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In this paper, the torque-free rotational motion of a general rigid body is developed analytically

and is applied to the flipping motion of a T-handle spinning in zero gravity that can be seen in

videos on the internet. This flipping motion is known both as the Dzhanibekov effect (after the

cosmonaut who reported it) and more recently the tennis racket effect. The presentation is self-

contained, accessible to students, and is complementary to the treatment found in most texts in that

it involves a time-dependent analytical solution in terms of elliptic functions as opposed to a

development based on conservation laws. These two complementary approaches are interesting

and useful in different ways. In the present approach, the Euler rigid-body equations are derived

and then solved as differential equations that are satisfied by Jacobi elliptic functions. This is

analogous to solving the spring–mass harmonic oscillator problem by turning Newton’s laws into

differential equations that are satisfied by sine and cosine functions. The Jacobi functions are

closely related to these trigonometric functions and are only slightly more complicated. They are

defined as geometrical ratios on a reference ellipse and developed geometrically without reference

to power series or complex variables. However, because these functions are less familiar, they are

introduced in a short Appendix where their main properties are derived. Also, a link is provided to

a Mathematica script for animating the analytical solution to the present problem. VC 2021 American

Association of Physics Teachers.

https://doi.org/10.1119/10.0003372

I. INTRODUCTION

Rigid-body motion is an interesting area of classical
mechanics, and surprising rotational behavior arises in the
motion of a freely rotating object without axial symmetry.
For instance, one can observe the periodic flipping of the
axis of rotation of a T-handle rotating freely in zero gravity
as seen in popular videos of the “dancing T-handle” avail-
able on the internet (https://www.youtube.com/watch?v=1n-
HMSCDYtM). This unstable motion is known as the
Dzhanibekov effect after cosmonaut Vladimir Dzhanibekov
who reported observing it during the 1985 Soyuz T-13 mis-
sion. It is treated below in some detail, where it emerges as
an analytical solution of the rotational dynamics problem to
be described presently.

Figure 1 shows a frame from a NASA video of a T-handle
intended for moving an instrument module. The handle
screws into the panel face and unscrews easily with little
friction. By giving it a quick twist, an astronaut sets it spin-
ning along the screw axis so that it unscrews itself and is
launched into the air while spinning and drifting outward.
For three or four revolutions, it spins steadily around the
original axis and moves outward with the spinning crossbar
of the T preceding its trunk. Then, suddenly the T flips so
that, while still spinning, the trunk of the T is now preceding
the crossbar. At first glance, it appears as if the angular
velocity may have reversed, thereby violating the conserva-
tion of angular momentum. However, on closer inspection,
one sees that the angular velocity points in the same direc-
tion along the axis before and after the flip. After another
three or four rotations, the T flips again, and the flipping
motion repeats periodically. More recently, this flipping
effect has been associated with a spinning tennis racket and
the tennis racket (or intermediate axis) theorem, which
asserts that free rotation of a rigid object about a principal

axis with an intermediate moment of inertia is unstable. This
leads to a flipping motion of the body axis for both a tennis
racket and a T-handle.1–3

In Secs. II and III, an explicit solution is worked out in
some detail for the torque-free motion of a freely rotating
rigid object. An immediate purpose for doing so is to con-
sider the spinning T-handle and determine how Dzhanibekov
flipping arises in the analytical solution. A broader purpose
is simply to provide a complete but succinct analytical treat-
ment of the motion of a general rigid object rotating freely in
space (i.e., not subject to any forces or torques) to anyone
who might want access to the calculation or to use it as a
starting point for some other project. A link to a
Mathematica notebook shared on the Wolfram Cloud is pro-
vided in Appendix C. The torque-free case is sometimes
called the Euler problem because he was the first to reduce it
to quadrature.4–6 Whittaker has referred to it as one of the
most important problems in the dynamics of systems with
three degrees of freedom.7

While the closed-form solution of the Euler problem has
been known since the work of Jacobi,8 and while modern
treatments addressing the stability and additional subtleties
of the solution in a form rather like the result in the current
paper continue to appear, a simple presentation addressed at
students seems to us to be unavailable. While some texts
describe the complete solution, we are yet to see one that
provides a complete and self-contained treatment that
includes the detailed time evolution of the rigid body. Synge
and Griffith9 come close to this in that they show a solution
and provide a lengthy discussion that includes material on
elliptic functions. However, they do not reduce the final inte-
gration for the time dependence to a simple Legendre form,
nor do they express the solution in terms of initial conditions
that are appropriate for comparison with Dzhanibekov flip-
ping. Of the two branches that comprise the complete
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solution, the one related to Dzhanibekov flipping is presented
below, while the other branch and the derivations of both are
presented in Appendix B.

