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Abstract
A sonic crystal is a finite-size periodic array composed of scatterers
embedded in a homogeneous material. It should have full band-gaps where
any sound wave is not allowed to propagate but is reflected completely. It is
actually a sonic version of a photonic crystal. Since similarities and
differences between the photonic and electronic band structures were
discussed and summarized in 1993 by Yablonovitch, photonic crystals have
been intensively investigated from the physical and application-oriented
points of view. In the same time frame, sonic and phononic crystals have
been discussed to realize acoustic band-gaps, wave-guides and filters. Their
first experimental realizations of full band-gaps were both reported in 1998.
Two-dimensional sonic crystals of rigid cylinders in air have been recently
revealed to be promising for acoustical coupled wave-guides constructed in
a sonic-crystal slab. This review focuses on sonic crystals corresponding to
photonic crystals, and reviews papers on the fundamental physical aspects,
methods of theoretical analyses, experimental techniques to realize
two-dimensional sonic crystals, wave-guides and coupled wave-guides, and
finally ideas of sonic circuits built in sonic-crystal slabs.

Keywords: sonic crystal, sonic-crystal slab, periodic structure, full band-gap,
evanescent field, wave-guide, coupled wave-guides, acoustic filters, sonic
circuits

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A ‘sonic crystal’ is an artificial crystal of a finite-size
periodic array composed of sonic scatterers embedded in a
homogeneous host material. It should have full band-gaps,
or complete band-gaps, where any sound wave is not allowed
to propagate into the crystal but is reflected completely by
the crystal. The host material may be solid, then the term
‘phononic crystal’ is usually used [16–18, 29, 30, 38, 66,
69, 85, 86, 94] for the artificial crystals. In a solid host
material, longitudinal waves and transversal shear waves may
exist and may be coupled with one another. In contrast, sonic
crystals are considered to be independent of the transversal

1 Present address: Institute of High Frequency Engineering, Ruhr-University
Bochum, Germany.

waves, although the scatterers are typically made of solid
materials allocated in fluid [19, 21, 22, 67, 71, 68, 51–58].
This definition of ‘sonic crystal’ and ‘phononic crystal’ is
adequate enough here.

A sonic crystal is actually a sonic version of a photonic
crystal. Thus, developments of photonic crystals stimulated
those of sonic crystals and vice versa. Since the similarities
and the differences between photonic and electronic band
structures were discussed and summarized by Yablonovitch
[89] in 1993, photonic crystals have been intensively
investigated with great physical interest as summarized by
Joannopoulos et al [23] and by Johnson et al [24] as well
as from the application-oriented points of view, as listed up
in the bibliography [10]. In general, there are more than
two directions of periodicity in an artificial crystal, and their
periods are different. The most popular two-dimensional
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(a) (b)

Figure 1. Two-dimensional periodic arrays of scatterers with square lattice. The parallel direction (a) corresponds to [100] or �X direction
in the reciprocal space, and the diagonal direction (b) to [110] or �M direction [57].

square-lattice structure of sonic crystals is shown in figure 1.
The period along the side of the lattice is equal to the
lattice constant a, and the diagonal direction has a period
of

√
2a. Consequently, the well-known Bragg reflections,

namely band-gaps, occur at different frequencies proportional
to 1/a and 0.707/a for the square lattice. If these two band-
gaps are not wide enough, their frequency ranges do not
overlap. However, it was found that these band-gaps can
overlap due to reflections on the surface of thick scatterers
as well as due to wave propagation in the scatterers. Then,
any wave is reflected completely from this periodic structure
in the frequency range where all the band-gaps for the
different periodical directions overlap. This is the fundamental
mechanism for the formation of a full band-gap which is
required for artificial crystals, such as photonic crystals, sonic
crystals and phononic crystals.

One of the major expectations of photonic crystals is
their ability to suppress spontaneous emission of light [89].
The density of the final states is the density of optical
modes available to the emission. If there is no optical
mode available, there will be no spontaneous emission. For
example, spontaneous emission determines fundamentally the
maximum available output voltage in solar cells. In a full
band-gap of a photonic crystal, optical modes, spontaneous
emission and zero-point fluctuations are all absent.

On the other hand, the major expectations of sonic
crystals, or of artificial crystals in general, are their ability
to guide acoustic waves highly efficiently even without loss
along the wave-guide constructed in the crystal by removing
the scatterers along the pathway of the waves. One of the
most exciting phenomena, which was noted by Mekis et al
[48] first in photonic crystal, is a high transmission through
sharp bends in photonic-crystal wave-guides. The well-known
optical wave-guide is made of a layered structure of dielectric
materials in which the refractive index of the core region is
slightly higher than that of the cladding material. The optical
waves are completely confined in the core region through the
total reflection on the boundary, which is a smooth plane,
between the core and the cladding. At any bend where
the incident angle of an optical wave to the bending surface
exceeds the critical angle for the total reflection, the optical
wave is no longer confined in the core. Therefore, sharp
bends are not allowed in conventional dielectric wave-guides.
The complete reflection on the boundary of artificial crystals,

however, is due to the full band-gap property itself, and it
occurs independent of the incident angle. This makes sharp
bends of wave-guide in the artificial crystal possible. The
evanescent field distributes across the boundary of the wave-
guide into the surrounding artificial crystal by several times
the lattice constant, just like the evanescent field in the case
of total reflection on the dielectric boundary. Since acoustic
waves have no phenomena of total reflection, although a
practical 100% reflection occurs on the flat boundary of a great
difference of the acoustic characteristic impedances such as on
a metal surface in air, the acoustic version of photonic-crystal
wave-guides is a new structure for acoustic waves. Especially,
a wave-guide with sharp bends is a completely novel acoustic
device. From this point of view, the acoustic wave-guides
constructed in artificial crystals are under investigation not
only theoretically [26, 29, 30, 53, 55, 56, 58] but also
experimentally [51, 59, 60].

A simple and very important property of artificial crystals
in general is the scalability of the frequency characteristics
from the low audible frequency to the terahertz range, i.e.
from seismic waves to phonon waves. Thus, almost all
investigations performed so far in the audible or ultrasonic
frequency regions are fundamentally applicable to higher
frequencies.

Mainly two-dimensional structures for sonic crystals are
investigated, not only because they are constructed more
simply and easily than the three-dimensional ones, but also
because they have practically useful properties. Therefore this
review paper only deals with two-dimensional sonic crystals.

