AMERICAN

JOURNAL
AAPT  JRR%sas
R ———— e

Radial forcing and Edgar Allan Poe's lengthening pendulum
Matthew McMillan, David Blasing, and Heather M. Whitney

Citation: American Journal of Physics 81, 682 (2013); doi: 10.1119/1.4816241

View online: http://dx.doi.org/10.1119/1.4816241

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/81/9?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
A non-isochronous rocking oscillator
Am. J. Phys. 82, 1142 (2014); 10.1119/1.4895009

Rotational energy in a physical pendulum
Phys. Teach. 52, 180 (2014); 10.1119/1.4865529

A computer controlled pendulum with position readout
Am. J. Phys. 78, 555 (2010); 10.1119/1.3281067

An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime
Am. J. Phys. 74, 892 (2006); 10.1119/1.2215616

The Large-Angle Pendulum Period
Phys. Teach. 41, 162 (2003); 10.1119/1.1557505

SUMMER MEETING

JULY 25-29 COLLEGE PARK, MD



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/585027486/x01/AIP/2015SummerMeetingAd_AJPCovAd_1640banner_04thru07_2015/SM15_banner_1640x440_final.jpg/78704f7859565462654f3041416b4f63?x
http://scitation.aip.org/search?value1=Matthew+McMillan&option1=author
http://scitation.aip.org/search?value1=David+Blasing&option1=author
http://scitation.aip.org/search?value1=Heather+M.+Whitney&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.4816241
http://scitation.aip.org/content/aapt/journal/ajp/81/9?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/82/12/10.1119/1.4895009?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/tpt/52/3/10.1119/1.4865529?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/78/6/10.1119/1.3281067?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/74/10/10.1119/1.2215616?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/tpt/41/3/10.1119/1.1557505?ver=pdfcov

@CrossMark

Radial forcing and Edgar Allan Poe’s lengthening pendulum
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Inspired by Edgar Allan Poe’s The Pit and the Pendulum, we investigate a radially driven, lengthening
pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does
not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe’s story. We
discuss parametric amplification and the transfer of energy (through the parameter of the pendulum’s
length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be
understood, and the fundamental concept applied in many other areas. We propose and show by a
numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a
manner consistent with Poe’s story. Our analysis contributes a computational exploration of the
complex harmonic motion that can result from radially driving a pendulum and sheds light on a
mechanism by which oscillations can be amplified parametrically. These insights should prove
especially valuable in the undergraduate physics classroom, where investigations into pendulums and

oscillations are commonplace. © 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4816241]

I. INTRODUCTION

Physics and literature impart different but often comple-
mentary pictures of our world. The disciplines can motivate
deeper understandings of each other, and here we use the
tools of physics to explore a particular work of literature.
The Pit and the Pendulum, by Edgar Allan Poe, is a short
story that lends itself to an enlightening physical analysis.

Poe published The Pit and the Pendulum in 1842." The
grisly story describes an unnamed character on trial during
the Spanish Inquisition. The protagonist is convicted and
sentenced to a torturous death. Bound to a wooden table, the
prisoner gazes upward as a large scythe descends from the
ceiling, swinging back and forth. Eventually, it will lower
enough to strike and kill the prisoner. Poe explores the
swinging pendulum’s effects on the prisoner’s psyche; here
we describe its physics.

Pendulums play a central role in helping physics educators
convey fundamental and advanced physics concepts to their
students. Analyzing a simple swinging object can require the
depths of chaos theory and advanced techniques of differen-
tial equations and has absorbed the ruminations of the likes
of Galileo and Newton. On the other hand, one can reduce
the analysis to a “simple” harmonic oscillator without losing
too much insight. Intermediate mechanics texts frequently
treat the slightly more advanced harmonic motion of two
pendulums attached together, or the path of a pendulum trav-
elling through a viscous fluid. Additional complexities often
require a switch to computational modeling, which is some-
times not pursued in a standard undergraduate mechanics
course. The complexity of the scythe’s behavior in Poe’s
story behooves a computational approach.”