Another text that takes a similar approach is that by
Dixon.10 He begins by solving the Euler equations by com-
parison with the differential relations among the Jacobi ellip-
tic functions, as we do in Sec. II herein, and then he
transforms the solution to the inertial frame using direction
cosines of a line fixed in the body frame with respect to the
angular momentum vector ~L that is fixed in space. However,
as with the treatment by Synge and Griffith,9 the form of the
solution is not convenient for comparison with the
Dzhanibekov case. The solution presented in Sec. III uses an
Euler-angle rotation matrix to transform to the inertial frame
and carefully avoids the complex arguments, expansions,
and transformations that are implicit in the solutions of
Dixon and others to unify different branches of the solution
by analytic continuation. The difference between Dixon’s
approach and the one presented below, which avoids com-
plex manipulations, is in the fact that for us there are two
branches to the complete solution of the general motion
rather than one solution expressed in terms of (implicitly)
complex variables. For the solution presented below, the
development remains real and elementary.

Landau and Lifshitz11 report a result in terms of the Jacobi
theta functions, which Jacobi used to construct the elliptic
functions and then applied them to solve the Euler equations.
However, Landau and Lifshitz do not describe the behavior
of the solution, nor do they offer a method for reducing the
time integral.8 In his popular textbook on mechanics,
Goldstein12 gives the alternative geometrical treatments of
Poinsot13 and of Binet and says that the full analytical solu-
tion is more complicated and less instructive. In a paper pub-
lished some time ago in the present journal, Lock14 takes the
geometrical approach based on conservation laws in the tra-
dition of Poinsot, as described also in Goldstein, which
involves constructing a path in the configuration space of the
solid object that conserves both the kinetic energy and the
squared angular momentum. Both the stability of free rota-
tions (the Euler problem) and the nutation of a top are treated
geometrically in that paper. In the case of the free-rotation
stability, Lock focuses on the separatrices between rotations
about the third principal axis (with the highest moment of
inertia) and about the first principal axis (with the lowest
moment of inertia). That paper illustrates very well the alter-
native geometrical methods that are often used. The

geometrical construction provides intuition and a fairly
quantitative description of the path taken by the angular
momentum vector (~L) over the constant-energy surface, but
it lacks any information on the time dependence of its posi-
tion along this path. We consider these geometrical develop-
ments as conceptually useful and complementary to the
analytical treatments such as the one given below.

It is often observed that mathematical challenges can dis-
tract students from the essential physical concepts and that
while such challenges are important, they should not be
allowed to interfere with a qualitative understanding.15 This
assertion is true, but we feel that while geometrical construc-
tions give a good qualitative understanding, there is substan-
tial additional benefit in pursuing the full analysis. In
textbooks, the relevant Euler differential equations are often
derived and solved for the symmetrical case in which two
moments of inertia are equal. Solving this special symmetri-
cal case, or even just solving for the motion of a simple har-
monic oscillator by matching undetermined coefficients in a
trigonometric substitution, is not very different from solving
the full time-dependent set of Euler equations by using the
Jacobi elliptic functions. The full solution is an option that
can be pursued, and in our experience, many students have
found it interesting. It is not particularly difficult, and it
opens other possibilities for addressing a broader range of
mechanics problems. It is supplementary to the geometrical
approach based on conservation laws.

In the remainder of this introduction, we summarize some
concepts that a student would normally encounter as part of
a junior- or senior-level mechanics course. Building on
these, a student with access to one of the standard mechanics
texts should be able to follow the main development pre-
sented below.

We begin with the fact that Newton’s laws apply to the
motion of objects in an inertial frame of reference. By con-
sidering a Cartesian coordinate frame rotating about the z
axis with respect to an inertial frame and then generalizing,
one can show that the time rate of change of any vector ~A in
the inertial frame is related to the rate of change in the
rotating frame by the standard formula as follows:12

d~A

dt

� �
inertial

¼ d~A

dt

� �
rotating

þ ~x � ~A: (1)

The angular velocity vector ~x of the rotating frame with
respect to the inertial frame can, like any vector, be
expressed in either frame, though it is defined in the inertial
frame. The rate of change of the angular velocity ~x itself is
the same in either frame, as one can see from Eq. (1).
Because the parts of a rigid object remain at a fixed distance
from one another, the velocity of any point in the body is
determined completely at any instant by ~x and its position~r
in the body coordinate system. Thus, through some algebra,
one finds that the kinetic energy T and the angular momen-
tum ~L are related to ~x via the inertia tensor I , which is a
3� 3 symmetric matrix with nine time-dependent entries in
the inertial frame. In any frame, one has the vector equations
~L ¼ I � ~x and T ¼ 1

