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A class of inverse problems in physics

Ashley H. Carter
Physics Department, Drew University, Madison, New Jersey 07940

(Received 25 August 1997; accepted 22 November 1999

If physics students are exposed at all to inverse problems, it is usually in the context of specialized
treatments of quantum scattering processes. Inverse problems are, however, important in a wide
variety of applications, such as gravitational lensing, seismological exploration, and underwater
acoustic tomography. Students can be introduced to inverse problems in undergraduate courses in
mechanics, optics, and quantum mechanics. This paper presents some simple examples whose
solution in each case involves Abel’s integral equation, illustrating the ubiquity of this mathematical
relation in diverse areas of physics. @00 American Association of Physics Teachers.

[. INTRODUCTION oscillatory. The period of the motion is found by solving for

dx/dt in Eq. (1) and integrating with respect to The result
In one form or another, inverse problems have been g

subject of study for a very long time. Such problems involve

the inversion of data to obtain information about forces or 12 dx

characteristics of the physical medium. They are exemplified  7(E)=(2m) fx [E-V()]"* @

in a classic paper by Mark Kac entitled, “Can one hear the !

shape of a drum?* Specifically, what can be inferred about  In the direct problem, we assume that the potential energy
the boundary configuration of a membrane from a knowl-function is known, in which case E) can in principle be
edge of the eigenvalues of the normal modes of vibration? used to obtain the period. Our concern here, however, is in

Inverse methods are powerful mathematical tools, curthe inverse problem: Given the period as a function of the
rently employed in several areas of physics. For example, itotal energy, find the functional form of the potential energy.
astrophysics, gravitational lensing is an inverse techniqu&his problem is discussed by Landau and Lifshitt.in-
that is used to detect the presence of dark matter in theolves the solution of Abel's integral equation, which was
universe? The light from a distant star or galaxy is bent by investigated more than a century ago.
gravity as it passes near an invisible body closer to the ob- We are interested in showing how similar problems arise
server. Multiple images are formed from which the mass ofin several different areas of physics. One may ask, for ex-
the unseen object can be estimated. In seismological expl@ample: Can the force of interaction between colliding par-
ration, travel times of elastic waves produced by pulsedicles be determined from a knowledge of the angular depen-
sources are recorded to determine the depth, thickness, addnce of the impact parameter? Can the variation of the
composition of geological layers of the eartiAs part of a index of refraction of an optical medium be found from the
study of global warming, oceanographers are measuring theay paths? Or, in quantum mechanics, can the form of the
long-term changes in underwater sound speeds associatpdtential energy function be deduced from a knowledge of
with temperature variatiorfs. the energy level spacings?

As an example of an inverse problem, consider the one- Section Il gives the Landau and Lifshitz solution of the
dimensional motion of a particle subject to a force that is a@nverse oscillatory problem. Section Ill illustrates the inverse
function of thex coordinate alone: problem in classical scattering theory. Sections IV and V

present problems in geometrical optics and quantum me-
dx chanics and show some interesting special cases.
m W = F(X)

A single integration of this equation gives the law of conser-

; II. THE INVERSE OSCILLATOR PROBLEM
vation of energy,

2 Suppose that from E@2) we wish to findV(x), assuming
1 (dx . . ;
“ml =1 2V =E 1 that 7(E) is known. In the integrand we consider the coor-
SM| 4| +V0=E, (1) ,
dinatex to be a function oi, replacingdx by (dx/dV)dV.

in which V(x) is the potential energy artd the total energy We shall restrict ourselves to even functiong(x)
Since the kinetic energy is non-negative, the particle must be_ V(—x), symmetrical about th¥ axis. Then Eq(2) be-

confined to regions of space whéréx)<E. In the example comes

of Fig. 1, the motion can only occur in the regiorg<x E (dx/dV)dV

<X, OF X>Xg. The pointsx,, X,, andxz, at whichV(x) 7(E)=2(2m)*? 0 (E-V)7Z ©)
=E, are theturning pointsof the motion, where the velocity

is zero. For convenience, we have taken the origin at the point of

If the particle is initially in the region between the turning minimum potential energy, which we assume to be zero; that
points x; and x,, the subsequent motion is bounded andis, V(0)=0.
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V) The integration oveV is trivial. When we writeV in place
of s, we obtain the final result

