probabilities jo in the two tails ig given by

t] > ¢ =2.09.

025

from the observed numbers in the table above we find that the observatioms with

machines A and B correspond to

B

A
t = - 0.40, tobs

= 1.60.
obs *+ 1.60

Hence both series of cbservations produce values of t in the acceptance region,
and there is no reason to suspect the measurements for either machine .
Secondly, we want to test the hypothesis that the two measuring ma-

chines have the same precision. This amounts to testing whether the variances

2 2 .
o and ap are equal, since
1 1
H:— =—.
K} 2
S S

The altermative hypothesis may state that A is less precise than B,

1
Hl: <—1.
93

o

In this case we know the mean values of the two (normal) distributiens, uA=uB-1/P°

and, in accordance with Sect.14.3.3, we form the test statistic

-3

o

F =

2

m

which has an F-distribution with (20,20} degrees of freedom. Fixing the signi-
ficance level at 5% the critical region corresponding to a one-sided test is
given by, according to Appendix Table A8,

F > F.95 = 2.16.

From the observed numbers we have the actual number

0.46°

obs  F.252" 3.39,
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which falls within the critical region. Hence we must reject the hypothesig of

equal precisions at the chosen significance level. Indeed, we find that there

is a probability of less than 0.5% that a larger ratio F would be observed, if
’

Ho were true. Hence we are likely to accept the alternative hypothesis in this

case, and conclude that machine A is less precise than machine B.

14.3.6 Example: Significance of signal above background

It often happens that an experimental set~up to study a particular
effect implies the registration of various background effects which tend to gb-
scure the "real" effect under study.

compared to the total signal it will be increasingly difficult to decide whether

an apparent effect is real or just represents a staristical fluctuation of the

background, We are i i indi i i i
g therefore interested inm finding criteria for assigning ''re-

P .
ality" to various phenomena and do 50, for example, by attaching a gignificance
level to the observed enhancement in an effective-mass distribution or the dip

seen in a four-momentum-transfer spectrum, ete,
To be specific, let us consider the effective-mass histogram in Fig

14.5, where an accumulation of events is cbserved centered at a mass value MaM
]

Number of events
T

Fig. 14.5. Experimental effective-mass plot with enhancement,

Whenever the background becomes appreciable:
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snd extending over a few bins. We agk the following questions:

(1) What is the probability that the obsetrved effect at this

particular mass value (M=M°) is a statistical fluctuation of

the background?

(?) What is the probability to observe such a fluctuation at
any position in the spectrum?

To answer question (1), let the total number of events in the interval

[M ,Mb] ("the bump regiom™) be denoted by N and the number of background events
a

in the same region be denoted by B. If we assume that all events in the bump

region are due to the background only, we will formulate 2 null hypothesis as

4N -B (14.52)
[a]

Tt sometimes happens that the background distribution is known from
gome theory or model. 1In this fortunate situation B and its variance V{B) can
be calculated directly. More often the background is not known, but is approxi-
mated by a polynomial of appropriate order and fitted to the observed spectrum
on hoth sides of the peak or bump. Ancther procedure. which may be equally well
justified, is to estimate the number B by first forgetting about the bump region
and drawing smooth curves through the data points on each side of the bump, and
then finally interpolate over the bump region. The error in such an eye-estimate
of B may be taken as half the difference between the largest and the smallest
"reasonable™ values of the estimated number ﬁ of background events.

The total number of events N in the bump region may be regarded as a
Poisson variable. Under the assumption rhat the enharcement is a fluctuation,

equivalent to assuming H true, the variance of the total number is then

V(N) = N=3B. (14.53)
1f B has been estimated by ignoring the enhancement region, as for instance from

a polynomial fit or by the hand-drawn curves as described above, it is correct

to regard N and B as wnoorrelated variables. Then the variance on their

difference becomes
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V(N-B) = V(N} + V(B) = B + V(B),

If the number of events is not too small, it is further justified to approximate
the Poisson variable N to a normal variable. To test the hypothesis HD it is

therefore suggestive to adopt the test statistic
N-B __N-B
T A ~ I *
voem)t (B + ved)

which will be an approximate standard normal variable if Ho is true. The test

(14.54)

problem is therefore analogous to that of testing the mean of a normal distribu~
tion, which was considered in Sect.14.3.1.

We are now in a position to state an answer to our question (1): The
probability of observing a positive fluctuation at least as large as the bump
observed around the mass value MM is simply given by

F(d; M) = 1 = G(d) = G(-d), (14,55)
where G has the usual meaming of the cumulative standard normal distribution.

It is seen that d measures the excess of events above the background

in units of standard deviations. Common practice is to express the significance

of an enhancement by quoting the number of standard deviations as defined by

eq.{14.54) . Evidently, small values of d are compatible with the assumption that
the background is responsible for the bump, while very large values of d may be
regarded as support for an alternative interpretation, for instance the presence
of a resconance.

It should be stressed that it is very important in determining the sig-
nificance of an enhancement to take into account the uncertainty in the back—
ground estimate. 1t is seen that the term V(E) in the denominator of eq.{14.54)
tends to lower the number of standard deviations, that is, it reduces the signi-
ficance of the peak, Since, for given total number of events N and estimated
background ﬁ, a broad accumulation covering many bins will usually have a larger
V(ﬁ) than has a narrow peak, it will in general be more difficult to detect a
broad rescnance than a narrow one.

We proceed next to answer the question (2) raised earlier. We assume
that we have already determined the probability P(d; M=MD) that the 4 standard

deviation effect at the particular mass value M=M_ is a statistical fluctuation
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t we want to find the probability P(d) that a bump of d standard devia-

= 1f the bump extends over k bins

tions may appear at any place in the histogram.
1 ———— e e

- . hi . h
d the !;otal number of bins 1in the 1stogram 18 N, the central value of the bulllp
an

i i i the plot. Therefore the probabili-
nay be located in (n-k+1) different bins over p

ty to observe a uc tu, at leas miar tiom ywh re 1 the
bs fluctuation of t t d standa d devia 5 an ere 10 T

histogram is
n-k+l
ped) = 1 - [0 - Pd; M=l'1°)) .

1f d is large this may be written as

14.56
P(d) = (n-k+1) P(d; M=Mo). { )]

T serv y signific deviations
I the probability to obs ¢ a highly significant peak of ¢ standard de
hus

m! n Q
re 1 an effective-mass 1 eases with e nu K 1 P
anyW'ne n ff e=ma plot ner th ber of bins 1 the lot

[T ac e . w y < in
d decreases with the width of the peak For reactions ith many parti les
a

the ¥ i i e for obser-
he final state where many mass combinations can be formed, the chanc

i i ibutions may cer-—
i of the effective—mass distri
ving large effects somewhere in any

i iable.
tainly become gquite apprecl ' . .
To exemplify the last point, let us estimate the number of “many

i ive- lots from buybble chamber ex-
fluctuations" expected per year in effective-mass ple

1ments WV T ¥y r
i nt performed all over the world. The fol lom.ng numbers appl to the yea
per b

1970:
=2 . 105,
total mumber of events measured
average number of mass combinations per event = 15,
. , - o
number of combinations in each histogram 3000,
= 40.

number of bins per histogram

This gives an estimated number of bins per year equal to

——--—-——--—-—--2'105 ;00105 x40 | 4-10% bins/yr.

— .
ini 3 W2 in an
Since the probability of a positive fluctuation of mimimum 40 is 3.2-10 n any

"effects" of
of these bins we must expect total of = 13 occurrences per year of "eff

i i hy it has
at least 4 standard deviations in magnitude. This example illustrates why
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become customary to require five or more standard deviations to claim any en-

haneement in an effective-mass distribution as evidence for a new resonance.

Exercise 14.4: 1In an experiment to search for and study the rate of elastic
antineutrinc~electron scattering, viax.

+ + Yy
() v, +e Vv te

Reines, Gurr and Sobel have ytilized low-energy antineutrinos from a nuclear
reactor. Evidence for the reaction would mainly come from a difference in the
Counting rates observed when the reactor was ON and when it was OFF. For six
different electron energy intervals one registered the counts over periods of
many days. The observed counting rates with the reactor ON and OFF are given in
the table below (columns IT and ITI}, together with the estimated errars due to
instrumental instabilities in the runs (column IV):

I Fﬁi Ir III v v VI ;
Electron Counts/fday Counts/day Stability Counts/day ; Standard | °
energy (over 64.6 days) | (over 60.7 days) error associated |deviations

(MeV) with reactor ON | with reactor off| in any run,| with reactor
1.5 = 2.0 30.6 * .69 26.9 + .67 T 60 3.7 x1.28 2.89
2.0 - 2.5 10,5 * 9.1 * + .38
2.5 - 3.0 4.0 ¢ 3.2 % + 17
3.0 ~ 3.5 1.5 0.6 * t .08
3.5 = 4.0 0.54 * 0.5 4 + .03
4.0 - 4.5 0.40 0.21 & + .01___l L_

(i) Assume the number of counts Per day to be Poisson variables and fi1l into
columns II and 17T the errors (standard deviations) on the average numbers of
events per day. (The errors for the firse energy bin are given for check.)

(ii) Find the difference in the observed counting rates with the reactor ON and
with the reactor OFF and determine the error on these differences (column V).
(Hint: Assume the instrumental instability to be independent of the number of
counts.)

(iii) In accordance with common pPractice among physicists, express the size of
the observed reacror associated rates in units of standard deviations (column vI). !
(iv) At a chosen significance level of 0.12, do the reactor associated rates of
the separate energy bins support the hypothesis of a real (positive, non-zero)
effect in any bin? (Hint: Assume the reactar associated rate to be 4 normal
variable.)

(v} If the data are lumped into cne group covering all energy bins, what is the
combined evidence for a real signal of reaction (1)?

4.3.7 Comparison of means in N normal distribytions; scale factor
14.3.

We saw in Sect.14.3.2 how the mean values of two normal distributions
could be tested for equality by construction of an appropriate Eest statisti?.
which was exactly or approximately N(0,1), or a Student's t=variable, depending
on whether the variances of the two normal distributions were known or not.

These methods can therefore be used to test whether two experimental-results are
mutually consistent provided, of course, that the underlying assumption of nor-
mally distributed observations is reasonably satisfied. .

It is frequently desired to check the intermal comsistency between.more
than two experimental results. Suppose, for example, that there are N ;Tp:r:;t
ments, each reporting an observed value X with error Axi. We want to fin

i we f =
hether these N measurements are Cﬂmpatlble within the errcrs. This Q
whethe Faul
esi naer t th the x,
ate as a test problem where the null hypoth sis und est assumes at

. . .
originate from normal populations which all have the same mean value,

(14.57)
Ho: Hp = Hz = «u0 = Uyo

The alternative hypothesis is any other possibility, where some of fhe means are

not equal to the others, correspomding to bias in some of the experiments. .
If the null hypothesis had specified the value y of the common ?opu'a

tion mean, and also the stangard deviations oy of the.i?d%vidual no;?il i:i:rl-

butions, then the quantity i51(xi—u)’lci would by definition be'a ? i-sq

variable with N degrees of freedom and an appropriate test stat1st1?4 However,

since H does not specify the common populationm mean it must be estimated from

o

i ts
the data. An estimate for p is the weighted mean value for all N measurementS,

eie ) ) {16.58)
uesx= 2 wixil i W
i=1 i=1
i uare
where the weight of the i~th observation is taken equal to inverse of the sq
i = 2 estimate for the error in y is
of its error, LA %/Axl. An es

g = A% LIRS (14.59)
g=Ax = ( E wi) !.
1

i=

val . owill be anp average value from a
) In practice, each reported alue x 1 often ; g i
series o b v 11t he . the co onding error in this average;
s of observations, and t Ax h rresp 4

compare Sect.14.3.2.
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{For Ho true and normally distributed observations these are the MaximumLikeli-

hood estimates of the population parameters, given by eqs.(9.11),(2.12}, when
the o, are approximated by the observed errors Axi.)

If H is true we expect that the weighted sum of the squared devia-
tions from the weighted mean value

N
2 _ l¥]
X = 'E wi(xi x)

(14.60)
1=1

will be an approximate chi-square variable with N-1 degrees of freedom; hence X2
is a suggestive test statistic for the hypothesis of equal population means. If
the population means are not equal (f.e. if H is not true) we are likely to
chtain values of X? which are, on the average, too large. Consequently we shall
use a one-sided test for equality of the means, with critical region at the upper
tail of the x?(N-1) distribution.

Whenever the observed value Xibs as calculated from eq.(14.60) comes
out with a magnitude comparable to the mean value N-1 for the ¥Z(N-1) distribu=
tion this is taken as support for the assumption of consistent measurements.

One will then adopt the weighted mean value x and the error Ax in this quantity
from eqs.{14.58},(14.59) as the best estimates for the true value L and its
error ¢. ’

If the x? test on the mean values fails at the chosen significance
level, Z.e. xibs exceeds the critical value x;(N—1), the reason can sometimes be
that one, or a few, of the measurements deviates strongly from all others. Such
deviations are conveniently detected by plotting the data in an {decgram as de-

scribed in Sect.6,2.5, One assipgns to each measurement a normalized Gaussian

curve of mean x; and width Axi and sums all the curves. If the resulting enve-
lope has a single fairly smooth peak centered at x the measurements are probably
reasonably consistent, but if some secondary peak shows up clearly separated
from the peak at x this indicates that the measurements responsible for the

secondary peak are incompatible with the rest. If no natural explanation can be

found for the odd behaviour it is recommended ko reject the deviating measure-
ments and repeat the calculations with the reduced number of observations.

When X;bs is large compared to the expectation value, but not so large

that the hypothesis of equal mean values must be abandomed, it has in particle
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physics become customary to retain the averaging of the weighted observations
put to introduce a soqle factor to increase the errors. Since one ugually does
not know which, if any, of the measurements or experiments may be wrong ?ne
makes the rather arbitrary assumption that all experiments have undereathated
their errors, and in the same proportion, so that all errors should be adjusted
gpwards by some common factor S. The Particle Data Group accordingly define §

by

2
- (Cobs : (14.61)

S=\w7/ -

The above procedure is used for the calculation of § if all experiments have !
. 2 . - - 5

errots of about the same size. The new Xobs nbtalned.wlth the adJust?d errer

will then of course be just N-1. If the experiments have widely varying errors

the Particle Data Group recommend a slight modification which consists in disre-

garding the less precise experiments in the evaluation of §, thereby obtaining a

scale factor which is sensitive to the most precise measurements.

Note that the scaling procedure for errors in no way affects the weigh~
ted average value x from eq.(14.58), but only amounts to increasing the error in
this quantity by the factor § ceompared to the unscaled error from eq.(14.59).

It should also be stressed that it is of great importance that the ;

i alcu~
individual error estimates Axi have been checked.before they are used to c "
late a weighted mean from eq.(34.58) and a mumerical value for the test statistic
of eq.(14.60). - ;
that these errors are not smaller than those implied by the minimum variance

For instance, it is recommended to make sure whenever possible

bound .

Exercise 14.5: TFive bubble chamber experiments have estimated the mafs og);23
T Typeron as follows: (1673.0 & B.0)MeV, (1673.3 £ 1.0)MeV, (1671.8 * o.si eV,
(1674.2 £ 1.6)MeV, (1671.9 £ 1.2)MeV. Are Fhese results con§13tent gt a : %he
ficance level of 3%? An old measurement using nucleaf emulsions estimate the
mass of a negative particle at (1620 + 25)MeV. Is this result consistent w

the more recent bubble chamber data for the 7

Exercise 14.6: Six different experimgnts have measured the complex CP violation
parameter n in the decay K° + w1 7°. The values reported for the real and
imaginary pa;zs of this parameter are the following:
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Experiment Re Mo ) Im 4o
1 0.07 + 0.21 0.33 * 0.46
2 0.47 £ 0.20 - 0.10 £ 0.34
3 0.08 + 0.44 0.32 * 0,40
4 - 0.30 t 0.28 0.08 £ 0.58
5 0.05 + 0.30 - 0.15 £ 0.45
6 2,75 * D.62 0.50 * 0.62

Considering the real and the imaginary parts of the parameter separately, are
the results from the different experiments consistent at the 5% level? What

are the scale factors for the two series of ohservations using all measurements?
What would the scale factors be if the last experiment was disregarded?

Exercise 14.7: The mean lifetime T of the 7° meson has been measured by 11 ex—

periments, six of which used nuclear emulsions as detectors and five used counter

technique. The following data have been reported:

Huclear emulsion technique Counter technique
. N -1& Numbex of . . -1
T (in units of 10 sec) events T {in units of 10 sec)
1.9 £ 0.5 76 1.05 ¢+ (.18
2.3 £ 1,1 45 0.73020.105
2.8 + 0.9 a8 0.6 * 0.2
1.7 £ 0.5 75 0.56 * 0.06
1.6 * 0.6 67 0.9 * 0.068
1.4 + 0.3 232
L
(1) Verify that the errors given by the emulsion experiments are larger than

the theoretically smallest possible errors. (Hint: The MVB for T in the p.d.f.
febty = trexp(-t/T) is 13/n.)

(i1) Show that the emulsion experiments are internally consistent,

(iii} Arve the counter experiments internally consistent?

(iv) Do the two techniques lead to consistent results?

14.4 GOODNESS-OF-FIT TESTS

Up to this point we have in this chapter considered various types of
parametric tests, in which the task has been to decide whether, in the light of
a set of observations, the numerical values of certain parameters describing a
probability distribution are compatible with some specified values defining the
parametric hypothesis.

We will now proceed to discuss more general problems involving non-
parametric hypotheses, with which we shall be concerned for the remainder of the

chapter. UWe start by considering teste of goodness~of-fit. For definiteness,

415
iet XpsXzy«-rsXy be sample values for a random variable x whose true probabil-
ity function f(x), continuous or discrete, is not knewn and let fo(x) be some
particular specified distribution. To test the simple hypothesis

Wz £(x) = £ (x) (14.62)
o o

on the basis of the sample values is them a typical goodness-of-fit problem.

in testing goodness-of-fit we shall, as before, need a test statistic
whose distribution, assuming Ho true, defines a critical region and an accept-
ance region with probabilities o and 1-a, respectively. The situation can be
different from that of the previous sections in that we may now not formulate an
alternative hypothesis H;, since H; ¢an be the ensenmble of all conceivable hy-
potheses different from HO. Thys H, is often left unspecified, and the power of
the test not taken into account.

The goodness-of-fit test most commonly used is Pearson's xz test,
whick will be discussed extensively in the following sections. This test is
strictly speaking exact for large samples only, and otherwise approximate. A
gecond test for goodness~of-fit, the likelihood-ratio test, is valid for all
samples sizes, but since its test statistic has a distribution which is not
known in general, this test is less applicable to practical problems; moreover,
since the likelihcod-ratio test for large samples can be shown to be equivalent
to Pearson's xz test, it will not be considered in this book. Instead we shall
discuss the Kolmogorow-Smirnov test, which is particularly useful in the case of

small samples when the conditions for Pearson's y? test are not satisfied.

14.4.1 Pearson's y? test
In this and subsequent sections, the presentation resembles that of

SecLs. 10.4 and 10.5 regarding concepts and notation. However, while in these
sections the topic was parameter estimation (by the Least-Squares approach), the
estimation problem as such will be of subordinate importance to us here. In
fact, to emphasize that our present concern is the goodness—of~fit between ob-
served data and Some theoretical model we shall for the moment assume that the
data have not been used to infer the numerical values of parameters in the model.
In other words, the distribution defining Hy is presently assumed to be spec-
ified independently of the chservations which constitute the basis for the test

of fit. The necessary modifications for a situation where the data have been
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used to specify parameters in Ho will be considered in Sects.14.4.3 and 14.4.4

below.

We agsume now that n observations on the variable x belong to N
mutually exclusive classes, such as successive intervals in a histogram, non-
overlapping regions in two-dimensicnal plet, etec. The number of events NNz
R in the different classes will then be multinomially distributed, with
probabilities By for the individual classes as determined by the underlying dis-
tribution. The simple hypothesis we wish to test specifies the class probabil-

ities according to some precription,

Hy: PL=Pols P2 = Ppzs +-+» PN = Pops {14.63)

where
N
g Poi =1 - (14.64)

Equivalentily, the hypothesis specifies the numbers predicted for the different
classes, given that the total number in all classes is n. To test whether the
set of predicted numbers np. is compatible with the set of observed numbers n.

