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Compton scattering in a semiconductor detector is used to “discover” the relativistic relation
between energy and momentum and to demonstrate the dependence of p, E and y on B. The
motivation is to measure the (rest) mass of the electron, and this can be done to within 1 keV
with a commonly available set of gamma ray sources. To determine precisely where the
Compton edge occurs in a spectrum, a Monte Carlo calculation of detector response is described
which also helps the student to understand the physics of the detection process.

L. INTRODUCTION

In modern physics courses Compton scattering is intro-
duced to emphasize the particle nature of photons and the
recoiling electron is largely ignored. However, with com-
monly available gamma ray sources the kinetic energy of
the recoiling electron is often on the order of 1 MeV and
the electrons are indeed relativistic. Compton scattering is
a convenient source of relativistic particles in the under-
graduate laboratory, and when it occurs in a detector the
kinetic energy of the recoiling electron is directly mea-
sured. In this report we describe how such measurements
can be used to determine the relativistic relations between
energy, momentum, and mass for the recoiling electron
simply and precisely. The experiment is initially presented
to the students as a measurement of the electron mass to
complement an e/m experiment and the Millikan oil drop
determination of the charge of the electron. The student’s
analysis is forced onto an instructive detour due to the
obvious inadequacy of the nonrelativistic equations. The
process leads to the discovery, based on the data, of the
energy-momentum relation of special relativity.

Experiments to measure the mass of the electron’ and
the relativistic relations for the electron® using the Comp-
ton edge have been published previously, but these reports
did not emphasize the discovery approach or the precision
possible. Measurements of the Compton angular distribu-
tion with the intent of discovering the form of the relativ-
istic relations have also been described,’ but this is a more
complicated experiment and requires a high intensity
source of gamma rays.

1

I. THE ANALYSIS

The experiment consists of measuring the energy of the
Compton edge from ordinary gamma ray spectra as a func-
tion of the energy E, of the incident gamma rays. The
Compton edge corresponds to the kinetic energy T of the
recoiling electron when the incident gamma ray is scat-
tered through 180°. To achieve the best results, the Comp-
ton edge energy must be measured with high precision, and
we recommend the use of a germanium detector. Further,
to avoid systematic errors it is important to understand the
shape of the spectrum, and models to describe the shape
are discussed in Sec. III.

The data used in this report are listed in Table I and Fig.
1 shows a plot of T vs E, . The best that can be said about
these variables is that they are indeed the measured quan-
tities. The relation between them, whether derived classi-
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cally or relativistically, provides little insight to the stu-
dent. The fact that the dependent and independent
parameters are not simply related is the greatest barrier to
using this experiment with unsophisticated students.

There are only four ideas needed to analyze the data; the
realization that the gamma ray is a photon, conservation of
energy and momentum in the collision, and the classical
relation E,=p,c between the energy and momentum of an
electromagnetic wave or photon. For the Compton edge,
the energy of the electron corresponds to an incident pho-
ton scattered through 180° and conservation of momentum
gives

Py=P—D,, (N

where p,, p,, and p are the momenta of the incident
gamma ray, the scattered gamma ray, and the recoiling
electron, respectively. Conservation of energy gives

pre=py+T. (2)

These relations may be combined to give the electron mo-
mentum in terms of the experimental variables,

pc=2E,—T. (3)

The above does not rely in any way on special relativity.

As a first attempt to determine the electron mass, we can
assume the nonrelativistic relation, T=p?/2m,,, so that
the (rest) energy of the electron is given in terms of the
experimental quantities by

2.2 2
p’cc (2E,—T)
Moy ==y (4)

When the calculated values of m,c? are plotted as a func-
tion of 7, Fig. 2, it is immediately obvious that m,c? is not
constant. But the surprising result is that, to within exper-
imental uncertainties, the dependence on T is linear with a
slope of 1/2. Furthermore, the intercept is equal to the
value of myc® which the student should expect from the
low energy e/m and Millikan experiments, or from the
“book value.” Replacing the left-hand side of Eq. (4) with
this experimental result, moc*+ T/2, gives

PA=2Tmy?+ T2 (5)
The addition of (myc?)? to complete the square gives
P+ (m?)?=(T+m?)=E, (6)

where E is the total energy of the electron. This is the
central energy-momentum relationship of special relativity.
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Table 1. Measured Compton edge energies.