1 J'V 7(E)dE "
27(2m)'? Jo (V-E)Y ©

x(V)=

As an example, suppose it is found thgE)<E Y4 The
integral in Eq.(6) in this instance is
Fig. 1. A potential function with three turning points. Particle motion can
occur in the regions; <x<Xx, or X>Xs. v dE va Y _ia _y
X(V)* | ==V w4 (1-w) " Ydw
0o E"(V—-E) 0

To solve this integral equation, multiply both sides by =V¥B(3, D).
(s—E)"*?and integrate with respect & over the range Thysxe\VY4 or Vec|x|4, taking into account the symmetry
O<Es=s. Heresis simply a parameter. The result is requirement. This is the case of the classical anharmonic
s 7(E)dE (S dE E(dx/dV)dV oscillator. _ _ . .
——=1p=2(2m) e e As mentioned in Sec. |, the oscillatory problem with solu-
o(s—E) 0o(s=E)™Jo (E-V) tion Eq. (6) illustrates the generalized Abel equation,
s (E (dx/dV)dVdE s p(£)dé
=22m1’sz . (4 =f— <a<
(2m) 0 Jo (s—E)YTAE- V)2 4) f(s) (67 (0<a<1), )

Next we change the order of integration. From Fig. 2, we segvhere f(s) is a known function andp(¢) is to be deter-
that the double integral in E(ﬁ4) is over the triangle in the mined. Upon inverting Eq(?), we obtain

first quadrant above the liné=E and extending from the

origin to the horizontal lineE=s. The V integral ranges (&)= - —.
from zero to the lineV=E, indicated by the horizontal strip m déJa(é—s) "
of width dE in the figure. Then th& integral sums over the
horizontal strips fromE=0 to E=s, covering the whole

triangle.

Let us integrate with respect tB first. The E integral
extends from the lin€=V to E=s, indicated by the vertical
strip of widthdV. TheV integral sums over the vertical strips
from V=0 to V=s. Making this change, we obtain

sinmae d (¢ f(s)ds

®

The factor (sinra)/7r is just the reciprocal of the beta func-
tion B(1—a,a). In the special casex=1/2, Eq. (7) is
known as Abel’s integral equation.

The conditions that Eq.7) have the continuous solution
Eq. (8) in the intervalas<s<b are given by Boher? (1)
f(s) must be continuous in the interval) f(a)=0; and
(3), fgf(s)(g—s)“‘lds must have a continuous derivative
s 7(E)dE =2(2m)1’2fs(d—\);)dv in the interval, except that(s) may possess a finite number

o(s—E)12 of finite discontinuities in the interval.
The generalized Abel equation, ), can also be solved
s dE by applying the Laplace convolution theorénThe Abel
X jv (s—E)TAE-V)T2 (5 equation appears in a wide variety of inverse problems, ex-

amples of which are given below.
In the second integral on the right-hand side of B, we

introduce the new variable= (s—E)/(s—V). This integral

is then found to be a beta function whose valueris
I1l. CLASSICAL SCATTERING

s dE 1 dw
fo(s_ EYVAE—-V)T2~ fo w1 —w)T2 Inverse methods are used extensively in scattering prob-
lems, in which the objective is to determine the force of
=B(}, Y =m. interaction between the incident and scattered particles from

the differential cross section or some related quantity. It is
not our purpose to discuss the general analysis but rather to
give an example encountered in classical mechanics—that of
Rutherford scattering. The general problem has been dis-
s L av cussed by Keller, Kay, and ShmofsThe analysis presented
here differs somewhat from theirs. The aim is to find the
/ scattering potential(r), as a function of the polar coordi-
nater.
In Rutherford scattering, an incident particle of mass
chargeq,, and center-of-mass kinetic enerfyis scattered
by a heavy stationary particle of charge (see Fig. 3. Sup-
pose that from analysis of experiments the impact parameter,
b, is found to be

>V

[0 PP TR

4102 0
: . : = cot 5/, 9
Fig. 2. Region of integration for Eq4). 8megE 2
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Scattering
center

Fig. 3. The classical scattering problem showing the impact paraimeatst
the scattering anglé.

where ¢ is the scattering angfé. The impact parameter is

related to the angular momentuin, and the energyg, by

L=mvb=(2mE)Y%. (10)
The scattering angle is given by
O=m—20¢, (11
where
L Umax du
¢= (2m) 2 fo L2212 (12
(E-V)—
2m

Equations(10)—(12) are independent of the details \{r).
Hereu=r"1, wherer is the polar coordinate,, corre-

sponds tar i, the distance of closest approach of the inci-

dent patrticle to the scattering center.