One might suppose that little new can be said about pen-
dulums. On the other hand, their ubiquity might justify an
exhaustive study. We emphasize, in this paper, an intuitive
perspective, which to our knowledge is rarely discussed in
the literature. We first discuss the literature on parametric
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oscillation and pendulums. This motivates a digression on
the transfer of energy through the parameter to the system.
We consider this perspective an important improvement
upon those past, and discuss our theoretical/computational
model for the scenario. This model accurately produces the
trajectory for uniform lengthening, in close agreement with
previous authors. We extend their work by showing that
varying the parameter of the length can dramatically amplify
the oscillations. Finally, it is noted that this method can prop-
erly account for Poe’s description, and the insights can fruit-
fully be applied to other scenarios.

II. PARAMETRIC AMPLIFICATION, AND A
DIGRESSION ON THE TRANSFER OF ENERGY

We are by no means the first to discuss methods of ampli-
fying a swinging pendulum. The more specific question of
applying a radial forcing, or driving, function (i.e., modify-
ing the length of the pendulum’s string), is not so commonly
discussed. Previous articles fall broadly into one of two cate-
gories. One focuses more on resonance phenomena, treating
the radially driven pendulum as a parametric oscillator. The
other considers energy conservation and the work involved
in changing the pendulum’s length. To place our work in
context, we briefly summarize each.

In the first category, Burns® considers the equations of
motion, treats the pendulum as a parametric oscillator,
derives a Hill equation (or the simpler Mathieu equation),
and interprets the solution. Pinto* takes detailed observations
of an elaborate experiment, develops a model based on the
ideas of parametric oscillation and resonance (also including
Mathieu equations), and shows how his experiment confirms
the model. Experiments like Pinto’s and our MATLAB model
are explicitly accessible to undergraduate students.

The direction of our paper is closer to the second category.
Tea and Falk® wrote a brief note deriving the quantity of
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work put into a swing as the swinger periodically raises and
lowers his or her center of gravity. Although they approach
the question from the perspective of total system energy,
they do not go into much detail concerning the general prin-
ciple we discuss here. The most elaborate contribution from
this perspective can be found in the article by Curry on how
children swing by “pumping,” or periodically standing and
squatting on a swing.® This action effectively varies the ra-
dial distance between the pivot and the center of mass. Curry
considers the energy added in each period, and derives an
exponential amplification. But then he describes the system
as a parametric oscillator. He likens it in one case to an LC
oscillator where the inductance is varied. In another case he
compares it to a nonlinear crystalline solid, through which a
high intensity laser beam passes through. The laser’s inten-
sity alters the parameter of electric susceptibility in just the
right way that a half-frequency beam is amplified.

In many cases, the perspective of a resonant oscillator,
amplified by periodic modulation of a key parameter, is a
helpful way to understand such systems. As in most cases of
resonance, usually one takes frequency as the important
physical quantity. The spectra of such systems include the
harmonic multiples of a fundamental frequency. The degree
to which driving affects the amplitude can be measured in
terms of how well the driving frequency matches a harmonic
of the system.

But we find that sometimes this perspective neglects an
important point: the modulated parameter must be connected
to the oscillations in just the right way for amplification to
occur. For example, the equation of motion for the pendulum
is independent of the mass of the bob (indeed, the mass does
not even arise in our derivation). We could (in theory) vary
the mass, as a parameter, without affecting the oscillations.
So in a general context, it is vital that for parametric amplifi-
cation to succeed, the parameter being altered must be rele-
vant in the right way.

Looking at energy helps to illuminate the connection
between parameter and system. In resonant amplification,
the system energy increases. Presuming everything is peri-
odic, we can infer that the effect of modulating the parameter
is to add a small bit of energy in each cycle. It follows that
the parameter should be linked to the relevant, oscillating
degrees of freedom in such a way that over each cycle a
small amount of energy is added by its modulation. In this
way, the energy flows from the driving mechanism, through
the parameter, and into the oscillating coordinates.

