
Physica Scripta

Some Lagrangians for systems without a
Lagrangian
To cite this article: M C Nucci and P G L Leach 2011 Phys. Scr. 83 035007

 

View the article online for updates and enhancements.

You may also like
Analysis of the performance of CMOS
APS imagers after proton damage
S Meroli, D Passeri, L Servoli et al.

-

Measurement of submicrometric intrinsic
spatial resolution for active pixel sensors
L Servoli, S Meroli, D Passeri et al.

-

The Level-0 calorimetric trigger of the
NA62 experiment
R. Ammendola, M. Barbanera, M. Bizzarri
et al.

-

This content was downloaded from IP address 157.92.18.15 on 07/06/2022 at 22:05

https://doi.org/10.1088/0031-8949/83/03/035007
https://iopscience.iop.org/article/10.1088/1748-0221/8/02/C02002
https://iopscience.iop.org/article/10.1088/1748-0221/8/02/C02002
https://iopscience.iop.org/article/10.1088/1748-0221/8/11/P11007
https://iopscience.iop.org/article/10.1088/1748-0221/8/11/P11007
https://iopscience.iop.org/article/10.1088/1748-0221/11/02/C02084
https://iopscience.iop.org/article/10.1088/1748-0221/11/02/C02084


IOP PUBLISHING PHYSICA SCRIPTA

Phys. Scr. 83 (2011) 035007 (5pp) doi:10.1088/0031-8949/83/03/035007

Some Lagrangians for systems
without a Lagrangian
M C Nucci1 and P G L Leach2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia and INFN Sezione
Perugia, 06123 Perugia, Italy
2 School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000,
South Africa

E-mail: nucci@unipg.it and leach@math.aegean.gr

Received 17 May 2010
Accepted for publication 18 January 2011
Published 18 February 2011
Online at stacks.iop.org/PhysScr/83/035007

Abstract
We demonstrate how to construct many different Lagrangians for two famous examples that
were deemed by Douglas (1941 Trans. Am. Math. Soc. 50 71–128) not to have a Lagrangian.
Following Bateman’s dictum (1931 Phys. Rev. 38 815–9), we determine different sets of
equations that are compatible with those of Douglas and derivable from a variational principle.

PACS numbers: 02.30.Hq, 02.20.Sv, 45.20.Jj

1. Introduction

A perennial question in classical mechanics is the
determination of a Lagrangian for a given system of
ordinary differential equations. There are considerable
practical implications for such an existence. Firstly one can
apply Noether’s theorem [1] to determine symmetries and
the corresponding integrals in a straightforward fashion.
Secondly one can then construct a Hamiltonian and proceed
to investigate the corresponding problem in quantum
mechanics [2].

In the case of a scalar second-order ordinary differential
equation the existence of a Lagrangian is guaranteed, indeed
an infinite number of them [3, 4]. For systems of second-order
equations or equations of higher order [5] the existence of
a Lagrangian is not guaranteed. Consequently there is a
considerable body of literature devoted to the solution of
the question about the existence of a Lagrangian in these
cases. In this paper we consider a paradigmatic example
in considerable detail. The classical paper of Douglas [6],
which builds upon a number of earlier papers [7–10],
provides several examples of two-dimensional (2D) systems
of second-order equations that do not possess a Lagrangian.

Since the time of Douglas there have been a number of
contributions to the problems of the existence of a Lagrangian
and of quantization. Marmo and Saletan [11] demonstrated
that even with a simple system such as the isotropic linear
oscillator there can be inconsistencies between different
Lagrangian formulations that do not preserve the symmetry
properties expected on physical grounds. Santilli [12] devoted