T (U dE
'fifou-—alfz (18

and
U cot Y(LEYY a)dE
2= J (U _ E)l/2

(19

Integratingl, by parts, we get
L (v (U-E)YME
l,=7UY2— — ﬁz—z—z—l( ) :
a Jo EY(1+L°E/a®)
Settingy?=E/U andd?= «?/L2U, we obtain

_2afl(1—y2)1’2dy_2a [ (d?+1)Y2 L
L Jo dF+yZ L 2] d

0
(20)

Then Eq.(17) gives
L

(2m)1?2

Ta L2U 1/2
—| 1+ —) — 1}.
L @
Solving for U, we obtain
2au  L%0?

:W?_l— m:V(U)‘F

u= (21

L2u?
2m

Recalling thatu=1/r, we have, finally,

_ 2a _ %92
2mYr ~ 4meyr’

V(r) (22

Our goal is to findV(r) by using integral equations, given as expected for Rutherford scattering.

Eg. (12) and the preceding equations. If we sg=V
+L2u?(2m) %, Eq.(12) becomes

B L fumax du
d)_ (zm)1/2 o (E_U)ZL/Z'
We change variables by writindu= (du/dU)dU, and note
that U (Upma)=E. Thus

L [E(du/dU)dU
b= e, o 49

13

In some applications, the differential scattering cross sec-
tion D(6) may be more readily determined than the impact
parameterb(6). The function ¢(E) in that case can be
found from the relation

T—

2¢
L2=2mEf D(6)sinfda, (23

0

assuming that the integral can be evaluated as a function

of ¢.

This is Abel's integral equation, which can be solved using
Egs.(7) and(8) to give the equation of the potential function 1IV. GEOMETRICAL OPTICS

in the form

uu)=

1/2
(2m) fu #(E)dE s

L Jo (U-E)¥?*
The function®(E) is found by combining Eqg9)—(11):

m L E”Z)

H(E)= 5~ cotl<

(16)

where

Q1Q2)

— 1/2
a=(2m) ( By
Substituting Eq(16) in Eq. (15) gives

Ud)(E)dEﬂ—l —
s u—pm-=hl

L
(ZT)W}UZ n
where

700 Am. J. Phys., Vol. 68, No. 8, August 2000

An inverse problem in ray optics is the following: Given
the trajectories of lightor sound rays, find the variation of
the refractive index of the medium with respect to a posi-
tion coordinate. Consider a ray path in tkey plane in a
medium in whichn varies continuously in thg direction
only. Let 6 be the ray angle at an arbitrary poiixy), mea-
sured with respect to the axis, andf, be its value at the
origin (see Fig. 4. We taken(0)=1. Snell's law, valid for
any point in the medium, is then

n(y)cosé=cosé,. (24
Sincedx/dy=cot®, it follows that
coséydy
= j [n*(y) —cos 6] (25

It is convenient to introduce dimensionless variables
x'=ax andy’=ay and write

Ashley H. Carter 700



Yy Thus
n2(y’)=1-y’, or n’(y)=1—ay. (32)

This example furnishes a nice illustration of the well-
known analogy between geometrical optics and classical me-
chanics. Parabolic rays correspond to parabolic particle tra-
jectories in projectile motion, wiﬂa—>29/v§, wherevg is
the initial velocity andg the acceleration due to gravity.
Therefore,