2
~x � I � ~x, expressing ~L and T in terms of

the symmetric matrix I . The components of the angular
momentum vector ~L are constant in the inertial frame
because there is no external torque, but they are not constant
in the rotating frame as seen in Eq. (1).4,16 One can choose
body coordinate axes passing through the center of mass in

Fig. 1. T-Handle object on the International Space Station.
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which the matrix I becomes diagonal, namely, the principal
axes lying along the orthogonal eigenvectors of I . Euler
hailed this discovery as an important simplification.5

Because ~L is constant in the inertial frame, we have the
following in the body frame:

d~L

dt
þ ~x � ~L ¼ 0 ) I � d~x

dt
þ ~x � ðI � ~xÞ ¼ 0: (2)

In the principal-axis coordinates, this simplifies to the
familiar Euler dynamical system for components of ~x, as
seen in Sec. II. These equations appear in most mechanics
books. Interestingly, Euler neither used them nor wrote them
down in his original papers on the subject.4 Solving for the
motion of a freely rotating object, then, becomes the problem
of finding the time-dependent transformation between the
inertial frame and the principal-axis frame moving with the
object. Having found it difficult to locate a complete set of
formulas for this transformation in the literature, in the treat-
ment below, we express it using a set of Euler angles. The
Euler angles and the related transformation matrix for a gen-
eral rotation are developed in most mechanics texts, though
the convention for defining them varies from author to
author. We follow the one in Goldstein,12 which comprises
three rotations and involves the line of nodes, which is
defined to be along the cross product of (i) a unit vector
along the z axis in the inertial frame and (ii) the principal z0

axis in the rotating frame (denoted W in Fig. 2) and is the
intersection between the x0y0-plane in the rotating frame and
the xy-plane in the fixed frame. First, the inertial system is
rotated by an angle / about its z axis to bring the initial x
axis into coincidence with the line of nodes; this is rotation
R1. Then, a second rotation R2 by h about the line of nodes
brings the original z direction into the final z0 direction in the
rotating frame. Finally, a third rotation R3 by w moves the x
axis from the line of nodes to its final position in the rotating
frame. Curiously, just as Euler did not use the Euler dynami-
cal system in his treatment of the problem, neither did he use
a set of Euler angles. Rather, he used several sets of coordi-
nates, mainly the three projection cosines between the fixed
and rotating sets of axes, that is, he used the components of a
unit vector along the rotation axis and the magnitude x.4,6,10

In Sec. II, we solve the Euler equations of motion in the
body principal-axis frame in terms of elliptic functions.
There are two separate branches of the solution depending
on the initial conditions. In Sec. III, we use the Euler angles
to transform the solution to the inertial frame, and in Sec. IV,
we apply the solution to the Dzhanibekov effect by compar-
ing the first branch of the solution to a video of a dancing
T-handle from the International Space Station. Finally, we
summarize and discuss the main points in Sec. V.

II. SOLUTION IN THE BODY FRAME

From Eq. (2), the equation of motion for ~x in the body
frame of reference is

I � d~x
dt
¼ �~x � ðI � ~xÞ; (3)

where the inertia tensor is a time-independent symmetric
matrix with constant entries. By choosing the principal-axes
coordinate system in the body frame, I becomes diagonal so
that

I1 _x1 ¼ ðI2 � I3Þx2x3; (4)

I2 _x2 ¼ ðI3 � I1Þx3x1; (5)

I3 _x3 ¼ ðI1 � I2Þx1x2; (6)

where I1, I2, and I3 are the principal moments of inertia. We
number the axes such that

I2 < I3 < I1;

thereby choosing the intermediate axis of inertia to be the
body z axis to simplify the transformation of the solution
from the body frame to the inertial frame later on. The three
Euler equations are the angular velocity component
equations

_x1 ¼ �
I3 � I2

I1

� �
x2x3; (7)

_x2 ¼ �
I1 � I3

I2

� �
x3x1; (8)

