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The proof of (103) then follows easily from (31) by
“induction from (h—1) and h to (h+1).”

21t was my good friend Dr. Mary O’Brien of Lady
Margaret Hall and the Department of Theoretical Physies,
Oxford, who first called my attention to the existence of
localized modes. See L. P. Howland, Amer. J. Phys. 33,
269 (1965), for a description of a localized mode observable
in a macroscopic experiment.

32 A basic theorem of elementary number theory is used
here; since it is equivalent to the uniqueness of the prime
factorization of integers, any one having wide practical
experience with integers ought to be willing to accept its
validity without proof.

32 This matter is discussed in some detail by Dean

(Ref. 1), pp. 112-113. The “uncoupled oscillators” are of
course the normal coordinates (11) [or (91)]; their
frequencies are in a simple way related to the coefficients
in the diagonalized Hamiltonian.

% Relevance of the oscillations of linear chains to
molecular vibrations is discussed in various papers re-
printed in Mathematical Physics in One Dimension,
edited by E. H. Lieb and D. C. Mattis (Academic, New
York, 1966), Chap. 2.

% Dr. O’Brien (Ref. 31) first made this observation.

8 R. Weinstock, Amer. J. Phys. 38, 1289 (1970).

%7For an experimental arrangement to which the
problem is applicable, see F. W. Sears, Amer. J. Phys.
37, 645 (1969).
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When a physical system has some symmetry properties,
1t 1s described by equations of motion tnvariant under the
corresponding transformation group. Its Lagrangion
however need not be tnvariant and may be ‘gauge-variant,”’
that 1s, vary by the addition of a total time derivative. A
slightly generalized form of Noether's theorem nevertheless
exists in such cases, still leading to conservation laws. The
tmportance of considering such noninvariant Lagrangians
and the associated conservation laws s tllustrated by several
examples: energy conservation, Galilean invariance, dy-
nomical symmeliries (harmonic oscillator and Kepler's
problem), motion in a uniform eleciric field.
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I. INTRODUCTION

Probably because of their utmost importance
in modern physics, invariance principles and con-
servation laws nowadays hold a prominent place
even in classical mechanics, and very rightly so.
Most courses and textbooks contain a proof of
Noether’s theorem,! or at least implicitly use it to
derive the great conservation laws from general
invariance principles. However, some subtlety has
to be exercised and, as examples will show below,
an important point is missed in standard treat-
ments. Indeed, when considering a physical
system exhibiting some symmetry, one usually
describes it by means of a Lagrangian invariant
under the relevant transformation group. The
invariance requirements are then shown to imply a
conservation law. It is immediate to realize that
this is a far too restricted framework. It suffices
to think of an interacting system with time—
translation invariance (for instance a single
particle in a static external potential). As anybody
knows, this implies a conservation law for the total
energy E =T+ V, where T and V are, respectively,
the kinetic and potential energy. Accordingly, the
Lagrangian L=T-—V cannot be invariant under
time translations, except in trivial cases where
kinetic and potential energies are separately
conserved. In effect, energy conservation does not
follow from a straightforward application of the



standard Noether’s theorem. Similar remarks can
be made in the less elementary cases of the so-
called “dynamical symmetries”’, exhibited by the
Kepler’s problem or the isotropic harmonie oseil-
lator. The Hamiltonians of such systems in fact
are invariant under specific invariance groups,
which, in contrast to the rotation group for a
spherically symmetric system for instance, do not
leave separately invariant the kinetic and poten-
tial energies, but only their sum. As above, their
difference, i.e., the Lagrangian, cannot be in-
variant, and the associated conservation laws
cannot be-derived from the standard Noether’s
theorem. '

This apparent paradox is resolved easily by
remembering that a symmetry of a physical
system means invariance of its equations of
motion, but not necessarily of its Lagrangian!
Indeed, two Lagrangians are equivalent, that is
lead to the same equations of motion, if they differ
by a total time derivative; they lead to expressions
for the action differing only by terms depending
on the end-points and not on the path of integra-
tion. The variational problems thus are identical
and so are the equations of motion. Taking into
account, the possibility of such a variance for
Lagrangians describing invariant systems is
essential here. Noether’s theorem has an im-
mediate generalization and a conservation law
holds as well as for a strictly invariant Lagrangian.
Of course, there is nothing original here in the
statement and/or proof of this theorem; I only
wish to stress its importance in rather elementary
situations.