-
o

2 m V
n’(y)=1-ay—1-— ( g)y—l— gizl—E.
Fig. 4. Geometry of a ray path for whigh=n(y). Yo 2Mug
A kind of Snell's law for two-dimensional classical-

cos6ndv’ mechanical motion is
ZJ [n ks . (26) \VJ 12

20\ 172
(y")—cos 0] (1— E Cosf=cosfg.
Consider optical media in which the ray with anglgat the
origin has a turning pointd=0) aty’ = », where s given The inverse formulation for geometrical optics allows us
by n(#)=cosé,, according to Eq.24). If we define the to address an especially intriguing question: Is there a refrac-
“half-range” of such a ray by the relation tion index profile such that all rays, regardless of initial ray
X! =p(6o) @27) angle, have the same half-range and hence return ta’the
y=n—P f’ ' axis at the same point? This is the case for whi¢h,) is a
then Eq.(26) yields constant, independent a@f,, and which we might as well
, —j cosfdy’ 28 take to be unity. For this example, EQO) is
P( 0)_ 0 [nZ(yr)_CO§ 60]1/2' ( ) ’ 1 ¢ ds (33)
y'=— .
With the substitutionsn?®(y’)=¢, cog 6,=s, and dy’ mJ1s(s-8)"
= (dy'/d¢)d¢, this equation becomes Here it is convenient to let?=s. Then
sstAdy'/d¢)dé
pbo)==+ | — g (29 2 (a2 du 2 fu|[f”
IJ1 (S_g) y':;f ngcosh ng
1 —
If, further, we setp(6,)/sY?=1(s), and =+ (1/)(dy'/d¢) !
=¢(&), Eq. (29 assumes the form of Eq7) with a=1, « 2 ol g 12
=1 The solution, following Eq(8), is =~ -cosh *(£~7).
_ 1 ¢ p(bo)ds (30 Taking account of the fact that the hyperbolic cosine is an
Y = L s s— ™ even function, and recalling th&t’>=n(y’), we obtain the
solution

Note thatp(6y) is a function of s through the relation

cos gp,=s. Equation(30) is the result we seek. We solve for , y’

y'(€)=Yy'(n?), thence fom(y"). ny FSGC*(T
The variation ofn with y can also be found from the travel

time a|ong the ray to the turning point using the formula for the required variation of the in.deX of ref.raCtion. ) )
It turns out that the travel time in the horizontal direction

: (34)

dy’ 1 d (¢ tds is also the same for all rays. We can easily find an expression
dé  médé Ji(s— o for the dimensionless travel tinté= acyt analogous to Eq.
20):
Heret’ is the dimensionless timacyt, wherecy is the op- 28
tical velocity at the origin, and; is its value at the half-range f n’(y’)dy’
point p(fo). Like p(6o), t, is a function ofs, sinces [n%(y")—cog 6,]Y%
=cos 6.

An example is provided by parabolic ray paths, satisfyingThe,traVE| timeAt’ to half-range is calculated by evalqating
, _ _ Ly this integral between zero ang wheren(z) = cosé,. Using
X' =2 cosfg[ sin 6o+ (sir? Go—y')"?]. (31 Eq.(34), we can show thait’=1, or At=1/ac,, indepen-
For this case, the half-range is dent of the initial angled,. Thus the hyperbolic secant pro-
. file gives rise to perfect focusing and zero time dispersion.
— — 1/2 1/2
p(6o) =2 oSy Sin =251~ )% This very special case has been studied in connection with

Then Eq.(30) gives fiber optics. The theoretical optimum index of refraction pro-
£ (1— 92y file for graded-index optical fibers that optimizes the meridi-
y'=— f (1—-s)™ds =1—¢=1-n¥y"). onal modes i31(r) =ng sechér), wherer is the radial coor-
(s—&)™? dinate of a cylindrical fibet?
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V. QUANTUM MECHANICAL BOUND STATES Table I. Functional form of potential energy f&,x=n* in the WKB ap-

proximation in quantum mechanics.