_x3 ¼
I1 � I2

I3

� �
x1x2; (9)

in which each parenthetical quantity is positive. Now, we
introduce the Jacobi elliptic functions snðu; kÞ; cnðu; kÞ, and
dnðu; kÞ. These are trigonometric functions defined using
ratios on an ellipse, just as the usual trigonometric functions
are ratios on a circle, and their properties are easily derived
(see Appendix A).17 The argument u is analogous to but not
the same as an angle variable in the usual trigonometric case,
and a new argument k denotes the eccentricity of the ellipse.
The functions are periodic like ordinary trigonometric func-
tions. The periods of both snðu; kÞ and cnðu; kÞ are 4K, where
K is the complete elliptic integral, the first kind (see the
Appendix A), and the period of dnðu; kÞ is 2K. The complete
elliptic integral K is a function of the eccentricity k, and as k
of the reference ellipse defining the elliptic functions tends
to zero, K(k) tends to p=2. The functions sn and cn become

Fig. 2. Euler angle diagram. Line of nodes is along ẑ � ẑ 0 ¼ ŵ. The rotation

R is a product of three factors: (1) rotation R1 about z by /, (2) rotation R2

about x by h, (3) rotation R3 about z by w. Thus R¼R3 R2 R1.
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the usual sine and cosine in this limit. The derivatives of the
elliptic functions are

d

du
snðu; kÞ ¼ cnðu; kÞdnðu; kÞ; (10)

d

du
cnðu; kÞ ¼ �snðu; kÞdnðu; kÞ; (11)

d

du
dnðu; kÞ ¼ �k2snðu; kÞcnðu; kÞ: (12)

These derivatives arise geometrically, as seen in Appendix A,
and we take them as essential properties of the Jacobi func-
tions. An important point is that the derivatives of the elliptic
functions as seen in Eqs. (10)–(12) exhibit the same coupled
structure as do the Euler differential equations of Eqs.
(7)–(9) for the angular velocity components x1, x2, and x3.
That is to say, the time derivative of each one equals a posi-
tive or negative constant multiple of the other two, and there
are one positive and two negative coefficients. This suggests
expressing the ~x components in terms of elliptic functions.
To solidify the thinking, consider for a moment a simple har-
monic oscillator comprising a block of mass m sliding over a
frictionless horizontal surface and attached to the end of a
spring with force constant k. Newton’s second law of motion
gives

m€x þ kx ¼ 0; (13)

and we know physically that the solution should be periodic.
In this case, the differential equation can be solved in a linear
manner. Sometimes, though, instead of following the usual
procedure for solving a linear homogeneous differential
equation with constant coefficients, it is useful to solve for
x(t) simply by trying a sine or cosine solution. This approach
does not depend on linearity but rather relies on the unique-
ness of the solution modulo the initial conditions. The trigo-
nometric form is substituted into the differential equations,
and then, the undetermined constants are found, which
reduce the differential equation to an identity and are such
that the initial conditions are satisfied. The solution process
that follows is analogous to the second solution process for
the oscillator. We can make the same sort of substitution in
the rotating-object problem except using elliptic functions
rather than sine or cosine. The complete solution has two
branches, each of which corresponds to a different set of ini-
tial conditions. The first branch of the complete solution, the
one that we use to describe the motion of the T-handle, is
parameterized as

x1 ¼ Acnðbtþ KðkÞ; kÞ; (14)

x2 ¼ Bdnðbtþ KðkÞ; kÞ; (15)

x3 ¼ Csnðbtþ KðkÞ; kÞ: (16)

The function K(k) gives the quarter period of sn and cn as a
function of the eccentricity k and reduces to p=2 in the circu-
lar limit as k! 0, where sn! sin and cn! cos. The time
translation by K(k) is done to apply a particular set of initial
conditions at t¼ 0.

Because cnðKðkÞ;kÞ ¼ 0; snðKðkÞ; kÞ ¼ 1, and dnðKðkÞ; kÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

, we can solve to find B¼ x20=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

and
C¼ x30, where x20 and x30 are the initial angular velocities

around the y and z axes, respectively, in the body frame. The
remaining three free parameters A, b, and k can, then, be
solved for by substituting the derivatives of Eqs. (14)–(16)
into Eqs. (7)–(9) and solving the system of algebraic equa-
tions. The details of the calculation and the other branch of
the complete solution are presented in Appendix B. The
parameters for the first branch of the solution are found to be

k ¼ x30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3ðI1 � I3Þ

I2ðI1 � I2Þx2
20 þ I3ðI1 � I3Þx2

30

s
; (17)

A ¼ x30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3ðI3 � I2Þ
I1ðI1 � I2Þ

s
; (18)

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI3 � I2ÞðI2ðI1 � I2Þx2

20 þ I3ðI1 � I3Þx2
30Þ

I1I2I3

s
: (19)

An important point to note here that we discuss further below
regarding the loitering of ~x in the T-handle motion near the
unstable intermediate axis is that in the limit as x20 ! 0
(i.e., when the initial rotation is about the intermediate axis
of inertia), the eccentricity of the elliptic solutions, Eq. (17),
approaches unity.

