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Inverse-square orbits: Three little-known solutions and a novel
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Three methods, none of them widely known, are presented for determining the orbit of a particle
subject solely to an inverse-square central force: One is by Laplace, another by Jacobi; the third
may be here making its first appearance in print. All three differ markedly in major thrust; all of
them culminate, of course, in conic-section orbits. Also included is use of a novel integration
technique in the execution of a standard textbook solution of the same inverse-square orbit

problem.

I. INTRODUCTION

A particle subject solely to an inverse-square central
force pursues an orbit which, if not in a straight line, must
be along one of the conic sections having a focus at the force
center; there are many valid ways to prove this by solving
the equations of motion so as to derive an algebraic equa-
tion of the orbit. All of this is widely known. The major
purpose here is to present three such solutions, all of which
are evidently barely known today, and one of which may
have been totally unknown before February 1991. A subor-
dinate purpose is to exhibit application of a narrowly
known technique'? to solving a differential equation that
arises in a standard textbook treatment® of the inverse-
square orbit problem. A sketch of a closely related tech-
nique*? for accomplishing the inverse-square solution with
reference to the same basic idea' is also presented.
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The oldest solution of the three, accomplished by Pierre
Simon Laplace circa 1798, exhibits an inspired leap onto a
well concealed intellectual pinnacle.® Why it is generally
unknown today is something of a mystery.

I1. PRELIMINARIES

All three solutions, as presented below, make immediate
use of the readily proved fact that motion under the sole
influence of any central force must take place in a single
plane—herein the xy plane. Thus the equations of motion
from which an orbit equation must be derived read’

. 123 .. Yy

= -4, = —4iZ 1

> y 3 (1)
where y is constant—positive for attraction, negative for
repulsion, of the orbiting particle at (x,p) to or from the
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force center at the coordinate origin—and
P=x*4+y" (r>0). (2)
In standard fashion, we derive from (1)

.. d , . .
0=xp—xy=— (xp— xp),
y — Xy dt(y y)

whence

the familiar angular-momentum integral, in which the in-
tegration constant b is the component of angular momen-
tum per unit mass in a direction perpendicular to the xy

plane, computed with respect to the origin. In terms of the
plane-polar coordinates 7, ¢, (3) reads

r¢=b, , 4)

as is well known.

The reader will recall that a conic section in the xy plane
is most generally described as a set of points {(x,y)} for
which the ratio (eccentricity) of the distance of (x,y) from
a given point (focus) to its distance from a given line (di-
rectrix ), both lying in the xy plane, is constant. Thus, if the
conic has its focus at the origin, the line Ax + By + C =0
as its directrix, and € (> 0) as its eccentricity, then it is
described by the equation

Ax+By+ C )
( A 2 + B 2) 1/2
The reader should also recall that (i) the coefficient of € s,
when non-negative, the distance from (x,y) to the line de-
signated; and (ii) the conic is an ellipse when O<e< 1, a
parabola when € = 1, a hyperbola when € > 1.8 Except in a
well known limiting sense not useful in what follows, the
form (5) does not take account of the circle, generally re-
garded as an ellipse having eccentricity zero.
In terms of the polar coordinates r,¢, (5) reads

r'=(eC)" (4> + B[l —ecos(¢—8)], (6)
in which the constant & satisfies

4 L s____B
—(A2+B2)l/2’ n —(A2+B2)1/2'

Thus a solution of the inverse-square orbit problem®
consists of a mathematical process that starts with (1)—or
an equivalent—and culminates with (5) or its equivalent
(6), for appropriate values of the constants 4, B, C, €, 4.

(x2 +y2)l/2=€( (5)

cos &

II1. C.G.J. JACOBI'S SOLUTION

Although notation and details differ from the original,
the following is in its essentials a procedure carried out by
Carl Gustav Jacob Jacobi (1804-1851).'° Dividing each of
(1) by (4), substituting ’

x=rcos¢, y=rsind, (7
and multiplying through by 7°, he obtained

X /4 y Y o

Z=—Lcosd, == —-Lsing.

3 . ¢ p ) ¢
These become, on application of the chain rule,

dx ¥ dy v o

—_—= —-—=C0S @, — = ——S8In Q;

d¢ b ¢ dé b ¢

and easy integrations yield
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X = — (¢/b)(sin ¢ — B),
y=(y/b)(cos ¢ — 4), (8)

in which B and A are arbitrary integration constants. Then
(3) converts (8), after elimination of ¢ and r via (7) and
(2), into!!