1

we take as our test staristic the quantity

N (n-npy;)?

. (14.65
i=1 *Poi )

x%=

or, in an equivalent form which is easier to compute,

n

N
F . T n.
i£1poi (14.66)

ok

X% =

Sl=

When H is true this statistic is approximately chi-square distributed with N-1

. degrees of freedom.

To qualify this statement we ohserve that each term in eq.(14.65) is
the square of a2 quantity (ni-npoi)/%, where the numerator measures the dif-
ference between the observed and hypothetical value for class i ; Af Ho is true
this difference has expectation value zera. Also, the number of observations in
any class i can be considered a Poisson variable, with mean value equal to its

variance, and for H, true this mean is equal to np.;. 1f, further, np . is large
oi
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enough to approximate a Peoisson variable to a normal variable, then (ni"npoi)/
fn_':; is approximately N(0,1). The statistic X constructed as a sum of squares
of such variables will accordingly be an approximate chi-square variable with a
pumber of degrees of freedom equal to the number of independent terms in the sum,
which is here N-1 due to the normalization condition.

If H, is true, and the experiment is repeated many times under the
game conditions with n cbservations, the actual values obtained for xzobs will
therefore be distributed nearly like x2(N-1); in particular, the average value
for Xébs will be = N~1 and the variance = 2(N~-1). 1If, on the other hand, H, is
not true, the expectation for each nj is not npyj, and the sum of sguared terms
(ni-npoi)//?oi will tend to become on the average larger than if H, were true.
Hence it seems reasonable to reject H if ‘Kibs becames toa large and to adopt a
one~sided ctest for H, taking the critical region at the upper tail of the appro-
priate chi-sguare distribution. - See also Exercise 14.8 below.

It has been the practice at times to reject H, for very small as well
as very large values of xgbs’ {.e, to use a two-sided test, the argumeént being

that a very small X; might indicate some bias in the data towards the hypo-

bs
thetical values. Although such a bias may certainly cause an improbable, small

valué for X2 it appears on the other hand even more unlikely to obtain a low
o

s
xébs value u:jng a wrong hypothesis; the two-sided test thus seems less jus-
tified and has been abandoned.

Since the Pearsan ¥? test is insensitive to the signs of the differ-
ences (n; - np,;) it is strongly tecommended, alsc in the cases when there is no
reason to suspect the hypothesis from the X;bs value, ta examine the hypotheri-
cal and observed numbers and look for systematic trends over the variable range.
Quite frequently a hypothesis which corresponds to an acceptable chi-square
probability can be ruled out from the pattern of signs in the deviations between
data and model; see the example in Sect.14.6.7.

Exercise 14.8: {Expectation values of the X* statistic)
{1) Snow that, for any underlying multinomial distribution with class probabil-

ities pi, pz, -+., py the expectation value of Pearson's test statistic eq.
(14.66) is

N p, (i-py) N pl
E(X) = § 2—21 4 ( o ) ) .

i=1 Poi i=] Yoi

In particular, if “o is true (.. if P; =P, for all i), ome has, for amy sample
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gize n,
2
E(X |Hn) =N-1.
This represents a generalization of the already established asymptotic result
when X% is xz(n-1) and therefore has mean value N-1, ’
(ii) Show, by minimizin% E(X®) with respect to the p, under the constraint
Ip; =1, that as n-», E(X°) will be minimal if Pj =Poi. (Hint: Use the Lagrangian

mu}tl:.p}i.er r.nethod.) Hence, for any hypothesis H; specifying a set of class prob-
abilities differing from H, one will have, asymptotically,

E(K%[H,) > N-1,

suggesting that the critical region for Pearson’'s y’ test should be at the upper
tail of the chi-square distribution.

(iii) 1If all class probabilities are equal under H,, t.e. if all p; n%‘, ghow
that, for any sample size, ot

_ o E®H) = (1) ¢ (D (NLpE-T),
which 18 always larger than -1 for hypotheses differing from H,.

14.4.2 Choice of classes for Pearson's y? test

The problem of how to divide the variable range into classes or bins,
and thereby fix the number of classes, was also considered in connection with the
Least-5quares method of parameter estimation, Sect.10.5.2.

The asymptotic chi-square behaviour of the X? statistic for the Pearson
x2 test of goodness-of-fit is, strictly speaking, only proved to be correct if
the class division is made without any reference to the observations, This is so
because the formulation abowve assumed the observations to be randomly (multi-
nomially) distributed over a set of predefined classes, each corresponding to a
specified probability. In practice, however, the choice of class boundaries is
often made after the data have been obtained and the general pattern of the ob-
servations has emerged and can be taken into account. This practice is justified
by the fact that, for infinite m, the distribution of X2 will be x?(N-1) for any
partition with K classes, provided Hy is true.

Pearson's x” test relies on the approximation of a multinomial to a
multinormal discribution, since it assumes an approximate standard normal behav-
iour of all terms (ni—npoi)/fﬁ?!;; » and this requires sufficiently large numbers
of expected events within each of the N classes. Clearly, the grouping of imdi~
vidual observations into a class and representing them by some common average
value of the variable necessarily implies a certain loss of information which is
in itself unwanted. 1In applying this test to compare model and data the physi-

cist may therefore experience the Thoice between Scylla and Charybdis: he should
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use relatively few classes to comply with the normality requirement, and many
classes to reduce the loss of information from the data.

To solve this dilemma it is usually recommended to group the observa-
tions as little as possible and in such a way that the number of events within
all classes will be in accordance with the pormality requirement, which is cus-
tomarily specified as a minimum of 5 expected events in each class. If the numr
pber of degrees of freedom is not too smzll, say at least 6, ome or twe classes
may be allowed to have even less than 5 expected events.

For observations on a diserete variable the class division will usually
represent no special problem, since the c¢lass boundaries will more or less sug-
gest themselves and possible necessary groupings of events, particularly in the
tails of the distribution, can be made to correspond to the minimum requirements
mentioned above.

For a aontinuous variable there is no natural suggestion for the class
determination from the hypothetical distribution itself, and essentially two dif-
ferent approaches can be thought of for the subdivision of the variable range
{Sect.10.5.2): Either the ramge is divided into classes of equal width, or it is
divided to correspond to classes of equal probability. The equal-width method
is arithmetically simpler than the equal-probability method which may require a
somewhat higher level of computational sophistication and therefore, apparently,
enjoys less popularity among physicists. The equal-probability method can, how
ever, be shown to be theoretically advantageous.

Assuming equal-probability partition and sufficiently large samples,
it is possible to establish a relation for the optimum number of classes which
maximizes an approximate power function for Pearson's x? test (see Kendall and
Stuart, Chapter 30, Vol.2). The optimum number of classes is found to increase
in proportion to n2)'5 for fixed power and significance or, equivalently, the op—
timum expected event number in each class increases as u3‘,5 .  Specifically,
maximizing at a power level 1-B =} for n=200 one finds that the optimum class
number W is 31 (27) for a significance level of 5% (17), corresponding to between
6 and 8 expected events per class, just barely in accordance with the normality
requirement. For higher power levels the optimum nurber of classes is lowered,

corresponding to more expected events per class.
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Whether the equal-probability method generally improves the power of
Pearson's x2 test compared to the equal-width method is, however, not at all
clear. Indeed, one may suspect that the degree of "fit" will be most critical
at the extremes of the variable range, and under such circumstances the equal-

probability method may well result in a loss of semsitivity in these regions.

14.4.3 Degrees of freedom in Pearson's y® test

Tests for goodness—of-fit are frequently used in conjunction with esti-
mation problems. Typically, some theory or model is available which includes a
certain number of parameters that are either known to an unsatisfactory precision,
or not known at all. This model may be said to constitute a composite hypothesis,
gince it is not completely specified, but spans a certain regiom of parameter
space. If then the data are used to obtain estimates for the unknowns the effect
is to reduce the allowed region of parameter space to a single point. This cor—
responds to making the model a simple hypothesis, which is subsequently put te
test for goodness-of-fit.

Far a Least-Squares estimation we know from Sects.10.4.3 and 10.4.4
that the comparison between data and fitted model is made using the chi-square
distribution with a number of degrees of freedom equal to the number of indepen-
dent observations minus the number of independent parameters estimated. This
procedure is exact only in the limit of infinitely many observations and with a
linear parameter dependence; otherwise it is an approximation. Thus, if there
are L parameters in Hy which are estimated by the LS method and N classes subject
to an overall normalization condirion, Pearsom's xz test for goodness—of-fit con-
sists in comparing the fitted (minimum) value X:lin to the chi-square distribution
with (N-1-L) degrees of freedom,

Whenever unknown parameters are to be inferred from the data it is gen-
erally recommended to use the Maximum-Likelihood method for this estimation and
to use the X2 statistic of eqs.(14.63) or {(14.66) with the estimated predicted
frequencies poi=aoi for testing the goodness—of-fit. The comparison will then
be made to the chi-square distribution with a number of degrees of freedom which

is smaller than B~1. Two possibilities can be thought of:

(i) The data were grouped in N classes and the L unknown parameters estimated

by the multinomial MaximumLikelihood method as described in Sect.9.9. - The ¥°
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statistic can then be shown to have asymptotically a XZ(N-I-L) distribution, just

as if the parameters were estimated by the Least-Squares method.

(ii) The L unknown parameters were estimated by the ordinary MaximumLikelihood
method from the original ungrouped observations. ~ In this situation it is a
1ittle more problematic to perform the goodness-—of-fit test, because the x? stat-
istic does no longer have a simple chi-square distributien. Assuming again N
terms in the X% sum it can be shown that X? will have a distribution which is
pounded by two chi-square distributioms with (N-1) and (N-1-1) degrees of free-
dom, respectively, When N is a large number the difference between the two dis-
tributions may be ignored, and the critical value for %? at a given significance
can be found from the corresponding y*(N-1) distribution. For N small, however,
it may be necessary to check that the calculated X% exceeds the critical value

for both distributions ¥?(N-1) and xz(N-l-L) before rejecting the fit.

2

14.4.4 General yx* tests for goodness—of-fit

In our considerations so far we have assumed that the test statistic
%? has been expressed in terms of N class probabilities, which are not all inde-
pendent but must add to unity. This is equivalent to requiring equally many
predi.cted and observed events when summed over all classes, and implies a reduc-
tion in the number of degrees of freedom of one unit in the comparison for good-
ness—of-fit. Quite frequently, however, the model which we wish to test gives
definite predictions for the absolute numbers of expected events fi in the sep—

arate classes. Rather than eqs.(14.63),{14.64) the hypethesis is

. = = . = . 4.67
Ho. fl fox’ f2 foz, ey fN fDN (1 )
and the natural test statistic is then
N (n.-£.:)2
oo ) it .68
i=1 ol

which, for Ho true, is assumed to be approximately x?(N) when all N classes have
sufficiently many events. Again, if Ho involves parameters whose numerical
values are inferred from the data by the usual estimation methods, the number of
degrees of freedom will have to be reduced as described in the previous section.
For more complicated problems, where there are constraint equations

relating measurable and unmeasurable quantities (parameters), and alsc correla-
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tion terms between the measurements, a ¥? test for goodness-of~fit can be based

on a test Statistic of the type

X? = (X—EO)Tv_l(g)(x—_f_o) (14.69)

where f, is the vector of fitted quantities defining Ho and y the observations
with covariance matrix V(y). In particular, if a Least=Squares estimation has
been used, the number of degrees of freedom is {K-J), where K is the number of
constraints and J the number of unmeasurables in the problem.

For a chosen significance level 100a T of the x° test the lower limit

x; of the critical region is generally given by the relation

©
a = J flu;vydu = I-F(u=)(;;v) (14.70)
X

where f(u;v) is the chi-square p.d.f., F(u;v) the cumulative integral of the same
p.d.f., and v the appropriate number of degrees of freedom, If x;bs as calecula-
ted with the observations exceeds the critical value x; implied by eq.(14.70)
(and obtained, for example, from a tabulation with fixed percentage points such
as Appendix Table AB) the hypothesis K, will have to be rejected at the chosen
significance level; if Xébs comes out smaller than xé there is no reason tao re-
ject H, on the basis of the ¥? test.

Common practice among physicists is to convert the actually observed

value ngs for the fit to an equivalent chi-square probability sz as implied by

the relation
©

B T ] ECusvidu = 1-Flu=xfy 5v) . (14.71)

x;ba
This probability is most conveniently obtained from curves of the cumulative chi-
square distribution, such as Fig. 5.2, but cam also be found by interpolation in
the standard tables with fixed percentage points,

it may be appropriate to stress that although 2 very bad fir {with a
high x;bs value and low sz) can be a sufficient reason for rejecting e hypoth=
esis, a good fit is in {tself inconclusive ag long as other hypotheses have not
been tried. In fact, instead of using the phrase “we accept the hypothesis" it

will perhaps be more appropriate to expreas the matter as “we fail to reject the
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hypothesis™. A ¥? test for goodness-of-fit may, however, provide additional
sypport Eor a hypothesis which is already plausible for other reasoms. Thus,
when a physicist says he accepts a certain hypothesis he probably has been con-

vinced from physical arguments rather than purely statistical considerations.

14.4.5 Example: Kinematic analysis of a v° event (2)

To illustrate the use of the x’ test for goodness—of-fit we shall go
back to the example of Sect.10.8.2 and see how this test can be used to decide
the identity of neutral stramge particles observed as v? events in a bubb%e cham
ber. Depending on whether the positive decay particle is a proton or a pion

there are two hypotheses for each V°:

H VO is A pm ,

#Hi: V° is Kg > gtaen .
We assume now that the flight direction of the VO has been determined
from the measured production and decay points, and that the momenta and angles
. X _ |
of both decay particles have been measured. The measurable variables n then con 3
o
stitute an 8-component vector, involving two angles for the V7, and momentum and

two angles for each of the twe decay particles. The only unmeasurable variable

£ in the problem is (the magnitude of) the V® momentum. Since there are four
constraint eguations for energy and momentum conservation this corresponds to a

3c-fit for the constrained Least-Squares estimation of all kinematic variables in

a specified hypothesis.

If the correct hypothesis has been used for the fit the variable X2
of eq.(14.69) with the fitted quantities f, =1 obtained in the fipal iteration of
the minimization procedure, will be approximately x2(3). Fixing, for exanmple,
the significance level at 1% the critical value, as read off from Appendix Table
AB, is Xf01 =11.345. Hence, at the 1% level, we shall reje?t a hypothesis if
the observed wvalue x;bs exceeds Xf01‘ and otherwise accept it.

Specifically, let us consider am event for which relevant nusbere are
given in the following table. Tie angles for the VC have been obtained from the
production and decay points with measured (x,y,z) coordinates (~44.4%.14,-1.8%.17,
-16.2+.26) and (-28.8%,15,-5,3%.16,-16.0¢+.26} in cm, respectively. All measured

quantities have uncorrelated errors.
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| Momentum Dip angle Azimuth angle
| (MeV/c) (radians) {radians)
I ]
.. 1535472 0.02210,006 6,10740.007
M Py !
easured quantities f T 1 1479460 | 0.019:0.006 6.11120.006
—— + =
L% | 37818 | -0.097:0.016 | 5.76840.014
Fitted quantities, ©op_ ) 1564272 1 0.022:0.006 |  6.10640.007
hypothesis H, T 3542l -0.091%0.016 ©  5.781%0.D12
Fitted quantities, ol | 183151 § 0.02620.006 | 6.12410.006 {
hypothesis H, | v | ssie -0.11850.016 5,71940.011
| b !

In view of the preassigned 1% significance level and corresponding
critical value of the test statistic, we shall from the obseived values x;bs(HD)=

2 _ .

3.6 and xobs(H‘) = 26.7 accept H, and reject H;.
ticular Vv is a A.

With the present example the numbers assure, with overwhelming plausi-
bility, that the correct identity has been established for the v°. 1In other
cases the situation may be not so simple.

2
Kcﬂ:ps
matically ambiguous.

For example, if both hypotheses give

< x; and thus are acceptable at the chosen significance o, the V° is kine-

If this ambiguity can not be resolved by ionization or
other criteria, the practice among physicists is either to accept only the hypoth-
esis with lowest x;bs (highest chi-square probability sz), rejecting the other,
or to accept both hypotheses, including the V° in the two samples of A and K:
events with weights in accordance with the P z values for the two fits. - 1If

both hypotheses give xsbs > X?O! the event is rejected, and both final samples

corrected for a !7 loss of true events.

T4.4.6 The Kolmogorov-Smitrnov test

Pearson's y* test is undoubtedly rhe most popular non-parametric test

used by physicists. However, other goodness-of-fit tests ewist which avoid the

bimning of individual observations and may be more sensitive to the data. The

most important of these tests is probably the Xolmogorov-Smirmov tes?, which in

particular for small samples i8 superior to the x? test, and has many nice prop-

erties when applied to problems in which no parameters are estimated,
Given n independent observations on the variable x we form an ordered

sample by arranging the observations in ascending order of magnitude, x1,Xz,..,% .
n

_ A

We thus conclude that this par-
1
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. . . . b
The cumulative distribution for this sample of size n is mow defimed by
i N L (14.72)
e A T
1 X2 K.

= "n
i i i — at each of the
Thus § (x) is an increasing step functiom with a step of height o
n

observational points K1sXzpeory ¥ - - e verved
The Kolmogorov-Smirnov test invelves a comparison between

on function 5_(x the sa and th umul at1 v dis-
le and the ¢ lative
cumulative digtriburl ! ( ) for € mp

u er some theoretical model. We state
tribution function F_{(x) which would occur und
o

the null hypothesis as X
(14.7
: =F .
Ho' Sﬂ(x) 0(_}() | L
For Wl true one expects that the difference between Sn(x) and F
D

an oint should be reaso ably small. The Kolmogorov— rmov tes ooks at the
¥y P 1 n ¥ 11 e Imogoro Sm1 test 1

i test statistic®
rved points and takes as a
difference Sn(x) - Fo(x) at all obse P

the maximum of the absolute value of this quantity, thus
{14.74)
B = max |5 (x) - F 0 .

It can be shown that P!DVldEd no parameter 1in F_{(x) has been termin rom the
h b de ined f t

i i i i is indepen—
i i has a distribution which is in
data, and assuming Hn true, The variable Dn

. . . . - . : =
ent of F X 2.2, D 13 digtvibution— f ree . This holds 1 rrespectlve of the
& ( ) 2 . W

sample size. . e
igti ting H_ one mus
To be able to use Dn as a test statistic for tes g B

at D has a cumulative
its distribution function., It was shown by Kolmogorov th n

distribution which for large n is given by

2.2

5 17 (14.75)

lim P (Dng/i) <=2 =17 e
n

n-+oo r=1

i ini the D dis-
This relation is approximately valid already at n==80. For finite n N

tributions can be found from recurrence relations. ) 4 ot he cest scat-
i iti ues
Appendix Table A0 gives the exact criticat va -

i imiti ase of n
istic D for m < 100 as well as approximate values for the limiting ¢
o 5

istics
*) Alterpative formulations of related tests use the statistic

b = max(§n(x)—Fo(x)) or D_ = max(FO(x)—Sn(x)
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large (last row), for different values of the significance @. It turns out that
the approximate values obtained with the limiting entries are always larger than
the exact ones. For instance, taking & = 0.05 in a case with n = 80 the exact
critical value of Dn is d.05 = 0.1496, while the approximate value becomes
1.358//80 = 0.1518. If the null hypothesis B is teated at a significance level
of 5% it should therefore be rejected if the largest observed deviation between
Seo(x) and Fo(x) exceeds 0,15.

It will be seen from Appendix Table A10 that, if the sample size is

small, rather large differences must be found between the cumulative distributions

in order to detect significant deviations between data and hypothesis; heace un-

less this differemnce is considerable one shall not be able to falsify HD. Indeed,i

the numbers of this table can be taken as an illustration of the general diffi-
culty in constructing effective tests for small data samples.