III. TRANSFORMATION OF SOLUTION TO THE

INERTIAL FRAME

We now solve Euler’s equations in the body frame, from
which we already know about the period s of the flipping
motion in the case of the dancing T-handle from b and K(k),
namely, s ¼ 4KðkÞ=b. However, the body-frame solution is
not very enlightening to an observer in the inertial frame of
reference. Therefore, we transform the solution from the
body frame into the inertial frame. To do this, we use the
Euler angles /, h, and w and the corresponding rotation
matrix, according to the convention of Goldstein as
described in Sec. I.12 If the rotation matrix operates on the
angular momentum vector ~L, then by choosing the angular
momentum to be along the z axis in the inertial frame, we
can simplify the transformation to the body frame as

L sin h sin w ¼ I1x1; (20)

L sin h cos w ¼ I2x2; (21)

L cos h ¼ I3x3; (22)

where x1, x2, and x3 are the elliptic-function solutions
described in Sec. II and Appendix B. The problem, then, is
to find the time evolution of each Euler angle. The angle h
is known directly from Eq. (22), and w can be found by
dividing Eq. (20) by Eq. (21) to give

cos h ¼ I3x3

L
; (23)

tan w ¼ I1x1

I2x2

: (24)

Because we can associate a vector with an infinitesimal rota-
tion, we can associate the time derivatives of the rotation
angles ð/, h, wÞ with the angular velocity ~x.12,18 Expressing
the components of ~x in the body frame, we have

352 Am. J. Phys., Vol. 89, No. 4, April 2021 C. Peterson and W. Schwalm 352



x1 ¼ _/ sin h sin wþ _h cos w; (25)

x2 ¼ _/ sin h cos w� _h sin w: (26)

Multiplying Eq. (25) by sin w and Eq. (26) by cos w and then
adding the two give

_/ ¼ x1 sin wþ x2 cos w
sin h

: (27)

Then, by using Eqs. (20) and (21), this reduces to

_/ ¼ ðI1x2
1 þ I2x2

2ÞL
I2
1x

2
1 þ I2

2x
2
2

: (28)

Because there are no external torques, both the kinetic

energy of the system T ¼ 1
2
ðI1x2

1 þ I2x2
2 þ I3x2

3Þ and the

magnitude of the angular momentum L2 ¼ I2
1x

2
1 þ I2

2x
2
2

þ I2
3x

2
3 are conserved, and because these are scalars, they

have the same numerical value in each frame. Thus, the

equation for _/ simplifies to

d/
dt
¼ ð2T � I3x2

3ÞL
L2 � I2

3x
2
3

: (29)

Because x3 is proportional to the Jacobi sn function in both
branches of the solution, the time-dependent / can be found
by integration.19 This gives all three Euler angles in terms of
the Jacobi elliptic functions as

hðtÞ ¼ arccos
I3x3ðtÞ

L

� �
; (30)

wðtÞ ¼ arctan
I1x1ðtÞ
I2x2ðtÞ

� �
; (31)

/ðtÞ ¼ Lt

I3

þ
ðL2 � 2I3TÞP I2

3C2

L2
; Amðbt; kÞ; k

� �
I3bL

; (32)

where Pðn; x; kÞ is the incomplete elliptic integral of the third
kind, Am(bt, k) is the Jacobi amplitude function (see Appendix
A), and the xðtÞ terms are those that were found as solutions in
Sec. II and Appendix B. Equations (30)–(32), then, form the
transformation of the complete solution in the body frame to the
inertial frame in general. The final task is to match the initial
data given in the inertial frame as seen by the observer.

For the first branch of the solution, at t¼ 0, w¼ 0, / ¼ 0,
and hð0Þ ¼ h0, we have

x30 ¼
L

I3

cos h0: (33)

From the magnitude of the angular momentum at t¼ 0,
namely, L2 ¼ I2

2x
2
20 þ I2

3x
2
30, we find that

x20 ¼
L

I2

sin h0: (34)

Similarly, for the second branch of the solution to the
Euler equations in the body frame (see Appendix B), we find
that /ð0Þ ¼ 0 and hð0Þ ¼ h0, but now wð0Þ ¼ p=2. The ini-
tial condition for x30 remains the same, and following the
same argument, x10 becomes

x10 ¼
L

I1

sin h0: (35)

The constant kinetic energy in Eqs. (29) and (32) is set by
the initial conditions, namely,

T ¼ 1

2
ðI1x

2
10 þ I2x

2
20 þ I3x

2
30Þ; (36)

where the appropriate component of ~x0 is zero depending on
the particular branch that is being analyzed.