Source E, (keV) ECompw,, (keV)
“Co 1173.2 963.5+1.0
“Co 1332.5 1117.0+1.0
31cs 661.7 477.0+1.0
2Na 511.0 339.0+1.0 -
2Na 1274.5 1061.0£1.0
133Ba 356.0 207.0£1.0
07 ;4 569.7 393.0%1.0
W7g;4 1063.7 858.0%1.0
07g;4 1770.2 1547.0% 1.0
152Ey 344.3 196.0£1.0
52gy 1408.0 1190.0+1.0
2087 2614.5 2382.0+2.0
H6pp 416.9 263.0+2.0
6y 1097.3 890.0+2.0
161 1293.0 1079.0+2.0
81y 2112.1 1883.0%2.0
SCo 122.1 39.0£1.0
M Am? 59.5 11.3+0.5
Co 122.1 39.3+0.5

*Measured with a Si(Li) detector.

Once Eq. (6) has been “discovered” it can be solved to
calculate directly the rest energy as originally asked of the
student. This procedure differs from using the intercept of
Fig. 2 since relativity is now assumed to be the correct
theory. In terms of the measured quantities,

2 2
_p¢=T* 2E(E,~T)
moe? =—— = —. @)

The calculated values of myc? are plotted as a function of T
in Fig. 3, and the mass is clearly seen to be independent of
the kmetlc energy. Statistical errors of about 1 keV in
mqc? are possible, but systematic errors of about the same
magnitude are also present largely due to residual errors in
actually locating the Compton edge, see Sec. III below.
The student has now reached the stated goal of measur-
ing the (rest) mass of the electron. In addition the data can
be manipulated to verify other common relativistic rela-
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Fig. 1. The electron kinetic energy as a function of E, . The line is a fit of
T= 2E2 /(2E, +myc?) [from Eq. (7)] which ylelds mgc?=512.7+0.9
keV. The unoertmntles are smaller than the data points.
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Fig. 2. The electron rest energy calculated nonrelativistically and then
fitted with a linear relationship. There are uncertainties in both directions
which are usually smaller than the points. The intercept is 513.6 1.9 keV
and the slope is 0.4991=0.0016.

tions. To determine the electron velocity, or equivalently
B=v/c, we use the relativistic mass m and the relations
p=mv and E=m¢® to give
v muc pc 2E,—T T(2E,-T)
"¢ m? E T+my® T*—2E,T+2E
Figure 4 shows the plot of pc vs B. For the 2.615 MeV
gamma ray from 2%TI, $=0.984, and the plot clearly
shows the expected asymptotic behavior as 8 approaches
unity.
A plot of E vs B also shows the expected asymptotic

behavior. The total energy E is expressed in terms of the
experimental measurements as

2
T*>—-2TE,+2E}
—.

The relativistic factor y can be calculated from the relation
E=ymy? so that
E mg4+T T?
Ty me ZE,,(E,,— T)'

Figure 5 plots ¥ vs . For reasons discussed below y is
calculated from the relation y= E/moc2 using the value of
mgc? determined in Fig. 3 rather than the last form of Eq.

(8)

E=T+mod= 9)

(10)
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Fig. 3. The electron rest energy vs electron kinetic energy when calcu-
lated relativistically. There are uncertainties in both directions. The un-
certainties in moc® are large at low energies since d(mqc?)/dT is large
there. For this data set moc® =512.7+0.9 keV identical to that in Fig. 1.
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Fig. 4. Electron momentum as a function of 8. There are errors on both
axes which are usually smaller than the points. The line is pc=yBmgc’.

(10). The expected relation y=1/(1—BZ)V 2 is seen to
hold.

The analysis described above emphasizes the discovery
of the energy-momentum relation and confirms the veloc-
ity dependence of pc, E, and y. Consequently, all plotted
variables are expressed in terms of the measured quantity T’
and the independent variable E,. Error bars should be
calculated, displayed and used in the fitting process even
though they are very often smaller than the data points as
plotted. In a precision experiment that both determines an
important quantity, m,, and elucidates an important the-
ory, the fact that you cannot see the error on the paper
does not mean that it is unimportant in defining the certi-
tude with which one accepts the result.