It is worth noting that since o for HO true has a distribution which
ig universal and indepeadent cf the theoretical Fo(x), and furthermore is known
for all n, one may use Dn to construct confidence bands for any continuous dis-
tribution function F(x). Whatever the true F(x) is we may write a probability

statement about Dn as

P (Dn = max iSn(x) - Fo(x)| > du) =0y (14.76)
where as before da ig the critical value of Dn corresponding to the significance

a. The statement can be inverted to give a confidence statement about F(x),
? (Sn(x) - da < F(x) < Sn(x) + du all x) =1 -0a, (4.1

This means that, at any peint x, the cumulative distribution function F(x) will
have a probability (1 - a) of being larger than (Sn(x)— du) but smaller than
(Sn(x)-rda). Therefore, if one constructs a band of width ida around the empiri-
cal cumulative distribution Sn(x) the probability is (1 -a) that the true F(x)
will lie entirely within this band. This provides an extremely simple and direct
method for estimating a cumulative distribution function at a given confidence

level. Obvicusly this inversion of the goodness—of-fit test into a confidence

statement about F(x) rests upon the simple way D, was defined to give a measure of :

the deviation between 8,(x) and Fo(x).

The technique described here can be uysed, for instance, to plan what

[
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size an experimental sample should haye in order to provide F(x) to a required
precision. Numerically, let us demand an accuracy of better than 0.20 anywhere
on F(x} at a confidence level of 907 . Then, from Appendix Table Al0 we see from
the entries for a=0.10 that n 2 35 will be necessary to have Dn < 0.20. With a
required accuracy of better than 0.05 at the same confidence level we find from
the asymptotic entry that the condition on n is 1.22/vn < 0.05, which implies

a % 600.

It should be stressed that the considerations above apply eonly to aitu-
ations where no unknown parameters are involved. 1If some of the parameters en=
tering Fy(x) have beea estimated using the data the statistic D, is no longer
independent of Fo(x), and the critical values dy can not be obtained using the
universal tables. However, in some fortunate situations the Kolmogorov—Smirnov
test can still be used even in the presence of unknown nuisance parameters, pro-
yided appropriate tables over percentage points are available. For example, for
the important class of problems where the estimation involves the mean value of
an exponential distribution such tables can be found in a recent article by

J. Durbin.

14.4.7 Example: Goodness—of-fit in a small sampie

To illustrate the use of the Kolmogorov-Smitnov test of goodness—of-fit
we consider a typical low-statistics experimemt. Suppose that for 30 events one
has measured the proper flight-time of neutral kaons decaying into the semilep~
tonic final state 7te”v. With the kaons produced in an initially pure strange~
ness +1 state one can predict the p.d.f. fo(t) for the flight-time t under the
assumption that only the © component with strangeness -1 contributes to the
f*e~y final state. This assumption defines the null hypothesis H, which we want
to test.

Figure 14.6(a) shows the step function S3O(t) obtained for the sample
of 30 flight-times and the predicted cumulative distribution functionm Folt).
From the largest deviacion betweeen the experimental and theoretical curves we

determime the actual value of the Kolmogorov test statistic of eq.(14.74) as

Dy, = max 1530(:) - F (0] =0.17.

From Appendix Table A1) we see that at the commonly chosen significance levels up

to 107 we shall not be able to reject H, on the basis of the 30 observations with

18 - Probabliity and statiatics,
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ForSs0l™ r
0.8
S.. (1) (a)
06
Dobs

0.4
0.2 F(t)—ff Yt

AR o (Ohdt =

Number of events

10 15
Time of flight (in units of 0.89x10™ sec)

Pip. . .
oégfllzﬁi.tggzgarés;n of ;redlcted and experimental distribution
# (8) cumulative distribution (Kolmo i
- > . - orov=
test), (b) differential distribution (Pearson's 2 Ee:t) Smirnov

this test. Indeed, for H
o

true, we find by e i i
o f ¥ extrapolation of the table entries

. 30 that there is a pProbability of about 0,25 that a larger maximym
deviation than 0.17 would be found between

the observed cumulative di i i

‘ istribut

function and the predicted F _(t) o
o).

For compari i
mparison, let us use the same observations to test H by the y?
(o]

method. For the flight-times of Fig, 14.6{(a) a grouping of the data in the 4

intervals 0-3, 3-5, 5-7, and 7-18 (in units of the X° mean lifetime) fulfil the
> 3 » &
recommendation given earlier for Pearson's x® test with nearly equal probabil-

ities in all bins and at least 5 eptries in any bin, see Fig, 14.6(h)

o Assuming

statised .
. atistic to he sufficiently well approximated to a chi-gquare variable
unzer these circumstances ome finds a chi~square probability of about 0.40
(xobs=3'0 and 3 degrees of freedom).
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16.5 TESTS OF INDEPENDENCE

Frequently, when data are available in differential form specifying
ceveral properties or attributes, it is desired to test whether these properties
are independent of each other. The motivation for carrying out a test of inde-
pendence <an sometimes be a profound theoretical conjecture, for example, a
scaling prediction for the shape of a spectrum of a kinematical variable. Before
4 claim is made on scaling behaviour it is then necessary to establish that the
spectTum in question remains unchanged when, say, an incident energy is in-
creased. More often the motivation is less subtle. The experimenter may simply
want to find out whether observed events are uniformly distributed along a band
in a Dalitz plot, whether transverse and lomgitudinal momenta are uncorrelated,
ot

An assumption of independence in the variables x,¥,... can be stated as
a null hypothesis where the joint probability distribution factorizes into sepa-

rate probability distributions for the individual variables, f.e.
Hot E(x,¥,-00) = £.00 £a(yy- - (14.78)

A test problem of this kind can be approached along different lines of thought,
some of which consisting in rephrasing the problem to make it analogous to those
discussed in Sects.14.6 below.

It turns out that the ¥? test is also adequate for providing answers to
test problems of the above type, since a test statistic can be comstructed in
analogy with the Pearson statistic of eq.(14.65). To demonstrate this we shall
be satisfied with considering a problem in two dimensions only, which will be
sufficient for most practical purposes. The extension ta higher dimensions may
become somewhat awkward regarding notation but is conceptually simple and should

be borne in mind by the experimenter working with high-statistics data samples.

14.5.1 Two-way classification; contingency tables

Suppose that observations can be classified according to two different
attributes or properties & and B, and that there are 1 categories for the first
attribyte, AI‘AZ“"’Al' and J categeries for the second, 81,52,...,55. let the
number of observations with attributes Ai og B, be denoted by n].-j and let the

total number of observations be n, With the notation
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J I
n, = Yo, n,=Jn.,, {14.79
i jop 1 <375 )
the normalization condition is
;i )
Tn.= Tn, ® . =n . (14.80
i=t j1 Myt j=1 "1 )

The numbers can conveniently be written in a contingency table, as in Fig. 14.7,

A similar table*) can be written for the cell probabilities P(A na, ) 5
Py
If these probab111tles were specified by some theory or model as defuute num-

bers pij = pij » corresponding to a simple hypothesis, the agreement between the

B] 32 B:3 BJ E n. 3 F
i
] i
AT n” nf2 n]3 [ n” : n]_ ‘
i i
Ay L SR PR "3 M2
Ay M3 Py Ty Tyy LT
Ay " "1 13 "oy or.
n.j “.] 0y “.3 o n._] ‘ n

Fig. 14.7. Contingency table for two-way classification.

observed and predicted distributions could be checked by taking the sum

—ap?® 12
¥ = E §(nij “Pij)
Rt [s3

i=1 j=1 npij

(14.81)

as a test statistic for an ordinary Pearsen ¥® test of goodress-of-fit with
(IJ-1) degrees of freedom.
We assume now that our interest is not in the goodness-of-fit as such,

but rather in the problem of deciding, on the basis of the data available,

*) A contingency table for probabilities was given already in Sect.2.3,12.

r
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hether the A and B classifications can he said to be independent. The indepen—
v - *
dence would imply that the conditional probability for attribute Bj, given Ai,-ls
he same whatever A., and vice versa. Equivalently, the probability for having
t i L » * ]

gimultaneously properties Ai and Bj is equal to the product of probabilities for

the separate occurrences. Thus we can state our (composite) null hypothesis as

: = ,Y*P(B, 11 i,)
By P(Ainﬂj) P{A, ) F( J) a 4]

(see Sect.2.3.6 for the general definition of independence). With a scmewhat

simplified notation we may write

: = p. . all i,j (14.82)
Hyt Pij = Pi. P.j +J
where the marginal probabilities for attributes Ai and Bj are given by
J
oz P = L b, p., S P(B.) = (14.83)
Pi. i jél ij i S

These marginal probabilities must satisfy the condition for exhaustive sets

Z P = *
i= 1 :

which implies that only I-1 of the row probabilities and J-1 of the column prob-

I {14 .84)

abilities are independent. These probabilities may be estimated from the obser—

vations as

ﬁi' = ni.fﬂ s P‘j = n.j/n

(14.85)

The individual cell probabilities may therefore, if H is true, be estimated by
the products of the appropriate estimated row and columm probabilities, ﬁij =
p. B. = ./n°. A suggestive test statistic for testing independence in a
ie Puj n,n j

two—way classification is consequently

1 J(n,.-n, n ./n)?

- ij “ietej (14.86)
X z z n, n.fo *
i=1 j=1 ie7e}
or, in a form more convenient for computationm,
1 J n?,
X' = “{ Pl - 1} . (14.87)

. PR £ I
i=1 J=] nl' b |

Under H , X* will be approximately chi-square distributed, provided the
o

numbers of events in the different cells are sufficiently large. The number of
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degrees of freedom is equal to the number of independent ohservations minus the

number of independently estimated unknowns, that is,

(I3-1) = [(T=1) + (J-1) ] = (I-1)(J-1} . (14.88)
Exercise 14.9: Show that the ﬁi. (and similarly the ﬁ_-) of eq.(14.85) are the
Maximurr-Likelihood estimates of the row (column) probabilities. (Hint: Write down
the likelihoed for obtaining the observations f,s03 50050, , and use the
Lagrangian multiplier method to find the I probabilities PlasP2as-=s,p._ which
maximize the log likelihood function under the constraint Xp;.=0.) I

Exercise 14.10: 1In an Ix I contingency table, show that the hypothesis of com

plete symmetry, Ho: Pij = pji, i,j =1,2,...,1I, can be tested by the statistic
(1'li.--11..)2
X = ) - 1+ ii
i<y "ij7 M1

which, under HD, is asymptotically distributed as XZHI(I—U].

+
+ 1 +
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Fig. 14.8. Scatter diagram of centre-of-mass momentum components of A hyperons.
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14.5.2 Exanple: Independence of mementum components

As an example on a test of independence in a two—way classification,
consider the data of Fig. 14.8 which shows in the form of a scatter diagram the
distribution of centre-of-mass momentum components for a sample of 670 A hyperons
produced in pp collisions at 19 GeV/c.

We want to test, on the basis of this information whether the longitu-
dinal and transverse momentum components can be regarded as independent variables
in the underlying distribution. The following contingency table summarizes the
data according to a chosen subdivision with 4 categories for the transverse mo-
mentum (classification A) and 10 categories for the longitudinal momentum clas—

sification B}:

By By By By By By By By By Byy . ?
A, .20 g8 13 12 13 7 5 7 10§ 106 3
A, 20 23 22 26 15 14 21 W 9 21 191 i
A, P21 22 15 2 3 10 19 22 8 15 191
A, 20 18 25 19 25 25 19 18 6 7 182
n, . 81 71 75 8 B8 60 66 65 30 53 670

By carrying out the swmmation according to eq.(14.87) with the numbers in this
bs " 3%.8 .
of freedom, from eq.(14.88),1is equal te (4-1)(10-1} =27 . Hence the chi-square

table one finds that the data correspond to x; The nunber of degrees
probability for independence in the two momentum components is deduced to be

about 57,

14,6 TESTS OF CONSISTENCY AND RANDOMNESS

When a set of observations is used to estimate the parameters entering
ap.d.f., it is generally tacitly assumed that the observations represent a
sample which has been drawm at random from the population or universe. Thus the
notion of a random sarple presupposes that the ohsexvations acquired are typical
and representative for the underlying distribution. If the assumption about

randomness is not fulfilled the conclusions concerning the properties of the
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population may be wrong or misleading, It is therefore of importance to have

available some standard procedures for testing whether sets of observatiops may

be regarded as random and free of systematic effects,

Parricle physicists frequently find themselves ip situations which

call for investigation of randomness and consistency. When observations have

been obtained through a series of measurements extending over time or space it
may be necessary to check that the experimental conditions have remained the

same throughout the experiment. Similarly, the data may have been acquired in

two or more runs with complicated experimental set-ups, or collected by differ-

ent laboratories participating in a collaboration experiment., 1In such girg-

ations, before any inferences are made from the combined data, it is important

that consistency checks are performed to ensure that systematic differences do

not exist between the separate samples. Likewise, hefore different exparimen-—

tal estimates of some parameter are combined to obtain a
"pooled estimare",

"best average" or
it must be checked that the individual estimates do not de-
pend on particular assumpticns which are different for the different estimates,

For example, if the values of mass and width of a resonance have been estimated

by different groups it will be unjustified ta deduce pooled estimates of the
resonance parameters if the values reported by the separate groups have been

derived from the raw observations using dissimilar assumptions about the reson-—
ance shape.

We saw in Sect.14.3 how tests of consistency can be formulated for

observations which are normelly distributed. Indeed, given the task of testing

compatibility between experimental results, most physicists would without hesi-

tance apply the procedures of Sects.14.3.2 and 14.3.7. Only seldom is the nor-

mality of the observations explicitly demonstrated to justify the use of these

classical tests, It appears that normality is often taken for granted, although

it is, admittedly, 2 very specific assumption abour the nature of the universe

from which the ebservations originate, and certainly not an indisputable fact.
Fortunately, theoretical studies have shown that certain test pro-
cedures are relatively insensitive to the specific form of the underlying dis-

tribution. These procedures possess a Property aptly called robustnesg. This
applies, for example, to the tests on population means referenced above, and

may justify their use in cases where no dramatic deviation from normal behaviour

435

3 ected. ©On the other hand, tests on population variances are very sensitive
- ::zartutes from normality, Testricting the usefulness of the procedures aof 1
toct 14.3.3 to situations where the observations are manifestly close to norma ;
e In the following we shall for the investigation of randomess and con
sistency formulate various tests which avoid making specific assumptions about
he form of the populationms. These distribution-free tests ar? th?reinre ge?er—
:lly valid, regardiess of the underlying population; the distrxhu?1on o: :T:;:n-
test statistic is determined by the number of equivalent permutét%ons o e
¢ary, equiprobable events and can, at least in pnnc:.plej for finite sample :
gerived from purely conbinatorial arguments. In abandoning the common norma
theory methods for the more general distribution-free proce?ures one may have to
pay 4 certain price, that of loosing "efficiency', or relative power. Ho:::?j,
although it is generally true that distribution-free approaches afe le?s e
cient than tailored tests based on normality assumptions, theoret%callxnv. _i
tions have shown that for populations which are not normal, the distribution—free
en be superior.
e :: test co:sistency between two oF more experimental aamplef we shall
from now on make no further assumption about the underlying distributions except

- 0'
h. they are all equa or observations of the continucus Lype hese te

that e 1 For t t! t: t t tests
horrogenelty lliply the null IIFPOLIIESIE

(14.89)
" : f1(x) = £2(x) = -~

where f(x) is left unspecified. We will describe three different tests uhlzztci:
be used when the comparisonm involves only two samples. ?f these, fhe run'le ‘
particularly simple, since it requires little more than just countlng.w:hi -
Kolmogopev=Smirnov and the Wilcoxon rank sum two—sample tests are somed :ion -
sophisticated and may require some computational effort. The recommen afirst to
practical work is, if inconsistency is suspected, to apply'the run test e
see whether this simple test is capable of rejecting HD; if the run teatll
conclusive, the other tests should be applied in turn. Thes? tegts efplolzszjzie
fully the information in the data apd will be more powerf?l in detecting P o
inconsistencies. - The run test has other useful applications; for.example

be used to give a rough check as to whether a set of observations is free from

t 2
est for
systematic trends. It cae also be used to supplement Pearson's X" t
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gooduess—of-fit, of which it is independent under some conditions. This is an
interesting feature because, in general, different tests on the same data are not
independent, and hence the cambining of outcomes of different tests is not triv-
ial.

With more than two samples the hypothesis {14.8%) can be tested by the
Kruskal-Wallis rank test. When the underlying distributions are of the discrete
type, the analogous multi-sample hypothesis can be examined by applying the well~
known x? test; this is described in Sect.14.6.12,

14.6.1 Sign test

A simple way of recording data is to note only whether each observation
is smaller than, or larger than, some gpecified value. Although this rough
method may imply the loss of a considerable amount of information in the observa-
tions, it is fmssi‘ble to construct useful tests for this kind of data. These
sign tesits are based on the binomial distribution law, which describes experi-
ments with only two pessible outcomes for individual events.

Let the variable x have a distribution of median value L. We want to

test the simple null hypothesis

Ho: uo= (14.90)
against the composite alternative
Hit p#op . (14.91)

Suppose that of n observations on x, r observations are smaller than U+ while
n=-r are larger than this value. Clearly, if Ho is true, the distribution of the
variables r and n~-r will correspond to the binomial law with equal probabilities
for the twe outcomes AU and x> H, for the individual observations. Thus, Ho
true implies an expected value of r equal to n, and very small values of r as
well as very large values (near n) are unlikely. To test H.J at the significance
a we may therefore use the number r as a test statistic and take the rejection
region at the two tails of the binomial distribution B(r;n,p=§). That is, we
shall reject the assumption of a population median equal to v, if, among o
observations, the number of times r whem x is smaller than W is such that

r<r

afz °T 7 Mgy, (14.92)
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iti can be determined from tabulations of the cu—
the critical values L and g 2 a0 o . ' .
pulative binomial distribution. Since the statistic r is discrete one can, fe
ili i i i ied as that integer
a probabulty o in the lower tail, define the critical value ra 13 t g
value which satisfies the inequality
+
T r, 1

Q
I B(rsn, by ca< 1 Blrin, D),
=0 =0

(14,93)

or, with the notation of Appendix Table A2,
F(x=r in,p=}) 2 @ < F(x=r +1;n,p=4).

The sign test can be used to test whether a variable when recorded as a

function of time remsins "constant" and equal to a fixed value, or tends to change
with time. Suppose, for instance, that in a bubble chamber exposure one may want
to check that the (average) number of beam particles per pulse remains the.same
during the whole runm, and equal to the optimum number requested by the designers
of the experiment, If the beam intensity should vary significantly during the
pxposure, either by falling below the requested value (with the consequence of
loss of useful events) or by rising well above it (too dirty pictures), one would
adjust the experimental conditions amnd monitor the beam in such a way that the
intensity is brought back to the optimum value.

Numerically, let us take a sample size 20 and choose a significance
level of 20%2. By looking up the entries for n=20, p=0.50 in Appendix Table A2
ve see that r=6 corresponds to a probability which is smaller than af2 =0.10
(since F(6;20,0.50) =0.0577), while r=7 gives a probability higher than this
value (F{7320,0,50) =0.1318). Hence the lower critieal value is rai2.r.10=6 .
Similarly, the upper critical value is Taf2” L =14, the two values being sym~
metrically positioned relatively to the expectation value for r, which is here
$+20 =10, - Thevefore, if during the exposure we made a count on 20 randomly'se-
lected pictures and found that the number of tracks was smaller than the opfmt‘!m
nurher Mo in more than & but in less than 14 pictures, then we would be satisfied

» . : 4 ten—
with the state of affairs, and believe in the assumption of a constant beam in

sity, If, on the other hand, we found that the number of pictures having less

i i f this
than Yy tracks was either < 6, or > 14, we would reject Ho on the basis o

. o or
test. If repeated counts on a new sample of 20 pictures gave similar results,
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if a closer examimation of the number tracks on each picture suggested a shift
towards, say, a lower intensity, we would presumably adjust the conditions to
bring the intensity up to the optimal before continuing the exposure.