IV. DZHANIBEKOV EFFECT

The dancing motion of the T-handle known as the
Dzhanibekov effect and more recently as an illustration of
the tennis-racket theorem1 can be ascribed to the first branch
of the complete solution, in which the initial conditions of
x20 and x30 are the rates of rotation around the x and y axes
in the body frame at t¼ 0. The principle moments of inertia
of the T-handle seen in Fig. 1 are calculated approximately
using the moments of inertia of thick rods in conjunction
with Steiner’s parallel axis theorem.18 Figures 3(a)–3(c)
show consecutive times during one half cycle of a flip in the
motion described by a particular solution with initial condi-
tions that seem to be appropriate. By analyzing the solution,
we see that the period for flipping, and thus the time that the
T-handle lingers in a particular orientation before flipping,
increases as I3 ! I2 or as the eccentricity k! 1. This
describes the observed motion assuming that the large cylin-
der on the T-handle in Figs. 1 and 3 is hollow. However, the
most important initial factor is the value of h0, or the angle
that the z axis in the body frame makes with ~L in the inertial
frame at t¼ 0. For the particular solution illustrated in Fig. 3,
we chose h0 ¼ p=180 rad. Although the behavior of our
solution agrees qualitatively with the motion in the video of
the T-handle, we have made no attempt to adjust the model
to fit the period (s) of the flipping motion because of the
unknown moments of inertia of the T-handle and the extreme
sensitivity of the solution to h0, of which we have no way of
determining from the video. The situation is similar to that
of a pencil balanced, hypothetically, on its point: the time it
takes to fall down depends crucially on the initial displace-
ment from its unstable equilibrium, and this would be very
difficult to either control or measure. In Appendix C, we pro-
vide a link to the Wolfram Cloud and a Mathematica note-
book that contains the simulation.

V. CONCLUSION

The general solution for ~x in the body frame is given in terms
of the Jacobi functions sn; cn, and dn. The defining parameters
A, b, and k for the first branch of the solution are reported in
Eqs. (17)–(19), with the rest delegated to Appendix B. From the
first branch, the flip period for the dancing T-handle is seen to be
s ¼ 4KðkÞ=b, which is approximately

s ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1I2I3

ðI3 � I2ÞðI2ðI1 � I2Þx2
20 þ I3ðI1 � I3Þx2

30Þ

s

� log

�
I2ðI1 � I2Þx2

20

I2ðI1 � I2Þx2
20 þ I3ðI1 � I3Þx2

30

�
;

where we have expanded K(k) for k ! 1.20
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In Sec. III, the body-frame solution is transformed back to
the inertial frame using Goldstein’s convention for the Euler
angles. The results in Eqs. (30)–(32) involve the body-frame
solution and the additional Legendre elliptic integral of the
third kind. In the other solutions presented elsewhere, it
seems to us that the time dependence of / is represented in a
less transparent way. The theta functions used by Jacobi and
others are usually introduced as complex series expansions,
where the Legendre integral is seen to be an integration of a
simple expression involving just the sn function.8,9,11,12

As noted in Sec. IV, we have not made a quantitative com-
parison between the solution and the video of the actual
T-handle; however, the solution does qualitatively match the
motion of the T-handle from the NASA video quite well.17

APPENDIX A: ELLIPTIC FUNCTIONS

This appendix is added to make the paper completely self-
contained and to show that everything one needs to know
about elliptic functions is relatively easy to develop. In par-
ticular, this development is trigonometric and makes no
explicit use of complex analysis. The Jacobian elliptic func-
tions are like trigonometric functions except that they are
defined on the ellipse,

x2

a2
þ y2 ¼ 1; (A1)

rather than on the unit circle. The shape of the ellipse is con-
trolled by the eccentricity,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=a2

p
: (A2)

For a given k, the sn and cn functions are defined by analogy
to sine and cosine, namely,

snðu; kÞ ¼ y and cnðu; kÞ ¼ x=a: (A3)

In this context, k is called the modulus, and the argument u
of the elliptic functions, namely,

u ¼
ðh

0

r dh; (A4)

is the integral along the ellipse from the x intercept ða; 0Þ to
the point (x, y). Note that u is neither the arc length nor the
area subtended. In terms of the polar angle h, the upper limit
is such that sin h ¼ y=r. This is not to be confused with
Jacobi’s amplitude / ¼ arcsiny ¼ Amðu; kÞ such that

Fig. 3. Dzhanibekov effect Animation.
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sin ðAmðu; kÞÞ ¼ snðu; kÞ. The latter equation will serve to
define the elliptic amplitude function Am(u, a).