Note that in many of the plots there are errors on both
the ordinate and the abscissa. Most students have not been
introduced to techniques to handle such data properly.
While the difficulty can be ignored in the process of dis-

Fig. 5. A plot of ¥ vs B where y=E/512.7 [i.e., not calculated with the
last form of Eq. (10)]. There are uncertainties in both directions which
are usually smaller than the points. The line is a fit with y=1/(a+58*)"?
which yields =0.989 4+0.008 and b= —0.988+0.009.
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covering the need for a relativistic treatment, errors in both
coordinates can be treated easily when determining the
uncertainty in the results.*

The last remarks might be considered a bit disingenuous
as there are several subtleties hidden in the analysis above.
The first is that the uncertainty in the rest mass found from
the fit in Fig. 2 is larger than the uncertainties calculated in
the fits of Fig. 1 or Fig. 3. The latter two give identical
errors even though one is a nonlinear fit and the other is a
simple average. The reason is that one is fitting two param-
eters in the case of Fig. 2 and only one in the other cases.
The extra parameter, the slope of Fig. 2, defines the
energy-momentum equation of special relativity, Eq. (6).
The other two fits assume that relativity is the correct the-
ory, and so all the statistical precision in the measurements
appears in the fitted value of the mass.

The second point is that in the cases where there are
errors in both plotted coordinates the uncertainties are al-
ways correlated and are not independent. This arises be-
cause there is only one measured variable T for each datum
and the uncertainty in each coordinate is determined from
the uncertainty in the measured value of 7. The plotted
variables are not measured separately and independently.
The normal procedures for fitting data assume that the
uncertainties are independent, i.e., random. The proce-
dures characterized by Figs. 1 and 3 are free of this defect.
The first because one is really fitting the dependent and
independent variables and the second because the averag-
ing process ignores the value of the abscissa and its error.
For the cases of m,.c* vs T, pc, and E vs B the correlations
are not serious. But for ¥ vs B the correlation is perfect if
the last form of Eq. (10) is used to calculate ¥, rather than
dividing E by the average value of myc’. In other words,
any two randomly chosen numbers with E,, greater than T
and relations (8) and (10) give values of 8 and ¥ which
are related by y=1/(1—p%)"? since this relation is im-
plicit in Eq. (6).

II1. DETECTOR CHARACTERISTICS

The experiment can be carried out with a NaI(T1) de-
tector, but the much better energy resolution of a semicon-
ductor, HPGe, Ge(Li), or Si(Li), detector allows one to
make very precise measurements and to use sources with
fairly complex spectra. However, the excellent resolution
of the full energy peak in a semiconductor detector does
not translate directly into as great an improvement in the
sharpness of the Compton edge. There are two primary
reasons. First, for monoenergetic gamma rays there is a
background in the region of the Compton edge even for a
“perfect” detector, and second, the electron struck in the
collision is bound and, consequently, is not at rest. For a
monoenergetic gamma ray the most important source of
background is events where there are multiple Compton
scatterings in the detector, but not all the gamma ray en-
ergy is lost. All backgrounds should be subtracted before
the edge is determined, but it is still necessary to have a
method to find the location of the edge since it is not
perfectly sharp in the experimental spectrum and one
would like precision on the order of 1 keV.

A simple argument shows that the Compton edge should
exhibit a vertical drop in the gamma ray yield at the ap-
propriate energy. The Compton edge corresponds to
gamma rays scattered at 180° since we have two particle
elastic scattering and, kinematically, this angle corre-
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sponds to the maximum energy for the recoiling electron.
Experiments’ measuring the scattered gamma ray show
that the cross section does not go to zero at this angle.
Thus there should be a finite number of electrons scattered
into each channel of the spectrum up to the maximum
allowed energy and then the drop to zero.

Experimentally the edge is not sharp but falls from a
near plateau to the multiple scattering background with a
rounded edge shape, almost like the right half of a Gauss-
ian distribution. Combining these ideas gives a model of a
cross section with a sharp drop at the edge energy convo-
luted with a Gaussian smearing function. From a typical
137Cs spectrum the Gaussian can be estimated to have o~ 5
keV. This width is significantly greater than the width of
the full energy peak, so there is clearly other physics in-
volved than simply the noise in the system.