The sign test assumes, for Ho true, each of the n observations x;,x;,
ek to have a constant probability for being smaller than the specified value
Hye In this respect the order of the individual observations is immaterial, and
the sequence is random under H . Instead of classifying the observations rela-
tive to a fixed, outside valye H, >, one can design a simple test of randommess by
classifying the individual measurements with reference to one of the sample

values, for example, relative to the sample median, See Sect.14.6.4.

14.6.2  Run test for comparison of two samples

To introduce the run test, suppose that we have two series of ohserva~
tions which have been arranged in terms of increasing (or decreasing) magnitude,
giving the two ordered samples X1aKapauonX and yl,yz,...,y . Without loss of
generality we assume for simplicity in the following that n < m, since the case
with n > m can be considered by merely interchanging the x and y notation. We
then combine the two ordered samples and arrange all the {n+m) observations in

increasing order of magnitude, the result being for instance a series of the form
X1 Xz ¥r X3 ¥y Xy X5 X5 ¥y ...

The assumption of a2 common parent population implies that the x's and y's in this
series should be well mixed, and if such a pattern is ohtained it will be taken
as support for HD, while a pattern with, say, a preponderance of x's to the left
of the chain and y's to the right will indicate systematic differences between
the two sets of data.

A run is defined as 2 sequence of symbols of the same kind. Thus the
chain above starts with a run of two x's, then follows a run of one ¥, and so on,
altogether six runs are shown. The null hypothesis suggests that the number of
runs r will be fairly large for the particular values of n and m. If the number
of truns comes out very small compared to the maximum possible one might suspect
that the probability for a defirite outcome of one measurement has not remained
the same in the x and y series. 1f, on the other hand, the number of runs is very
large it is possible that the twoe series have not been obtained independently.
Thus r very small ot r very large could indicate that the assumption of consist—
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erey doee ;:t::lst;e number of Tuns r as a test statistic for the hypothesis Hy
we have to find the probability distribution of r assuming Ho to be tr1:1e. A ]
rotal of (a+m) quantities can be arranged in (n+m)! different ways. Since, how
ever, the mutual order within the x's as well as within the y's, has already been
fixed, we can only have (o+m) '/ {(n'm}) = (“ﬂ“) different permutations and, pro-
vided H is true, each of these permutations will have the same probability of
occuring. To find the probability for a particular number of rums, say '1-, one‘
qust count all permutations giving rise to just r runs. This is a combinaterial
problem which can be solved in a straightforward manner. The results of the cowm=

gtation iz that the probability distribution for r is given by (2 < ¥ 2 n + m}
4

n-1 m1
-1 k-1

p{r=2k) = 2 Ll » r even,

n+m
( o ) (14.94)
~1 ur])+(n—1 m—l)
(x=2k-1) Car AU AUSIPA r odd.
p(r=2k-1) =

. (n:m)

This distribution has mean and variance given by

_ 20m(Znm-n-m) (14.95)
E(r) = %%ﬁ + 1, v(r) = (ntm) t (ndmr1)

To test B it is customary to take the critical region only at the
. i -tai st

jower tail of the run distribution. The argument for adopting a left-tail te
i if H
is that it appears rather improbable to obtain a very large number of runs "

. : : . w0
A shift in locatiomn, ot a difference in dispersion between the ¢

less randomness and greater order i

is not true.

parent populations would most likely lead to

the combined series of x's and y's. Since all reasonable ("smooth™) alternatives
8
to H therefore in all likelihood would give rise to predominantly small value

ibu-
of r, the critical region should be restricted to the lower tail of the distr
L]

tion. ‘
Critical values of the run statistic are given in Appendix Table All

i ignifi ls. Since r is 4
for sample sizes up to 15 and for 4 diffarent significance leve

i i ici ing to the significance a is
dicrete yariable the critical value T, corresponding
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liquid bubble chamber two laboratories have measured electron-positron
T e i e ey hel‘l:: or Y's, pointing towards the reaction point and calculated the effective~
o . i labora~
3 raﬂ iﬂsg M’Y of pairs of y's. One wants to test if the results from the.two
):ZP(r) = 22 e (14-96) ies Zre consistent, given the following ordered samples of effectwe-{nasses
- o tor »
i |
i i { {nunbers 1n MeV) : |
The run test is simple and easy to apply when tabulations are at hand. s oz 00, 108, 112
' i -28): 81, 82, 87 , 108, 112,
For example, with two samples of size n=6, m=8 one finds by looking up the ap- Lab. X (n =28) 81, 82 s ]33, ]y‘, e
131 3 »
propriate emtries in Appendix Tabie All that the assumption of consistency be- 116, 122, 125, 131, , 202. 206, 216, e
, , 182, 202, , 226, 270.
tween the two samples will have to be rejected at the significance level 5% (or 144, 146, 152, 156 »

1Z) if the number of runs cbserved is £4 (or < 3). However, it is clear that of

all the information contained in the data, only little is actually used by this
test,

Lab. ¥ (m=32)1 8, 12, 14, 16, 22, 26, 26, 30,
64, 68, 76, 79, 83, B8, 96, 97, 98, 99,
103, 105, 107, 113, tl4, 115, 126, 128, 130, 132,
138, 150, 169, 171.

This means that the run test may fail to reject a hypothesis of consist-

ency, while other, more elaborate tests which explore the data more thoroughly,

may produce evidence for rejection.

With these numbers the combined ordered series 18
For large samples, which in practice oftem is taken to mean m and n

larger than 10, the probability distribution of eq.(14.94) is very close to nor-

¥1 ¥z ¥3 ¥s» ¥s5s ¥e Y¥r ¥s ¥s Yio Y11 Y12 X1 Xz Y3
ml.

. PP : : . : x 2
The appropriate run test statistic in this situation is X3 Yiuw Xy Y15 ¥1s Y17 Y18 X5 ¥1e X& Y20 Y21 X7 8 ¥z
x X16
I~ E(@® (14.97) y23 Yzu Xe Xtp X11 Y25 Yzs ¥27 Xi2 X131 Yas X1v X15 Y29
Y V()

z

X17 X18 X139 X20 Y30 X21 X2z Y31 Y32 X23 Xou Xz5 K26 K27 X28
which is approximately N(0,1) .

utlon- free tests It is in fa 1 . )
distribuyti ch Q of runs equaI to 24. rom Eq.( 4.95 the
t powetful ; wai means that the bserved nunber 15 4 F
of compa ab 1 . 1 : V. and v for t variable r with sa le sizes n =28 and m=32
& en applied to Ramples H g Xpec ted value ariance he mp
& n the other l:hen, in ' are, respectlvelv 2

the combined ordered series, the cbservations from the smallest sample will al- ! B - 2-28-32 1 = 30.87 ,
. . +32
most certainly be separated from each other by observations from the larger 28+3

sample; hence the number of rums will tend to become maximum, regardless of

. 2+28132(2:28-32-28-32) 1, 2.

v{n
whether the assumption of identical parent populations is true or not. (28+32)? (28+32-1)

Other teats based on tuns have been devised, some of which exploit more
fully the information in the data; one,

the length of the longest run,

for exa 1 - Us a A matlon eq. 14.97 fo e test statistic in
mple takes as ing the large s I.TIP].B approxi 4 ( . ) r the t tatis we find
s a test statisrtic

t that the actual value from the observations 18
For a description of this and other run tests the

R . - 30.87
reader should comsult more specialized literature. - o087

z = -1.80 .
b TET

14.6.3 Example: Consistency between two ef fective-mass samples

t Since o b Lo} V. Sma han -1. 80 1is
d the P obabili ty for a standard n mmal ariable to be ller ti
‘ ¥ e PIUdUCtlon of in antineutrino induced reactions i a
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G(-1.80) =1-G(1.80) =~ 0.036, the hypothesis of consistency between the two
samples will therefore have to be vejected from the run test at the 5% level.

By inspection of the original samﬁle values it is seen that the strik-
ing difference between the two series of measurements is the large number of
small Myy values observed by laboratory Y which are missing for laboratory X. As
physicists we my try to explain the discrepancy between the data sets as being
due to an experimental bias: The events with small yalues of MYY could be "wrong"
events, in which, for example, one y from "° decay was erronecusly combined with
a bremsstrahlung pair from the same Y. Therefore, given the data sets above, it
is suggestiw to ask laboratory Y to look more closely at their low-mass events
on the scan table.

If one disregards the seven events with MTY < 40 MeV from laboratory Y,
one finds that the data for the samples of size 28 and 25 correspond to & run
probability of about 0.17. Hence with the reduced number of events the run test

finds no incompatibility between the rwo samples even at the 10% level.

14.6.4 Run test for checking randomness within one sample

The run test procedure for testing whether two samples have the same
parent population can readily be adopted to test the assumption that a series of
cbservations obtained sequentially, for instamce by measurements performed at
different times, can be considered free From systematic trends. The hypothesis
of randomness is that all chservations measure the same quantity, which implies
that the order of the obsetvations is immaterial,

Let the elements in a time~ordered series of observations be classified
relatively to some value of the sample , such that an ochservation above this value
is labelled by A and an observation below it by B . Observations coinciding with
the chosen value can be igpored, The hypothesis HO implies that at every position
in the sequence the prebability to have an A is the same, i.e. the probability
for an A remains constant along the sequence, and likewise for B . The resulting
series of A's and B's is then a pattern of sywbols with properties amalogous to
the series of x's and y's of Sect.14.6.2. We may therefore use the formulae for
the run statistic given earlier. These become particularly simple if we choose
te classify the observations relatively to tbe sample median, since by definition

the number of A's and B's will then be equal, By putting n=m in eq.(14.95) the

443
mean and variance forethe number of runs become, respectively,

= ) .98
E(r) = n+l, V(r) = %l . (14.98)

For large samples the run statistic is then approximately N(m,in).

14.6.5 FExample: Time variation of beam momentum

As an application of the run test on one series of observaticns, let

i riment.
us consider measurements on the beam momentum in a bubble chamber expe

Suppose that measurements on 30 rolls of film ordered according to fhe.;ime of
exposure gave the following values for the average momentum of the incident
tracks {numbers in GeV/e):
18.90 18.88 18.94 18.9t 18.96 19.05 19.06 19.08 19.03 19.10
19,07 19.12 19.13 19,10 19.15 19,20 19.17 19.14 19.14 19.10
19,11 19.08 1%.08 12.07 19.03 18.98 19.00 18.97 18.94 18.95

i a constant beam momentum during
Do these numbers support the hypothesis RD of

the exposure? . "
Already from an inspection of the contril chart for the measutem
above, shown in Fig. 14.9, one would be inclined to reject the assumption of
H]

i i is that
constancy in the beam womentum. Indeed, the evidence from this chart 1

the momentum has first increased, then decreased during the exposure.

1
Gevse .
19.20 e
19.10 e
19.00 - : R
e DU IR T SN
s T 0 15 20 25 30

Film roll number
Fig. 14.%. Contrel chart for beam measurements,
i i jef i . median value
We seak a pumerical measure for our disbelief in H0 The
for the observations is 19.07 GeV/c, and the classification relative to this

i incidi ith the
value gives the following series after the two observations coinciding wit
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median are ignored:

BBEBBBBABAAAAAAAAAAAAABEGBGB BB

This series has a considerable degree of order with only 5 runs among the 28 sym-
bols. From Appendix Table All we see that, for n=m= 14, the critical values .

for the significances a=0.05, 0.025, 0.01, and 0.005 are, respectively, 10, 9
8, and 7. Hence the probability to have as little as 5 runs must be considerably

smaller than 1 %,.

From eq.(14.98) the expectation value and variance for the number of

runs r are, respectively,

1413

E(r) = 14+1 =15, V(r) = ToIET

= 6,74

If we adopt the large sample approximation in this case the actual value of the

approximate N(0,1) test statistic of eq.{14.97) becomes

e = 5 -15 = -3.85.
%% V%74

Hence the probability to have 5 or less runs among the 28 symbols with this ap~
proximation and the accuracy of Appendix Table A6 is G(-3.85) = 1-0,99994 =

5

6-10 .

Exercise 14.11: For the example above, show that, for Hotrue, the exact prob-
ability to have 5 or less runs is 5.97+10°

14.6.6 Run test as a supplement to Pearson's x* test

The Pearson x° test for goodness-of-fit is based on a test statistic
which is a sum of terms, each involving the square of the deviation between oh-
served and predicted value in the different classes. From the construction of
the test statistic this test therefore has the defect that knowledge regarding
the signs of the deviations in the individual classes gets lost, and so does the
order in which these deviations occur. The x? test is, in other words, insensi-
tive to the pattern of signs in the deviations. This pattern evidently contains
some useful information about the correspondence between experiment and predic-
tion, and should be possible to explore by a run test, which appears to suggest

itself as an artractive supplement toc the ¥’ test. In fact, since it utilizes
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a limited amount of information in the observations, the run test is particularly
meaningful only when used in conjunction with a X° test on the same data,

For definiteness, consider the three situations sketched in Fig. 14.10.
in (a) the prediction from the hypothesis under test roughly follows the observa-
tions over the variable range, resulting in a series of deviations between ob-
gerved and hypothetical values which alternate in sign and hence give a fairly
large number of runs. If the hypothetical distribution differs substantially
from the observed in location, as in (b), it is clear that there will be a se-

guence of positive signs followed by a sequence of negative signs. Similaxly,

(a) (b) (c)

Fig. 14.10. Observed and hypothetical distributions,.(a) ?omp§rah1e in
shape and location, (b} differing in,(location, (c¢) differing in shape.

if the distributions differ mainly in shape, as in {c)}, the signs will ocecur in
sequence of negative, positive, negative. Thus in both situations {b) and {c)
the signs tend to being equal over large parts of the variable range, in contrast
to the more random pattern expected if the two distributions had greater similar—
ity. Since, therefore, alternatives to the true hypothesis most likely will lead
to few rums, the critical region for the run test must be at the lower tail of
the run distribution.

Let us assume that the observations are grouped in classes for the X2
test, and that the total number of expected events under Ho is the same as the
total number of observed events. Suppose further that there are n classes where
the deviation between observed and predicted value is positive, and in classes
where it is megative. We count the number of rums in the sequence of signs and
can find the run probability in the usual manner for the given n,m.

. The implicit assumption in this procedure is that the order in which
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the n+m signs oceur is immaterial if HD is true., In any class the probability
to have a positive deviation is the same as the probability for a negative devi-
ation. This will be the case if the conditions for the x° test are satisfied,
since then the number in any class is normally distributed. It has been verified,
however, from an extemsive series of random sampling experiments (F.N.David) that
the procedure is valid even when the probability of obtaining a positive devi-
ation in a class is four times that of obtaining a negative.

It can be shown that, for a simple hypothesis Ho » the run test is
asymptotically independent of the x° test, whereas if parameters in H  are egti-
mated from the data (except the overall normalization) the two tests are not in-
dependent and hence it is less meaningful to apply both. When the two tests can
Let Py be

the probability of a value of X? larger than that observed and P; the probabil-

be regarded as independent they can be combined into a single test.
ity of a value of r not larger than that observed. If the sample size is suffi~
ciently large to approximate both probabilities to continucus variables, uni-

formly distributed between { and 1, then the variable

u = =2(&nP; + RnP;) {14.99)

will be %2(4), (see Exercise 5.6) and an appropriate test statistic. For this
combined test the critical region is taken at the upper tail of the chi-square

distribution.

14.6.7 Example: Comparison of experimental histogram and thecretical distribytion

To illustrate the use of the run test as a supplement to the Pearson X2
test for goodness-of-fit we shall refer to Fig. 14.11. The histogram shows the
observed distribution of the squared four-momentum transfer t from the target

proton to a negative pion in the anmihilation
Prop > et e nT e
at 1.2 GeV/c antiproton momentum. The smooth curve gives the distribution expec—
ted from a meiti~Regge model of a particular form and specifies the simple null
hypothesis Ho to be tested on the basis of the data. The area under the curve
has been normalized to the number of events (n = 990) in the histogram.
From inspection of the diagram one gets the impression that the ob-

served spectrum is somewhat more concentrated around t=0 than the theoretical

a4y

8
I
1

60 - n=990 -

Events / [0.1( GeV/c)zl

L t ] [ L
-05 0 05 1.0 1.5
Four-momentum transfer squared t(GeV/c)?

Fig. 14.11. Experimental and predicted distribution of four-momentum transfer.
distribution. To test the null hypothesis quantitatively one could use the
class subdivision as implicit by the binning of the histogram. However, in view
of the requirement of not too few events in each class, it is reasonable to
group together several bins at the upper part of the spectrum. If this is dome
above 1.6 (GeV¥/c)? there will be a total of 24 classes, and only cne class, the
first bin, has an expected number of events below the recommended minimum of 5.
The expected number mp . = foi within each class can be obtained by numerical

integration of the curve; the result of the computation is

24 {n-f ) 24 n?
X2, = = ] - m= 306,
AR oi i=1 “oi

Because of the normalization constraint on the theoretical model the ¥* test has
v=24-1 =23 degrees of freedom. The observed value X:bs then corresponds to a
chi-square probability sz = P, = 0.i4. Hence, from the xz test there is little
reason to suspect the hypothesis.

It will be seen from Fig. 14.11 that there are 17 bins where the histo-

gram lies above the theotetical curve and 7 bins where the opposite occurs, with
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an observed number of runs equal to 5, The probability to have no more than 5
runs among the 7+17 symbols is, from eq.(14.94), only P; = 0.003 . Hence from
the run test we would certainly reject the proposition HO.

For the combined test the actual value of the approximate ¥2(4) statis-
tie u of eq.{14.99) is
Uibs = ~2(200.14 + 2n0.0034) = 15.3

which, from Appendix Table A8, corresponds to a combined probability < 0.005 ,

14.6.8 Kolwogorov-Smirnov test for comparison of two samples

The comsistency between two experimental distributions of a continuous
variable can alse be checked by applying the Kolmogorou-Smirnov two—gample test.
This is a distribution-free test which invelves the comparison of the two cumu-
lative sample distributions, analogous to the Kolmogorov-Smirnov goodness—of-fit
test described earlier for the comparison one sample and a specified distribution
defining Ho.

Let Sm(x) and Sn(x) be the cumulative distributions for the two (or-
dered) samples of sixe m and n, respectively (compare eq.{14.72) of Sect.14.4.6).
The Kolmogorov-Smirnov two-sample test statistic Dmn is the maximum deviation be-

tween these two step functions over the entire variable range,
D ™ max|Sm(x) —sn(x)I. (14.100)
Critical values of this statistic can be found, for instance, from Biometrika

Tables for Statisticians, Vol.II, for samples sizes up to 25. In the limiting

case, it can be shown that, for identical parent populations, t.e. for Ho true,

—1-2 E (_])rhT e—2r2z2
r=]

+

1
5 (14.10%)

: 1
1 L
o P(Dmn‘:z m

m, [
This formula is analogous to eq.(14.75) for the one-sample case, and the prob-
ability distribution for the two-sample statistic Dmn is therefore related to the
distribution for the one-sample statistic Dn' Fer m and n not too small, criti-
cal values Du of Dmn can consequently be obtained from the corresponding critical

values da of D, which have been tabulated in Appendix Table Al10. The relation-

ship is
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/ .102
b =4 1+% 4 )

Hence, for a given significance level, the critical wvalues in the two—sample
test are always larger than the critical values for the one-sample goodness~of-
fit test, in accordance with common sense expectation. However, when ?ne‘sample
is very much larger than the other, corresponding to very small steps in its
cumulative distribution function, the critical values for the Fwo—sample.test
are only slightly larger than the table values for the amalleft samplf sxz?. In
the extreme case, with m>>n, the two-sample comparison is evidently identical
to the goodness-of-fit test for one sample.