Following this introductory section, the present status of
sonic crystals and sonic-crystal wave-guides are reviewed in
the following structure of sections. First, in section 2, physical
fundamentals for the artificial crystals are summarized, and
correspondences between sonic crystals and photonic crystals
are discussed based on the published literatures. In section 3,
theoretical methods are discussed that have been presented
so far to calculate the band-gap structures of sonic crystals
and the properties of the sonic-crystal wave-guides. Two
representative and useful methods are reviewed. One is
the classical method of plane-wave expansion (PWE), which
is applicable to an infinite repetition of a fundamental
inhomogeneous structure. The other is the finite difference
time domain (FDTD) method, which is used as a powerful
simulation method for the propagation of waves in arbitrary,
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inhomogeneous structures. The FDTD method seems to
be indispensable in the theoretical investigations of wave-
guides, and the method has features which should be
carefully noted in the applications. Therefore, the following
points are discussed, namely the numerical dispersions, the
appropriate application of absorbing boundary conditions, and
the Courant convergence condition, which demands time-
consuming calculations in the case of high parameter contrasts;
especially in the case of sonic crystals composed of rigid
cylinders in air. In section 4, the investigations on band-gap
structures of the two-dimensional sonic crystals are reviewed.
The experimental realizations of the two-dimensional wave
propagations are classified into two structures. One is a
structure called ‘bulk’ (section 4.1) which is inhomogeneous
cross-sectionally but homogeneous along the perpendicular
direction. The other is a periodic structure built in a ‘slab’
wave-guide (section 4.2) which is by nature three-dimensional.
In section 5, wave-guides constructed in the sonic crystals are
discussed. Fundamental theoretical investigations for sonic-
crystal wave-guide are reviewed (section 5.1). Transient
behaviour of the guided waves in the sonic-crystal wave-
guides, which will be an important aspect of the guided modes
when applied in the high-speed signal processing devices, is
reviewed in section 5.2. In section 6, one of the most important
application-oriented devices made of sonic crystals, namely
the sonic coupled wave-guide, is discussed.

2. Two-dimensional artificial crystals: sonic and
photonic crystals

The refractive index constant for x-rays is tiny, generally
10−4. The forbidden x-ray stop bands are extremely narrow
in frequency. As the refractive index constant is increased,
the narrow forbidden gaps open up, eventually overlapping in
all directions in the reciprocal space. Following Yablonovitch
[89] we shall see that this requires an index contrast larger than
or equal to 2. The refractive index depends on the dielectric
constant as well as on the magnetic permeability. Due to their
lossive properties, however, magnetic materials are usually
not considered for photonic crystals. Therefore, the dielectric
constant is the only material parameter relevant to photonic
crystals. When we develop sonic crystals, the contrast of
the bulk moduli of the scatterers and the host material and
the contrast of the densities of the scatterers and the host
material are the relevant material parameters. Characteristic
impedance and refractive index will play important roles in
sonic crystals, both of them being derived from bulk modulus
and density. Although the contrast of refractive index is noted
for photonic crystals from the above-mentioned situations, the
contrast of characteristic impedance may be more important in
the formation of full band-gaps for sonic crystals, as pointed
out by Kee [28].

We summarize and compare the fundamental properties of
the two-dimensional sound waves and electromagnetic waves
[53] in this section. First, we review the normalized version of
the equations of motion which describe the behaviour of sound
waves and electromagnetic waves. The normalized physical
quantities and material parameters introduced in this section
are used in the following sections. Second, sonic crystals and
photonic crystals are compared in a common parameter space.

2.1. Wave equations for sound waves and
electromagnetic waves

Sound waves are described by the following simple equations:

ρ
∂ ξ̇

∂t
= −∇p,

∂p

∂t
= −K∇· ξ̇. (1)

The physical quantities are particle velocity ξ̇ and sound
pressure p, which are the pressure deviation from the static
pressure due to sound waves. The material parameters of the
medium are bulk modulus K and density ρ. Since ξ denotes
conventionally the position of the particle, the particle velocity
is given by its time derivative ξ̇. This notation is simplified
by the following normalization process. Dissipations are
not included here, because the dissipation term plays no
fundamental role for the artificial crystals.

In order to compare these equations with the
electromagnetic equations, we normalize them by the material
parameters of a simple uniform medium which will be the
host material of the sonic crystal. Let them be denoted with
an index 0, namely density by ρ0, bulk modulus by K0, the
speed of sound by c0 = √

K0/ρ0 and the acoustic characteristic
impedance by Z0 = ρ0c0 = √

ρ0K0. The normalized physical
quantities are v = Z0ξ̇ for the normalized particle velocity
which has the same dimension as the sound pressure, and
u = c0t for the normalized time which has the dimension of a
distance and is equal to the travelling distance of a plane wave
in the uniform medium in time t. The material parameters of
the inhomogeneous structures are described by the normalized
density, or the contrast of density ρ0/ρ = ρ and the normalized

bulk modulus, or the contrast of bulk modulus K/K0 = K ,
respectively. Then the normalized equations of motion are
given as [51]

∂v

∂u
= −ρ∇p,

∂p

∂u
= −K∇ · v. (2)

The FDTD method solves the inhomogeneous wave
equations (2) for the theoretical investigation of acoustic wave
propagation in a sonic crystal of an arbitrary finite shape [51].
A single second-order inhomogeneous differential equation
for the sound pressure p is derived from equations (2) in the
normalized form:

∇· (ρ∇p) − 1

K

∂2p

∂u2
= 0. (3)

This equation was solved to obtain the band-gap structure
of sonic crystals by the method of Green’s function [22], by
the plane-wave expansion (PWE) method [38, 76], or by a
variational method [68, 71] for an infinite array of scatterers.

The electromagnetic equations of motion in lossless media
are normalized also in the same way as the equations of motion
for sound waves. We denote the material parameters of a
simple uniform medium, which will be the host material of
the photonic crystal, with an index 0, namely the dielectric
constant by ε0, magnetic permeability by µ0, the velocity
of light by c0 = 1/

√
ε0µ0 and the characteristic impedance

by Z0 = µ0c0 = √
µ0/ε0. We use the same notation c0

and Z0 both for sound waves and for electromagnetic waves.
The normalized physical quantities are: G = Z0H for the
normalized magnetic field, which has the same dimension
as the electric field; u = c0t for the normalized time,
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Figure 2. Correspondence between field components of
two-dimensional sound waves and electromagnetic waves in a
vector diagram [54]. ©2002 The Japan Society of Applied Physics

Table 1. A complete correspondence between two-dimensional
sound waves and electromagnetic waves [53].

Sound waves TE waves TM waves

vx Ey −Gy

vy −Ex Gx

p Gz Ez

K µ ε

ρ ε µ

which has the dimension of a distance; ε0/ε = ε and
µ0/µ = µ for the normalized dielectric constant and magnetic
permeability, respectively. Then the normalized equations of
electromagnetic waves are given as follows [51]:

∂E

∂u
= ε∇ × G,

∂G

∂u
= −µ∇ × E. (4)

2.2. Correspondence of physical quantities and material
parameters between two-dimensional sound waves and
electromagnetic waves

Equations (2) for sound waves include only operations of
gradient or divergence, whereas those for electromagnetic
waves (4) are described by vector operation of rotation.
These equations seem to be completely different in nature
and have no correspondences. In the two-dimensional case,
however, a complete correspondence was found between them
in Cartesian coordinates [53], as shown in table 1. From this
correspondence, it is very simple and also helpful to give an
overview of sonic crystals and photonic crystals, by drawing
a vector diagram as shown in figure 2. The magnetic field H
of the TE wave as well as the electric field E of the TM
wave behave like the sound pressure p of scalar quantity.
The transversal components E of the TE wave as well as
H of the TM wave are perpendicular to the direction of
propagation, while the particle velocity of the sound waves
is parallel with the propagation. This simple consideration
makes clear the physical situations of sonic crystals. In the
typical two-dimensional sonic crystals, sound waves in the host
fluid material are almost completely reflected on the surfaces
of the scatterers, which look like pillars illustrated in
figure 2, due to the large impedance mismatch, or contrast.
No transversal elastic waves are excited in the scatterers [55],
and the scenario of two-dimensional sound waves is valid for
sonic crystals and corresponds completely to the scenario of
either TE waves or TM waves [53].
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Z =
 1c = 1

c > 1,  Z > 1

GaAs in air

Acrylic resin in air
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Figure 3. Two-dimensional sonic crystals and photonic crystals in a
common parameter space [55]. Phononic crystals are also included
for comparison. ©2002 IEICE