A model consisting of a constant scattering cross section
below the edge convoluted with a Gaussian indicates that
the true edge is located halfway down the drop. This model
is quite robust; the smearing need not be Gaussian but only
symmetric with a characteristic width much less than the
edge energy to get a result very near 0.5. If the underlying
spectrum is not flat (and the Compton spectrum is not)
there is again only a small correction.

To determine better where the Compton edge is located
in an actual spectrum a Monte Carlo simulation was done
to unravel the various features. The details of the detector
response result from intrinsically interesting physics and
can promote a better appreciation in the student that a
good understanding of the instrumentation is necessary for
precision measurements. Writing a Monte Carlo simula-
tion is a reasonable student project, but not of the one-
week variety.

A good introduction to the behavior of gamma ray de-
tectors is found in Knoll.® However, the region of the
Compton edge is not usually of prime importance in their
use, except in so far as the background can be suppressed.
The Monte Carlo simulation allows one to find which
mechanisms produce the various features of the spectrum
including the details near the edge.

The primary energy loss mechanisms for gamma rays
are the photoelectric effect, Compton scattering and pair
production. Compton scattering is dominant in the region
of interest from a few hundred keV to a few MeV. How-
ever, Compton scattering does not annihilate the gamma
ray but only shifts it to lower energy where it can interact
again. Most gamma rays which end up in the full energy
peak undergo more than one Compton scattering followed
by a photoelectric interaction. The gamma rays which un-
dergo multiple Compton scatterings but escape the detec-
tor before the photoelectric interaction contribute to the
background which extends into the region between the
Compton edge and the full energy peak. They create the
prominent bulge which is seen at energies above the Comp-
ton edge. This and all other backgrounds must be taken
into consideration in locating the edge.

The shape of the spectrum due to single Compton scat-
tering events in a “perfect” detector followed by immediate
escape of the energy shlfted gamma ray is g1ven by the
Klein-Nishina formula® which predicts a rise in the yield
as the high energy limit is approached followed by a dis-
continuous drop to zero which defines the edge. This de-
pendence gives the broad peak seen in spectra just below
the Compton edge. In a real detector the edge is never
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Fig. 6. Monte Carlo calculation for the 0.662 MeV gamma ray of '*’Cs
(—). The dashed line (---) is the calculation for the single Compton
scattering events. The open circles are the experimental spectrum with
room background subtracted. The calculation is normalized to give the
same number of counts in the photopeak as the experimental spectrum
and has been smoothed.

perfectly sharp but is convoluted with a resolution func-
tion. If the width of this smearing were the full energy peak
resolution, about 2 keV, it would not be serious, but the
major contributor is the Fermi motion of the struck elec-
tron which is bound to the germanium atom. As the K
electron binding energy is about 11 keV, the spreading is
considerable,

Figure 6 compares the measured spectrum to the Monte
Carlo result for the 0.662 MeV gamma ray of '*’Cs in our
9% HPGe detector of closed end coaxial design along with
the spectrum due to single Compton interactions. The logic
of the simulation program generally follows that of Meix-
ner.” The elements of the process were (1) monoenergetic
gamma rays enter through the detector dead layers where
a few interact and are shifted in energy; (2) the path length
to the interaction point in the detector is selected randomly
based on exponential attenuation proportional to the total
cross section; (3) if the gamma ray has not escaped the
detector, in which case the tracking terminates and the
energy deposited recorded, the type of interaction is se-
lected randomly according to the relative cross sections for
the three interaction modes; (4) the recoil energy of the
struck electron is assumed to be fully absorbed by the de-
tector. The calculation for this photon terminates if this is
a photoelectric event; (5) the new path of a Compton
scattered gamma ray is chosen randomly according to the
Klein—Nishina angular distribution and the new energy
calculated for that angle. For a pair production event two
0.511 MeV gamma rays are created going in opposite di-
rections. The residual gamma rays from both mechanisms
are tracked by going back to step (2) and the summed
energy lost in all interactions is eventually saved.

