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Some Divergent Trigonometric Integrals

Erik Talvila

1. INTRODUCTION. Browsing through an integral table on a dull Sunday after-
noon some time ago, I came across four divergent trigonometric integrals. I wondered
how these divergent integrals ended up in a respectable table. Tracing their history,
it turned out they were originally “evaluated” when some convergent integrals were
differentiated under the integral sign with respect to a parameter. We give a simple
proof that these integrals diverge, look at their history in print and then make some
final remarks about necessary and sufficient conditions for differentiating under the
integral sign. We have no intent to defame either the well known mathematician who
made the original error, or the editors of the otherwise fine tables in which the integrals
appear. We all make mistakes and we’re not out to point the finger at anyone; in this
regard see the last two exercises of Chapter 2 in [28]. Maple and Mathematica also
have considerable difficulties with these integrals.

2. FOUR DIVERGENT INTEGRALS. Here they are. Throughout, a and b are pos-
itive real numbers. Purported values appear on the right:
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The two Fresnel integrals are

C(x) = 1√
2π

∫ x

0
cos t

dt√
t

and S(x) = 1√
2π

∫ x

0
sin t

dt√
t
. (3)

In the literature, one sees the symbols C and S used to denote several different defini-
tions of the Fresnel integrals.

Let’s prove that (1) and (2) diverge.

Proposition. The integrals in (1) and (2) diverge.

Proof. Consider A := ∫ ∞
−∞ xei(x2+x) dx (which, unfortunately, does not exist). Since

the integrand is continuous, this integral exists if and only if the limits

lim
T →∞

∫ T

0
xei(x2+x) dx and lim

T →∞

∫ 0

−T
xei(x2+x) dx
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both exist. Let T1, T2 > 0. Integrate by parts and complete the square:

∫ T2

−T1

xei(x2+x) dx = 1

2i

[
ei(T 2

2 +T2) − ei(T 2
1 −T1)

]
− e−i/4

2

T2+1/2∫
−T1+1/2

ei x2
dx . (4)

Let’s look at the convergence of I := ∫ ∞
−∞ ei x2

dx . Use the substitution x2 = t . Then

I = ∫ ∞
0 eit dt/

√
t = √

2π(C(∞) + i S(∞)). This can be seen to converge by applying
Dirichlet’s Test over (1,∞) [24, p. 261]. More properly, we should start with the ‘t’
version of I , show that it converges and then transform back to the ‘x’ version. In fact,
many ways have been found to evaluate I . One method is to use contour integration:
Rotate the integral

∫ ∞
−∞ e−x2

dx by π/4 in the complex plane; see [27, p. 184]. A second
method is to use the gamma function [24, p. 272]. The result is I = eiπ/4√π . Now, as
T1, T2 → ∞ (independently) the final integral in (4) becomes I but the bracketed term
fails to have a limit. Hence, the integral A diverges.

To get the integrals in (1) and (2) we do the following. Suppose B := ∫ ∞
−∞ xei(x2−x) dx

converges. The transformation x → −x gives B = −A so B diverges. The transforma-
tions x → x/

√
a ± (

√
a − b)/(2a) now show that C := ∫ ∞

−∞ xei(ax2±bx) dx diverges
for all positive a and b. Finally, if the integrals in (1) and (2) converge then we can
form the four convergent linear combinations

∞∫
x=0

x
[
cos(ax2) cos(bx) ∓ sin(ax2) sin(bx)

]
dx

∞∫
x=0

x
[
sin(ax2) cos(bx) ± cos(ax2) sin(bx)

]
dx .

But, the addition formulas for the sine and cosine functions followed by Euler’s for-
mula yields C . Hence, the integrals in (1) and (2) diverge.

To see the manner in which the integrals diverge, let

AT :=
∫ T

−T
xei(x2+x) dx

= eiT 2
sin T − e−i/4

2

∫ T +1/2

−T+1/2
ei x2

dx . (5)

As T → ∞, the integral term in (5) has limit
√

π ei(π−1)/4/2, whereas the term
eiT 2

sin T oscillates rapidly with unit magnitude. This also shows that our integrals do
not even exist as Cauchy principal values.

3. HISTORY OF THE DIVERGENT INTEGRALS. Now we look at the history
of (1) and (2) in print. The thickest book of integrals (3500 pages in five volumes)
is that of Prudnikov, Brychkov, and Marichev [23]. Our integrals appear in Volume I,
2.5.22. They also appear in the original Russian edition [22]; neither version references
sources. It is interesting that they do not appear in the earlier book [9] by Ditkin and
Prudnikov. Other major tables they are absent from include [10], [16], [20], and [21].
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As the tables by Erdélyi and Oberhettinger are quite comprehensive, one suspects it
was noticed that these integrals diverge and they were intentionally omitted. However,
they are contained in the Gradshteyn and Ryzhik tome [14, 3.851]. They are not in
the first few Russian editions, but the enlarged 1963 edition [12] includes them. All
subsequent Russian editions and English translations beginning 1965 [13] contain the
integrals in (1) and (2). Now, Gradshteyn and Ryzhik do give references. They say (in
a garbled citation) that our integrals come from tables by Bierens de Haan.