a large part of his treatise to the question of the inverse
problem of Lagrangian mechanics. Morandi et al [13] dealt
extensively with the formulation of the inverse problem in
the context of the geometry of the tangent bundle, and the
possibility of giving alternative Lagrangian formulations of
the same dynamical system, with Lagrangians not simply
differing by the usual total time derivative. Hojman and
Shepley [14] gave some examples of classical equations that
do not come from a Lagrangian and cannot be quantized
consistently. Cortese and García [15] studied the question
of consistency between a given set of equations of motion
in configuration space and a Poisson bracket and found
conditions for both the case in which the symplectic structure
is commutative and the case in which the symplectic structure
is noncommutative. Gitman and Kupriyanov [16] examined
the canonical quantization of systems with linear equations
of motion that are traditionally regarded as non-Lagrangian
systems by a reduction to a set of linear first-order equations.
The same authors [17] extended their considerations to
determine the necessary and sufficient conditions for the
existence of a multiplier matrix that would give to a set
of second-order equations the structure of Euler–Lagrange
equations. Here we are looking for an expansion of the
possibilities for the determination of a Lagrangian of a given
system. In this respect, we are motivated by the possibility
of existence of systems that do not possess a Lagrangian
according to the criteria of Douglas. Following Bateman’s
dictum [18] we look for different sets of equations compatible
with those of Douglas and derivable from a variational
principle.
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In this paper we examine the properties of two of the
examples given by Douglas [6] of a system that does not
possess a Lagrangian. The first 2D system is a special instance
of the class Case I in Douglas and has been mentioned by
Gitman and Kupriyanov [17]:

ẍ + ẏ = 0,

ÿ + y = 0,
(1)

in which the overdot represents differentiation with respect to
the independent variable, t . Actually a system quite similar
to (1), namely

ẍ − ẏ = 0,

ÿ − y = 0,

was proposed in 1923 by E T Whittaker as stated by Bateman
in his famous paper [18]. This system does not possess a
Lagrangian and defeats Bateman’s method of adding a mirror
system to it.

The second system is

ẍ = x2 + y2,

ÿ = 0,
(2)

and is an example of the class Case IIIB in Douglas [6].
In both cases we demonstrate the existence of several
Lagrangians by means of the simple expedient of a
reformulation of the systems. The existence of a Lagrangian
depends upon representation. For a theoretical treatment of
existence one is constrained to the given representation,
but when one has an explicit example standard methods
of transformation open the way to the determination of a
Lagrangian of the transformed system. An equation may
not have any point symmetry but have some (many) if
set in another form3 [20–23]. Moreover in [24, 25] it has
been shown that Noether’s theorem applied to different
Lagrangians yields different4 Noether’s symmetries and thus
different conservation laws. In [26, 27] an alternative way
to quantization based on the preservation of symmetries
was presented. Therefore as many Lagrangians as possible
for an equation must be found and then Noether’s theorem
can identify those physical Lagrangians that either yield
the missing conservation laws or successfully lead to
quantization.

2. Lagrangian formulation for (1)

The system (1) can be written as a single fourth-order equation
by means of differentiating the second equation with respect
to t and then substituting for x from the first to obtain

. . . .
x + ẍ = 0. (3)

This equation satisfies the conditions of Fels [5] and
its unique second-order Lagrangian is the obvious one,

3 The form of the equations of motions are less important than their solutions.
In fact even numerical algorithms do not preserve the form of the equations,
and indeed it is claimed that the most efficient should preserve the first
integrals [19].
4 Even different in number.

namely

L =
1

2

(
ẍ2

− ẋ2
)

+
dg

dt
, (4)

where g(t, x, ẋ) is the arbitrary gauge function. We apply
Noether’s theorem to this Lagrangian and obtain the following
point symmetries and associated integrals:

01 = ∂t , I1 = ẍ2
− 2ẋ

. . .
x − ẋ2,

02 = ∂x , I2 =
. . .
x + ẋ,

03 = t∂x , I3 = x − ẍ + t (ẋ +
. . .
x ),

04 = sin t∂x , I4 = ẍ sin t +
. . .
x cos t,

05 = cos t∂x , I5 = ẍ cos t −
. . .
x sin t.