2.3. Sonic crystals and photonic crystals in a common
parameter space

The complete correspondence shown in table 1 represents a
common material-parameter space for the two-dimensional
sonic crystals and photonic crystals [55], as shown in figure 3.
The ordinate describes the normalized bulk modulus K or
dielectric constant ε, and the abscissa describes the normalized
density ρ or magnetic permeability of the scatterers for sonic
crystals and photonic crystals, respectively. The dynamic
range of the normalized parameters extends over 4 to 5 orders
in magnitude so that both axes are drawn on a logarithmic
scale. The centre of the space (1, 1) corresponds to a uniform
space made of the host material without scatterers.

The typical and representative photonic crystals, made
of dielectric cylinders of GaAs in air and of air cylinders in
GaAs, are plotted at (1.0, 0.0865) and (1.0, 11.56) in the figure,
respectively [23]. These are both about one order apart from
the uniform point (1, 1). It should be noted that all promising
photonic crystals investigated so far are dielectric and non-
magnetic, lying on a line of µ = 1.0. On the other hand,
sonic crystals distribute diversely in the parameter space. For
example, the typical sonic crystal of acrylic resin cylinders in
air [54] is at (1.1 × 10−3, 3.8 × 104) and, thus, far from
the typical photonic crystals. Although phononic crystals
should be plotted on a three-dimensional parameter space of
K, ρ and shear modulus G, some of them are projected on
figure 3 for comparison. The first experimental observation
of an ultrasonic full band-gap in periodic two-dimensional
composites for the longitudinal wave mode was made by
Montero de Espinosa et al [61] in a unique structure of an
aluminium alloy plate with a square periodic arrangement of
cylindrical holes filled with mercury. This crystal is positioned
at (0.198, 0.368) in the close neighbourhood of the typical
photonic crystals. A phononic crystal of steel cylinders in
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water reported by Khelif et al [31] lies between the typical
sonic and photonic crystals. No full band-gap has been
observed, yet, for periodic structures of acrylic resin cylinders
in water because of the too small parameter contrasts. A
quasi-sonic crystal of air cylinders in agar host [56] is at
(790, 6.5 × 10−5) far from the photonic crystals.

All promising sonic crystals and photonic crystals are

noted to be located around c =
√

Kρ = 10 or 10−1 in figure 3.
Yablonovitch has estimated this index contrast c or c = 1/c

to be larger than 2 to realize overlapping band-gaps, namely
to realize full band-gaps [89]. As is evident already from the
above discussions, typical sonic crystals have a peculiar feature

of high characteristic impedance contrast Z =
√

K/ρ, ranging

between 103 and 104. From this feature, differences between
sonic and photonic crystals arise, especially with respect to
field distribution and wave propagation in the wave-guides, as
discussed in later sections.

3. Theoretical methods of sonic crystals and
sonic-crystal wave-guides

Theoretical methods that may be used to analyse the
propagation of sound waves in the sonic crystal are classified
into four groups. The first is (1) the plane-wave expansion
(PWE) method which is valid for periodic structures of an
infinite size [11, 71, 68], (2) the FDTD method for arbitrary
structures of a finite size [53, 79], (3) the wave propagation
method which solves slowly varying envelope functions of
waves in an arbitrary structure [33], and (4) a method which
gives analytical solutions for some specific structures [27]. All
these methods are used in the analysis of photonic crystals,
whereas methods (3) and (4) have never been applied to
sonic crystals. Especially, the FDTD method is powerful
and inevitable for the theoretical and numerical analysis of
sonic-crystal wave-guides.

3.1. Plane-wave expansion method with
Floquet–Bloch theorem

A harmonic form for the sound pressure p(r, u) = ejk0up(r)

is assumed. Here, the wave number in the homogeneous space
is denoted by k0 = ω/c0. Then equation (3) is transformed to
the following equation2:

∇· (ρ(r)∇p(r)) +
k2

0

K(r)
p(r) = 0. (5)

A typical model of a sonic crystal with an infinite periodic
array of scatterers is adopted. Applying the Floquet–Bloch
theorem for the periodic system, the spatial function of the
pressure is described by p(r) = uk(r) eik · r, where uk(r) is
a periodic function according to the periodicity of the sonic
crystal. Equation (5) is to be solved for the periodic function
p(r).

2 The electromagnetic equations for the analysis of photonic crystals are
described in terms of the magnetic field to construct a Hermitian operator as
discussed by Joannopoulos et al [23], and derived from equations (4) into the
following normalized form. Usually µ(r) = 1 for photonic crystals.

∇ × (
ε(r)∇ × G(r)

)
+

k2
0

µ(r)
G(r) = 0.

According to the PWE method, Economou et al [11]
and Sigalas [78] expanded uk(r) as well as the material
parameters ρ(r) and K(r) = 1/K(r) in Fourier series with
the corresponding coefficients uk+G,KG and ρ

G
, respectively,

where G are the vectors of the reciprocal lattice. In terms of
these coefficients, equation (5) is transformed into an infinite
matrix equation for uG.∑

G′
[ω2KG−G′ − (k + G)(k + G′)ρ

G−G′]uG′ = 0. (6)

Keeping a finite number M of Fourier components in the
expansion, an appropriate M × M matrix equation was solved.
Economou et al [11] reported that usually a value of M around
350 was adequate to achieve a 1% accuracy. Sigalas [78]
mentioned that the eigenvalues do not change by more than
5% when using more reciprocal vectors than M = 100 per
unit cell, and he noted further an interesting fact that much
better convergence can be achieved with equation (5) rather
than with the equivalent wave equation, where K(r) appears
as a multiplicative factor in the first term of the equation.

Sánchez-Pérez et al [71] and also Rubio et al [68]
employed a variational method in which the pressure function
uk(r) is expanded as a superposition of a finite number N
of localized functions, which account for the periodicity of
the Bravais lattice of the system, and each localized function
is defined by a product of one-dimensional cubic B-splines.
Using the standard procedure, the differential equation (5)
is transformed to a finite and sparse matrix equation for
the coefficients of the expansions, namely the variational
parameters. They have shown that N = 100 functions are
enough to get results similar to those obtained by the PWE
method. The band structures of a sonic crystal made of
aluminium cylinders in air obtained by this variational method
were used in figure 5.

Interpreting equation (5) as an operator equation

L(r)p(r) = ω2p(r), (7)

James et al solved the transmission spectrum of a one-
dimensional periodic structure of finite size using a Green’s
function method [22]. The results agreed well with the
experimentally measured transmission spectra of the layered
structures.