One might be tempted to say that there is a link when the
parameter is one of the coordinates of the system (for exam-
ple, the radius of the pendulum’s circular motion). But we
must be careful here, for this is not always the case. Consider
two examples, first a ball oscillating as it rolls up and down
the “U” cylinder of a skate-park. The z-axis (considering the
“U” as a semicircle and using cylindrical coordinates) is a
degree of freedom. However, periodically hitting the ball in
the * Z-direction will not affect the oscillations up and down
the slope of the U (in the 0-direction). The z-dimension is in-
dependent, or “disconnected,” from the oscillations. As a sec-
ond example, consider an LC oscillator, parametrically
amplified by altering the inductance. Here, the parameter is
clearly not a coordinate of the system (current or voltage), but
amplification can nonetheless be achieved.

The “link” between the parameter and the oscillations can
be found in the equations of motion. The parameter could be
one of the system coordinates. If it is an oscillating coordinate
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(e.g., the displacement angle in a pendulum), then we tend to
describe the system as a driven harmonic oscillator, and not a
parametric oscillator. If the parameter is a non-oscillating
coordinate, then for successful amplification we expect a
“crossing of terms” in the equations of motion. The equations
of motion should couple the “parameter” coordinate (radius)
to the oscillating coordinate (angle). Otherwise the energy (or
state) of the oscillating coordinate would not change as the pa-
rameter is modulated. If the parameter is not an explicit
degree of freedom, but another parameter (such as inductance
in an LC oscillator), then we should likewise find that parame-
ter in the equations governing the system’s oscillations. Not
just any parameter will do.

We leave it to the inquisitive reader (perhaps as a class
project) to find explicit relations governing the transfer of
energy through a general parameter. It might be possible, for
example, to give criteria regarding an arbitrary parameter
and the Hamiltonian of the system. That is not the purpose of
our paper, so we return to our discussion of a lengthening,
radially driven pendulum. We do suggest, however, that
these issues be kept in mind when looking at any oscillating
system from the perspective of parametric amplification and
resonance.

III. UNIFORM LENGTHENING

The lengthening pendulum problem has been solved ana-
lytically and numerically when the lengthening is slow (i.e.,
adiabatic) and constant. Such pendulums significantly
decrease in angular amplitude as they descend.”’~'> We
present an alternative model, which does not assume a
monotonically increasing pendulum length. Instead, we only
require that the length function, averaged over one cycle,
changes slowly with respect to the pendulum’s oscillations.
This model can be thought of as a lengthening pendulum
with a superimposed parametric amplification by applying
radial impulses in phase with the oscillations.

First, we briefly describe a slowly, monotonically length-
ening pendulum, similar to that of Simoson as well as
Kavanaugh and Moe.®!'! In particular, this case serves as a
test of our computational model, verifying its credibility.
The differential equation describing the motion can be
derived through Newton’s second law or via Lagrangian
mechanics. Figure 1 shows our coordinate system.

A large scythe lies at the end of a rope with position
denoted 7(¢). We assume that the rope never flexes and its
mass is negligible compared to the scythe’s. The coordinate
system is set so the oscillations are in the xy-plane.

Expressing 7 and 0 in terms of £ and y and differentiating
with respect to time gives 0 = 07 and 7 = 00.

To obtain the acceleration @ we take two time derivatives
of 7(t) = r(¢)r. The first yields

7(1) = F(0)F + r(0)f = F(0)F + r(1)00, (1)

and the second derivative, along with the triple product rule,
gives

1) = (1) — r(0)@°)F +

For the present, let the rope’s tension force in the —7-direc-
tion cause no radial acceleration (constant lengthening). The
acceleration from gravity is in the —y-direction, and the
0-component is —g sin(6). Equating this with the 6-component

27()0 + r(1)0]0. 2)
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Fig. 1. Definitions of the inertial (x,y,z) coordinate system and the noniner-
tial (r, 6, ¢) coordinate system with origin at the pendulum’s tip.