For an application of the Kolmogorov-Smirnov two-sample test, let us
go back to the example of Sect.14.6.3. The cumulative distributions for the two

effective-mass samples have been plotted in Fig. 14.12; the largest vertical

S( D:YB)L

08
06

0.4

5233 ldb.x

| | ] I

0 50 100 150 200 250
Effective-mass Myy (MeV)

Fig. 14.12. Cumulatiwve distributions of two effective-mass samples.
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separation between the step functions is

- - =2 _8
Dobs = max[Ss2 (M, ) S2a(M )| = 55 - 55 = 0.46 .

From Appendix Table A1Q the critical value for a cone~gsample Kolmogorov-Smirnov
test at a 5% significance level with n=28 is d 05 = 0.2499. Hence, from eq.
{14.102), the critical value for the two-sample test is

D o5 = 0.2499- /1 + 28 0.3,

.05 32
Since the observed largest deviation exceeds the critical value, Dobs >D o5 Ve
must reject the hypothesis of consistency between the two samples at the 5% level
on the basis of the Kolmogorov-Smirnov test. This is of course not at all sur-
prising, since even the run test would reject our assumption at the 5% signifi-
cance level, as we saw in Sect.14.6.3.
Exercise 14.12: Repeat the Kolmogorov-Smirnov test for the example in text
using the reduced data samples as explained in Sect.14.6.3, Show that this test,

in contrast to the run test, rejects the hypothesis of consistency at the 5%
level, also for the revised samples,

14.6.9 Wilcoxon's rank sum test for comparison of two samples

We have so far given several prescriptions for the comparison of two
samples, and will now introduce the Wilcoxon two—sample test, or Wilcoxon's prank
sum test for the same problem. We assume again that we have two ordered samples
xl,xz,...,xn and ¥i1,¥24..., T (nim); we want to test the hypothesis H0 that
the two populations from which these samples originate are identical.

As described for the run test in Sect.14.6.2 we arrange the {(n+m) ob-
servations in increasing order of magnitude. In this combined ordered sample
each observation is assigned a ramk, €qual to the order in which the observation
occurs in the series. If some observations happen to be identical ("ties") they
are all assigned the average value of the ranks these observations would have if
they were distinguishable. The Wilcoxon test statistic W is now comstructed as
the sum of the n ranks for the observations from the x sample, If HD is true we
expect the x and the y observations to be well mixed in the combined series, and

hence the value of W should be not "too small" and not "too large”. Conversely,

if the value for W comes out either "very small" or "very large" this would mean
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. . . ed
that the x observations occur predominantly in ome end of the combined order
. it
indi i i is less likely to be correct. Hence 1
geries, indicating that the hypothesis H0 is le

seems rescnable to adopt a two-gided test for Ho- ' R
Assuming Ho to be true the smallest possible value Wi for :b' .

gum W of the x sample is obtained when all x's are to the left of the combine

ordered series and all ¥'s to the right, Then W is nothing but the sum of the 0

= imilarly, the largest possible value
first integer numbers or W . n{n+1)/2 . Similarly,

W will occur when all the x's are to the right and all y's to the left; hence
max

= n{n+1}/2 + mn.
W igs the sum of all integers from (m+1) to (m*n), or wmax n{ ) o
ne can be ob-
The distribution of probabilities p(W) for W hetween Wmin and wmax n ‘
. s . ‘bution
ined in a similar manner as indicated for the run statistic. The distributl
ta

is symmetric, and has mean and variance equal to

W 14,103)
E(W) =W = %(n+m+1), VW) = %(nmﬂ). (

Critical values for the statistic W are reproduced in Appendix Table
A12 for sample sizes up to 25 and for 6 different significances o . The table

i itd being defined as that integer
assumes one-sided tests, the critical value “u £

value for which

W _+1
wa ¥ (14.104)
T opy <a< I pW).
“min wmin

. . i onificance
To obtain the critical values corresponding to a two-sided test at a 51gn1£1cah
iti table entry in the
jevel 100a % one reads off the lower critical value Wz as the e
itics then be o
appropriate column for o/2 . The upper critical value Wu can

from the symmetry property of the distribution, which implies

W+ v 14.,105)
W= W H(W-N) = 20— ¢
u 2

The value of 2W is also given in the table for each n,m combination.
m
The distribution for W can be shown to tend to normal for n and

. s i-
large. For large samples one can therefore use Wilcoxon's test with the approx
mate W((,T1) statistic

W-W?t (14.106)
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where a "continuity correction" of -} or +§ is added to the numerator depending
on whether an upper or lower tail probability is being calculated. The normal
approximation is good for most practical purposes with n and m both larger thanm
0. Even if n is smaller than 10 the approximation is fair, provided that m ig
not too much larger thap n (fairly symmetric probability distribution) and the

significance o nor too small (below 0.0, say).

Exercise 14.13: (Wilcoxon's ramk sum test for randomness within one sample)
Discuss how the Wilcoxon rank sum test can be used to test whether a series of
measurements is free from systematic trends.

Exercise 14.14: (Wilcoxon's rank sum test for independence)

A distributicon of two variables F(x,y) is such that the variable ¥y can take on
only twe values. Show how Wilcoxon's two-sample test can be used to test whether
x and y are independent variables.

14.6.10 Example: Consistency test for two sets of measurements of the T° lifetime

The mean lifetime of the 7° meson has been measured by several experi-
ments which utilize essentially two different techniques. One set of experiments
has used nuclear emulsions as detecting device, the other has used counter detec—
tors (see Exercise 14.7). Ignoring for the moment the different accubacies of
the experiments the results can be summarized by the following numbers giving

the measured mean liferime in units of 107'% seconds:

Counter technique: 0.56, 0.6, 0.73, 0.9, 1.05
Buclear emulsions: 1.0, 1.6, 1.7, 1.9, 2.3, 2.8

The question is, do the different techniques provide consistent results at a sig-
nificance level of 5% %

We want here to apply a two-sided Wilcoxon rank sum test for the
hypothesis of equal population means on the basis of the two samples of sizes
n=5, m=6. From Appendix Table Al2Z the lower critical limit for the W statistic
with these numbers is Wo=W yyq=18. The upper critical limit becomes wuazﬁ—w£=
60-1B=42, which is also given in the table. Hence we shall reject the hypothesis
of a common population mean at the 5% level if we find a rapk sum for the
smallest sample which is <18 or > 42,

The observations above correspond to the following combined ordered
sample,

0.56 0.6 ©.73 0.9 1.0 1.05 1.6 1.7 1.9 2.3 2.8

D o
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whete the contributions from the counter experiments have been underlined. Thus

the actual value of the rank sum becomes

W = 1 +2+3+446 =16
obs

which is below the critical limit for the test with the chosen significance level.
Accordingly, from the Wilcoxon rank sum test the two sets of measurements of the
no lifetime are met consistent at the 5% level.

The ordered sample of the two measurement series corresponds to 4 runs.
1t will be seen from Appendix Table All that the critical number of runs for n=5,
m=6 and 0=0.05 is o = 3. Hence, from the rum test we would have no reason to
claim that the results of the two sets of measurements are not consistent at a
significance 0.05. In fact, the probability to have 4 or less rums is 0.0644,
This illustrates that the Wilcoxon test is more capable than the simple run test

in rejecting a hypothesis.

14.6.11 Kruskal-Wallis rank test for comparison of several samples

When more than two data samples are to be checked for consistency, the
two-sample tests described in the previous sections may be applied for a pair-
wise comparison of any two samples, With J samples this would imply a total of
} J(J-1) two-sample comparisons to be carried out. Also, one may compare each
of the J samples with "the average" of all samples by the same two-sample proce-
dures. Obviously, the number of such comparisons will soon become large, making
the process a lengthy one if the number of samples is not relatively small. By
random fluctuations, even if all samples do originate from the same parent popu-
lation, one is liable to find at least two samples that appear to be inconsistent,
and hence the risk of rejecting a true hypothesis may become considerable. More-
over, this approach will pot give a measure of the overall agreement between all
samples.

An efficient method for the simultaneous comparison of any number of
samples is the Kruskal-Wallis rank test. Suppose that the complete ser of N ob-
servations from J sagples is arranged according to magnitude, such that each ob-
servations is assigned a rank between 1 and N. For each sample one finds the
rank sum wj as well as the mean rank ﬁj = Wj/nj, where n. is the number of obser—

vations in the j—th sample. If the assumption of J identical parent populaticns
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is correct, f.e. if Ho is true, all samples are expected to have the same megn
rank

T

- . ]
EG,) =1 Vi =lown (14.107)
i N io) 2
with the same unbiassed variance
- 1 N . - 2 1
V(WJ.) - ¥ izt(l—E(Wj)) = ‘*’—]ZN(N*’]) . (14.109)

A suggestive test statistic with weighted contributions from the different
samples is

J

- 1 2 ]
H = jZ1“J‘(WJ‘ -E(NH))/(T—Z«-N(NH)),

which can be rewritten in the following form, convenient for computation,
12 Y
W wery Low T

(14.,109)

(14.110)

Since H will be zero if the ﬁj come out equal, and large of the ﬁj are
substantially different, the hypothesis of a common parent population should be
rejected if the observed value Hobs exceeds the critical value “u corresponding
to the chosen significance o. 1In order to determine these critical limits one
must know the probability dristribution for H assuming the null hypothesis to be
true. 1In principle, these {discrete) probabilities can be obtained from purely
combinatorial arguments (assuming no "tied ranks") for any set of samples ny,ng,

-allyy starting with small nuwbers. Unfortunately, unless the numbers are tiny
the amount of required work socon becomes formidable, and tabulating according to
many arguments also becomes impracticable. Accordingly, Kruskal and Wallis give
tables of critical values corresponding to significances between 1 and 102 for
3 samples of size not exceeding 5.

In practice one makes use of the fact that_fof Ho true, the statistic
B for sufficiently large nj has a chi-square distribution with J-1 degrees of
freedom. The x° - approximation is generally accepted when either J = 3 and all

sample sizes are above 5, or J > 4 and all sample sizes above 4,

T
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Exercise 14,15: Justify the statement that H of eq.(14.109) is asymptotically
distributed as x2{J-1) if Ho is true.

gxercise 14.16: Show that eq.(14.110) follows from eq.(14.109).
Exerclde h.lot

Exercise 14.17: Show that a test with the statistic N/ (N-1)*H for J=2 is equiv~
alent to the Wilcoxon two-sample test.

14.6.12 The ¥ test for comparison of histograms

In the preceeding discussion of rank test procedures for the comparison
of experimental samples it has been tacitly assumed that the underlying distribu-
tions are continuous, in order that the rank assignments be meaningful. The fore-
going procedures are therefore not applicable for testing the consistency of
samples which are known to originate from discrete populations, neither will they
apply for the comparison of samples consisting of "pooled” observations, where
jndividual measurements have been grouped in categories prior to comparison.

To be specific, let us think of the common situation when a set of
histograms is to be checked for consistency. The observations have been clas~
sified in I bins, equally chosen for all J histograms, and correspond to J in-
dependent multinomial distributions, the j-th of which having the following set
if bin probabilities,
=1, (lﬁ.ﬂll)

PyjrPyjreoaPryd izfpii

The observed number of events in the Jifferent bins and the total number of

events in the j-th histogram are given as

1
= (14.112)

[ URPY  DRURRP | E n,, =mn..

it 23 1j oy L i

For all histograms the overall number if observations is n,

J J 1

fa.= 3] In,=n. (14.113)
. =3 . . ij

=1 =1 i=1

The hypothesis we wish to test is that all parent distributions are
identical, corresponding to, for each bin number i, a common probability for all
I histograms,

. - = +es = (14.114)
Hi Py = Pig Pig
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Let us denote the common, unknown, probabilities by ;. i=1,2,+4.,1,
The Maximum-Likelihood estimates for these bin probabilities are the average fre-
quencies observed for each of the bins

J
p.. = 1 nij/n, i=1,2,-45,1, (14,115)

i» .
j=1
1
which are seen to satisfy the requirement L ﬁi' =1 in virtue of the constraint

on the o eq.{14.113); thus only I-1 of the estimated bin probabilities are in~
dependent, The test statistic for the comparison of all histograms simultaneous-—
ly is constructed as the sum over all histograms and bing of altogether J*1 terms,
each term being a squared deviation between an observed and estimated number, di-

vided by the estimated number,

J E (n..-f..n )
2= 3 7 7 R LS M (14.116)
j=1 i=1 Piung

If H is true and the expected event numbers in all histogram bins fulfil the
usual normality requirement, this statistic will be approximately chi-square dis-
tributed. The number of degrees of freedom is (I-1){(J-1), corresponding to the
present number of independent observations (IJ-J) minus the number of independ-
ently estimated parameters, I-1 .

The assumption of consistency between all J histograms is accepted at
the chosen significance level 100a 2 if the calculated wvalue xgbs comes out
smaller than the critical value x& for the appropriate number of degrees of
freedom, and rejected if the opposite occurs. Quite frequently when X;bs >xé the
overall incomsistency can be traced to a single histogram, say the j~th, having

an exceptionally large contribution to X; A repeated calculation with the

bs "
j-th histogram excluded may then show the remaining histograms to be mutually
compatible and suggest a critical examination of the data for the odd histogram.

Exercise 14,18: Show that the problem of testing consistency between histograms
is equivalent to testing independence in a two-way classification.

Exercise 14.19: Four laboratories participating in a collaboration experiment

have scanned their bubble chamber films for five different event topologies and
have obtained the following number of events:

Check that the event samples obtained by the different laboratories are fully

compatible.

Event topology

Laboratory 1 2 3 4 5
A 202 150 107 51 18
B 152 131 70 48 17
c 189 161 108 42 25
D 105 78 52 32 12

457



1

16 - Probability and statistics.

APPENDIX
Statistical Tables
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The table
find values of

Table Al. The binomial distribution

gives values of B{r;n,p) = :j pr(1—p)n_r
n,p and 1, where 0 <1 < mn, '

for speci-

only has entries for p < 0.50, but it can be used to
B(r;n,p} for p > 0.50 by means of the relation

B(r;n,p) = B{n-r;n,l-p).
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Table Al. The binomial distributionm (continued) Table Al, The binomial distribution {continued)
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Table Al, The binomial distribution {continued)
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Table AZ.

X o _
The table gives values of F(xjn,p) =r£0‘2/ pr(l-p)n T

The cumulative binomial distribution

for speci-

fied values of n,p and x, where 0 < x < n.
The table only has entries for p < 0.50, but it can be used to
find values of F(x;n,p) for p > 0.50 by means of the relation
Fix;n,p) = 1 - F{n—x-1;n,1-p), {0 < x< n-1}.
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, Table A2, The cumulative binomial distribution (continued) Table #2. The cumulative binomial distribution (continued)
I
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Table A2, The cumulative binomial distribution (continued)
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The table gives values of P(r;u) = %w ure_u for

Table A3.

specified values of 1 and r.
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Table A3, The Poisson distribution (continued)

Table A3. The Poisson distribution {continued)

F\Q‘ 1.1 7.2 7.3 To4 7.5 7.6 7.1 7.0 7.9 8.0
L] L0008 L0007 .pan?  .0NBA L0606 L0005  .0A05  LRO04  .0R0s  .p0AY
1 .D059 L0054 .09 L0045 L0041 0038 L0435 0032 L0829  ,p0RT
2 L0208 JD1%e  L03A0 L0167 L0B56 L0145 L0E3% L0125 L0116 L0107
3 L0492 J06A&  L003R L0413 L0IA%  L03ke  .DIS L0326 L0305  ,D2R6
4 0874 J08I L0799 .06 L0729 L0686  ,D&kd G617 L0802  .p57)
5 241 L1200 L1167 L1130 L(1B94 J105T L1421 L8986 0951 .89l
6 g8 J1asS L1420 L1394 L1367 L1339 L1310 L1282 L1252 L1271
7 J4BS L1886 L ERRL S14Te L1465 L1454 L1482 J142R k613 (1798
8 L1321 L1337 L1510 L1363 L1373 L13R1 L13BA (1392 L1138 1396
9 o2 1070 LY «t121 164 1167 L1187 «1207 b22u L1241
¢ L0740 L0770 .AAnD  LORP9  L0ASA  LOART 0914 L0941 L0887 0993
11 W4T L0506 831 .05SB LO5AS L0631 L0640 L0687 L0695 ,pT2P
¥4 L0263 L0303 0373 L0346 0366 L0388 L0411 .D43e L0457  .ouwAl
i3 L0154 L0LRB  LA1AL L0196 L0201 L0227 L0743 L0260 L02TB D29
L4 L00TA  '.0086  L,ANSS  LOL0s L0113 L0123 L0134 LBI45  LONST  nlAS
15 L0017 L0041 .ness L0DS1 L0657 (0062 L0069 .0OTS L0883 0090
1% L0015 L0039 Lapd) L0076 an26 L0030 L0833 L0037 L0840 D045
1t L0007 L0088 060G L0010 L0612 .0013 L0015  LBOLT (D019 Q02
18 «000) 0083 .anps L0004 L0805 0BG ,0G06 L6007  ,DADB 0009
19 L0p01 L0081  ,0pAl  .00B2 L0802  .0002 L0003 0003 0083 L0004
20 L0000  L0RS0  L0mn] L0081 L0401 L0801  ,006)  L000L .0081 L0002
21 L0000 L0080 ,0p00 L0060 L0800  .B800 L0000 L4600 L0081 ,nen)
a.l .2 8.3 Aut 8.5 [ 8,7 a.8 a.9 %0

& L0001 L0003 L0007 L0002 L0002 L9002 L0007 0001 0081
1 L0825 L0023 L0871 L0019 L0017 L0016 L0813 0012 .00
? L0100 L0092  .npAA L0079 .D4Te  .BO4R LO0SA L0054 L0050
1 L0269 L0252 ,A237 L0222 .0208  .G19% L01TE L0168 L0150
s W05k JASIT L0491 L0466 L0441 L0420 £03T7 L0357 L0377
5 LORBZ  LO0B49  LGA16  LO0TBa L0752  .0T22 L0661 L0635 64T
& L1900 L1160 L1128 21097 L1066 L1034 A972 L0941 L8911
1 378 L1358 3338 LT L1294 .127) JE222 L1197 L11H
8 L1395 L1392 (13RA L1382 L1315 L1366 f3ee L1332 LI
9 L1256 L1269 1280 L1290 .1299  .1146 L1315 M7 1318
10 L1007 LL0aD 1083 L1886 LF10& 1123 LEIST L2 G11As
11 L0749 L0776  ,0MN?  .0AZA  ,0A53) L0878 L0925 L0948 L0970
12 L0505 L0530 L0555 L0579 L0604 L0628 L0679 L0783 L0728
12 L0315 933 L0356 L03TR L0395 L0416 +045% L0481 L0590
1 L0182 0196 ,0PL0 L0225 L0260 L0256 L0289 036 L0324
15 L0098 B0 L0116 L0128 L0136 .0L4T 0169 L0182 0194
18 L0050 LB0S5  .npsd L0086 L0072 L0079 L0093 L0181 ,ple¢
17 J0026 L0026 .0p29 .00 0036 L0040 +0048 L0053  .0OSA
18 0011 L0012 .apks L0015 0017 L0019 +0026 L8026 .DO29
19 <0005 0005 o006 L0007 L0008 L0009 W00 L0002 L00le
20 L0002 L8002 L0p02 0003 L0003 L0084 L0005 L0085 . BotE
21 L0001 LBO01 L0001 L0081 L0001 L0002 L0002 LpoB2 L0003
22 L0000 L8008 .OpE0 L0000 L0001 L0081 L4000 L0001 L0001
23 L0000 L0000  .gopD L0000 L0004 00RO L0000 L0800 L00n0
9.l 9.2 9.3 9,4 9,5 9.6 9.7 9.8 9.9 8.0