3.2. Two-dimensional FDTD method for sonic crystals

Since analytical methods cannot practically solve the
propagation of waves in a finite size periodic structure, the
FDTD method is an important numerical tool, especially for
the analysis of wave-guides with bends, and for simulations
of the propagation of waves in more complicated acoustic
circuits. The FDTD method has, however, a few crucial
drawbacks. So we should briefly overview the essence of
the method especially for sound waves, and point out the
applicabilities here [53].

3.2.1. Finite difference time domain equations. The
equations to be solved in a two-dimensional region where sonic
crystals are included are given by equations (2) in the Cartesian
coordinate components (vx, vy) of v and the scalar pressure
p. Let �u denote the finite difference of the normalized time
u, and �x,�y those of spatial coordinates x, y. Taking the
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Figure 4. Spatial sampling points for two-dimensional FDTD
method applied to sound waves.

temporal sampling points of the sound pressure p at u = n�u,
and those of the particle velocities vx, vy at u = (

n + 1
2

)
�u,

the spatial sampling points of those quantities are illustrated
in figure 4.

As in the Yee algorithm, which was developed to
solve electromagnetic equations, both temporal and spatial
derivatives in the acoustic equations (2) are approximated by
the central symmetric finite differences. Then finite difference
equations are obtained, which solve vn+ 1

2 and pn+1 mutually
progressively, increasing n [53].

v
n+ 1

2
x

(
i + 1

2 , j
) = v

n− 1
2

x

(
i + 1

2 , j
)

− ρ
(
i + 1

2 , j
)
Rx{pn(i + 1, j) − pn(i, j)}, (8)

v
n+ 1

2
y

(
i, j + 1

2

) = v
n− 1

2
y

(
i, j + 1

2

)
− ρ

(
i, j + 1

2

)
Ry{pn(i, j + 1) − pn(i, j)}, (9)

pn+1(i, j) = pn(i, j)

− K(i, j)Rx

{
v

n+ 1
2

x

(
i + 1

2 , j
) − v

n+ 1
2

x

(
i − 1

2 , j
) }

− K(i, j)Ry

{
v

n+ 1
2

y

(
i, j + 1

2

) − v
n+ 1

2
y

(
i, j − 1

2

) }
.

(10)

Here the following normalized parameters,

Rx = �u

�x
, Ry = �u

�y
(11)

are introduced. The parameters Rx and Ry denote the ratios of
the distances that an ideal plane wave propagates in the host
medium in a time difference �t , namely a normalized time
difference �u = c0�t , to the spatial differences �x and �y,
respectively.

Sound sources are given by either the sound pressure

pn(i, j) or the particle velocity
(
v

n− 1
2

x

(
i+ 1

2 , j
)
, v

n− 1
2

y

(
i, j+ 1

2

))
.

The normalized coefficients ρ
(
i+ 1

2 , j
)
, ρ

(
i, j + 1

2

)
and K(i, j)

are equal to unity in the host material by definition. For
the scatterers, the coefficients represent the contrasts of
densities and bulk moduli between the scatterers and the

host material. Equations (8)–(10) simulate fairly exactly the
temporal evolution of sound waves in a two-dimensional space,
if a few important conditions described in the next section are
fulfilled.

3.2.2. Important conditions of the FDTD method. There are
a few important conditions to which the actual applications of
the FDTD method are subjected inevitably. Although these
have already been discussed in the field of electromagnetic
waves, the actual situations are very different for sound waves
in sonic crystals.

(1) Numerical stability (Courant condition). Finite-
difference wave equations have a well-known numerical
stability condition called the ‘Courant condition’. In the case
of sonic crystals, normalized material parameters ρ and K ,
which appear in equations (8)–(10), multiplied with Rx and
Ry are much larger than one, and the Courant condition should
be fulfilled including these parameters. Taking Rx = Ry and
MρK as the maximum value of ρ and K in the region of
analysis, the Courant condition is given as follows [53]:

Rx = Ry < 1/(
√

2MρK). (12)

This condition imposes very difficult restrictions on the
numerical analysis of wave propagation in the sonic crystals.
In the case of the typical photonic crystal of GaAs dielectric
cylinders in air, the parameter contrasts between the host
and the scatterer’s ε and µ, which correspond to K and ρ,
respectively, are less than or equal to unity, and the Courant
condition is easily fulfilled. In contrast, a typical sonic crystal
of acrylic cylinders in air [54] or aluminium cylinders in air
[68, 57] has a parameter contrast in the order of 104–105

as shown in figure 3. Even if a sub-grid method is applied
to the scatterers of high contrast parameter value, any direct
fulfilment of the Courant condition requires 104 times longer
calculation time than the wave propagation in free space.
Such a long calculation time is only acceptable for super-
computers. This restriction has been escaped skillfully. Kee
[28] and Miyashita [54] noted that the characteristic impedance
contrast Z practically determines the wave propagations in
sonic crystals made of rigid cylinders in air, and Miyashita has
reduced the bulk modulus contrast to K = 8.0 keeping the
value of Z exact.

(2) Numerical dispersion. The next important property is
called numerical dispersion, or grid dispersion, which makes
the velocity of waves in the FDTD calculation dispersive
between [100] and [110] directions and also dependent on
frequency. It has been reported that the minimum dispersion
is obtained at the equal limit of the Courant condition, namely
at Rx = Ry = 1/

√
2, and a measure of the dispersion is given

as [54, 55]

k ∼= k0

{
1 +

(k0�u)2(1 − sin2 2θ)

24 − 4(k0�u)2(2 − sin2 2θ)

}
, (13)

where k is the wave number, k0 the wave number of the
homogeneous space filled with the host material and θ the
propagation angle of the sinusoidal plane wave.

It is clear that plane waves propagating in the direction of
θ = π/4 do not experience numerical dispersion with a free
space dispersion relation k = k0. On the other hand, plane
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Table 2. Phase errors induced in the propagation of ten times
wavelength.

λ/�x 10 20 30 40

Phase error [2π ] 0.088 0.021 0.0092 0.0052

waves propagating along the x or y axis suffer from numerical
dispersion. Phase differences induced between these two
directions of propagation are calculated as shown in table 2. In
the typical cases of sonic-crystal analyses, the spatial region
of analysis is about 10 wavelengths square, so a 1% phase
error will be obtained with a grid-spacing finer than 30 grids
in the wavelength. Sigalas and Garcia used about 60 grids
for the band-gap calculation [79]. This numerical dispersion
reduced with a new FDTD algorithm called ‘non-standard
FDTD method’ developed by Cole [9] with a sacrifice of
programming complexity. No application of the nonstandard
FDTD method to the numerical investigation of sonic crystals
is known, yet.

(3) Absorbing boundary condition (ABC). In the analysis
of wave propagation by the finite element method (FEM),
open-space conditions are normally encountered. One way to
deal with this problem is the so-called combination method,
where the whole unlimited space is divided into two regions
[50]. One is a bounded space which includes all the non-
uniform objects, where the wave propagation is described by
the FEM. The other is the complementary space of the former
one, and it is described by the boundary element method
(BEM). Combining the formulations for these two regions on
the boundary, the open-space wave propagations are solved.