Because the radius is not constant for an ellipse, there is a
third elementary elliptic function, not corresponding to any trigo-
nometric function, in addition to sn(u, k) and cn(u, k), namely,

dnðu; kÞ ¼ r

a
: (A5)

From the ellipse equation, we have

cnðu; kÞ2 þ snðu; kÞ2 ¼ 1: (A6)

From this result and the Pythagorean relation x2 þ y2 ¼ r2,
we have

dnðu; kÞ2 þ k2snðu; kÞ2 ¼ 1: (A7)

In the normal trigonometry based on a circle, the latter two
identities reduce to one.

It is relatively easy to show from the definitions that

d

du
snðu; kÞ ¼ cnðu; kÞdnðu; kÞ; (A8)

and because all the calculus properties of the Jacobi functions
follow from this, we devote a few lines to showing it here.

The first step is to express du ¼ r dh in Cartesian form.
Starting from x ¼ r cos h and y ¼ r sin h, we find

x dy� y dx ¼ r2 dh; (A9)

so

du ¼ x dy� y dx

r
: (A10)

We use the ellipse equation to eliminate x and dx, namely,

x dxþ a2y dy ¼ 0; dx ¼ �a2 y

x
dy: (A11)

Substituting this and multiplying by x in Eq. (A10) give

x2dy� xy dx

r
¼ x du: (A12)

Now, we use the ellipse equation again in the form x2 þ
a2y2 ¼ a2 to obtain

ðx2 þ a2y2Þdy

r
¼ a2

r
dy ¼ x du; (A13)

which gives

dy

du
¼ x

a

r

a
or

d

du
snðu; kÞ ¼ cnðu; kÞ dnðu; kÞ; (A14)

which is the desired result. By differentiating the two alge-
braic identities, Eqs. (A6) and (A7), shown above and
substituting Eq. (A14), one arrives at

d

du
cnðu; kÞ ¼ �snðu; kÞdnðu; kÞ and

d

du
dnðu; kÞ ¼ �k2 snðu; kÞcnðu; kÞ: (A15)

These three differential equations match the Euler equations
almost perfectly.

Elliptic functions are related quite closely to the elliptic
integrals of Legendre. From the separable differential
equation

d

du
snðu; kÞ ¼ cnðu; kÞ dnðu; kÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� snðu; kÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2snðu; kÞ2

q
; (A16)

we have

u ¼
ðsnðu;kÞ

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2ð Þ 1� k2 t2ð Þ

p : (A17)

This shows the elliptic integral of the first kind commonly
denoted as the F function to be the inverse of the sn function.
However, the argument of F has been taken historically to be
the Jacobi amplitude angle / such that sin / ¼ snðu; kÞ
rather than sn(u, k), so

Fð/; kÞ ¼
ð sin /

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2ð Þ 1� k2 t2ð Þ

p : (A18)

Thus written, the first elliptic integral function Fð/; kÞ of
Legendre is related to the inverse sn function by

sn�1ðy; kÞ ¼ Fð sin�1y; kÞ (A19)

over the standard domain of sin–1.
There are also the second and third types of Legendre

elliptic integrals. These are integrals of simple elliptic func-
tion expressions. The second elliptic integral is the integral
of Jacobi’s dn squared, namely,

Eð/; kÞ ¼
ð/

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2/

q
d/ ¼

ðu

0

dnðu; kÞð Þ2du;

(A20)

where in the second integral we made the elliptic substitution
sin / ¼ snðu; kÞ.

Legendre’s third elliptic integral contains an extra parame-
ter n, which can be any real number, namely,

Pðn; /; kÞ ¼
ð/

0

1

1� n sin2/

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2/

p ; (A21)

and on making the same elliptic substitution, we obtain

Pðn; /; kÞ ¼
ðu

0

du

1� n sn2ðu; kÞ : (A22)

These three elliptic integral functions are standard, and their
properties are tabulated on the internet and in most textbooks
regarding Elliptic functions.