[ L0008 L0061 001 A000L  LOROL L0001 L0001 L0001  .000L  .0000
1 .001F  L0AR9 P09 L0008 L0047 L0007 0006 L0005  .OPOS L4005
2 <0046 L 00e3 060 «003% L0034 ,083) D029 L0027 -0025 6023
3 L0140 L0131 L6123 L0118 L0LGT 0100 L0093 L00BT  .008)  .0076
4 L0319 0302 0285  J0269% L0256  .02ed L0226 L0213  .0201  .p01A9
5 L0581 L0555 0510 0506 L0483  .gu6d L0439  L0klA L0398 378
'3 20881 H851 +0RZ2 40793 J0tas 076 BT8P «NEEZ « 0856 «06H
7 145 L1118 L1051 L106e L1437 L1010 L0982 L0955  .0928 0901
[ L1302 LIZRE L1PA5 L1261 L1232 L1212 L1191 L1100 LMl4e LN126
9 ANT LS 1310 1306 L1300 L1293 L1284 L 12TA L1283 L1251
10 L1598 L1210 L1219 L1228 L1135 L0280 L1245 L1249 L1250 L4261
] L0991 L1012 103 L1949 L1867 L108Y  L10%8 L1112 L1125 (1t
12 J0¥52  L0TPE 0799 L0AZ2 L0844 . DB&G  LDBAA L0908 L0924 D948
13 L0526 L0549 .N677  L059e  L0AL?  LBE4T L0862 L0&BS  .DT0T  ,pT2e
La L0362 L0361 L0380 L0399 L0419 L0639 L0459 L0479 L0500 L0571
s L0208 0221 ,na3% L0250 L0265 L0281 L0297 L0311 L0110 L0347
16 L0018 WB127 L0137 L0047 L0057 .01R8  .6L80 L0192 L0204 .0217
17 063 L0069 Lon75  L0OR1 L0088 L0095 L0183 010 L0119 .ei2e
18 L0032 L0035 .on19 L0042 L0046 OS] L0055 0860 .00&%  .e0T7L
19 L0015 L0017 L8619 L0021 .0A2) 0026 L0028 .DG3L  .00%e  .pH3?
2¢ L0007 L0008 o009 L0830 L0011 8012 .60k& D015 LAY L8019
2t L0003 L8003 ,onne L0900 L0005 L0006 L0806 L HADT 0RO 800G
22 L0001 LGOD1  .0pgR 40002 L0002 L6002 L0003 ,080] 0804  .pOn
23 L0000 L0001 LnAd1 0801 LOA01  LBOOY L0001 L0601 0002  ,p0n2
24 L0000 L0040 .0pAp L0800 L0800 L0800 L0000 L0001  .OROL  .pONL

471




472 i 473
'
Table A3. The Poisson distribution (contipued) . Table A4. The cumulative Poisson distribution
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Table A4, The cumulative Poisson distribution (comtinued) Table A4, The cumulative Peisson distribution (continued}
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Table A4, The cumulative Poisson distribution (continued)
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Table AS. The standard normal probability density fumction
. 1 ~4x?
The table gives values of ¢g(x}) = e for 0 < x % 4.99.
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Table A6. The cumulative standard normal distributienm
¥ H
. 1 -
The table gives values of G{y) = j 7T e bx dx for 0 <y < 4.99.
G(-y) =1 - G(y). e

.00 « 01 02 W02 04 +95 08 07 «08 09

.0 50000 50399 50T9R  _&1197 .S159% .51994 ,52392 .52790 .5J1AR 53586
.1 .53981  .54380 .54TT6  ,55172 .55567 .55962 .5A1I56 56749 57142 57515
.2 57926 58317  LSHT0& 69095  .S59483  LS598T1 60257 60647 61026 61409
3 61791 .62172 62552 62930 .63307 .61368) .64058 L64431 L64B03 L6517
i 65542 65910 LER2TE  La6640  LBT003  L67364  L6TT24  .68082 68439 LABT9]
5 LBF106 L6997 64T 70154 LTOS40 L,TOBRAL JT1226 LT1S66 L,T1904 LT2240
o5 LT72575 L2907 .T323F 713565 .73891  ,T421S  LT453T L T4AST 75175 .T7S5490
.7 LT5804  JT611S  Thags ,7H7I0C  JTT0IS LTTIIP LTT6IT 71935 78230 ,TES24
o8 L7814 ,79103 .79389 79673 ,79955 .A023&« LA0S511 LB078S ,BlOS7 .81327
] «B1594 .81859 (82121 .RP3IBl .A2639 L,AZB94 LAJI4T LBII9B  BI646  AIEY)
1.0 +B4136  .84375 .846l6  ,RaR49 JB850R3 ,B5314 ,85543 .AS5TE9 .B85991 86214
1.1 .86433  .86650 .B6B6G ,RT07H .AT286 .A7493 LB7698 .ATI00 L,BBLOD ,AR29A
1.2 «AB4S]  .806R6 .BABTT ,RING5 .B9251 LA9435 LB961T LB9T7I6 89973 ,90147
1.3 290320 .90490 0658 ,90R24 90988 91149 91309 .9l466 91621 L91774
1.4 91924 92073 .92P20 ,97364 92507 ,92647 92785 92922 .93056 .931B9
1.5 L53319  .93448  .9357¢ 03699 L93822 ,L,93943 54062 94179 94295 ,G440R
1.6 LF4520  J94630 L4738 ,04R45  ,94950 ,L95053 95154 ,952%¢ ,95352 ,95449
1.7 L95543  ,95637 .95728 ,95RIR 95907 95994 L SE0B0 96164 .96246 96327
1.8 98407 96485 96562 96638 96712 .96TB4 96856 ,96926 ,96995 97052
1.9 L97128  L9T193 ,.97257 ,97320 .973B1 .9744l .97500 .97588 .9761% .97670
2.0 97725 L9TTTE  .97811  ,97RAZ  ,97932 97982 .9B030 ,98077 ,98124 .98169
2.1 +98214  ,98257 .98300 ,9R14l L.9B382 ,9B422 L9A46L  .98500 98537 L9857
2.2 LIB6I0 986645 98679 ,08T13 .9B745 .9BT7A  ,9ABOY ,98B40 ,9BB70 ,9BE99
2.3 +98920  .98956 .98983 09010 .99036 .99061 .99086 99111 ,99134 ,99158
2.8 CJITIB0 99202 199226 99245 99266 .992A6 ,99305 ,993P4 ,99343 99351
245 299379 ,99396 .99613  ,09430 ,99446 ,L9546] L9977 ,99492 ,99506 ,99520
2.6 299534 99547 .99560 ,99573 .99585 L9959 L99609 ,99621 ,99632 ,9964)
2.7 199653 LO9664 299674 99683 ,99693 ,09702 L9971l ,99720 .99728 .99736
2.8 L99Thi 99752 .99760 ,Q97K7 L99TT4 99781 ,L997BA 99795 ,9980]1 .99807
2.9 +99813  L99A19 L.99825 ,L99A31 .99R16 99841 L.99B46 .998S] .99856 .99861
3.0 .99865 ,99869 .99874¢ ,9987R ,99882 .998A6 .99889 ,9989) ,99896 ,99900
1.1 99903 99906 29910 ,99913 .99916 L9991A .99921 .99924 .99926 .99929
1.2 «99931  .99934 499936 ,99938  .9Y9u0  .99942 99944 99946 ,9994F ,99950
3.3 299952 .99953 99955 ,99957 ,99958 ,99960 ,99961 99962 .99964 .99965
3.4 .99966 99968 99969 ,99970 .99971 .99972 ,99973 ,99%74 ,99975 9997
3.5 99977 L9997B  .9997R ,999T¢ .999RA0 .399A) ,99981 ,99982 .99983 ,99981
3.6 99984 L999RS ,.9998S ,09986 .999R6 ,999%aY ,99987 .99988 99988 99989
3.7 99989  .99990 99990 ,99990 .99991 99991 ,99992 ,99992 99997 ,99992
3.8 +99993 L9999 .9999] ,99994 99994 ,99994 .99994 ,99995 ,99995 ,99995
3.9 +99995  .99995 .99994 .99996 L99996 .99996 .9999& ,99996 99997 99997
4.0 V99997 499997 499997 ,09997 99997 .99997 ,99998 ,L99998 ,99998 ,99998
[ <9999 99998 99998 ,9990R ,999%8 ,9990A 99998 ,99998 99990 .999439
4.2 99999 .99999 .9999% ,95999 .99999 .39909 ,99999 ,99999 09999 ,99999
4.3 +99999  .99999 .99999 ,99999 99999 .99999 .9999% .99999 ,99999 ,99999
boh «99999 ,99999 1.00000 },.00000 1.,00000 1.00000 1,00000 1.00000 1.00000 1.00000
4,5 l.00000 1.00000 1.00000 {,00000 1.00000 1.00000 !,00000 1,00000 1,00000 1.00000
4uf | 1.00000 1,00000 1.00000 1,00000 1.00000 1.00000 1,00000 1,00000 [,00000 1.00000
(Y l.00000 1.00000 1.00G690 }1,00000 l.00000 l.000Q0 1,00000 1,00000 1,00000 1,00000
4e8 1.00000 1.00000 1.00009 1.00000 1.00000 [.00000 1.04000 1.00000 1,00000 1.00000
4.9 1,00000 1,00000 1.00000 1,00000 !.00000 F.00000 1.00000 1.00000 1,.00000 1.00000

Table A7,

The table gives

values

to produce specified values

of t
F(tyiv}, where
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Percentage points of the Student's t-distribution

for different degrees of freedom v such as

t
o
F(t_;v) = [ Llaemn) e _dt=1-a,.
(v}
A v T b ]+£2 1(u+1)
v
F(-t;v) =1 - F{t;v). v = = corresponds to the standard normal distribution.
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oo +253 524 wBL2 1,282 1,645 1.960 2,326 2.576 3.090 3,291




Table A8. Percentage points of the chi-square distribution ~
@
o
The table gives wvalues of x; for d%fferent degrees of freedom v such as to produce specified
values F(x;;u), where X
i -
2 -1 u
F(xu;v) = j ——— u£ e i du=1-a.
28V (4w
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v
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R L2066 13.56 15,131 165,93 1,94 2t.59 22.66 27,34 32,62 34,03 37,92 41.36 Lk, 68  4A,2R 50,99
29 13.12 14.26 16.05 17,7 15,77 22,44  P1,57 28,34 313.71 35.14 39,09  42.%6 45,77 9,59 52,34
3¢ 13.79 14,95 16,79 1R.a% P0.60 231.36 Ph.uB 29.34 34,80 Ik, 25 “n, 28 43,77 46,98 50,85 51,87
“0 2n.to 22.16 24,43 26.51 79,05 32,34 k PY.1.3 39, 3% 48,62 “7.27 St.AlL 55.76 59,34 $1,65 86,77
EL 27.99 29,71 32,36 a7k It.e9 L] 45 2,94 49,34 S8.33 SP.16 A3,17 6T.50 Tl o2 Te. 16 19,49
&0 35,53 3748 wd.ad 43,19 hb, a8 50464 52.2% 59.3] h6.98 6A.97 Ta.sd T9.08 A3, 30 L L] G1.9%
70 43.2T 45,64  4B.PE 5].74  =5.3) 54,90 61,70 69,31 77,58 79,72 #5,53 90.63 95,03 100.43 104,22
8y | S1.d7 5354  ST.l5 60,39 AG.2A 89,21 Tl.olé 79,33 BA.13 90.4] 96,58 LOL.AB L0663 112,33 116,32
30 | $9.19 61,75  65.64  &3,.17 73,29 7R.S6  AD.62  R9.3D  9R.E5 101.06 107,87 113.15 118,14 124,12 128,10
100 | s7.32  T0.06 74,22 77,53 R2.36 87,9 90.13  99.33 109,16 111.67 118,50 124.34 129.66 135,81 (40,17
Table A9. Percentage points of the F-distribution
The table gives values of X, for different degrees of freedom (v,,vVz2) such as to produce specified
values F(xu;vl,vz), where
x
s - Y V-]
. _ TidQu,ve) Vi b Fi ! =
Flx sv1,v2) = 7 Ty T T -
2 RO -]
INEAISINERTY v, F
0 1 + =
vz
The table only has "upper tail' entries corresponding to values F = 0,90, 0.95, 0.975, 0.99, 0.995,
0.999, but it can be used to obtain "lower tail" percentage points corresponding te the complementary
F = 0.10, 0.05, 0.025, 0.01, 0.005, 0.001, by means of the relation
1
F{x,__iV2,V1} = w0
Y-q* V2 F(x,iVi,vz)
vy 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 &0 120 )
v, F
1 3 39,86 49,50 S53.59 55,A3 57.24 SB.20 SA.91 59.4% S5%.A& 60.1% a0.TLI A1.22 B61.T7& &2.26 62.5) 62,79 63,06 £3.33
W95 [ 161.a 199.5 215.7 224.6 230.2 2¥.0 216,8 218.9 260.5 205.9 261,9 245.9 24B.0 250.1 251.1 252.2 253,3 254.3
975 | 6a7.8 TOW.5 B64.7 B99.6 921.8 937.1 948,2 956.7 963,31 968.6 a76.7 84,9 93,1 1041 1006 1010 181s 1018
.99 | #4052 4999 5403  S5A25 5764  SBS9 5928 5982 6022  ADS6 6106 AIST 6209  A26)  B2BT  A31] A9 5366
o995 | 16211 20008 21615 225pp 23056 20437 23715 2I985 26091 2920 pe4dh  Peal) 2686 #504s  25laM 25253 25759 25445
o999 [ 48530 S000* Salas SazGe S764%  SBS9¢ 59204 S9Ale 60230 AOS6S  ALOTS  slaAe 62094 KZAls  52dT=  AJ13e  AJMOE  £I64T
K - 8.%3 9,00 g.16 9,24 9.29 9.33 9.35 9.37 9.38 9.39 9,4] Q2 9,44 U, ak Raat 9.47 P48 9.49
-95 8.1 19,00 15.16 195,75 19.30 19.33 19,35 19.37 19,38 19.40 19,41 19.47 19,45 19.4F 19,47 19.48 19,49 19.50
975 3,51 39,00 9.1 39,725 39.30 3I9.33 39,36 39.3T 39,39 39.40 39,.4) 19,41 19,45 d9.ak 39,47 39,48 35,49 139.50
.99 99,50 99,00 99.17 99.7% 99.30 99.32 99,36 99.37 99,39 99.40 95,42 99,43 99.45 99.4T 99,47 99,48 94,43 99.5%
=995 | 198.5  199.8 199.7 199,7 199.3 199.3 169.4 199.4 199.4 199.4 ]199.6 19,4 199.&6 99,5 199,55 199,5 199.5 199.5
999 | 998.,5 999.0 999,27 9499.7 999.3 9“9,] 999,64 999.4 999,44 999.4 999,.4 999,46 999,4 999.5 999,55 999,.5 999,5 999.5
k| -0 5.5 Sakt 5,39 S.38 S.1 S.28 5.2 S«25 SePt 5.23 S.22 .20 5.18 S.y ¥ S.lb 5.15 .1s S.13
.95 10,13 9.55 9.28  9.12 9.00 8.9 9,89 B.85 B.B1 B.T9  B8.Ta  4.70  B.66  A.62 8,59 B8.57 AB.56 8.5)
975 | 1744 16.04 15.48 15,10 14.BA L4.T3 (4,62 1és56  1é.e7 1éase? 14,36 10.25 1ea)? 16,08 fe.te 13,99 13,95 13.99
e | ez 3e.mz 29.46 2ri7i 28-74 2T.81 2T.6T 27.49 27.35 27.21 27.05 26.R7 26.6% 26,50 26.41 26,32 26,27 24.13
2995 | 55.55 49.80 47.47 46,19 %5.3% 44,04 64,43 6a-13 63.88 4369 43,39 431,08 42,78 42.47 42.3]1 42,15 41,99 41.A3
L399 | 16720 14A.5 1&l.1 1311 13e.6 13208 1316 1306 125.9 12%.2 1281 12%.%  126.b6 125.4  125.0 1265 126.0 123.5
.
©
=

* Multiply these numbers by 100.



Table A9, Percentage points of the F-distribution (comtinued) &
N
1 2 E]
v, “ s 6 7 8 q 10 12 18 20 0 “0 0 120 o0
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Table A9. Percentage points of the F-distribution {continued)
v, 1t 2 3 . 5 s T a 9 Lo 1z is 26 10 o 0 120 o0
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199 8.7 6.061 5.09 %.58  4.25 #.01 3.84  J7L  3.60 3,37 1.2 3.08 2,92 2.8k .75 2,57
« 995 10,22 T.21 6.03 S.aT a9 4,68 gk .28 . ls 1,88 1.hR a,50 390 3.20 3,14 2.57
2999 | 15038 10,39 848 T.ub  6.AL 6,35 602 S.76 5.5 5.13  4.R7 459 4,306 e.05  e.08 387
19 .90 2,99 2.61  2.40 2,77  2.18 2,11 2,06 2.02  1.98 1,91 1.88 L.l 1.76 1,73 1.7 1.63
.95 4138 3,52 1.1) 2,90 2.7k 2.63  2.5%  2.48 2,47 2.31  2.21  2.18  2.07  2.03  1.98 1.88
-7 §.92 4,51 1.90 .56 3.33 3,17 3,05 2.9 Z.88 2,12 2.62 2.5t 2.39 2.13 2.27 2.13
99 2,18 5.93  B.00  4.50 4.7 3.9 1,77 383 1,52 3236 015 .08 2.ee 2,78 2,67 2.4
2995 | 10207 1,00 S192  6.27  4.85  4.58 4.3k 4B .04 3.76  3.59  3.e0 .21 3.1 .00 2.78
t990 | 15,08 10016  B.28  7.26 6.b2  6.38 5,85 5.59 5.39 5.22  4.97 4,70 .43 6.16 399 3.8 1.6 3.5 5
at