In the past ten years, an efficient method for open-space
wave propagation has been developed introducing an artificial
absorbing boundary condition (ABC) to the FDTD method
[62]. Especially the perfectly matched layer (PML) developed
by Berenger [3] is most effective and most frequently used in
the analysis of electromagnetic and sound wave propagations.
Plane waves which propagate normally to the boundary of
PML are not reflected on the boundary as if the impedances
were perfectly matched. Actually they are absorbed to
the desired degree of typically about 100 dB during the
propagation in the PML. On the other hand, the plane waves
propagating along the boundary experience no attenuation,
and they are absorbed by the other perpendicular parts of the
PML boundary. This PML scheme has been applied also to the
numerical analysis of acoustic wave propagation in non-elastic
media [54, 93].

4. Two-dimensional sonic crystals: full band-gaps

Photonic crystals for microwaves were first experimentally
discussed in 1993 pursuing the analogy between the behaviour
of electromagnetic waves in three-dimensional periodic
structures of dielectric materials and the familiar behaviour
of electron waves in natural crystals [89]. Almost at the same
time, the band-gap structure of acoustic waves propagating in
periodic composite media was discussed, and the existence of
full band-gaps was predicted theoretically. Kushwaha et al
[36] reported in 1993 the first full band-gap calculations for
periodic elastic composites composed of an array of straight
infinite cylinders embedded in an elastic background.

An experimental report appeared in 1995 about band-
gap structures of a one-dimensional periodic array of two
to ten perspex plates in water by James et al [22]. They
compared the experimental results with the theoretical band-
gap structures of a finite number (between 2 and 10) of unit
cells. Including the defect states3, good agreements were
obtained in the cut-off frequencies of the passband. The first
experimental observation of an ultrasonic full band-gap in a
two-dimensional phononic crystal for the longitudinal wave
mode was reported in 1998 by Montero de Espinosa et al [61].
Their novel structure consists of an aluminium alloy plate with
a periodic square arrangement of cylindrical holes filled with
mercury. A full band-gap was observed between 1.00 MHz
and 1.12 MHz.

Experimental band-gap structures of two-dimensional
sonic crystals were first reported in 1998 by Sánchez-Pérez et
al [71], and also by Robertson and Rudy [67]. They obtained
an effect, in their words, considered as a fingerprint of the
existence of a full band-gap. The former experiments were
refined in 1999 by Rubio et al [68], and full band-gap spectra
of the two-dimensional sonic crystals of rigid cylinders in
air were depicted after the critical comparison between the
theoretical predictions and the experimental results. A full
band-gap transmission spectrum was experimentally obtained
by Miyashita and Inoue [52] for a two-dimensional sonic
crystal of acrylic resin cylinders in air. Let us call this
type of sonic crystal composed of a two-dimensional periodic
array of long scatterers for a two-dimensional plane-wave
propagation as ‘sonic-crystal bulk’ in this review. Recently,
a novel periodic array of sonic scatterers was constructed by
Miyashita [57], built in a thin air layer between two parallel
metal plates as an alternative to the two-dimensional sonic-
crystal bulks, which will be referred to as a ‘sonic-crystal
slab’. This slab structure is expected to be preferable and
promising for the sonic crystals with respect to the realization
of integrated acoustic circuits. These experimental reports are
reviewed together with the methods used for the theoretical
considerations in the following sections.

4.1. Experimental sonic crystal, sonic-crystal bulks

Experimental observations of the band-gap structures of sonic
crystals have been reported since 1998. Robertson and Ruddy
presented the experimental observation of acoustic stop-
bands in a two-dimensional periodic array of rigid cylindrical
scatterers in air [67]. The scatterer is made of an electrical
conduit of 2.34 cm in diameter and 1 m in length. A square
array was 6 rows deep × 10 rows wide with a lattice constant
of 3.7 cm and a filling factor of 0.31. Also a triangular lattice
was built with a filling factor of 0.366. They measured the
transmission spectrum of the crystals, applying an impulse
signal through a speaker, where the most precise measurement
was achieved using a sound waveform generated by taking
the second derivative of a Gaussian. The Fourier transforms
of the acoustic signals arriving at the microphone with and
without the scatterers were compared. A temporal windowing
processing was used to reduce the effect of the reverberant
fields. The measured and calculated Fourier amplitude

3 A pass-band which appears in the band-gap of the original crystal due to a
lack (defect) of scatterers.
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transmitted along the �X direction4 showed clearly a stop
band both for the square lattice and for the triangular lattice.
It was difficult, however, to identify a clear band-gap from
the amplitude of the waves transmitted either along the �M
direction of the square lattice or along the �J direction of the
triangular lattice. They tried to inspect the phase information
of the Fourier transforms, namely the phase dependence on the
frequency, and found a frequency range where the phase delay
exhibits anomalous dispersion with positive slope, and they
interpreted it as a clear indication of the presence of a band-
gap. They concluded together with the phase information that
their experimental results showed a full band-gap for sound
waves propagating in the triangular lattice. They noted also
that a simple two-dimensional array will be of limited value
for most practical applications, because the stop-band exists
only for propagation in a plane, which is perpendicular to the
cylinders and contains the central axes of the speaker and the
microphone. This was overcome later by the introduction of a
sonic-crystal slab [57].

Sánchez-Pérez et al have investigated experimentally the
band-gap structure of a two-dimensional periodic array of
rigid, stainless steel and wood cylinders in air with two
different geometrical configurations, square and triangular
[71]. Their experiments were performed in an anechoic
chamber. They concluded that there was an overlap between
the attenuation peaks measured along the two high-symmetry
directions of the Brillouin zone (BZ) in the range of audible
frequencies in both configurations above a certain filling ratio,
and that this is considered as a fingerprint of the existence of
a full acoustic band-gap.

Rubio et al have tried to interpret the experimental
existence of full band-gaps in two-dimensional sonic
crystals through the critical comparison between theory and
experiment [68]. They have solved equation (5) applying
Bloch’s theorem and introducing a novel variational method
for the transmission of sound waves through infinite size sonic
crystals of square and triangular lattices in air. A velocity ratio
of 17.2 was used in the theoretical calculations corresponding
to the case of aluminium rods in air, and a density ratio
of 200 was considered, although the actual ratio is of the
order of 105. They pointed out that no valuable differences
exist in the calculated values even with higher density ratios.
The transmission measurements of the sound waves through
the sonic crystals made of aluminium or wood rods in
air were combined with the phase dispersion measurement
of the sound waves. Following Robertson and Ruddy
[67], they supposed that the anomalous phase dispersions
coincide with the borders of the band-gaps. Discussing
the critical comparison between the theoretical dispersion
relations obtained by the above-mentioned variational method
and the experimental attenuation bands, they characterized the
band-gap structures. Their summary is shown in figure 5.
Along the �X directions in both lattices, a good agreement
between theoretical and experimental values of the band-gap
borders can be noted. Nevertheless, along �M (square) and
�J (triangular), the experimentally obtained attenuation bands
appear in frequency regions where no band-gaps exist in the
theoretically obtained dispersion relation. They believed this
effect to be an artefact of the experimental technique. With a

4 The reader may refer to the notation �X, �M and �J in figure 5.
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Figure 5. Theoretical and experimental band structures by Rubio
et al [68]. (a) Gap map calculated for square lattices of rigid
cylinders in air. The dotted (full) lines define the limits of the first
pseudo-gap along the �X (�M) direction in BZ. A full sonic
band-gap is the overlap of both pseudo-gaps (shaded zone). The
black dots (diamonds) are the limits of the attenuation peaks
measured along the �X (�M) directions. (b) The same for a
triangular lattice, where the diamonds refer to the �J direction. The
reduced units are ωa/2πc0, where c0 is the speed of sound in air and
a the lattice constant. ©1999 IEEE.

critical comparison between the theory and the experiments,
they concluded that the square lattice with a filling fraction
of 0.41 has a full band-gap in the region [3099–4093] Hz,
and that the result agrees well with the theoretical value
[3331–3899] Hz.