There are a number of simplifications assumed in the
above process. Some electrons escape the detector, but a
rather simple model indicated that this loss made little
difference to the result since the electron ranges are usually
small compared to the size of the detector. There is a dead
region in the core of the crystal which was ignored as was
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the effect of imperfect charge collection. Escaping brems-
strahlung and characteristic x rays were also ignored.

The most important additional effect controlling the
shape of the Compton edge is the Fermi motion of the
struck electron.® This was treated in an approximate fash-
ion as a full treatment would be complicated by the alter-
ation of the Klein—Nishina angular distribution due to the
electron’s motion which should be treated with relativistic
kinematics. Instead the scattering angle is chosen ran-
domly from the distribution defined by the Klein—Nishina
formula and the photon and electron energies calculated.
Then the energies were modified by randomly selecting a
momentum transfer in the collision with a probability
weighted according to the distribution for the germanium
electron momentum transfer.’ The data from Ref. 9 were
parametrized as the sum of three Gaussians each represent-
ing a different electron shell and weighted by the number of
electrons in the shell. [A variant of the program using the
appropriate parameters for a Si(Li) detector was also
used.]

In Fig. 6 the area of the photopeak is normalized to the
data. (The dimensions of the detector crystal had been
adjusted to match the measured photopeak efficiency for
the 1.333 MeV gamma ray from %Co.) The simulation is
gratifyingly best near the Compton edge and is of similar
quality in comparison to other sources with different
gamma ray energies. The shape of the Compton edge is
satisfactory although the amplitude is about 10% too low.
This fault is probably related to the deficit in the number of
counts at the minimum between the Compton edge and the
photopeak.

The Monte Carlo results were used to develop an algo-
rithm to locate the true position of the Compton edge
which is reliable in the presence of backgrounds, moderate
statistics, and the spreading of the edge. Any method based
on finding the position of the maximum in the Compton
distribution fails because the peak is broad and flat and
cannot be located with sufficient accuracy to be useful. A
simple and stable process is to find the maximum height of
the peak and then the height of the background at the foot
of the Compton edge which is created by multiple Comp-
ton scatterings and other processes, i.e., where the “bulge”
meets the edge. (The Monte Carlo calculation indicates
that the most tightly bound K electrons create a foot on the
single Compton distribution which is not experimentally
distinguishable from the other background components,
Fig. 6.) The energy of the Compton edge corresponds to
the energy where the data rises to a point midway between
these two values, see Fig. 7. This criterion is the same as
suggested by the descriptive argument above. The exact
correspondence arises from the approximations made after
the Monte Carlo calculation to make the process stable
with reasonable statistics.

The scatter in the Monte Carlo results is believed to
come from statistical fluctuations and the result of binning
the data. For simulations with an incident gamma ray en-
ergy of less than about 1.5 MeV and 1 keV bins, the chan-
nel corresponding to the average height is always within
+1 keV of the true value. The edge is found in the spec-
trum where the yield is changing most rapidly so that fluc-
tuations and individual biases in selecting the various
points seldom cause a deviation of more than one channel
in the chosen edge position. The biggest sources of system-
atic uncertainty are the precision of the Monte Carlo cal-
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Fig. 7. The position of the Compton edge determined from the Monte
Carlo simulation is located at a fraction f of the height of the rise due to
the single Compton scattering events. If y, is the yield at the top of the
Compton peak, y, is the yield at the position of the Compton edge and y,
is the yield in the background at the base of the peak then f=(y.—y,)/
(y,—s). The average fraction is f=0.54 with a standard deviation of
0.04.

culation and the subjectivity in selecting the yield at the
base of the Compton edge which arises from the foot
caused by the tightly bound electrons. A student who tends
to include this foot in the background will have a bias to
too low an energy for the edge while one who puts the base
at the point where the foot just comes in will be too high.
The Monte Carlo program is available on request.'”

