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produce (when the square modulus is perfomed) a factor
proportional to ¢, as in Eq. (15); the major contribution
(the only one to be considered if — « ) comes from the
integrals containing only the nontransformable function
7(t), while the transformable one, g(¢), describing the de-
tails of the perturbation rise but not the essential feature (to
gotozeroast— — oo and to 1 as f— « ), turns out to be
unessential.

As a concluding remark, I would like to observe that the
subject treated in this brief article is rarely exposed in a
satisfactory way in textbooks and (by experience) in uni-
versity courses (in spite of its importance); I think there-
fore that some words can be usefully spent in order to give
an explanation whose aim is essentially a didactic one.
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A derivation of Noether’s theorem in discrete classical mechanics from the invariance properties
of the action is given. This derivation closely parallels the one given in classical field theory and
emphasizes the fact that the involved symmetry transformations act on paths rather than on space
and time points. Several illustrative examples are also presented.

I. INTRODUCTION

The relation between symmetry and conservation laws
plays a major role in physics and, particularly, in classical
mechanics. Noether’s theorem is the most frequently used
method in classical field theory for presenting this subject
in a unified way. The concept of action is well suited to this
purpose and, in fact, several textbooks' and articles® pres-
ent Noether’s theorem, derived with several degrees of so-
phistication from the invariance properties of the action.

However, many texts on classical mechanics that discuss
the subject of motion equations for discrete systems from
the principle of least action analyze the conservation laws
through the examination of the transformation properties
of the Lagrangian. We believe that the students could get a
more unified view of these topics by presenting the
Noether’s theorem in a way parallel to that used in field
theory.

We present a simple derivation of Noether’s theorem
along these lines paying special attention to the physical
nature of the transformations of time and coordinates in-
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volved in the statement of the theorem. Finally, we give
several examples on its use in particular situations

II. THE ACTION

Given a physical system having s degrees of freedom, let
us collectively represent by ¢(=g,,9,...,4,) and
g( = ¢1,g»,---,q, ) the sets of its generalized coordinates and
velocities, respectively. The action®

S= f "L(gadt (0

contains all the relevant information about the system that
is independent of its precise dynamical state at a given time.
Through the Lagrangian L, the action is a functional of the
paths ¢(¢). Notice that once a path is given, the velocities
q(2) are immediately obtained.

The equations of motion can be obtained from a pre-
scription called the principle of least action or, more prop-
erly, the principle of stationary action. According to it, the
actual motion of the system is such that the variation of the
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action is zero for fixed end points at ¢, and ¢,.
The equations of motion are the well-known Euler-La-
grange equations,

i=12,..s. 2)

The principle of least action is formulated independently
of the choice of coordinates. So, we can easily change the
description of the system. A change in our choice of coordi-
nates is generally referred to as a passive transformation.
The system keeps on being represented by a Lagranglan
even though its form will be generally different. Conse-
quently, the form of the specific motion equations in the
new coordinates changes with respect to the former ones.
Nevertheless, there are very special transformations that
can also be considered in the active sense, i.e., they can be
actually performed on the system. These transformations
are the most interesting in physics. Among them, those
transformations that leave the action invariant up to an
additive constant are related to conserved quantities, and
are the only ones concerning us here.

II1. NOETHER’S THEOREM IN DISCRETE
CLASSICAL MECHANICS

A. Noetherian symmetry transformations

We consider a given path g, = g, (¢),/ = 1,2,...,5, and we
transform it according to*

q; =¢q; + €K, (g.4,1) , (3a)

:t+€9(q:q’t) y (3b)

where € is an infinitesimal parameter.

If we interpret this transformation in the active sense,
each path y(g(#),t) is mapped onto ¥'(¢'(¢’),t’). For one-
dimensional systems, the situation is sketched in Fig. 1. On
the path ¥ we choose two points A and B corresponding to
times ¢, and ¢,, respectively. These points transform into A’
and B’ corresponding to times

ti =t +eb(ghq'ey), (4a)
ty =1, +€0(¢g%q%t,) . (4b)
A sufficient condition for the transformations (3a) and
(3b) to be a symmetry transformation of the physical sys-
tem can be stated in terms of the action. We will require the
action to have the same values, up to a first-order term in €,

along ¥ between A and B and along ¥’ between A’ and B’,
ie.,

fL(q,q,ndt:f LW@dthdt + 0,  (5)
4 Ly

e
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where

. _dg; ., dgi
49 =— 4;=

dt dr'’
From condition (5) it follows that if  is a real path of the
system, so is 7/, because the actions in both sides of this
equation, which are equal for any related paths ¥ and 7/,
attain the same minimum. Since the minimum condition is
not affected by an additive constant to the action, we can
substitute the condition (5) by a less restrictive one. Pro-
vided that we only consider first-order terms in €, the new
condition is