David Bierens de Haan (1822–1895) was a Dutch mathematician noted for com-
piling tables of integrals, for actuarial work, for writing various essays in the history
of science and mathematics, for producing an encyclopædic biography of Dutch sci-
entists, and for being an early editor of the works of Christian Huygens—a mammoth
task—it took until 1950 when the 22nd volume was finally published. A complete list
of de Haan’s publications is given in [18]. There have been several papers on his life
and work. See [25] for references, photos, and an interesting reproduction of the 1935
title page from a Japanese edition of his integral table. His 1858 Tables d’intégrales
définies [2] was the first really substantial table of integrals. It was enlarged and cor-
rected in an 1867 edition [4]. For nearly a century these were the preeminent integral
tables. The 1867 edition was still being reprinted in 1957 [5], three years after the pub-
lication of the Bateman Manuscript tables [10]. The integrals in (1) appear in the 1858
table [2, formulas 193.17 and 193.18], in an 1862 companion volume that details the
techniques used to compute integrals in the tables [3, p. 443], and in the 1867 table [4,
formulas 150.4, 150.7].

Now, Bierens de Haan lists Cauchy as his source for (1). An examination of
Cauchy’s works (27 volumes!) shows that these integrals appear twice [8] (1815) and
[6] (see also [7]) (1825). In both instances, Cauchy correctly obtains the convergent
integrals

∞∫
x=0

{
sin(ax2)

cos(ax2)

}
cos(bx) dx = 1
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√
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2a

[
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4a

)
∓ sin

(
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4a

)]
(6)

with a = 1. He then proceeds to differentiate under the integral sign with respect to b.
Very bad! The functions defined by the integrals in (6) are certainly differentiable since
the right side of (6) is differentiable. But, differentiating under the integral sign leads to
our divergent integrals (1). It is therefore Cauchy, the “Father of rigour”, who commits
an error that has been copied for 185 years. (The appropriateness of this epithet is
contested. One in favour is [11]. One against is [15].) Bierens de Haan repeats this
argument in [3, p. 443].

When the two integrals

∞∫
x=0

{
sin(ax2)

cos(ax2)

}
sin(bx) dx =

√
π

2a

[{
cos[b2/(4a)]
sin[b2/(4a)]

}
C

(
b2

4a

)
±

{
sin[b2/(4a)]
cos[b2/(4a)]

}
S

(
b2

4a

)]
(7)

are differentiated under the integral sign we get the divergent integrals (2). After some
incorrect manipulations, Bierens de Haan obtains the value 0 for these integrals [3,
p. 443]. He then differentiates under the integral sign to get the value 0 for (2).

The integrals in (6) and (7) may be evaluated using the methods in the proof of the
Proposition.
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The tables of Bierens de Haan had many errors, both mathematical and typographi-
cal. Two long works discussing the correctness of his tables are [19] and [26]. Neither
mentions our divergent integrals, however. All of the integral tables that we have men-
tioned have received considerable scrutiny. The journal Mathematics of Computation,
and its predecessor, Mathematical Tables and Other Aids to Computation, list numer-
ous errata. However, despite over 300 published pages of errata regarding these tables
there do not seem to be any references to (1) and (2). The article [17] compares the
correctness of various integral tables; it is shocking how high the error rates are.

4. MAPLE AND MATHEMATICA. Here are how Maple (V.5) and Mathematica
(4.0) fare. Maple correctly evaluates (6) and (7) for arbitrary a and b but falters when
asked to perform the calculation with specific numerical values. For example, it gives∫ ∞

0 sin(3.1x2) cos(2.2x) dx = 0. Maple correctly says that the integrals (1) and (2)
diverge. Mathematica fails in a different way. It correctly calculates (6) and (7) (con-
siderable simplification is needed to obtain the form of (7)). But, Mathematica thinks
(1) and (2) converge! It gives the same incorrect values that are in the tables.

5. DIFFERENTIATION UNDER THE INTEGRAL SIGN. Differentiating the
convergent integrals (6) and (7) under the integral sign with respect to b yields the
divergent integrals (1) and (2). This doesn’t mean the functions defined by (6) and (7)
aren’t differentiable; it just means we cannot obtain their derivatives by differentiating
under the integral. Could we have predicted this in advance? This is a difficult prob-
lem. Suppose we have

∫ b
a f (x, y) dy. A sufficient condition for differentiating under

a Riemann integral is that
∫ b

a f1(x, y) dy converges uniformly in x ; see [24, p. 260].
For Lebesgue integrals the dominating condition | f1(x, y)| ≤ g(y) for some g ∈ L1

suffices. For Riemann and Lebesgue integrals, necessary and sufficient conditions for
differentiating under the integral sign are harder to come by. However, this is a much
simpler problem when we use the Henstock integral. The solution depends on being
able to integrate every derivative, a property not held by either the Riemann or the
Lebesgue integral; see [29]. A good introduction to the Henstock integral is given in
[1].
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3. D. Bierens de Haan, Exposé de la théorie, des propriétés, des formules de transformation, et des de
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