of Eq. (2) yields the differential equation describing the path
of a lengthening pendulum:

r(0)0 + 27(1)0 + gsin(0) = 0. 3)

Note the familiar form for a harmonic oscillator,
0 + (g/¢)0 = 0, when r(¢) is a constant £ and the small angle
approximation sin(0) ~ 0 is applied. Equation (3) can also
be derived via Lagrangian mechanics. It is worth noting here
the crossing of terms between angular and radial coordinates.
The mixing of r and 0 in the unit vector derivatives gives an
equation of motion with these coordinates inseparably
mixed; thus we might naturally expect the possibility of
parametric amplification via one of the coordinates (given
oscillation in the other).

The analytical solution of Eq. (3) involves a superposition
of Bessel functions; the reader is directed to Kavanau§h and
Moe for more information concerning this approach.” Here
we employ MATLAB to explore the solutions numerically. The
MATLAB function ode45 uses a 4th and 5th order Runge-Kutta
integration method to solve systems of first order differential
equations. Equation (3) can be separated into the following
system, where p; = 0, p = 0, and p3 = r:

pl = pz(f),
_ =253()pa (1) — gsin(pi (1))
P2 pa(0)

; “

p3 = constant.

Our MATLAB model gives the numerical solution for p;, p2, and
p3. The initial conditions were 0y(0) = 1.0 rad, 0(0) = 0.0
rad/s, and r(0) = 10.0 m.

Figure 2 shows the trajectory of a regular lengthening pen-
dulum where r(f) = 0.1 + 10.0m, =0 to 200's, and with a
step size of 1 ms. The angular amplitude of this trajectory is
plotted in Fig. 3 and clearly decreases in time. This happens
even as the horizontal amplitude increases slightly. The
amount of increase of amplitude in Fig. 2 is inconsistent with
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Fig. 2. Trajectory of a lengthening pendulum where () = 0.17 + 10.0, with
r in meters and ¢ in seconds. Note both the lengthening and the decreasing
angular amplitude.

that depicted in The Pit and the Pendulum, which Poe describes
as dramatic. Poe does not provide specific initial conditions, so
we cannot meticulously simulate the trajectory. In any case, a
dramatic increase in amplitude cannot be achieved with a uni-
formly lengthening pendulum. The prisoner says that the
descent takes multiple days and that the ceiling is between 30
and 40 feet high. An initial length of ~1m, a height ~10m,
and a descent time between 2 and 3 days yields a lengthening
rate around 5 x 107> m/s. Such slow lengthening and long du-
ration makes it computationally difficult to simulate and visual-
ize the actual scenario. Accordingly, in our figures, we use a
faster lengthening rate and shorter duration (as recorded above)
to glean the physical understanding.

To be truer to the story, Fig. 4 shows the path of a length-
ening pendulum for an extended period. The parameters and
initial conditions are the same as for Fig. 2; the longer time
duration clarifies the macro-trajectory but obscures the oscil-
latory nature. Note again that the angular amplitude
decreases while the horizontal amplitude increases. In
Sec. IV, we present an alternative, physically intuitive

Displacement Angle vs. Time for Constant Lengthening Rate
1.0 T T T T T T T T T

0.8 1

0.6 b

0.4 i

o(t) (rad)

1.0 L I L I L L I L I
0 20 40 60 80 100 120 140 160 180 200

Time (s)

Fig. 3. Displacement angle vs. time for the trajectory depicted in Fig. 2.
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Fig. 4. Trajectory of a lengthening pendulum over an extended period.

explanation, and a simulation with results more consistent
with Poe’s description.

IV. RADIAL FORCING AND THE LENGTHENING
PENDULUM

It is well understood that applying carefully timed hori-
zontal (or angular) driving forces can increase a pendulum’s
oscillation amplitude. Plentiful examples are available in the
literature and in many classical mechanics texts. However,
we explore here the behavior of a radially driven pendulum,
whose study is far less frequent.