Miyashita and Inoue performed a comprehensive
theoretical and experimental study on a sonic crystal made
of acrylic cylinders in air, and presented evidence for the
existence of a full band-gap in the transmission spectra
both theoretically and experimentally [54]. They derived
FDTD equations for acoustic longitudinal wave propagations
especially in the two-dimensional space [53], applying the
method of FDTD analysis for electromagnetic waves [92]
to the acoustic case. Temporal solutions of the FDTD
equations were used directly to simulate the waveform of
sound in sonic crystals and also sonic-crystal wave-guides,
including the transient phenomena. In contrast to the other
theoretical methods of PWE or the variational one, the FDTD
method can analyse arbitrary inhomogeneous structures of
finite size corresponding to the experimental situations. To
precisely calculate the wave propagation in the limited region
of analysis, they used the PML, and achieved a residual
reflection coefficient of −105 dB on the boundary of analysis
[53].

Bulk modulus contrast K , or ratio of scatterers (solid) to
host material (air), is much larger than unity for sonic crystals,
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Figure 6. Sonic-crystal bulk of acrylic resin rods in air by Miyashita
et al [57]. Materials are all acrylic resin. The lattice constant is
24.0 mm, the radius of the scatterers 10.2 mm and their length about
30 cm. The top and bottom sides both have sufficient amounts of
glass wool to effectively absorb the sound waves of oblique
wavefronts. A straight wave-guide as well as a bending wave-guide
was constructed in this sonic-crystal bulk, as reviewed in
section 5.3.1.

as shown in figure 3. The FDTD calculation needs much
computation time, for it is proportional to the large parameter
ratio K to fulfil the Courant condition as stated in section 3.2.2.
Miyashita and Inoue considered that the high characteristic
impedance ratio Z of the sonic crystal mainly determines the
sonic-wave distribution in the sonic crystals as discussed in
section 2. They calculated the band-gap structures with several
computation-tolerant parameter values of K and ρ, keeping the

characteristic impedance ratio Z =
√

K/ρ to the actual value
of 5.9 ×103. They found no more practical variations in the
region of the band-gaps with values of K larger than 8.0 [54].
The theoretical band-gap spectra calculated with K = 8.0 are
shown in figure 7 together with the measured transmission
spectra.

Based on the numerical results, Miyashita and Inoue
constructed a sonic crystal of a two-dimensional array of
10 × 11 acrylic resin cylinders with a radius of 10.2 mm
and a lattice constant of 24.0 mm in air, resulting in a filling
ratio of 0.567 [51, 54]. To realize a two-dimensional sonic
crystal, and to measure the transmission spectra of the two-
dimensionally propagating plane waves, the following two
points were carefully considered as shown in figure 6.

First, the length of the acrylic resin cylinders was designed
to be long enough to assure uniformity of the sonic crystal in

Frequency [kHz]

N
or

m
al

iz
ed

 T
ra

ns
m

is
si

on
 R

at
io

 [
dB

]

[100]
[110]

Normalized Frequency a/λ

Experimental FBG

Theoretical FBG

Exp. The.

0.3 0.4 0.5 0.6 0.7 0.8

-50

-40

-30

-20

-10

0

4 5 6 7 8 9 10 11 12

Figure 7. Experimental and theoretical band-gap structures of a
sonic crystal of acrylic resin rods in air by Miyashita [54]. ©2002
The Japan Society of Applied Physics

the third dimension. Second, a sufficient amount of glass
wool was placed so that the oblique plane waves may not be
reflected at the top and bottom of the scatterers. They used
a short tone-burst with a time duration of 8 ms, in order to
measure the transmitted sound waves in the normal laboratory
circumstances independent of the undesired echos in the time
domain. The steady-state parts of the transmitted waveform
were extracted, and their amplitude and phase were determined
relative to those of the source signal by means of digital
or numerical homodyne detection. The measurements were
finally normalized by the same experimental measurements
without the sonic crystal. The experimental results show a
clear and deep full band-gap in the transmission spectra, as
shown in figure 7. The measured full band-gap was 6.8–
9.5 kHz, or 0.475–0.67 in normalized frequencies with a
transmission ratio smaller than −25 dB. The experimental
band-gap was 20% wider than the theoretical one.

It should be noted that the existence of the full band-
gaps of two-dimensional sonic crystals was first observed by
carefully realizing two-dimensional plane-wave propagation
in the crystals. Alternatively, to assure two-dimensional wave
propagation in the sonic crystal, Miyashita et al have invented
a periodic structure within a thin acoustic wave-guide slab
[57]. The idea leads to a sort of integrated acoustic circuit
made of wave-guides in a thin sonic-crystal slab, as reviewed
in the following sections.

4.2. Experimental sonic-crystal slab

A periodic array of acoustic scatterers constructed in an
acoustic wave-guide slab, i.e. in a thin space between two
parallel rigid plates, is expected to be a good candidate for
a practical sonic crystal for two-dimensional sound waves
unlike the sonic-crystal bulk. This type of sonic crystal was
investigated recently by Miyashita et al [57, 59, 60]. A
sound wave propagating in the sonic-crystal slab is not a two-
dimensional wave, whose wavefront should be uniform and
perpendicular to the slab structure. However, it is expected to
behave approximately like a two-dimensional wave due to the
mode selection properties of a thin wave-guide slab.
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(a)

(b)

Figure 8. Sonic-crystal slabs [57]. (a) For direction [100], (b) for direction [110].
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Figure 9. Measured band-gap structures of a sonic-crystal slab [57].

The sonic-crystal slab is constructed, as shown in
figure 8, by Miyashita et al [57] between a pair of aluminium
metal plates with 15 mm spacing, which is smaller than the
wavelength of the sound waves in the full band-gap. The lattice
constant of the sonic-crystal slab is 12.0 mm, the radius of the
scatterers is 5.0 mm and the number of scatterers is 16 × 12.
The measured transmission spectra are shown in figure 9 [57].
The band-gap structure is similar to those of sonic-crystal bulk
shown in figure 7 as expected, but not as sharp as expected.
The transmission in the lower frequency range is too small in
the [100] direction, whereas in the higher frequency range it is
too small in the [110] direction. The full band-gap determined
from figure 9 is between 15.1 kHz and 18.8 kHz, or between
0.52 and 0.65 in normalized frequencies, with a transmission
ratio smaller than −20 dB. The scaling property of the artificial
crystal [23] is naturally fulfilled between the full band-gap
of this sonic-crystal slab and that of the sonic-crystal bulk
shown in figure 7, i.e. their ranges are almost the same in the
normalized frequencies.