(* + 7)) =Ax + By + (b%/7). 9
Comparison of (9) with (5) shows that the orbit must be a
conic whose eccentricity is

e=(47+ B,
and having a focus at the coordinate origin.

A well known fact relating eccentricity to the algebraic
sign of the total energy is quickly derived from (8): Solve

for A and B respectively, then add the squares and elimi-
nate ¢ via (7); application of (3) and (10) then yields

2
8=A2+BZ=1+%(’(x2+y2)—l). (1
r

(10)

2
Since (x* + $)/2 is the orbiting particle’s kinetic energy
per unit mass and ( — y/r) its potential energy per unit
mass (when taken as zero “at infinity”, the usual conven-
tion), we read (11) as expressing the correlation that a
negative-energy orbit has 0<e’ < 1 and so is an ellipse; a
zero-energy orbit, with € = 1, is parabolic; and positive
total energy, giving €? > 1, prevails if and only if the orbit is
hyperbolic.

It should be noted that the content of (8) appears in the
context of another, fairly well known, approach to the in-
verse-square orbit problem: (8) expresses the constancy of
the so-called Lenz vector—namely, a[(r/r) — (b/
¥)FXb]—in which « is a variously chosen constant and b
is a unit vector having the direction of the orbiting parti-
cle’s angular momentum.!?

Also embodied in (8) is the fact discovered by William
Rowan Hamilton'? (1805-1865) that the locus of

= xi + jj in the velocity plane is a circle having its center
at (y/b)( — Bi + Aj), with radius (y/b). This circum-
stance leads to yet another solution'*—closely related to
the Lenz-vector method, obviously, yet distinct from it—of
our orbit problem.

IV. ANEW SOLUTION, PERHAPS

With x and y still, as above, the respective Cartesian co-
ordinates of the orbiting particle in its plane of motion with
origin at the force center, we introduce the complex radius
vector

z=x+1ly (F=—1). (12)
With x and y real, we also have the conjugate complex
¥ =x—1y (13)

and the modulus square
|zZP=|z*P=zz* =x* + Yy = (14)

Thus the equations of motion (1) for our inverse-square
orbiting particle read, in terms of (12),

3= —yz/|z)>. (15)
Using (14), we rewrite (15) as
Z= —y/l|z|z¥ (16)

and, taking the complex conjugate of both sides, we get the
equivalent
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#*=—v/lzz, an

since ¥ and |z| are real.
From (16) and (17) we obtain

0 =3Zz* — z7* :i (zz* — zz*),
t

from which immediately follows

zz* — z2* = 2ib, (18)
in which the integration constant b is real, because zz* is the
conjugate complex of zz*. Indeed, detailed computation of
the left-hand side of (18) identifies b as the like-designated
quantity introduced in (3).

It requires little perspicacity to observe that (18) can be
rewritten

d{ z
2ib = (z* 2—(——), 19
! (%) di\z* (19)

but perhaps a bit more to notice that fruitful use of (19) in |

conjunction with (16) would become a likelihood if some-
how (z*)? were to be replaced by |z|z* as coefficient of an
exact time derivative. Such a replacement can be effected,
obviously, through multiplication of (z*)? by

lol ez _ 2 (20)

2 z*z |z’
according to (14); but how can the feat be accomplished
without destruction of the constancy of the left-hand mem-
ber of (19)?

Eventually the opaque becomes transparent: In (19) we
use the trivial fact that

z_z2z2_272 ( z )2 21
z* z* z ]zl2 2|
and so obtain

2ib “(Z*’zd(i |)

()l

= 2z7*|z|—{ — 22
fldt(ll) (22)

with the final step taken via (20). And so we can accom-
plish what was targeted when (21) was invoked:

Multiplying the two members of (16) by the corre-
sponding extreme members of (22), we obtain

2ibs = -Zyd( Z)

dr\ |z]
from this we go directly to
d(z +lbz) 0 23)
dr\ |z|
and thence to
W+£2—A+1B (24)
z

where A and B are real constants of integration—the same
roles played by 4 and B in Sec. III above. From (24) fol-

lows, since b, ¥, and |z| are also real and * = — i,
*
Z By (25)
2l ¥ '

Multiplying (24) by z*, (25) by z, and adding the results,

617 Am. J. Phys., Vol. 60, No. 7, July 1992

we obtain, with the aid of (14),
2|z +£b—(2z* —zz*) =A(z 4 z*) — iB(z — z*)
Y

-—whence, because of (12), (13), (14), and (18),
(x> + )" — (b*/y) = Ax + By. (26)

We note the identity of (26) with (9); again the solution
sought is achieved.