APPENDIX B: SOLUTIONS OF EULER’S

EQUATIONS

The three Euler equations are the component equations
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_x1 ¼ �
I3 � I2

I1

� �
x2x3; (B1)

_x2 ¼ �
I1 � I3

I2

� �
x3x1; (B2)

_x3 ¼
I1 � I2

I3

� �
x1x2: (B3)

1. Branch 1

The first branch of the complete solution is parameterized
as

x1 ¼ Acnðbtþ KðkÞ; kÞ; (B4)

x2 ¼ Bdnðbtþ KðkÞ; kÞ; (B5)

x3 ¼ Csnðbtþ KðkÞ; kÞ: (B6)

Two of the amplitudes are related to the initial data by set-
ting t¼ 0. Because cnðKðkÞ; kÞ ¼ 0; snðKðkÞ; kÞ ¼ 1,

and dnðKðkÞ; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

, we can solve to find B ¼ x20=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

and C ¼ x30, where x20 and x30 are the initial
angular velocities around the y and z axes, respectively,
in the body frame. Then, by substituting these constants
back in and taking the derivatives of Eqs. (B4)–(B6), we
obtain

_x1 ¼ �ðAbÞsnðbtþ KðkÞ; kÞdnðbtþ KðkÞ; kÞ; (B7)

_x2 ¼ �
k2bx20ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p

 !
snðbtþ KðkÞ; kÞcnðbtþ KðkÞ; kÞ;

(B8)

_x3 ¼ ðx30bÞcnðbtþ KðkÞ; kÞdnðbtþ KðkÞ; kÞ: (B9)

By solving for the elliptic functions in Eqs. (B4)–(B6) and
then substituting into Eqs. (B7)–(B9), we obtain

_x1 ¼ �
bA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

x20 x30

 !
x2x3; (B10)

_x2 ¼ �
k2x20b

Ax30

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

 !
x3x1; (B11)

_x3 ¼
x30b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

Ax20

 !
x1x2: (B12)

Comparing Eqs. (B10)–(B12) to Eqs. (B1)–(B3), respec-
tively, gives the algebraic system

I3 � I2

I1

¼ bA
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

x20 x30

; (B13)

I1 � I3

I2

¼ k2x20b

Ax30

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p ; (B14)

I1 � I2

I3

¼ x30b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

Ax20

: (B15)

To determine all the previously undetermined constants of
the solution, we begin by multiplying Eq. (B14) by the recip-
rocal of Eq. (B15) to find k as

k ¼ x30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3ðI1 � I3Þ

I2ðI1 � I2Þx2
20 þ I3ðI1 � I3Þx2

30

s
: (B16)

By dividing Eq. (B13) by Eq. (B15), we find A as

A ¼ x30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3ðI3 � I2Þ
I1ðI1 � I2Þ

s
: (B17)

From k and A, we find the final unknown b as

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI3 � I2ÞðI2ðI1 � I2Þx2

20 þ I3ðI1 � I3Þx2
30Þ

I1I2I3

s
:

(B18)

Equations (B4)–(B6) and (B16)–(B18) give a complete
description for a set of initial conditions in which ~x is ini-
tially in the yz plane.

2. Branch 2

In the xz-plane case, we have

x1 ¼ Bdnðbtþ KðkÞ; kÞ; (B19)

x2 ¼ Acnðbtþ KðkÞ; kÞ; (B20)

x3 ¼ Csnðbtþ KðkÞ; kÞ: (B21)

At t¼ 0, this allows for an initial rotation of the object
around the x axis, or the axis with the greatest moment of

inertia in the body frame, where now B ¼ x10=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

and
C ¼ x30. Solving the resulting algebraic system using a sim-
ilar scheme as above gives

k ¼ x30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3ðI3 � I2Þ

I1ðI1 � I2Þx2
10 þ I3ðI3 � I2Þx2

30

s
; (B22)

A ¼ x30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3ðI1 � I3Þ
I2ðI1 � I2Þ

s
; (B23)

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI3 � I2ÞðI2ðI1 � I2Þx2

10 þ I3ðI1 � I3Þx2
30Þ

I1I2I3

s
:

(B24)

APPENDIX C: MATHEMATICA SIMULATION

OF SPINNING T-HANDLE

The Mathematica notebook used to simulate the T-Handle
and by which Fig. 4 was created is published openly on the
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Wolfram Cloud. It can be found at https://www.wolfram-
cloud.com/obj/5b6d6507-cfe1-4d02-bb0f-35584f235871 or
https://tinyurl.com/y3kdhkfd.
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