(5)

Note that I 2
4 + I 2

5 =
. . .
x 2 + ẍ2. Consequently I1 = I 2

4 + I 2
5 −

I 2
2 . In addition (3) has a Lie point symmetry, 06 = x∂x , which

is not a Noether symmetry.
In terms of the method of reduction of order we rewrite

the system (1) as the set of four first-order equations

ẇ1 = w2, (6)

ẇ2 = −w4, (7)

ẇ3 = w4, (8)

ẇ4 = −w3, (9)

where we have written x = w1 and y = w3.
The system (6)–(9) is autonomous and we can reduce its

order by one with the choice of one of the dependent variables
in (6)–(9) as a new independent variable. We choose w1

and revert to the original symbol x . Then the system (6)–(9)
becomes

dw2

dx
= −

w4

w2
, (10)

dw3

dx
=

w4

w2
, (11)

dw4

dx
= −

w3

w2
. (12)

From (10) and (11) it is obvious that w3 + w2 = r3 is a
constant, r3 = r0. Therefore, w3 = r0 − w2. We use (10) to
eliminate w4 through

w4 = −
dw2

dx
w2.

Then (12) becomes

d2w2

dx2
= −

1

w2

(
dw2

dx

)2

−
1

w2
+

r0

w2
2

, (13)

which is a single second-order equation for which a
Lagrangian exists5. It is6 [3, 4]

L =
1

2
w2

2

(
dw2

dx

)2

−
1

2
w2

2 + r0w2 +
dg

dx
, (14)

where g(x, w2) is the gauge function.

5 In terms of the original variables w2 = ẋ .
6 A Jacobi last multiplier of (13) is w2

2 .

2
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Moreover we can transform the system (6)–(9) into
a system of two second-order equations that admits a
Lagrangian. We use (6) to eliminate w2 through

w2 = ẇ1

and (9) to eliminate w3 through

w3 = −ẇ4.

Then, (7) and (8) yield

ẅ1 = −w4,

ẅ4 = −w4,
(15)

which is a 2D system for which a Lagrangian exists. In [28] it
was shown that any system

q̈1 = f1(t, q1, q2), q̈2 = f2(t, q1, q2) (16)

admits a variational principle, with Lagrangian L =

L(t, q1, q2, q̇1, q̇2), if the relationships

Mi j =
∂2L

∂ q̇i∂q̇ j
(i, j = 1, 2) (17)

satisfy the equation

∂ M

∂t
+

∂

∂q1
(Mq̇1)+

∂

∂q2
(Mq̇2)+

∂

∂q̇1
( f1 M)+

∂

∂q̇2
( f2 M) = 0,

(18)
associated with the Jacobi last multiplier, where M generically
stands for each of the Mi j (i, j = 1, 2).

Therefore, since a Jacobi last multiplier of the system (15)
is just a constant, then

M11 =
∂2L

∂ẇ2
1

, M12 =
∂2L

∂ẇ1∂ẇ4
, M22 =

∂2L

∂ẇ2
4

(19)

yield the following Lagrangian7 for the system (15):

L =
1

2

(
ẇ2

1 − 2ẇ1ẇ4 + 2ẇ2
4 − w2

4

)
+

dg

dt
, (20)

where g(t, w1, w4) is the gauge function.

3. Lagrangian formulation for (2)

Since one can solve for y in (2) independently of x one can
replace the system with

ẍ = x2 + (αt + β)2,

y = αt + β,
(21)

where α and β are constants of integration. It then follows that
there is a Lagrangian for (2) given by

L =
1
2 ẋ2 + x(αt + β)2 + 1

3 x3. (22)

7 It turns out that M12 = −M11. We assume that M11 = a1, M22 = a2,

a1 6= a2.

In terms of the method of reduction of order, we rewrite
the system (2) as the set of four first-order equations

ẇ1 = w2,

ẇ2 = w2
1 + w2

3,

ẇ3 = w4,

ẇ4 = 0,

(23)

where we have written x = w1 and y = w3.
The system (23) is autonomous and we can reduce its

order by one with the choice of one of the dependent variables
in (23) as a new independent variable. We choose w3 and
revert to the original symbol y. Then the system (23) becomes

dw1

dy
=

w2

w4
, (24)

dw2

dy
=

w2
1 + y2

w4
, (25)

dw4

dy
= 0. (26)

From (26) it is obvious that w4 is a constant. We use (24) to
eliminate w2 through

w2 =
dw1

dy
w4.