2. GENERALIZED NOETHER’S THEOREM

We consider a mechanical system with N
degrees of freedom, described by generalized co-
ordinates ¢= {q, ¢s, -+, qv} and characterized by
its Lagrangian L(q, ¢, t), with customary nota-
tions. Suppose that under some infinitesimal
transformation of the coordinates, possibly veloc-
ity dependent

aq:‘ff(% g, 1), (1)

the Lagrangian varies by the total time derivative
of a function of the coordinates

sL=e(d/dt)A(g, t). (2)

Gauge-Variant Lagrangiar Conservation Laws

It will be convenient to eall such a transformation
property a gauge-variation of the Lagrangian
(see Sec. 6). The variation 5L of the Lagrangian
may be expressed in term of the coordinate
variation (1) in the customary way

L= (aL/dq)dg+ (3L/34) s, (3)

which, using the Lagrange’s equation of motion

(d/dt) (0L/q) =9dL/dq, 4)
may be rewritten
§L=(d/dt) (0L/3¢)sq+ (3L/dq) (d/dt) (8g).  (5)
Finally,

sL=e(d/dt)[(9L/99)f]- (6)

Comparing with the hypothesis (2) on the gauge
variance of the Lagrangian, we obtain a conserva-
tion law!

dF/dt=0 (7

for the quantity

F=f(dL/d¢) — A= const. (8)

This differs from the standard result by the
appearance of the second term A on the rhs, the
physical importance of which we are going to
illustrate in a few cases.

3. EXAMPLE 1: ENERGY CONSERVATION

If the Lagrangian L does not depend explicitly
on the time ¢,

9L/3t=0, (9)

then its variation under an infinitesimal time
translation 6t

8L = (dL/dt)ést (10)

only follows from the variation of the coordinates
(11)

The conditions of the theorem are fulfilled, with
f=¢ and A=L, yielding a conservation law for

E=q(aL/o¢) — L, (12) -

6q = ¢dt.
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the well-known expression for the energy. In the
conventional treatments, conservation of energy
appears as the result of a seemingly rather ad hoc
manipulation of the Lagrangian which often
baffles the student. Of course this manipulation is
but a proof of the generalized Noether’s theorem
in the particular case considered. Still, it is
pedagogically valuable to stay within a general
framework, large enough to embody all the
congervation laws of interest.

4. EXAMPLE 2: GALILEAN INVARIANCE .

A collection of free particles with masses m;
(i=1,2--+n) has a Lagrangian

n
—_ 1 -
L= Z gmiqﬂ.
7=l

Under an infinitesimal Galilean transformation
with velocity 8v, the coordinates vary according to

3q:=dv ¢, (14)

and the velocities obey the customary Galilean
transformation law

5(']_,‘= ov. (15)
The Lagrangian variation is
L= Z ﬂllqi@V:ﬁV' (d/dt) (Z m@ql) . (16)

The generalized Noether’s theorem then yields the
conservation law for the “Galilean momentum”

G= (X mq.)t— (3 mq;) = const. (17)

Combined with the conservation law for the
momentum

P= > miq, (18)

and the definition of the center of mass with
position

R=M"13 mq, (19)
where M is the total mass
M= Z Mgy (20)
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(13).

the conservation law (17) is seen to imply uniform
motion of the center of mass

R=M-1(Pt—G). (21)

It may be recalled here that, provided the
possibility of a gauge-variant Lagrangian is taken
into account, Galilean Iinvariance suffices to
determine the form (13) for the Lagrangian of
free particles. More precisely, all possible Galilean
gauge variant Lagrangians are equivalent to
the usual one (13), as may be shown by group
theoretical arguments.? Let us illustrate this
remark, for a single free particle, by considering
the Lagrangian

L=%m(q—qt)*/ (22)

This seemingly exotic expression may be rewritten

L=4mq— (d/di) [ym(q*/1) ], (23)

s0 that it only differs from the usual Lagrangian
by a total time derivative and is equivalent to it.
Now (22) is strictly invariant under a Galilean
transformation (14, 15) and the conservation law
(17) follows from the conventional Noether’s
theorem. However, under a space translation

8q = da, (24)
the Lagrangian variation is
sL=[(q—qt)/®]-sa=sa-(d/d)(—mq/D), (25)

so that the generalized Noether’s theorem (8) is
necessary here to prove conservation of the
momentum

p=—m(q—§qf) /i— (—mq/t) =mq.  (26)

This admittedly rather artificial example is only
here to point out at the necessity of keeping in
mind the generalized form of Noether’s theorem if
one wants to make full use of the flexibility of a
Lagrangian description by considering possible
gauge variations.