IV. EXPERIMENTAL CONSIDERATIONS

With a germanium detector most of the common gamma
ray sources will give a satisfactory spectrum to identify the
Compton edge. A set consisting of ¥Co, *Na, and *’Cs is
just sufficient to measure the rest energy to within approx-
imately 1.5 keV. However, to demonstrate the relativistic
relations a wider range of energies is recommended. The
addition of 1**Ba and *°’Bi extends the range from 0.356 to
1.770 MeV. Alternatively, these can be replaced by 152Ey
as the lines at 0.344 and 1.408 MeV each give a useful
Compton edge. These are all long lived isotopes and thus
convenient. To extend the range even further the 2.615
MeV gamma ray from the thorium daughter 2Tl is the
highest energy usually available. If a source is not on hand
the room background from an overnight run is often just
sufficient or there might be a few hundred grams of a
thorium salt in your chemistry store room. If a neutron
source is available irradiation of indium gives a line at
2.112 MeV which augments the high energy range.

All of the above isotopes result in electrons with 8> 0.6.
Sources which give clean Compton edges at low energies
are rare and usually short lived. The K x rays of heavy
elements, e.g., 207Bj, are too complex and have too much
background to provide good data, but the 122 keV line
from 3'Co works well. There is some extra uncertainty due
to extrapolating the calibration to such a low energy. The
53 keV line from 33Ba is visible in our detector, but the 35
keV x rays are not. The Compton edge is clear at 39 keV (a
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fact for the student to ponder as gamma rays of this energy
are almost completely attenuated) so the extrapolation is
not too great.

The low energy range is easily measured with a Si(Li)
detector. Since it is possible to use x rays for calibration,
the extrapolation problem does not exist. An extremely low
energy datum is available using a >*'Am source with this
detector. One of the Np L x rays falls on the edge, but a
thin absorber, e.g., 0.3 mm of Cu, suppresses the x rays
without attenuating the 59 keV gamma ray significantly
and gives a clean Compton edge at 11 keV. Note that these
two low energy points do little to constrain the value of
mqc? since from Eq. (7) the error in the rest energy is
magnified for low 7, i.e., d(myc?)/dT approaches infinity
as T approaches zero. Consequently, a measurement of the
Compton edge for **!Am with an uncertainty of 0.1 keV
yields an uncertainty greater than 5 keV in myc® and the
effect is seen in Fig. 3. These low energy data do make the
plots where B is the abscissa much more convincing.

The error in the measurement of the Compton edge is
about 1 keV if the dispersion of the spectra is about 1
keV per channel and there are at least 300 counts per
channel, It should be remembered that Compton scattering
will be more important in a small detector than a large one
which will have a higher probability of multiple scatter-
ings. This means, however, that there is a low efficiency for
high energy gamma rays. Most spectra can be taken in 5 to
15 min with source intensities of 1 to 10 uCi although the
high energy points often take longer.

V. CONCLUDING REMARK

The experiment described above is easy to carry out and
analyze and provides a convincing experimental demon-
stration of the necessity of special relativity and a precise

Dispersion-free linear chains
Matthias Reinsch

measurement of the electron rest mass. The theory only
requires a modern physics course. The difficulty that so
many of the interesting, and often displayed, relations, e.g.,
p vs B, are flawed by the effects of correlated uncertainties
should be pointed out to the student. We end our discus-
sion with the suggestion that the student describe an ex-
periment which does not suffer from this problem. The
usual, and satisfactory, answer is to measure the velocity
and momentum of a particle separately. For example, a
velocity selector followed by the measurement of the radius
of curvature in a magnetic field. Such an experiment is
simpler in concept but more difficult in execution than the
present experiment.
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General formulas are given for the masses and spring constants of one-dimensional finite chains
with linear dispersion relations, examples of which were given by Herrmann and Schmilzle in
1981 in their discussion of a well-known collision apparatus. The mathematical similarity to the
problem of a Boson in a constant magnetic field is shown. The explicit formulas make a study
of the continuum limit possible. This is shown to be related to the system of uniform rods
studied by Bayman in 1976. Examples are given of chains with quadratic dispersion relations.
Resonances that give singularities in the interaction time are discovered in certain chains of

elastic spheres.

I. INTRODUCTION

Numerous papers' have been written on the ball colli-
sion apparatus shown in Fig. 1. When playing with such a
device, people usually get the impression that if »;, balls are
drawn aside and released, n;, balls will move away at the
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far end after the collision, the remaining balls being mo-
tionless (this occurrence will be called “perfect transmis-
sion” in this paper). There is also an impressive list? of
books in which it is claimed that for the case of elastic
balls, this outcome is determined by the laws of conserva-
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