Table A9, Percentage points of the F-distribution (continued) s
&
vy 1 2 3 4 5 L3 7 a 9 19 12 15 2a 10 -0 (-1 120 oo
v, F
20 W90 2.97 2.59 2.138 2475 2:16 2.09 2.04 2480 1.96 194 1.89 1.84 1.9 174 1.7} 1.58 1.t 1.61
«95 4,35 J.49 .10 Z.87 2.7 2.60 2,51 2.45 2.39 2435 2,28 2.20 2.12 Palth 1.99 1.95 1.9% 1.84
975 5.87 Lokt J.08 3.51 329 3,83 3,01 2.91 2,84 217 2.68 2.57 2okt 2235 2.29 2.22 2alb 2.09
.99 8,10 5.B5 4,98 4.u 4200 3BT J.T0 34 2.46 337 3,23 2.00 2,98 2.TA 2,69 2.6l 2,52 2.2
.995 9.94  6.99  S.A2 5,17 4.T6 44T .26 4s09 1,96 385 2.68 .58  3.32  3.12 302 2,92  2.81 2.69
2999 | 14.82 9,95 8,10 7,180 6.46  5.02 5,69 Sees 5,24 508 .82 4,56 4.29  6.00  3.86 3. Th 3.5 3.38
21 «90 2.96 2.57 24236 2.71 2alte 2.0 2.02 1.98 1.95 1.92 .87 1.83 .18 1.72 l.69 1.hh 1.62 1.59
.95 4,32 3.67 307 2.pa 2468 2,57 2,49 2,62 2,37 2,32 2.2 2.1 2.10 2.6% 1,96 1,92 1,AT  t.A
975 5,23 b,62 J.82 3.6A 3.2% .06 2.97 2.A7 £.80 2.7T3 2,68 .53 2,42 2.3t 2,25 L] 2,11 2.06
99 8,02 S,TA e.A? 4,37 sl 3.8l 3,66 3.5L 3.40 3,31 3. ET 3,07 2R 2,72 2.6k 2,55 Z.46 2,34
.995 9,83 6.89  5.73 5,09  4.68 6,39 4 }A 4.0l 3.88 3,77 3,60 343 3.7 3,05 2,95 2.8k 2,73 2,81
I £999 | L6459 9,77 T.94 6,95 6,32 5.88 5,56  S.31  S.ll 4495 4,70 s.ee 4,07 3.RA 3. Th 1.5 1.e2  3.2%
22 .90 2,55 2.5¢ 2.35 2P 2+13 2,08 2.01 19T L.93 -390 1.88 1.81 1.76 1.7h l.67 .64 1.606 1.57
=95 4,30 3 i 3.05 2.R2 2.b6 2.5% 2,46 2.60 2.3 2.30 2,23 2.1%5 2.0t 1.98 1.94 1.99 1.B4 1.758
975 S5.79 .38 3,78 d.ae 3,22 3,05 2,83 2.8% 2,76 2.T0 2,60 2,50 2.39 2.7 2,21 2.16 2,08 7,00
«99 7,55 S.2 4,82 e,31  3.99 376 3,59 345 3235 3426 D12 2,98  2.A3 2.7 2,58 2,50 Z,40  2.1)
995 9,71 &6.81 S.65 5,82 4.6l .2 4,11 394 3.81 3.0 J.54 3.34 3.18 2.9 2.R3 2,77 2.66 2.55
999 14,38 .61 T.80 &A1 £.19 S.7¢ 5,064 519  4.%99 483 “ 58 5,31 4,08 TR 3.61 3.4R 3.32 1,15
. 23 50 2,9% 2.5%9 2.4 2”1 2411 2.05 1.99 1.95 1.592 l1.89 l.8a4 1.849 1474 1.69 l.b6 1,62 1.5 1,5%
+95 “,23 .42 3.03 2.40 2ub6 2.52 ERLad 2.37 2.32 2427 2.20 2413 2.05 196 1.91 1,84 t.81 1.7¢
' 4915 5.7% 4,15 3.5 .41 .18 3,02 2,90 2.81 2473 2.67 2.57 2,67 2.36 2474 2,18 2.11 Z.06 L.9T
=95 7,88 5.86 4,78 2R J. %4 3.7 3.54 Jasl .38 J.21 3. a7 2.91 2.78 202 254 2.45 2.35 Za25
L9995 9,63 6,71 S.58 4,05  4.56 .26 4.05 A.8R .75 Jotik 347 3,30 ESF 2.92 2,82 2.n .60 2.8
14999 14,19 9,467 1.h7 6.09 5.08 5,65 5.33 S5.09 4.89 473 4.4B ba23 1,98 kS| 3.53 3,18 1.2z 315
24 <90 2,93 2,% 2,33 72,19 Z.10 2,04 1.98 1494 1.91 1.88 1.83 1,78 1,73 1.8T 1.6k Ll.&1 1.57 1,53
.95 4a?6 Ju4 3,01 2.7R 2482 2.51 2.42 236 2.30 2.2% 2.18 2.11 2.03 1494 1.89 1R 1.79 .73
L1375 5,72 4,32 3,72 3,38 .15 2,98 2,87 RB.78 2,70 2.6k 2,54 2.4k 2,37 2.21 2,15 2,09 2,01 1.9
.99 7.82 S.6t 472 LY 3.590 3.67 .50 3,36 1.20 Fa17 3.0 7.89 2.7h 2.58 2,49 2.40 g.31 2.2%
+99% F.55  beBb 5.52  4.A9 4,49 4,70 3,99 3,83 349 3,59 3,42 3,25 3,06  2.AT 2.7 2.66  2.55  2.43
2999 | 14,01 9,34 7.55  A£.59  5.98 5,55 5,23 4499 4.8 4.8 4,39 4,06 3.AT 3,59  3.45 3,29 3,14 2,37
25 »90 2.92 2.5] 2,32 2.18 2.09 2.02 1.97 1.93 .89 1+87 1.82 I.1? 1.72 1.R6 1.63 1.59 1.54 1.52
.95 6.26 3239 2,99 2,76 2.80  2.69 2,40 2.34 2,28 2.26 2.l 2,09 2.0% 1,92 1.87  1.A2  1.77 1.71
975 S.69 4,29 3.6% 2,395 2.1 2,97 2,85 2.75  Z.68 2.8) 2.51 Zabl 2430 2,18 2,12 2,05 1.98 1.91
.99 To17  5.57 4,48 4,18  J.B85  3.6) Jasb 3.32 0 3,22 3.13 0 2,99 2,85 2,70 2.6k 2,45 2,36 2.27 2.17?
.995 968 BB 5.66 &, Ak 43 4,15 3,9 378 3,64 3.54 3,37 120 3.01  2.RE 2,72 2.1 2.5¢ 2.8
#9959 13,88 9,22 7.45 .49 588 S.46 5,15 409l 40Tl 4456 431 4.06 3T 3.s2 3.3T 3.2z 3,06 2,99
: 26 30 2.91 2.52 2.3l 2.7 .08 2,01 1.96 1.52 L.88 lLeB& 1.81 1.76 1.T1 1.45 1,81 .58 1.5& 1.50
: 95 4.23 3,37 2,98 2.74 2.59 2.7 2.3% 2.32 2.27 222 2.15 2.07 1.99 1.90 1.8% 1.80 l.75 1.69
K1t 5.686 8,27 3,67  1.31  3.10  2.% 7,82 2.7)  2.65 2.59 2,49 2,39 2.78  2.16 2.09 2.03 1.95 ;.48
1) T.72 5.53 & 5% 416 3.82 3.59 EM T4 329 J.18 3.09 2,96 2.081 2460 2250 2,62 2.33 2.22 2.13
595 .61 -0 Satel 4,79 “.38 4,10 3,89 3.73 3.60 3,49 3,13 1,15 2.97 2.77 2.67 2.56 7,65 2.33
RO 1376 w12 T3 a4l 5488 5,38 S.07  4.83  eubh RuWB 4,76 199 3,72 Jued 38 3,15 2.99% 3,82
27 .90 2,90 2451 2430 P07 Z.07 2,00 1,95 1.91 1,87 1,85  |.8¢ .7 70 ohh R .
.95 4,21 X358 2,96 2,73 2.57 2.6 2,37 2.3 2.25 220 2.13 i.uZ ::91 }.:; i::f :.?: i.?; }::3
.975 5,61 w26 3,65 3,31 2.08 2,92 2,80 2.71 2.43  2.57  2.87  2.36  2.2%  2.13  2.07 2.00 1.91  1.A5
299 1,68 5,68 A.e0 411 2.7 3.56 3,09 .26 3,15 3.06 2,93 2.TR 2.6]  2.47  2.38 2,29 2.20 2419
.995 9,36 6,48 5,36 4,74 4036 4,08 X85 3,69 3.56  3.45 .28 .01 2.93 2,73 2.63  2.52 2.4) 3.29
#9994 13.61 9,02 7.27 8.3 S.T2 5,31 5,00 4.76 4,57 4.4l 4.17 202 N66 3,38 3,23 1,08 2.9z 2,78
Table A%, Percentage points of the F-distribution (continued)
v, 1 E k] [ 5 [ 7 a 9 10 12 15 20 I 0 &0 120 o0
v, F
28 +90 2.89 Z.50 2.2%9 2.15 2408 2.00 1.9 130 1.87 l.84 L7 T 1.69 6] 1.59 1.56 1.52 1,48
.95 4,20 1. 34 2.95 2+71 2.56 2.45 2.38 2429 2e2% 2.19 2.12 2.04 l.98 1.87 1.R2 1.77 1.7 1.65
2375 5.6} 4.22 J.83 3,29 3.06 2.%0 2.7T8 Z2486% 2.6l 2455 2.45 2436 2.23 2411 2.05 t.38 1.591 1.83
.59 Tob6  S465 4,57 W AT 3.7% 3,53 3,36 323 3,12 3.03 2,90 2,75 .80 Z.eb4 2,35 2.26 2,17 2.0
995 9,28 b4k G537 4,70 4e30 4,02 3.8l 3465 N,SZ  Jakd 3,25 3,07 Z.B% 2.6% 2,59 2.eB 2,37 7.3
2999 | 13050 B.91  T.E9  £.25  S.66 5,26 4,93 €89 4,50 4435 4,01 1,88 A0 3,32 1B 102 2.88 2.49
29 .90 2.89 2,50 Z.PB P 15 2406 1,99 1,93 1.89  1.86 1,83 1.78 1,73 E.AB i.A7  1.G5A 1,65 1,51 1.7
.95 .08 3,33 2,93 2,78 2.5%  2.43 2,35  2.28  2.22 2.18  2.10 2,01 1.9  1.A5 1.1 1,75 I,Ta 1.64
975 5,50 4,20 3.6l .27 3,04 2.RF 2,76 2467 2,59  2.53 2,41 2,37 2,20 2.09 2.03 1.9% 1,89 1.A1
.99 T.60  S.42 %56 4,06 3,73 350 3,13 3.20  3.09  3.00 2,87 2,71 2,57 el 2.3 2,21 2.1a 2.03
»99% 9,73 G40 S.28 G AR 4e2h .58 .7 3.61 J.68 3.38 3.21 *,04 2485k 2ok 2.56 Z2.65 2.33 2.21
ca9a| 13,39 8,85 7,12 6,19  5.59  S.18& 4, AT 4.84 4,45 4,29 4,05  ,A1 NS 3,27 3.2 2.97  2.81 2.be
30 .90 2.88 2.49 2.78 2.14 205 1.98 1.93 1.80 1.85 1.82 1.77 L.72 1L 1.61 1.57 L.54 1.50 1.4
.95 417 3,32 Z.92 AL 2453 28l 2.72 2.27 2.21 2416 2.05 201 i.93 t.A% 1,79 1.74 .08 Lok
975 5.57 418 .59 .75 3.02 2,87 2.75 2.65 2.57 251 2,41 2.1 2.29 2407 2.01 L,94 T.RT 1.79
5,39 4,51 4,07 3,70 3,67 3.38 31T 3,07  2.98 2,84 2,70 2,55 2.9 2.3p 2.21 2411 2.8
»99% 6.35 S.24 4,62 “ 2l 3.9 174 .58 .45 3234 .18 3.01 2,82 2.43 2,52 2,02 2.00 2.18
.999 8,7T  T.05  £,17  5.53 5,12 4,82  4.58 4,39 .26 4,00 1,75 3,49 3.2 3,07 2,92 2,7 2,59
«0 90 2.84 2,44 2,73 2.09 2,00 1.92 1,87 1.8 1.79 1.76 1.7]1 1.64 L.kl l.54 i.5% loe? Lat2 1.23
+95 .08 3.23 2. R4 2481 2,65 2,30 2,25 2418 2.12 2.08 2.00 1.92 la.fé La74 1.6%9 1.6& 1.54 1.51
TS S.42 « 05 .46 3.3 2.90 2.4 2,62 2.53 2,45 2.39 2.29 2.18 2.07 [PLY L.88 1.480 La72 | ot
.99 1,11 S.if .3l I.83 31.51 3.29 3,02 2:99 2,89  Z2.A¢ 2.86 2.52 2.37 220 2a11 2.02 1.52 1.48
2995 8,83 6,07 4,98 w.yt 3.99 .71 151 335 .22 312 2495 2.78 2.R0 Zaul 2.0 2.18 2. lh 1,41
L9909 ] 12,61  B.25 &40  S.70  S.13  &.73  a.hé k.21 4,02  3.AT  J.Bs Y.en 3,15 2.7 2,73 2,57 2,41 2.23
&0 .90 2.7%  2.39 2018 2,04 1495 1,87 1.B2  1.77 1.7 1.70 1.86 1,60 1.54  LaaR lass L,el 1.35 0 1.2%
.95 4,00 3,05 E.TB 2,53 2437 2428 2017 2410 2.06  1.99  1.92  1.84 1.7 1.5 159 1.53  l.e? 1,39
975 $.29 3,93 3.8 3,81 2.7 2,63 2,51  2esl  2.33  2.27  2.17  2.08  1.%  1.AZ 1.7 l.67 1,53 1.48
99 TLOR 4.9 6,13 3,65 3.34 3,12 2,99 ZeBZ 2,72 2463 2,50 2,35 220 203 ba9 1.8 L,T1 0 1.e0
.995 8,40 5.79 .73 s.3u 1,76 3.48 3,29 3413 .0l 2,90 2.7 2.5T  2.39 2.9 2.08 1.96 1.1 1,69
-1 11.57 T.76 6,37 Sa31 4 76 437 4,0% .87 .89 .54 n .08 2.81 2.5% 2anl 2.25 Z.08 1.89
120 =30 2.75 2.35 2,13 1.9% 1.90 1.82 1,77 1.72 Ja68 1485 1.50 1.59 L.4R Lawl 1.37 1.32 .26 1.19
«95 3.52 3.a7 2.68 2.45 2.29 2.17 2.09 2402 1.96 1491 1.8) 1.75 l.bb {55 1.5¢ Lokl 1.35 1.25
975 5,15 3.B0 2,23 2.a0  2.87 2,52 2,38 2,30 2.22 2.16  2.05 1.9 l.A2 Ll.A%  l.Ab 1.53  i.e3  1.3%
«99 5,85 4,79 .95 3,48 .07 2,96 2.7% 2468 2.56 244T 2,36 ?.19 2.0 L.R& 1.76 1.h6 1.53 1,38
4995 8,18 5.56 4,50 3,92 3.55 3,28 3,09 2,93 2.81 2.7l 2.5 2.37 2.9 198 1L,AT 1,75 L.61  J.4}
«99% 11.34 T.32 S.79 4,95 LXLT-4 .04 3. 77 3455 3,38 424 .02 2.7A 2.53 26 2411 1.85 l.76 1.5
o 30 2.71 2+30 2.08 1,94 1.85 1.77 1.72 1467 1.6] 1.60 3.55 1.49 1.2 1.34 L.30 1Ll .17 t.00
.95 J.86 3,00 2,60 2,17 2.21 2.0 2,01 1.9 1.88  1.B3 1,75 1,67  1.ST  L.eh L.3e 0 1,32 1,22 t.0n
£97S 5.02 3.69 3,12 2.79 2.57 2okl 2.29 2.19 2.11 2.05 1.9 1.83 1.71 1.67 l.48 1.9 1.27 L1.00
99 6,83 4.8l 3,78 3,32 .02 E.A0 0 2,66 2.51 2.4l 2,32 2.18 .04 1.08 1.70 1.59  1.47 .32 .09
2995 T.28  5.20 .28 3.72 3.35  3.09 2.90 2478 2.62 2.52 2.36 2.19 2,00 1.79 1.57 1.53 L.3e 1400
2999 18,83 6.91 S.a2 Y. T4 “al0 3, T4 Jubk? 3.27 3.10 2.9 2.7% 2.51 2.27 1.99 l.84 f.66 Laus 1.00

Btzh4
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Table A10. Percentage points of the Kolmegorov-Smirnov statistic*
The table gives walues dDt for specified values of a such that
< =] -
P(Drl < da) 1 o,
where the Kolmogorov-Smirnov test statistic D_ for the sample of size n

is the largest deviation between the observed cumulative distribution
and the theoretical cumulative distribution.

o .20 10 .05 02 01
n
1 «9000 9500 3750 9900 3950
2 .68138 «TToh Auls 9000 +3292
3 5648 L4360 JINT6 T L8290
& 4927 25852 4239 6889 + 1342
] Wi TO 5095 56713 8272 +66RT
& w104 4680 L5192 577k 6166 i
7 3815 PLEL ] 4R34 +53R& .5758
L] .3583 L4096 ST 5065 5618
L «33%1 3875 e300 L T06 5133
10 3226 -Jsn? 4092 «hSE6 4BEY
1 «3063 23524 212 3BT LasT?
12 #2958 +3382 J 1754 SAl92 0491
13 2847 3255 LIS +4026 L4325
14 .2748 3142 . 2 3LRY = 3A9T Gl TE
15 2659 +3040 3376 23771 24082
15 2578 2947 273 » 3657 3920
7 22504 +ZR63 )80 «155] 3809
18 2436 2785 LTS 23457 L3706
19 42374 271% L3018 233549 2del2
20 2316 EBuT L2941 .3287 »3524
21 2262 2506 2812 L2210 «Jakd
22 2212 2528 +2809 3139 3387
2] 22165 2ulS 27149 <3071 3295
24 2121 LY LUk 3000 1229
25 L2073 2277 22640 22952 PRILI
26 206D «2332F L2591 2896 « 31106
27 42003 «2299 254 2844 » 3050
28 L1968 22258 L2499 22784 .29597
29 +1935 2212 2657 22Ta? +2947
kD] «1903 2176 2617 2702 2099
35 1766 <2019 2243 2507 2690
40 « 1455 418%1 L2101 23469 2521
45 £ 1562 1786 o 1984 2218 2380
S0 L1484 1696 L1884 L2107 2260
5% Llule .1619 L1798 L2011 $2157
64 <1357 1551 L1722 JA927 2067
65 +1305 PR} L1657 »1851 .1988
T «1259 21438 + 1598 «17RE L1917
7% .1217 .1390 » 1564 1727 .1853
at 179 BELY 1496 1672 1795
as RIS 1307 . lusS2 1624 1742
90 L1111 «1271 L4l +1579 1694
95 L1083 1238 L1375 #1537 L1069
100 2 £056 h207 1340 « 1459 » 1608
> 100 1.07 1,22 ljéi ;7%3 1.631

* pbridged and adapted from Table 15.1 in Donald B. Owen: Handbook of
Statistical Tables, 1962, Addison-Wesley Publishing Company, Inc.,
Reading, Mass., by permission of ‘the publisher.
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Table Al11. Critical values of the run statistic

The table gives critical values r of the run statistic r with probability
distribution p(r) defimed in Sect.14.6.2 for sample sizes n,m up to 15 (n < m).
The table assumes a one-sided test of significance o with critical region in
tie lower tail of the prebability distribution,

ru ra+l
Tp(r) sacx 1 pto.
=2 r=2
a = 0.005 a = 0.010
N n 2 3 4 5 6 7 B 9101112131415 n 2 3 4 5 & 7 B 9101112 13 i4 15
m
2 - -
3 - - 3 - -
4 - - - h - = -
5 - - - - 5 - - -2
b - - -2z 6 - -2 2 2
? - - - 2123 7 - -2 2 3 3
8 - - 22 31313 8 - -2 2z 3 3 4
9 - - 22 3 3 131 4 ) -2 2 3 3 4 4 4
10 - - 233 1 4 4 % 10 - 22 3 3 4 4 55
i1 - -2 331 4 4 5 5 3 11 -2 2 3 4 455 56
12 -2 23 3 4 4 55 & 6 12 -2 33 4 4 55 6 8 7
13 -2 23 1 45556 6 7 13 -2 11 4556 6 6 7
14 -z 2 3 4 4 55 6 6 7 7 7 14 - 23 345586 6 7 7
15 - 2 3 3 4 4 5 6 6 7 7 7 8 8 15 - 2 3 4.4 5 5 8 7 7 8 ]
a = 0.025 o = 0.05
n 2 3 4 5 6 7 B 9101112131415 n 2 3 4 5 6 7 8 9101112131415
m m
2 - 2 -
3 - - 3 - -
4 - - - 4 - -1
5 - -z 2 5 -z 1 3
6 - 212 32 [ -z 311
H -2 2 3131 7 -2 03 31 4 4
8 -2 3 31 4 & 8 22 3 3 4 45
9 -2 3 34 b4 55 9 2 2 3 A 4 5 5 6
10 -2 3 34 5554 10 2 3 3 455 6 6 6
11 -2 3 4 4 55 6 6 7 11 33455 6 6 7 7
12 22 3 4 4 566 7 77 12 234 4 56 6 7 7 8 8
13 22 3 45566 7 7 88 13 2 3 4 456 6 7 889 9
14 2 2 3 4556 7788899 14 t 34 55 6 7 7 8 8 9 91i0
15 2 3 3 456 6 7 7 889 910 15 2 31 4 5 6 6 7 8 B 9 9101011
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Table Al2., Critical values of the Wilcoxon rank sum statistic*

The table gives critical values of the Wilcoxon two-sample test
statistic W defined in Sect.14.6.9 for sample sizes n,m up to 25 (n<m).
The table assumes a one-sided test of significance o as quoted in bold-
face at the head of the columns, and critical region in the lower tail
of the probability distribution. For a two-sided test of significance
o, the lower critical wvalue W, is found as the table entry for 4a, and
the upper critical value is deduced as W_ = 2W-W,, where 2W is also
given in the table, u .