V. LAPLACE’S AMAZING SOLUTION

One finds in the collected works of Pierre Simon Laplace
(1749-1827) "5 two solutions of our inverse-square orbit
problem. Exposition of the more remarkable of these is
simplified in what follows in three ways: (i) The orbit is
assumed from the outset (as in both solutions above) to lie
in the xy plane. (ii) A somewhat cuambersome computation
indicated by Laplace is replaced here by one that is appre-
ciably less awkward. (iii) Appeal is made here to a well
known elementary differential-equations theorem rather
than to the somewhat complicated more general theorem

used by Laplace.
Given (1), we record the immediate consequence
d .. . d ;. .
= (PX)= —vx, —(rP) = —yp, 27
dt( ) Y- 7 y Yy

and proceed, using (1) and (2), to compute an analog to
the left-hand members in (27)—namely, (d /dt) (©°#): As
preliminary, we use (2) with the aid of (1) to compute
successively

rh=xx+yp; (28)
X% + yj = —%(xx +y) = —%(‘rr) = —g; (29)
XX+ )y = -%(x2+y2) = —%; (30)

and, finally, by means of the Leibniz product rule, for ex-
ample

_,(rz)_—(rr)_Z(rr+3rr) (31)
dr?
First using (31), then (28), (30), and (29), we compute
L (P ¥y =P+ 3P
dt
rz_ P
2 ()
r2 (rr)

=7 Et_z(xx + )

=P (x4 3+ 5 4 )

df — 2y#
_ rz[_( 7’) _err| 32
di\ r 7 (32)
In (32) we read, in brief,
gt_(,s;) = — i (33)

Now all three equations in (27) and (33) are satisfied by
the motion x = x(?), y = y(t), z = 0 of our particle that is
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solely influenced by the inverse-square force. And during
this motion we have r* = ¢(t), for the appropriate posi-
tive-valued . Thus we are told that the second-order linear
homogeneous differential equation

d du
: E(,/,(t) 77)_ vu (34)

possesses, according to (27) and (33), the three solutions
u=x, u=y, and u = —from which we conclude via a
widely known elementary theorem on linear homogeneous
differential equations'® that constants 4 and B exist such
that

F=Ax + By, (35)

since X and y are linearly independent for motion not in a
straight line. Immediate integration of (35) yields

r=Ax 4+ By 4+ C,
from which, since r = (x* + y*)!/%, we draw the orbit-
shape conclusions already inferred from (9) and (26)
above!

V1. A FAMILIAR SOLUTION SUBJECTED TO A
NOVEL TREATMENT

(a) Starting with (1) and (2), a standard procedure?
derives a familiar equation expressing conservation of total
energy per unit mass, written here in terms of the plane
polar coordinates 7, @, and first time derivatives thereof:

J(P 4+ P4?) — (y/r) = h (= const). (36)

Application of i = ¢(dr/d¢) and (4) eliminates the time
variable from (36); multiplication by (2/b %) then gives

1(dr\> 1 2y 2h
r"(d¢) +r2 br b2 (37)
The standard straightforward way of dealing with (37)
is to solve for + (d@/dr) and then to perform the rather
messy integration (or to use a table) in order to express ¢ in
terms of 7 ; then one inverts so as to obtain, eventually, (6)
or its equivalent, with suitable identification of the various
constants. There happens, however, to be a tidier proce-
dure based on an idea published in this Journal in 1961’
and again, with extended application, in 1989.> It springs
from the following elementary fact:
If u and v are real numbers such that
1% 4+ v* = 1, then there exists a real § (unique to
within an integral multiple of 27) such that
u = sin 8 and v = cos 6. (When u and v are non-
constant, then so also, of course, is 6.)
It therefore follows—most obviously when (37) is re-
written as

(2 () - 2

#\dg b2 r)  b%  b*

—that there exists a @ for which
1 a’r) (2h 7/2)‘/2.
A = (= L) sing (38)
rz(dqﬁ b2 b4

and
J_“Lz(}i !i)“cos . (39)
b2 r b2 + b*

Differentiating (39) with respect to ¢, we get
172
L) = (24 2 (D)ine
\dé b?  b* dé
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Viewing this result in the light of (38), we immediately
conclude that

L

-1
dé

whence
0= ~¢+3, (40)

in which § is a constant of integration. Setting (40) into
(39) then gives, on rearrangement,