(6)

L, t5
j L(g,q,t)dt =f L(¢.q't"dt' +ed + 0(€),
1,y LY

(7N
where 4 is given by

A=flqg )t ~fgd@ )]

- f 2(df(q_’:tl)>dt:' (8)
] dt

The function f can depend neither on ¢’ nor on higher
derivatives because 4 must remain constant under a vari-
ation of the path with fixed ¢’(¢ ;) and ¢’(¢}). In fact, the
new path would differ from the previous one in the general-
ized velocities ¢’ at ¢ | and ¢ 5. By substituting 4, glven by
Eq. (8) in Eq. (7), we have

2,
J- L(g.q,t)dt
Yy

- [ (r@aer +e LD 1 oy
thy dt
)

Any transformation of the type given by Eqs. (3a) and
(3b) such that (9) holds true for any time interval (¢,,,),
and over any path y and for some function f; is called a
Noetherian symmetry transformation of the physical sys-
tem.

B. Noetherian conservation laws

If the Eqs. (3a) and (3b) represent a Noetherian trans-
formation, the quantity

S pK; —EO+f, (10)
wh;,re

b, =j—qLi (11)
and’®

Ezzi:piqi—L, (12)

is conserved, i.e., is a constant along real paths.

In order to prove this theorem we change, in the right-
hand side of Eq. (9), the time variable ¢’ into # and, accord-
ingly, the limits #{ and ¢} in the integral into ¢, and t,,
respectively. In this way both sides of Eq. (9) can be com-
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pared. The result is

f "Lg.a.ndt

=f“(L(q',q',t') + eM)(‘—’f—')dt. (13)
It, dt’ dt

Now, we transform the primed variables in Eq. (13) ac-
cording to (3a) and (3b) and, consequently,

gl =g, + (K, — 6g,) (14)
dt’ ;
—=14+€0, 15
r (15)
and obtain, up to first-order terms in ¢,
f L{g,q,t)dt

JaL

_ f 2[L(q,q,t) +6<Z K, o

: 5. OL aL p
+ YK, —0§,)—+ 60—+ 6L dt. (16
Z( Q)aqi 8t+ +f)] (16)

Both integrals in (16) are extended over real paths in
which motion equations hold. Therefore, if p, is the conju-
gate canonical momentum to g;,

_aL

i ’ 17
2, (17)
its total time derivative is given by
_doL_dL "

P, " ag,

where we have used the motion equations. Then, substitut-
ing the definition (17) and the result (18) in (16), express-
ingdL /dtinterms of dL /dt,dL /3q, L /34, and using the
arbitrariness of ¢, Eq. (16) becomes

J (2(piKi +piKi “Pi@'é) —Eo + 6L +f)dt= 0.
| (19)

Now, ¢, and #, are completely arbitrary; thus the integrand
in (19) identically vanishes:

Z(piKi +P1Ki _Pﬂig) _E9+9L +f=0, (20)

which can be rewritten as

%(zpiKi —9E+f)=0, (21)

which is the result we wanted to show.

This result is easily generalized for infinitesimal trans-
formations that depend on several independent parameters
€ (a=12,.,r)

% =9:+3 € Ki¥@n, (22a)
=1+ €a 0 (q1) . (22b)
If this transformation, when acting on any real path of the
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system, is such that the equality

fz L(g,q,t)dt

= f (L(q"q"") +Y €l (q’,t’)>dt' +0(&)
(23)

1

holds, the system exhibits 7 conservation laws:

%(ZPIK,(‘Z) — Ee(a) +ﬁa)) =0 (a = 1’2,.“,’-) s
(24)
where

E=2Piqi—l" (25)

This is the content of Noether’s theorem.®

Whenever the symmetry transformations are such that
time is transformed identically or, at most, suffers a uni-
form translation

t'=t+e, (26)
condition (13) is equivalent to

, e df (¢',t'

L(gqt) =L(g'de) +e LI, 7
This is the symmetry condition given in most textbooks,
and it expresses the (generalized) invariance of the La-
grangian.

IV. EXAMPLES

Noether’s theorem allows us to associate a conserved
quantity to every symmetry transformation on the physical
system.

A. Isolated systems

Classical isolated systems are symmetrical under the
ten-parameter inhomogeneous Galilei group.” The corre-
sponding ten operations in this group are three space trans-
lations, one time translation, three space rotations, and
three boosts. The associated ten conserved quantities are
linear momentum P, energy E, angular momentum J, and
the vector

M= mr, —Pr.