In the context of our digression above, note that the radial
coordinate does not oscillate in cylindrical coordinates.
Nonetheless, it does appear in the angular equation of
motion. In cylindrical coordinates, the unit vectors and their
derivatives mix. So varying one coordinate (thinking of it as
a “parameter”) can affect a different coordinate. In Cartesian
coordinates this never happens, because the coordinates are
fully separate. Each Cartesian coordinate has a well defined
energy, and this energy stays in that coordinate. This is not
so with the pendulum in cylindrical coordinates. The rela-
tions between time derivatives of the coordinates themselves
allow a carefully timed driving function to transfer energy
from the radial into the angular coordinate.

To proceed, we choose a radial driving function. Rather
than explicitly work out an analytical solution (which does
not exist for an arbitrary driving function and large angles),
we develop a hypothesis based on physical intuition, and test
it numerically. Our hypothesis runs as follows.

Suppose that the pendulum rope can be pulled in and out
through a hole fixed in the ceiling. Let this motion change only
the radial position. It has no (immediate) effect on the angular
position. At time ¢, let the length be slightly altered by pulling
in a small amount A¢ during a short time (see Fig. 5). Let the
radial force on the driving mechanism at ¢ be labeled F,. The
work required to make this change is F,A¢ and is added to the
scythe’s energy. Furthermore, let the scythe down by the same
small A/ at a later time 7. This time the scythe does work F,A/¢
on the driving mechanism. The net change in the scythe’s
energy after both impulses is (F; — Fy)AL.

Thus, pulling in when the force is greater and then letting
out when the force is less increases the scythe’s energy. The
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Fig. 5. Depiction of the pendulum being pulled in at the bottom and let out
at the high point of its cycle.

reverse process, letting the scythe out when in a region of
high radial force and in when in a region of low radial force
decreases the scythe’s energy. So, applying small radial
impulses can control the scythe’s angular energy (and thus
amplitude).

The radial force for the swinging pendulum is highest at
the bottom and lowest at the peaks of the swing. Additional
force is required at the bottom both to maintain the circular
motion (the scythe is traveling faster) and to balance gravity.
So pulling in near the bottom of the cycle and letting out
near the edges will increase the scythe’s energy and angular
amplitude. Letting out at the bottom and pulling in near the
edges will decrease the energy.

If we let the string out slightly more than we pull in, the
average length increases. Thus we arrive at a radially driven,
lengthening pendulum. In order to make sure that the ampli-
tude does increase, we need to be careful that there is still a
net energy gain. The energy loss for letting more than pulling
must not offset the energy gain from letting at the edges and
pulling at the bottoms of the cycles.

We modeled such a system in MATLAB. Our motivation
was observing an amplitude increase in a proof-of-principle
physical experiment that applied radial impulses to a mass
on a string. The MATLAB code models radial impulses by
changing the length for short periods and at constant rates.
Note that an arbitrary function can in principle be built as a
superposition of such functions. The impulse duration and
rate were specifiable. Figure 6 shows the displacement angle
0, r(r), and 7(¢), over one period. This plot helps to visualize
what happens to the rope length as the pendulum swings.

We need a consistent way to specify the scythe’s position,
relative to the amplitude of the swing, within in any given
cycle. We choose a simple notational convention in which
the position is specified by a number in the range [0,1],
where 0 represents the scythe at the bottom and 1 represents
the scythe at either high point of the swing. Because of the
mirror symmetry, we do not distinguish between one side of
a swing and the other. In the top panel of Fig. 6, the vertical
axis (0) is labeled using this convention.