F= (B (1 2 Temsto -]
—_—={L )1 =1+ s(d — ). 41
- ( g 7 cos(¢ — &) (41)
Comparison with (6) identifies the orbit equation (41)
with that of a conic section having eccentricity

e=[14+2(hb%/y")]V2

(b) Application of the basic idea on which the foregoing
is based was made in solving the same inverse-square orbit
problem as early as 1976.* It should be noted, however,
that in order to achieve a solution of (37) the 1976 authors
apply the basic idea instead to the equation obtained from
the elimination of ¢ between (36) and (4)—that is, after
appropriate square completion, to

. b 2 2

o) e

From (42) they infer the existence of a ¢ for which

b= [2h+ (y/b)*]"?sin ¢ (43)
and

(b/r) — (y/b) = [2h + (7/b)]"* cos ¥. (44)

Differentiating (44) with respect to 1, they obtain

()] e

- on reference to (43). Then, using (4), they conclude from

equality of the extreme members of (45) that ¥ =4,
whence i = ¢ — S—substitution of which into (44) leads
to the required solution (41) after mild manipulation.

VII. COMMENTS AND ACKNOWLEDGMENTS

(a) Had I not come upon, in late 1990 and early 1991,
four quite different solutions of the inverse-square orbit
problem—Jacobi’s,'” Laplace’s,® one by Hart,'” and an-
other by Keill'®—that were all new to me after more than
50 years of paying attention to such matters, I should be
firmly confident that the one presented in Sec. IV above is
original with me. Now, however, I shall not be astonished
to learn, albeit unwelcomingly, that I was anticipated in its
discovery. I hope, in any event, that the reader has been
favorably served by my effort to indicate in Sec. IV the
motivation that led to the crucial (22). Although (22)
holds for any central-force motion, it appears to lead to a
useful result only in the case of the inverse-square force
law.

(b) The attempt to produce a proof starting from (15)
cum (12) was provoked by a recent paper'® in which (12)
is used for a polar-coordinate paraphrase of the Lenz-vec-
tor approach'? and a book®® by Wintner in which almost
simultaneously I came upon Hart’s solution.'” I am grate-
ful to my correspondent Dr. BoZidar A. Aniéin of the Uni-
versity of Belgrade Engineering Faculty for directing at-
tention to a set of several pages in a 1989 Russian-language
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volume by the mathematician V. I. Arnol’d. After its trans-
lation into English—for which my hearty thanks go to
Diana Holton-Hinshaw—one of the pages revealed men-
tion of “the book of A. Vintner, 1941,” in a connection
unrelated to Hart’s solution.

(¢) Of the many inverse-square orbit solutions I have
seen, Laplace’s is the only one that proceeds without deriv-
ing and using the angular-momentum conservation em-
bodied, for example, in (3), (4), and (18).

(d) The computation that culminates in the remarkable
(33) could have been accomplished with slightly greater
economy if the scalar-product concept had been used for
each of xx + yp, XX + yy, and xx + pjin (28), (29), (30),
and (32). In replacing Laplace’s computation by a simpli-
fied procedure here, I choose, however, not to employ any
device that would not in late 18th century have been direct-
ly available for Laplace’s use.

(e) Laplace® employs (his generalization of) the differ-
ential-equation theorem introduced in Sec. V also to prove
independently that the inverse-square orbit lies in a
plane—although he fails to exploit the result to simplify his
solution of the orbit problem. Here is how: When the mo-
tion is not ab initio assumed to be confined to a plane, the
third equation ? = — y(z/7’) must be attended to along
with (1). During the motion, therefore, the second-order
linear homogeneous equation

= — ylw/P()] (46)

—in which 7 = ¥(¢) during the motion, as in Sec. V—has
the three solutions w = x(1), w = y(?), and w = z(t), ac-
cording to (1) and (46). By the theorem '® referred to and
used in Sec. V, there exist constants 4, B, C—not all zero—
such that Ax + By + Cz = 0: The orbit must lie in a plane
containing the coordinate origin, the force center. (It
should be clear that this method applies equally well for
proof that motion under any central-force law is confined
to a plane through the force center: The function # is differ-
ent for the different central-force laws.)

() A traditional view places the first proof of the propo-
sition that inverse-square force implies conic-section orbit
in Newton’s Principia®'—a view that has, however, been
refuted.?? Contrary judgments in defense of the Principia’s
treatment of inverse-square orbits can also be found.?” The
earliest proof seems to have been constructed by John
Keill.?** What is evidently the latest prior to February
1991%° uses a geometric approach that makes it totally dif-
ferent in character from any of the ten others known to this
author.
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