5. Sonic-crystal wave-guide

Once a full band-gap has been realized for a sonic crystal, a
good confinement of the sound waves is expected in a wave-
guide which is constructed by removing a line of scatterers
in the sonic crystal. This expectation comes naturally also
from the successful development of the sharp bending photonic
wave-guides by Mekis et al [48].

5.1. Theoretical investigations of acoustic waves in
sonic-crystal wave-guides

The propagation of acoustic waves through two-dimensional
periodic composites consisting of solid cylinders in air was
investigated by Sigalas [78] using the PWE method for two
cases of single and line defects of the periodic alignment.
Line defects can act as a wave-guide for acoustic waves, while
single defects can be used as acoustical filters. Similar cases
of defects have been studied for electromagnetic waves in
photonic crystals [47, 64, 88]. Two methods are used for the
theoretical analysis of the periodic structure with defects. One
is direct numerical simulation of the wave propagations with
the FDTD method reviewed in section 3.2. The other is solving
acoustic wave-equations with the PWE method reviewed in
section 3.1. The latter method requires an infinite periodic
structure of the object. In order to fulfil the requirement,
the idea of super-cells has been introduced. In the super-
cell calculations, the object is assumed to be composed of
an infinite periodic repetition of a super-cell which is itself
a minimum periodic structure with a single defect or a line
of defects. It is desirable that the wave propagations in the
spatially repeated super-cells are practically independent of
each other.

Sigalas studied the defects mode in the band structure of
acoustic waves propagating in a typical sonic crystal, namely a
two-dimensional square lattice of solid cylinders periodically
placed in air. The filling ratio of the cylinders in a unit cell is
0.548 and the full band-gap extends from 0.46 to 0.65 in the
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Figure 10. Initial buildup of the waves in the sonic and photonic ‘straight wave-guides’ [56].

reduced frequency a/λ, which corresponds closely to the case
of the sonic-crystal bulk studied by Miyashita et al [57] and
reviewed in section 4.1. First, two different super-cells were
studied consisting of 3 × 3 and 5 × 5 cylinders, respectively.
A defect is introduced by decreasing the radius rd of one
cylinder at the centre of the super-cell. A defect band, a
passband which appears in the band-gap of the original crystal
without defects, emerged from the upper edge of the band-gap
and moved towards the centre of the band-gap. For rd = 0,
the centre of the defect band was at a/λ = 0.584. It was
also found that, although the centre of the defect band is
almost the same, the width of the defect band is about five
times smaller in the case of super-cells with 5 × 5 cylinders,
due to the smaller overlap of the wave-fields located around
neighbouring defects. Second, line defects were introduced
using a super-cell of 5 × 5 cylinders. These defects can act
as a straight acoustic wave-guide. Three defect modes were
found in the projected band structure along the direction of
the line defect for rd/r = 0.8. The mode which emerges
from the lower edge of the band-gap with increasing wave
vector k in the ω−k diagram, had a poor concentration of the
acoustic field along the line defect at k = 0.5. In contrast,
two modes which come from the upper edge of the band-gap
with almost the same frequency for every k are more localized
along the line defect. Reducing the radius of the cylinders
in the line defect to rd/r = 0.6 and to rd/r = 0.4, the three
modes are separated and changed their frequencies within the
band-gap.

These theoretical results indicate various possibilities of
sonic-crystal wave-guides that confine and guide acoustic
waves well along the line defects, and also of sonic crystals
that act as narrow tunable filters for acoustic waves in air, by
changing the radius of the cylinder of the single defect.

5.2. Transient behaviour of sound waves in the wave-guides

Numerical investigations of sound waves in sonic crystals and
especially in sonic-crystal wave-guides have been elaborately
performed by using the FDTD method. The most preferable
feature of the FDTD methods is that we can simulate exactly
the temporal evolution of the wave propagation in an arbitrary
inhomogeneous medium. So this section is devoted to
reviewing the investigations of the transient behaviour of the
wave propagation in sonic wave-guides.

In the application of sonic-crystal wave-guides to
functional sonic circuits, the transient behaviour of the guided
waves is to be investigated. Numerical inspections were
reported by Miyashita [55, 56]5, being compared with a
typical photonic-crystal wave-guide. Two sonic crystals and
a photonic crystal were investigated. (1) ‘Sonic crystal A’—
acrylic resin cylinders in air, r/a = 8/20,K = 8.0, ρ =
2.3 × 10−7, full band-gap: 0.47 < a/λ < 0.62. Here r
denotes the radius of the scatterers, a the lattice constant,
λ the wavelength in a uniform space of the host material and
a/λ the normalized frequency. (2) ‘Sonic crystal B’—air
cylinders in agar gel, r/a = 6/20,K = 6.6 × 10−7, ρ = 8.0.
(3) ‘Photonic crystal C’—GaAs dielectric cylinders in air,
r/a = 6/20, ε = 0.865, µ = 1.0, full band-gap: 0.38 <

a/λ < 0.475. The initial buildup of the waves injected from
the left inlet of the straight wave-guide was presented, as
shown in figure 10, and studied comparing the three types of
crystals. Conclusions were as follows: (1) the straight wave-
guide of sonic crystal A needs about five periods before the
establishment of the steady state, (2) sonic crystal B has a very
short rise time which is shorter than a period, (3) photonic

5 The CD attached to [55] includes movie files of the temporal evolution of
the waves in the wave-guides.
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Figure 11. Transient behaviour of the waves in the sonic and photonic ‘bending wave-guides’ [56].

crystal C needs about three periods. Next, the initial buildup
of the waves injected from the left inlet into the two-times
bending wave-guide was also investigated for the three types
of crystals, as shown in figure 11, and concluded as follows:
(1) In the bending wave-guide of sonic crystal A, the guided
mode is observed to be reflected from the first bend, which
occurred independent of the establishment of the steady state
of the guided waves interfering with the waves reflected from
the surrounding scatterers. Although the distribution of the
guided waves is wide and complicated being accompanied by
the evanescent fields, the waves are well guided along the
bending wave-guides. (2) Sonic crystal B has a very short
transient phenomenon in spite of relatively strong reflections
from the first bend. A mode conversion is observed clearly at
the first bend and also at the second. (3) Photonic crystal C
shows also the establishment of the steady state of the guided
waves independent of the reflections at the bends which excite
standing waves along the straight parts of the wave-guide.

5.3. Experimental realization of 2D sonic-crystal
wave-guides

It will not be as easy as in the photonic crystals for microwaves
or light-waves to realize high-precision experiments on
propagation of sound waves in sonic crystals, especially in
the wave-guides. Only a few experimental investigations
have been reported for sonic crystals so far, although many
numerical investigations are reported.