Figure 7 shows the results of running a simulation over an
extended time period. Again, the fractions given for the pull-
ing and letting times represent the fraction of a quarter-
oscillation where the impulse is delivered. The letting-out
impulses use a speed of 0.8 m/s and the pulling-in impulses
a speed of 0.4m/s; both last for 0.1s. Thus, the average
lengthening rate (in all plots) is 0.16 m/cycle. The two top
plots show that when the pull impulse is higher in the swing
than the let impulse, the amplitude decreases faster than in
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Plot of Angle, 7(t), and r(¢) Over
One Pendulum Oscillation Period

T T T T

1 1 1
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Time (in periods)

Fig. 6. Plot of pendulum state variables over one oscillation period. The
positions at which pulling-in and letting-out impulses are applied are dis-
played. In the top panel, the units of 0 are such that 0 = 0 at the low point
and 0 = 1 at either high point of the swing.

the case of constant lengthening rate. The two bottom plots
indicate that when the let impulse is higher in the swing than
the pull impulse, the amplitude increases. When the scythe is
pulled in at 0.05 and let out at 0.95, the amplitude increases
dramatically. In this scenario, the scythe can be made to
swing all the way around the pivot point by increasing the
impulse duration or lengthening rate.

Pull Impulse: 0.95; Let Impulse: 0.05

-14

-16

-5 0 5

Pull Impulse: 0.50; Let Impulse: 0.95

Vertical Axis (m)

-10 0 10
Horizontal Axis (m)

"N\
L

Relative Final Energy (normalized)

06
04
Relative Position

of Let-Impulse 00 00 Relative Position

of Pull-Impulse

Fig. 8. (Color online) Normalized energy after 300s as a function of
pulling-in and letting-out impulse positions. Note the strong peak when pull-
ing at the bottom and letting at the high points of each cycle.

We apply impulses at 0.05 and 0.95, rather than 0.0 and
1.0, due to the finite duration of the impulses. If we applied an
impulse too close to 0.0, it would endure past the low point
and interfere with the mirror impulse. The same goes for the
impulse at 0.95 rather than 1.0, where an upswing impulse
would interfere with a downswing impulse (see Fig. 6).

Another verification of our hypothesis is obtained by plot-
ting the total energy of the scythe after some fixed length of
time (300s) and varying where in the oscillation the
impulses are delivered; this is the content of Fig. 8. In this
figure, we performed simulations similar to those shown
above and had the pulling-in and letting-out times range over
all physical possibilities. The most energy is added to the
scythe when it is pulled up at the bottom and let out at the

Pull Impulse: 0.95; Let Impulse: 0.50

-16

-5 0 5

Pull Impulse: 0.05; Let Impulse: 0.95

Fig. 7. Comparison of the trajectories for different pulling and letting times, again using the convention where 0 = 0 at the low point and 0 = 1 at either high
point of the swing. Pulling near the bottom (0.05) and letting near the top (0.95) can strongly increase the amplitude.
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edge, which is consistent with our hypothesis for how radial
impulses increase the scythe’s energy. So radial impulses
appear to be one mechanism to explain the scythe’s behavior
in Poe’s story.

V. CONCLUSION

We reaffirm that a uniformly lengthening pendulum’s am-
plitude does not increase as much as described in The Pit
and the Pendulum. On the other hand, radial forcing can pro-
duce dramatic amplitude increases. Energy flows into the
angular oscillations through modulation of the pendulum’s
length. We gave a theoretical discussion of this process and
verified our hypothesis with a computational model. The
results show that this sort of amplification is able to add
energy in the dramatic fashion depicted in the story. If the ra-
dial forcing were sufficiently small it might go unnoticed,
but the amplitude would mysteriously grow. Fortunately for
the captive, however, a group of mice eventually chews
through the cords tying him down. The prisoner escapes
from his descending death with only minor injuries and
hopefully a curiosity for the physics behind his experience.
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Wheatstone Bridge Switch

If a Wheatstone bridge is initially very much out of balance, it is possible to burn out the delicate galvanometer when
the battery is first applied to the circuit. To solve this problem, Leeds & Northrup produced two-stage switches that
enabled the user to put the battery into the circuit by depressing it part way; momentarily pushing harder put the
detector briefly into the circuit to see if it would start to swing off-scale. This small, but important, piece of tech-
nology was made in 1924 and cost $15.00. (Notes and photograph by Thomas B. Greenslade, Jr., Kenyon College)
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