In quantum mechanics an inverse problem for bound
states is as follows: Given a set of discrete energy eigenval-
ues, find the functional form of the potential ener@(x).

n dependence
of E, V(x) Physical case

The problem can be approached via the Wentzel-Kramers—  n** °<|X2\ Ramp
Brillouin (WKB) method, also known as the semiclassical n *X Harmonic
approximation. The approximation is valid when the poten- oscillator
o - - . n*s ot Anharmonic
tial is a slowly varying function ok, i.e., when ;
oscillator
n2 Infinite square well

‘dV(x)

1
P _ /
x| <7m[2m(E V(x) 132

Heremis the particle mas& —V is its kinetic energy, and
is Planck’s constant divided byn2

The WKB quantization condition for a one-dimensional
potential V(x) is

where we regard E/dn as a function oE. Substituting this
expression in Eq(38), we arrive at

h v dE
X h =
f 2[E—V(x)]“zdx=(n+e)(ZWT)l, N=0,1,2,..., x(V) (2m)1’2f0 (dE/dn)(V—E)7 (40
X
' (35 The example of the harmonic oscillator illustrates the
method. For this cas&,=(n+1/2)hw anddE/dn=%w, SO

wheree is a fraction, andk,; andx, are the classical turning
points of the motion. IfV(x) is an even functionvV(x)
=V(—x), increasing monotonically fox>0, thene= % and k1 (v dE  2[V\'?
Eq. (35) can be writte®® V)= G i fo VB &|2m

that

Squaring and rearranging terms, we obtaM(x)
=3mw?x%. Thus, knowledge of the energy levepacing

o ) o _ (the dependence on) is sufficient to determine the func-
wherea is given byV(a) =E. Differentiating® with respect  tional form of V(x), at least under the conditiong(x)

a 1\ =k
<I>(E)Efo[E—V(x)]1/2o|x:(n+E 2(2—7;)1,2 (36)

to E, and changing the variable of integration fromo V,  —v/(—x) andV(0)=0, and within the limits of applicability
we get of the WKB approximation.
dd 1 (E(dxdV)dV To g_eneralizel: the preceding E}?mpllgllsuppose. Ifn_iast
—=c | —1. (370 proportional ton“. ThendE/dne=n*"~<E . Substituting
de 2 Jo (E-V) this in Eq.(40), we obtain
Here we tacitly assume th&(0)=0 by a suitable choice of Vo 1
energy scale. Equatiof87) has the same form as E(), X(V)ch EY(V-E)""dE
whose solution is Eq8). The latter yields the result 0
dx 2 d fV(dQD/dE)dE :V(27k)/2kflzllkfl(1_Z)fllzdz
dv wdV)y (V-E)? 0
Integration gives :V(2k>/2k5(% 1) (41)
1 2 .
2 (V(dP/dE)dE _ _ _ .
X(V)=— VBT (38)  As in the oscillator problemB(1/k,1/2) is the beta function,
TJo valid for positivek. Hence Eq(41) gives
Equation(36) is an implicit relationship between the dis- V(x) X220, (42)

crete energy levelg,, and the corresponding quantum num- o _ )
bersn=0,1,2.... Thus the derivatived®/dE is more prop- Some cases of physical interest are given in Table |. Note
erly approximated byA®/AE. We note, however, that the that for Ex=n~? (not listed, Eq. (42) gives the correct
WKB approximation improves asincreases andE/E gets  duasi-Coulomb™ potentialV(x)>=1/x. (Although the beta

smaller. In this limit the energy spectrum becomes quasifunction is not defined fok=—2, the integral nevertheless
continuous. Thus exists) The tabulation shows how the energy level spacing
depends on the “rate of climb” of the potential function.

de i Ad) A® An In applying the WKB quantization condition to the above
dE _Agzo AE _AéTO An AE cases, we assume thatvaries from —c to +o. For the
analysis of a spherically symmetric potential in which the
Th i (An) coordinater varies from 0 tox, the quantization condition is
=———p lim|—
22m)¥2 LT\ AE fo 3\ wh
d)(E)Ef [E=V(r)]dr={n+ — 75
ah dE -1 0 4 (Zm)
- 2(2m)172(ﬁ) ’ (39 n=0,12,..., (43)
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Where the turr"ng p0|mo |S glven byv(ro) = E_14 Equatlon 5|_ D. Landau and E. M. LifshitzMechanics(Pergamon, Oxford, 19]6
(43) is valid for s states(zero angular momentumThe  3rd ed. pp. 27-29.

. . . . 6 i i
method of solution is the same as before, witteplacingx. See, for example, thEncyclopedia of Mathematid¥luwer, Dordrecht,
19898, Vol. 1, pp. 5-6.
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