5.3.1. Sonic-crystal wave-guide bulk. Miyashita and Inoue
reported experiments on a straight sonic wave-guide as well
as on a sonic wave-guide with a sharp bend [51] constructed
in a sonic-crystal bulk, which is shown in figure 6, similar
to photonic wave-guides with sharp bends reported by Mekis
[48]. A quasi-plane wave was irradiated from a standard audio-
speaker, and the sound waves guided along the sharp bend to
the outlet were measured by a microphone and compared with
the sound waves which propagated straight out of the crystal

as leakage sound-waves. The ratio of the guided waves to the
leakage waves was about 30 dB in the lower half region of the
full band-gap of the sonic-crystal bulk [51].

5.3.2. Sonic-crystal wave-guide slab. Miyashita et al
introduced a sonic-crystal slab for a flexible platform for
various shapes of acoustic wave-guides [57, 59, 60]. They
have built a wave-guide with a sharp bend in the sonic-
crystal slab, whose inside view is shown in figure 12. For
flexible constructions of various shapes and types of coupled
wave-guides, there is always a small supporting rod of radius
of 1.5 mm at each lattice point, and each scatterer may
have a collar of outer radius of 3 mm to 6 mm around
the supporting rod. In the figure, all collars have an outer
radius of 5 mm. The inlet and outlet of the wave-guide are
tapered in order to achieve better impedance matching. The
sound waves were injected into the wave-guide by a audio-
tweeter (Fostex: FT7RP) having a rectangular aperture of
12 mm × 80 mm and a frequency band of 3–45 kHz. The
guided sound-waves were detected in front of the outlet by
an omnidirectional microphone (Earthworks: QTC-1) having
a small aperture of 10 mm diameter and a wide, flat frequency
response from 10 Hz to 40 kHz. The leakage sound-
waves, which propagated straight from the inlet without
turning along the bend, were also detected outside the
sonic crystal. The measured amplitudes of the guided
and leakage waves as well as the guided-to-leakage ratio
(GLR) are shown in figure 13 as a function of frequency.
Please note the following points. Especially, (1) at the
low end of the full acoustic band-gap (ABG) around 16.0
kHz, the leakage waves were weakest with a GLR of 30
dB over a relatively wide frequency range of 0.3 kHz.
On the other hand, (2) at the centre of the ABG around
16.9 kHz, over a broad bandwidth of 0.5 kHz, the intensity
of the guided wave was highest with a GLR of more than
20 dB. These bands will be useful for practical applications,
although (3) at high end of the ABG around 17.9 kHz, a high
GLR of 30 dB was also measured with a narrow bandwidth.
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Figure 12. Inside view of an acoustic wave-guide with a sharp bend constructed in the sonic-crystal slab. The upper plate, which composes
the slab structure together with the lower plate seen in the picture, is removed for the inside view [59, 60].
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Figure 13. Measured guided waves and leakage waves for a
wave-guide with a sharp bend built in a sonic-crystal slab [59, 60].

6. Sonic coupled wave-guides

The guided waves in the sonic-crystal wave-guides are
accompanied by evanescent fields which extend to the periodic
array of the scatterers surrounding the wave-guide, like
electromagnetic waves in the dielectric wave-guides. These
phenomena occur clearly in the case of the sonic crystal of
acrylic resin cylinders in air, as shown in figures 10(a) and
11(a). Therefore, it is strongly expected that mode coupling
arises easily between adjacent wave-guides in sonic crystals.

6.1. Experimental sonic coupled wave-guides

A preliminary successful experiment was recently reported by
Miyashita et al [59, 60] on the mode coupling between two
wave-guides constructed in a sonic-crystal slab of aluminium
rods in air whose inner view is shown in figure 14. The
acoustic wave input from the lower left inlet travels the lower
wave-guide turning at the bend to the right outlet, generating
coupled modes in the upper wave-guide which has no inlet but
an outlet. The selected modes of the sound waves excited in

the coupled wave-guide grow cumulatively travelling to the
right outlet. The output of the coupled modes was measured
and compared with the output from the lower wave-guide, as
shown in figure 15. A remarkable result is that the ratio of
the coupled wave to the input wave is −3 to −4 dB around
the lower frequency part of 15.6 kHz to 16.8 kHz in the full
band-gap of the sonic crystal.

The above experimental results on the mode coupling
between the sonic-crystal wave-guides show that the sonic-
crystal slab is a promising platform for a new two-dimensional
acoustic integrated circuit. The elements of acoustic circuits
will be sonic-crystal slabs, straight and bending wave-guides,
coupled wave-guides, ring resonators constructed by bending
wave-guides, coupled filters formed by a combination of ring
resonators and coupled wave-guides, wave-splitters, and so
on [59, 60]. These sonic crystal devices are expected to be
developed in the near future.

7. Summary

Following an introduction to the properties of artificial crystals
in general, their physical backgrounds, theoretical methods
for the analyses of sonic crystals and sonic wave-guides,
the present status of theoretical and experimental sonic
crystals, sonic-crystal wave-guides, and finally the most recent
development of sonic crystals for coupled wave-guides were
reviewed.

First, the fundamental equations used in the literature for
the analyses of sonic crystals were reviewed, being compared
with the electromagnetic equations for photonic crystals.
Typical sonic crystals consisting of a periodic array of ridged
cylinders in air were compared with typical photonic crystals
on a common parameter space.

The theoretical methods presented so far to calculate
the band-gap structures of sonic crystals were discussed
comparatively. One is the classical and analytical method
of plane-wave expansion (PWE), which is applicable to an
infinite repetition of an inhomogeneous structure. The other
is the finite difference time domain (FDTD) method, which
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Figure 14. An inner view of a sonic coupled wave-guide constructed in the sonic-crystal slab [59, 60].
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Figure 15. Measured input and coupled waves in the sonic coupled
wave-guides constructed in a sonic-crystal slab [59, 60].

is also a powerful simulation method for wave propagation in
an arbitrary structure of inhomogeneity. The FDTD method
seems to be indispensable for the theoretical investigations of
wave-guides. However, the method has some features which
should be carefully noted in the applications as reviewed here.

Theoretical and numerical investigations of the band-gap
structures of two-dimensional sonic crystals were reviewed.
Although there are various reports which discuss sonic
crystals theoretically, only two or three groups have presented
experimental techniques and results. Two experimental
techniques to determine the full band-gap were also reviewed.
One combined the amplitude transmission spectrum and the
phase dispersion. The other determined a full band-gap simply
from the amplitude transmission spectra. The realizations
of two-dimensional sonic crystals so far were classified into
two types, i.e. bulk and slab structures. The latter was
considered here to be promising for the future application-
oriented developments of sonic crystals.

Acoustic wave-guides have been investigated so far
mainly theoretically for those constructed in elastic or

phononic crystals. A few but important reports of experiments
on wave-guides in sonic crystals were reviewed. Transient
behaviour of the guided waves in the sonic wave-guides was
also reviewed, which will be an important nature of the guided
modes when applied in high-speed signal processing devices.

One of the most important application-oriented devices
made of sonic crystals will be sonic coupled wave-guides
constructed in a sonic-crystal slab. With a promising
experimental result on unidirectional mode coupling, this
review paper was closed.
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