The subject concerning these conserved quantities and
their relations to space and time symmetries is well covered
in many textbooks, but without making use of Noether’s
theorem, which is, however, explicitly used, for instance, in
the article by Havas and Stachel.” In fact, Galilean symme-
try for isolated systems may be analyzed from the Lagran-
gian only.

B. Particle system in a time-dependent uniform external
field

We assume that the internal potential energy of the sys-
tem U depends on the distances between particles only.
Therefore, it is translationally invariant. The Lagrangian is

L=y mi}/2—-U+ Y F,()r;, (28)
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which, under the three-parameter transformation
(=T, + €, (29)
becomes L', such that

L=L"—3F,(t)e. (30)

Comparing this result with (27) and using the general
form (24) for the conservation laws, we obtain

%[Z(pi—JFi(t)dt)] —0. (31)

The fact that (29) is a symmetric transformation of the
space coordinates shows that the space is homogeneous in a
certain sense, but it can be easily shown that it is not iso-
tropic.

C. A particle in a plane-wavelike external field

The Lagrangian for the particle is given by
L=mv/2-U(lr—ut), (32)
where u is the wave propagation velocity. The one-param-
eter transformation,
(33a)
(33b)

leaves invariant the argument in U and therefore it is a
symmetry transformation. The corresponding conserva-
tion law is

¥=r+ue,
t'=t+e€,

d :
L wn—EY=0
,t(“P )

or
_‘Z_.E_ j— u-ip_ y (34)
dt dt
where, according to (12),
E=T+U. (35)

For a wave of finite extension, a time integration of (34)
between the instants ¢, and ¢,, preceding and following,
respectively, the passage of the wave by the position of the
particle, yields '

wip,—p)=71,—T,. (36)

D. Particle in a potential field, homogeneous function of

l.8

In this case,
U(ar) = a"U(r) ,

where a is arbitrary and # is the degree of homogeneity of
U. We will show that, for a particular n, the action is invar-
iant under a linear transformation on r and ¢,

r=ar, (37a)
t'=pt, (37b)
177 Am. J. Phys., Vol. 56, No. 2, February 1988

partially suggested by the assumed homogeneity of U.
Since our previous analysis on action invariance was per-
formed by using only infinitesimal transformations, we re-
write Eqs. (37a) and (37b) in infinitesimal form, by put-
ting

a=14¢ pB=1+7ye (38)
and obtain

’=l‘+€l‘, (39a)

t'=t+ yet, (39b)

where 7 is to be specified later. The transformed action is

t5 72
S'=f (’"zv - U(r’))dt’

_ J"’(m(l + 2e — 2ye)v?
f, 2

—~(1+ ne)U(r))(l + ye)dt . (40)

If the action is to be invariant, i.e., 58 = 0, then
14+2e—2ye+ye=1

and '
l+net+ye=1.

Hence,
y=2 and n= —2.

In this case, there is a conserved law obtained from Eq.
(21):

(g—;)(p-r —2Et)=0.

'See, for example, H. Goldstein, Classical Mechanics (Addison-Wesley,
Reading, MA, 1980), 2nd ed., pp. 588-596; A. O. Barut, Electrodynam-
ics and Classical Theory of Fields and Particles (Macmillan, New York,
1964).

2One of the most referenced papers is E. L. Hill, Rev. Mod. Phys. 23, 253
(1951). Also useful, but shorter, are P. Havasand J. Stachel, Phys. Rev.
185, 1636 (1969); T. Boyer, Am. J. Phys. 34, 475 (1966).

*We consider here only systems that have an action with the general form
given by Eq. (1). In particular, dissipative systems will not be covered.

“For the sake of sitnplicity we consider a one-parameter transformation.
The extension to general situations is presented below. As far as we are
interested in analyzing the invariances of the action, the presence of high-
er-order derivatives of ¢ in K, and @ is of no use since the Lagrangians do
not contain them either. On the other hand, since we transform paths on
which g are known functions of ¢, X; and 6 could be considered as proper-
ly chosen functions of ¢. '

>The quantity E, when conserved, is the energy of the system.

"Actual]y, there are two Noether’s theorems. The one not dealt with here
refers to the invariance of § with respect to transformation groups that
depend on arbitrary functions instead of on arbitrary parameters.

"Of course, in a relativistic theory, the pertinent space-time symmetry
group is the ten-parameter Poincaré group.

®This example is an adaptation of a problem in G. L. Kotkin and V. G.
Serbo, Collection of Problems in Classical Mechanics (Pergamon, Ox-
ford, 1971).
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