n=1 n=2
m 0001 0005 0.010 0025 0.05 010 v 0.001 0005 0010 04025 005 010 27 m
2 4 — w2
3 5 3 1z 3
4 3 —_ 3 14 4
5 7 3 4 1 5
& . 3 4 18 &
7 ] — 3 + 20 7
-] — 1 3 i 5 22 8
9 ] 11 3 4 5 24 9
10 1 2 3 4 8 26 10
11 1 13 3 L] g 28 11
12 1 — 4 & 7 30 12
13 1 15 3 4 5 7 32 13
14 1 11} 3 4 a 8 34 14
15 1 1" 3 4 8 8 36 1S
16 1 18 3 4 8 A 38 16
17 1 19 3 13 L] 8 40 17
18 — | 1] — 3 5 7 9 42 18
19 1 2 21 3 4 5 7 1w 44 19
20 1 222 K3 4 5 7T 10 40 20
21 1 2 23 3 4 ] 8 11 482
22 1 2 H 5 4 [ 8§ 11 &0 22
23 1 2 5 3 4 6 4 12 52 13
24 1 2 2 3 4 6 4 12 54 24
15 _ — — — 1 2 27 — 3 4 L 9 12 506 25
n=3 n =4+
m 0001 €005 0.0L0 0025 0.05 0-10 k14 0001 0.005 0.01¢ 0025 0.05 0:t0 2 m
3 1] 1 21
4 — G 7 —_ 10 1 13 3¢ 4
5 4 7 8 27 —_ 10 1 12 14 40 5
6 — ? # 4 30 10 11 12 13§55 44 6
7 L] 7 3 19 33 to In 13 14 s 4% 7
8 -— L] 8 H E 36 11 12 14 13 17 52 8
9 1] 7 8 k) 11 39 — 11} 13 14 14 te a6 9
1¢ @ 1 9 e 12 42 1 12 13 5] 17 20 0o 10
H [} 7 i 1 13 45 14 12 i 14 w2 64 1L
12 1 B 1o 1l 14 48 10 13 1% 17 R} 68 12
13 7 ] 1 ¥ 15 bl 11 13 3} 18 v 2F 7 13
14 ki 8 11 13 18 64 11 H t6 149 21 #4814
15 B B 1l 1% 16 57 11 15 §7 20 WM K0 1S
ib — 5 bl 12 14 17 00 12 15 ¥ 2 14 21 B4 16
17 4 8 14 12 (1] 14 a3 12 14 18 21 25 28 B8 7
18 a 8 10 13 15 19 G6 13 18 19 22 24 30 B: I8
19 8 g 16 13 14 20 6y 13 17 19 23 27 31 % 1Y
20 8 ] 1 14 17 21 72 13 18 20 24 4 32 W0 20
2 7 L] 11 14 172 76 14 18 b3 ] 25 8% o4 21
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JOINT PROBABILITY DENSITY FUNCTION 38
JOINT SUFFICIENCY 193 194

K
KINEMATEC AMALYSIS 312-314r 423-424
KINEMATIC VARIAM ES 43-48» 52
KDLHOGOROV-SHEIRNOY TEST 413r 424-428
KOLHOGORDV-SMIRNDV TWO-SAMFLE TEST 4468-450
KRUSKAL-WALLIS RAMK TEST AL3I-455
KURTOSIS COEFFIGCIENT 34

L
LAGRANGIAN MULTIFLIER METHOD 301-307), 307~412
LAW OF LARGE NUMBERS 41-42
LEAST-SRUARES ESTIMATION OF
ANGULAR MOHENTUM 2%6--398
HEL1X FARAHETERS 278--281
FOLARIZATION 295-094, 338-34%
STRAIGHT-LINE FARAMETERS 262-243, 274-373
LEAST-S5RUARES FIT
CHI-SOUARE FROBARILIYY 288-289
DEGREES Of FREEDDM 285-287. 293+ 313-314
ESTIMATION OF OVERALL VARIARCE IJR3 -2B5
GOODNESS- OF - F 11 DAg- B9
IMFROVED HEASUREMENTS (FTT1TED VAKTIAELES)
282
STRETCH FUNCTIONS (FULLS) 289-2%90
LEAST-SQUARES HETHOD 259-320
FOR CLASSIFIED DATA 290-298
FOR WEIGHYED EVENTS 298-300
LINEAR MODEL 2462-273 282-290
1L INEAR MODEL WITH LINEAR CONSTRAINTS
301307
NON-L INEAR HMODEL 273-281
NON-LINEAR HDDEL WITH CONSTRAINTS 307-318
SIMPLIFIED 261, 293-2194
UNMMEIGHTED 240
LEAST-SQUARES FRINCIPLE 259-240
LIKELIHOOD
OF EVENT 24
OF NESERVATIONS 180
LIKELIHODD EQUATION 157
LIKELIHOOD FUNCTION 1R0» 196
FOR CLASSIFIED DATA 249--251
FOR WEIGHTED EVENTS 252-254
BENERALIZED 749
ILL-BEHAVED 2535-238
LIKELTHOOD INTERWVALS
ONE-FARANETER CASE 232-214
SEE ALSC CONFIDENCE INTERVALS
LIKELIHOOD REGIONS
FOR NEAN AND VARIANCE IN NORMAL
DISTRIBUTION 245-246
MULTI-FARAMETER CASE 2446-2479
TWO-FARAMETFR CASE 239-244
SEE AL.S0 CONFIDENCE REGIONS
LIKEL. FHDOR-RATID 388
LIKELIHODD-RATIOD TEST J18B-395: ALY
LINEAR CONOGRUENTIAL METHOD 91
LINEAR FUNCYIONS DF RANDOM VARIABLES 48-50
LINEAR LEAST-SOUARES ESTIMATOR 262-275)
282-290
PROPERTIES OF 247-T4%9» 304
WITH LINEAR CONSTRAINTS 301--307

L]
MARGINAL DISTRIBUTION 42
MARBINAL FROBARILITY 23
MAXIMUH COMPLEXITY THEOREM 297
BAX IMUM-LIKEL 1HOON ESTIMATION DF
DENSITY MATRIX ELEMENTS 219-220
MEAN GAF LENGTH 215
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MEAN 1L IFETIHE L9A-19%9, 208-210» 212-211
FARAME TER TN TAUCHY DNISTRIBUTION 201-202
FARAMETERS IH NORMAL DISTRIBUTION 179-201r
21S-214
FOLARIZATON 216-21%9, 3346-338, J40-345
SCANNTNG EFFTCIENCY 222- 225
MAX [HUH-| IKELIHODD ESTIMATORS
ASYNFTOTIC NORMALITY OF 207-210
FROFEKTIES OF 202-208
VARIANCE OF 210-220
MAXTMUNM- L IKELIMODD HETHDD 195-258
COMBINING EXPERIMENTS 251-252
FODi CLARSTFIED DATA 249-251
FOR WEIGHTED EVENTS 252-254
GRAFHICAL FROCEDURE 221-228
HAX TMUM-L IKEL IHODD FRINGIFLE 194
HEAN
LIMITING DISTRIBUTION OF t11
OF FUNCTION 33
OF RANDOM VARIAHLE 33
SAMFLE 59
WETGHTED 199-200¢ 215
MEANM LIFETIME, SEE EXPONENTIAL DISTRIBUTION
MEDTAN 31
AS FSTIMATOR OF MEAN IN NORMAL DISYRIBUTION
1048189
MINIMIZATION PROCEDURES 344-375
COORDINATE VARIATION METHOD 353-354
DAVIDON'S VARIANCE ALGORITHM 363-345
BRADIENT HMETHODG 359-365
NEWTON'S METHOR 274-278
ROSENBROCK’ S HETHOD 354-356
SIMFLEX METHOIN 1546-359
STEEPEST DESCENT METHOD 3A2-343
STEF METHODS 350-35%
SUGCCESS-FAILURE METHOD 353-353
WITH CONSTRAINTS 3467-374
MINIMUN VARIANCE BOUND 18&
HODE 3t
HDDIFIED P.D.F.+ SEF RESQLUTION TRANSFORM
MOMENT -GENERATING FUNCTION 3B
MOMENTS METHOD 321-331
COMEINING EXFERIMENTS 331
GEWERAL IZED 323-327
SINFLE 321-322
WITH ORTHONDRHMAL FURCYIONS 327-331
MOMENTS METHOD ESTIMATION OF
ANBGIIL.AR MOMENTUM 330
DENSITY MATRIX ELEMENTE 324-327
POLARIZATION 328-329y II5-334s I40-T45
MOMENTS OF DISTRIBUTION
ALGEBRAIL 34-35
CENTRAL 34-35
MONTE CARLO SIMULATEON 91, 333-335
MILTINDMIAL DISTRIBUTION 72-74
RELATION TO FDISSON DISTRIBUTION B&-87. 2¥2
HILTINORMAL DISTRIBUTIDN 120-123
HULTINOKMAL RANDON NUMBER GENERATOR 123
MULTIPLICATION RULE 15-14
MVUN E£STIMATOR 1846

N
NEGATIVE BINOMIAL DISTRIRUTIOMN 70 %8
MEWTON‘S METHDD 274-278
HEYMAN-FEARSDN TEST 1B4-388
HON-CENTRAL CHI-SOUWARE DISTRIBUTION 12%: 139
HON-CENTRAL F-DISTRIBUTION 145¢ 3149
NON -CENTRAL T-DISTRIBUTIDN 140r 144
NON-FPARAHETRIC TESTS 377
NORMAL DISTRIBUTION 101-107
CONFIDFNCE INTERVALS FOR MEAN IN 149-174
LCONF IDENCE INTERVALS FOR VARIANCE IN 174-177
CONFIDENGE REGIODNS FOR MEAN AND VARIANCE IN
177178
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ESTIMATOKS OF FARAMETERS IN 1R8- 1h9.
199-2G1s 215214
INDEFENDENCE OF SAMFLE BEAN AND UARTANCE
10%, 13A
LIKELIHOBD REGINNS FOR MEAN AND VAR1ANMCE (N
245-244
FROBABILITY CONTENTS DF 103-104
STANMARDY 101-103
NORMAL EQUATIONS 243-064, 245246
NORMAL SAHFLE
INDEFENIFENCE DF HEAN AND' VARTANCE 130
HEAN OF 109
PROFERTIES OF 109
VARIANCE OF 109
NDRHMALITY ASSUMFTINN 281-247
IN LEAST-SOUARES FIT 2B%-2B7
NULL MYFODTHESIS 374

a

ORSERVABLE F.11.F.s SEE RESOLUTIGN TRANGFORH
DORDERET" SAMFLE 424
DRTHOGOMAL FUNCTIONS

IN LEAST-SOUARES METHODN 273-275

IN MOMENTS METHOD 327-331
ORTHIGDONAL TRANSFORMATION 134-137

OF BINORMAL VAKIARLES 11B-120

OF NORMAL VARIABLES 122-123%

LN HMOMENTS METHOD 327-331

F
F.D.F. 31
FARANETRIC TESTS 377
FARAMETRIC TESTS FOK NORBAL VARIABLES
FOR EDUALITY DF SEVERAL MEANS 411-414
FOR EQUALTITY OF TWD MEANS I97-401, 404-405
FOR EQUALITY OF TWD VARIANCES 40:-402.
405-404
FOR MEAN 39S-3R&, 404-410
FOR VARIANCE 394397
FASCAL DESTRIBITION: SEE MEGATIVE RINUMIAL
DISTRTMITION
FEAKEDNESSs SEE KURTHSIS COEFFICIENT
FEARSON'S %7 TEST A15-421, 428
CLASS DIVISION FOR 41B-420
COMBINED WITH RUN TEST 444-440
NEGREES OF FREEDOM IN 414-417, 420-421
FENALTY FUNCTEGNS 372-373
1 BETECTION 1B-19
PDINT ESTIMATEON 179
FDISSON ASSUMPTIONS 78-B1, 93-94, %7 -98
FDISS0N DISTRIRUTION 75-78
ESTIMATOR OF MEAN [N 187- 108
RELATION TO BINOMIAL DISTRIBUTION 83-86
RELATION TO CHI-SOUARE DISTRIBUTION 76
RELATION TO ERLANGIAN DISTRIBUTION %@
RELATION TO MULTINOMIAL DESTRIRUTION BA-A7s

292
RELATION TO NEGATIVE KINOMIAL BISTRIRUTION
bdi)
FOLARIZATION 218-219, 295-294: 32B-323%,
333345

FOLYNOHIAL FETTING 262-2463s 272-275
POPULATION %8
FOSTERIOR PROPARILITY 24
FORER FUNCTION 383
FOMER OF TEST 3go
FPRECISION OF OBSERVATION 200s 240, 242
FRIOR FROBARILITY 25
FRORABILITY
ADDITION RULE 11
CONDITIONAL L11-13
DEFINITION OF 7-8
HARGTINAL 23
HULTIPLICATION RULE 15-16

OF INDEFEHDENT EVENTS 15-14
FOSTERION 24
FRIDK 24
FRUFARILITY CORIENTS OF
{H1 UARE LIS IRIRUTION 134-135
F-DISTRINDTION 148
NOEMAL DISTRIMITION 103-104
STUIENT'S T-BISTRIRUTTON 143
FROBAKILITY DEMSITY FUNCTION
NEFINITEON OF %+ 3D
FROFERTIES DF 31-34
FROBAWILITY DISTRIBUTIONS, SEE DEISTRIRUTIONS
FEOFARILITY GEMERATING FUNCTTON 57-58
PROEARILITY THEDRY 4
FROFPAGATION OF FRRORS 52-358
LN GEMERAL LEAST-SQUARES MODEL 314-314
IN LINEAR LEAST-SOUARES MODEL 266-267, 304
FSEN RANIIOM NMUMBERS 91
FULL ag-290

2]

QUATRATIC FORH 240, 247, 3146-744
AUAST - RANDDM NUMBERS 91

4
RADIOACTIVE EMISSIONS B1-83
RANDOM INTERVAL 148
RANLIOM NUMBFR GENERATOR
HINORMAL 119
GAUSEIAN (NORHAL.} 113-114
HULTINORHAL 123
UNIFORH 91
RANDOM NUMBERS %1
RANDOM SAMPLE 582 179
SEE ALSH SAMFLE
RANLOM VARTABLE
CONTINUOLS R
NIGUKETE &
FANNGMNESS WITHIN SAHFLE A42-444
RANK OF SAMPLE 450
RAD-CRAWER INEDUALITY: SEE CRABER-RAD
INEOQUM. ITY
REJECTION OF REASUREMENTS 151-152
REJECTIDN REGIOM 379
RFEAY NETWORKES 14
RESIIAL 5SUM OF SRUARES 283
InilaLs 28z
SOLUTION FUNCTIDN 152s 153-15B» 252-255,
288-300
i THENTAL DETERMINATION OF 157-158
RESDLUTTON TRANSFORM 152+ 153-1%7,
294-2%5, 298
RESOLUTION WINTH 153y 153-158s 254-255
FORUSTNESS OF TEST 434
ROSENEROCK’S CURVED VALLEY 349-350, 353
ROGENBROCK S METHDD 354-354
RUN 43R
KUN TEST
AS SUPPLEMENT TO PEARSODN’S x2 TEST 444-448
FOR CONSISTENCY BETWEEN TWO SAMPLES A3B-442
FOR RANMDOHNESS WITHIN ONE SAMPLE A42-444

B
SAMFLE
HEAR 59
FROFERTIES FOR NORMAL VARIABLES 10%
5128 58
VARTANCE 5%
SEE ALSO NORMAL SAMFLE
SAMFLE SFPACE 8
SAMPLING DISTRIBUFIONS 127--150
SCALE FACTOR 43
SCANNING EFFICIENCY 20-22¢ &6B-4%, 223-22%
SCATTERPLOTS 43-44

SET 9

COMFLEMENT OF ¢

ELEMENT OF 9

EXCLUSIVE SETS 10

EXHAUSTIVE SETS 9

INDEFENDENCE DF SE1S 15-16

INTERSECTION OF SETS ¢

SURSET DF 9

UNTNON OF SETS 9
SET THEORY 2
SIGN TEST 434-438
SIGHIFILANCE 379
SIGNIFICANCE LEVEL 379
SIGNTFICANCE OF SIGNAL 40&-410
SIMFLE HYFOTHESIS 378
SIMPLEX METHOD 356-35%
SIMFLIFIER LEAST-SNUARES HETHOD 251, 293-274
SIZE OF TESTr SEE SIGNIFILANCE
SKEWNESS. GEE ASYMHETRY COEFFTICIENT
SYANDIARD DEVIATION 33
STANTARD NORMAL NISTRIBUTION 101-103
STANDARD TRANSFOKMATION 101
SIATISTIC 167y 1BO

SEE ALS0 ESTIMATOR
STATISTICAL INFERENCE &-7¢ 186
STATISTICAL TESTSs SEE YESTS
STATISTICS &
STEEFEST DESCENT METHOD 342-%43
STEP HETHODS 350-359
STRETCH FUNCTIONS 2A9-290
STUDENT*S T-DISTRIBUTION 140-144
SURSET ¢
SUCCESS-FAILURE METHDIr 352-353
SUFFICIENCY OF ESTIMATOR 190-194r 204-205

T
T-DISTRIPUTION 140-144
TEST OF HYPOTHESIS
CONSISTENCY BETWEEN HISTOGRAM AND MOREL
415-421y 444-44B
CONSISTENCY BETWEEN SAMPLES 430-4430.
449-457
EQUAL MEANS IN MORMAL DISTRIBUTIONS 411-414
EQUAL MEANS IN TW(} NORMAL TISTRIBUTIONS
397-401
EQUAL VARIANCES IN TWO MORMAL DISTREIEUTIONS
401 -402
INDEFENDEMCE [F VARIAKLES 429-433
HEAN IN NORMAL DISTRIKOTION 395-396
RANNDMNESS WITHIN ONE SAMPLE 442-42434
VARIANCE IM NORMAL DISTRITUTION 394-397
TEST STATISTIL. SFE STATISTIC
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GLBTRIRUTTON -FREE 3770 425: 43%
GENFRAL X7 421 + 429-433s 455-457
GONDNESS—0F~F1T 3775 414-428
KOL BUGOKDY - SHIRNDY 415, 424-428
KL MOGBORNY: SHIRNOV  TNO-SAHILE 448-450
KRUSKAL -WALLIS RANK 453-455
LIKEE IHODL RATIN 3BA-39%s 415
NEYMAM--FEFAKLON 384-38B
NON FARBHKE 1RTE 377
PARAMETRIL 377, 395-414
FEARSON’S x2 A15-421r 444-448
KUN 438-447
SIGN 434438
WILCOXEN'S RANK SUM A50-453

TRACK RECONSTRUGTION: SEE HELIX PARAMETERS

TRUNCATION OF F.DLF. t58s 161

TSHERYCHEFF -BIENAYHE INEQUALITY 34, 42

TYFE T AND TYPE 11 ERRORS 379, 381-384

1]
{INRIASSENNESS OF ESTIHATOR L1HZ-1G4r 203-204
INTFORHM NISTRIBRUTTON B% 91
UNLFOKM RANDON NUMBER GEMERATOR 91
UNIMODULAR F.Ir.F, 31
UNION OF SETS 9
UNIVERSE 58
UNWE IGHTEL 1 EAST-SRUARES METHOD 240

v
VAR IANCE
OF ARITHHMETIC MEAN (SAMPLE HEAN) S0» 54
OF FUNCTION 33y 39
OF LARGE-SAMFLE HL ESTIMATORS 217-218
OF LINEAR FURCTION OF RANDOM VARIABLES 49
DF ML ESTIMATORS 210-218
OF RAMDOH YARIABLE 33
OF MEIGHMTED MEAN 215
SANMFLE 59
UARIANCE RATID 144
UFNN DIAGRANS 10

W
WETIGHTER MEAN 199-200r 215
WETGHTING DF EVENTE 15P-161, 143
LEAST-SEUARES METHOD} 298-300
HAXIMUH-L TREL ITHIOD METHOD 252-254
WILCOXON S RANK SUM TEST 450-453

2
Z-DIGTHIBUTION 140-14%