Then (25) becomes

d2w1

dy2
=

w2
1 + y2

w2
4

. (27)

In terms of the original variable x , (27) is

d2x

dy2
=

x2 + y2

w2
4

, (28)

which is a single second-order equation for which a
Lagrangian exists. It is

L =
1

2

(
dx

dy

)2

−
x3 + 3xy2

3w2
4

+
dg

dy
, (29)

where g(y, x) is the gauge function.
We write w1 in terms of its real and imaginary parts as

r1 + ir2 so that (27) can be written as the system

d2r1

dy2
=

r2
1 − r2

2 + y2

w2
4

, (30)

d2r2

dy2
=

2r1r2

w2
4

. (31)

The system (30)–(31) admits a Lagrangian. In fact its Jacobi
last multiplier is a constant and therefore the relationships [28]

M11 =
∂2L

∂r ′2
1

, M12 =
∂2L

∂r ′

1∂r ′

2

, M22 =
∂2L

∂r ′2
2

, (32)

3
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where the prime denotes differentiation with respect to
the current independent variable y, yield the following
Lagrangian8 for the system (30)–(31):

L =
1

2

(
r ′2

2 + 2r ′

1r ′

2 − r ′2
1

)
+

1

3w2
4

(
3y2(r2 − r1)

− (r1 + r2)(r
2
1 + r2

2 − 4r1r2)
)

+
dg

dy
, (33)

where g(y, r1, r2) is the gauge function.
We may use (31) to eliminate r1 from (30) to obtain a

fourth-order equation in r2, namely

r iv
2 =

1

2r2
2 w4

4

(
− 4r5

2 + 4y2r3
2 + 4w4

4r2r ′

2r ′′′

2 + 3w4
4r2r ′′2

2

− 4w4
4r ′2

2 r ′′

2

)
≡ R. (34)

Equation (34) satisfies the two conditions of Fels for the
existence of a second-order Lagrangian [5]. In [29] it was
shown that, if an equation of the fourth order satisfies the two
conditions of Fels [5], the unique Lagrangian can be found by
finding the Jacobi last multiplier M , namely a solution of the
following equation:

d log M

dy
+

∂ R

∂r ′′′

2

= 0, (35)

and imposing

√
M =

∂2L

∂r ′′2
2

.

In the case of equation (34), M = r−2
2 and the corresponding

Lagrangian is

L =
r ′′2

2r2
+ 2r2

r2
2 − 3y2

3w4
4

+
dg

dy
, (36)

where g(y, r2, r ′

2) is the gauge function.
Equation (34) does not possess any Lie point symmetries.

4. Final remarks

The two systems, (1) and (2), that we have considered here
have been known for many years. Douglas [6] demonstrated
the lack of existence of a Lagrangian in each case for the given
form. What we have done is to show that a Lagrangian can be
found if the system is suitably transformed. In the case of (1)
the process was quite simple and the equivalent formulation
turned out to be supplied with many symmetries. In the case
of (2) a subtler approach was required, but we were able to
obtain a fourth-order equation that satisfied the two conditions
of Fels [5] and had an obvious Jacobi last multiplier so that a
second-order Lagrangian could be found. The important point
is that we had specific systems and so could use their specific
properties to determine representations of the respective
systems for which Lagrangians could be found. This approach
emphasizes the difference between a theoretical discussion
and the process of the resolution of an actual problem.

8 It turns out that M11 = −M22, and then we assume that M22 = M12 = 1.

We emphasize that in this paper

• we did not look for any of the many linear Lagrangians
admitted by systems of first-order equations [17, 30, 31];

• all the derived Lagrangians can be classically transformed
into Hamiltonians9 and therefore their quantization can
be dealt with by either known techniques or new
methods [26, 32].

Finally, for both systems (1) and (2), we have solved the
general problem as stated by Bateman in [18], namely ‘finding
a set of equations equal in number to a given set, compatible
with it and derivable from a variational principle’ without
recourse to any additional set of equations.
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