5. EXAMPLE 3: DYNAMICAL SYMMETRIES
A. The Isotropic Harmonic Oscillator

Congider an N-dimensional isotropic oscillator,
the Lagrangian of which may be written

N
L=%22¢"—3 2 ¢ (27)

with a convenient choice of units. The equations of
motion are

2;+¢:=0 -+N). (28)

Under the infinitesimal variation of the coordinates
5q]'=%e(q'k5jl—|—q'15jk) j=1, 2.4.N k, { fixed (29)
the velocities, using (28), transform according to

Bq'j= —%e(gkaﬂ-l—qlﬁjk) j=1, 2.+.N ]{3, { ﬁxed

(30)
The resulting variation of the Lagrangian,
SL= 2 §iddi— 22 4,845 (31)
reads
8L =—e(quqp+qus) = —e(d/dt) (qugr)  (32)

Applying our generalized Noether’s theorem, we
thus obtain the conservation laws

(k,1=1,2---N).
(33)

M= Gugi-+qug: = const

It is well known that these conservation laws
correspond to invariance of the Hamiltonian under
a unitary group.®* We have shown here that this
group does not leave the Lagrangian invariant,
but causes it to undergo a gauge variation, which
suffices to ensure invariance of the equations of
motion and to yield the usual conservation laws.

B. The Kepler Problem
With suitable units, the Lagrangian reads

L=3+q7, (34)

Gauge-Variant Lagrangian Conservation Laws

and the equations of motion are
4+ (¢/¢*) =0. (35)

Consider the following variation of the coordinates

1=1, 2, 3 k fixed,
(36)

8q:=e(Gign — 3qide — 34 i)

and the associated variation of the velocities

6q:=%e(qduds— Q0a— (qus/¢*) + (/) ]
i=1,2,3Fk fixed. (37)
A simple calculation yields the variation of the
Lagrangian
sL=e[(d:/q) — (a-0/¢) @ ]=e(d/dt) (g:/q). (38)
The theorem (8) thus applies here and furnishes a
congervation law
Ay=g—q-4¢— (/@)  (k=1,2,3). (39)
In other words, we have recovered the customary
Lenz vector
A=qx(gxq)—(q/q) = const  (40)
associated with the hidden symmetry of the
Hamiltonian under an orthogonal group in four
dimensions,®* and shown that this group is a
gauge-variance group for the Lagrangian.

6. MOTION IN AN ELECTROMAGNETIC
FIELD

A particle with mass m and electric charge e in
an electric field E and a magnetic field B is
described by a Lagrangian

L=im@*+eq-A—eV, (41)

where A and V are the vector and scalar potentials
of the fields, such that

E=—(9A/3t) — gradV (42a)

and

B = rotA. (42b)
As is well known these potentials are not uniquely
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defined, since a gauge transformation

A—A+ gradA
V—V—(9A/01)

(43a)
(43b)

leaves the fields unchanged. Indeed the Lagrangian
(41) transforms into an equivalent one

L—L+-e(d/dt) A. (44)
Accordingly, the properties of a Lagrangian de-
seribing a particle in an electromagnetic field with
some symmetry are not straightforward. More pre-
cisely, the invariances of the fields (that is, of the
real physical situations) are not usually reflected
as invariances of the potentials. The corresponding
Lagrangian will then be gauge variant rather than
invariant and the associated conservation laws will
be derived by using the generalized Noether’s
theorem.

As the simplest example, let us consider a uni-
form and constant electric field E. This is a time
and space translationally invariant situation.
However, potentials do not exist which would
have the same invariance properties, since they
would obviously give zero fields! A time invariant
scalar potential V=—E.q may be chosen. The
associated Lagrangian

Li=3mq*-+eE q, (45)
however, is not invariant under space translations
since

iq=sda
vields

§Ly=¢E-sa= (d/dt) (¢Et) -5a. (47)

Our theorem accordingly implies conservation of

mq—eEt= const, (48)

showing the uniformly accelerated nature of the

* Postal address: Laboratoire de Physique Théorique,
Tour 22, Faculté des Sciences, 9, quai Saint-Bernard,
Paris (5éme), France.

1 See, for example, E. L. Hill, Rev. Mod. Phys. 23,
253 (1951); C. Palmieri and B. Vitale, Nuovo Cimento
66A, 299 (1970) and additional references therein.

2 J.-M. Lévy-Leblond, Commun. Math. Phys. 12, 64
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motion. Alternatively one could deseribe the same
field by a uniform veetor potential A= —eEt. The
corresponding Lagrangian

Ly=im@—eE- ¢, (49)

is obviously equivalent to the first one (45) since

Ly—L;= —¢E-(qi+q) =—e(d/dl) (E-qt). (50)
However L, is now invariant under space transla-
tions and we immediately obtain the conservation
law (48), which is but the conservation law for
the momentum p=mq—eA in the present gauge.
It is now the conservation law for the energy
which requires using the generalized Noether’s
theorem, since a variation

69 = qot, (51)
corresponds to the Lagrangian varying by
0Ly =[dLs/dt) — (9L2/at) 1o, (52)

or still

8Ly =[(dLs/dt) +eE-q 16t = (d/dt) (Ls+eE-q)ét.
(53)

We then obtain the expected conservation law

imq2—eE-q= const. (54)

Further examples, in particular the interesting
case of a uniform constant magnetic field with
gauge-variance under rotations, and more general
considerations may be found in a paper by Tassie
and Buchdahl.4
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