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If physics students are exposed at all to inverse problems, it is usually in the context of specialized
treatments of quantum scattering processes. Inverse problems are, however, important in a wide
variety of applications, such as gravitational lensing, seismological exploration, and underwater
acoustic tomography. Students can be introduced to inverse problems in undergraduate courses in
mechanics, optics, and quantum mechanics. This paper presents some simple examples whose
solution in each case involves Abel’s integral equation, illustrating the ubiquity of this mathematical
relation in diverse areas of physics. ©2000 American Association of Physics Teachers.

I. INTRODUCTION

In one form or another, inverse problems have been a
subject of study for a very long time. Such problems involve
the inversion of data to obtain information about forces or
characteristics of the physical medium. They are exemplified
in a classic paper by Mark Kac entitled, ‘‘Can one hear the
shape of a drum?’’1 Specifically, what can be inferred about
the boundary configuration of a membrane from a knowl-
edge of the eigenvalues of the normal modes of vibration?

Inverse methods are powerful mathematical tools, cur-
rently employed in several areas of physics. For example, in
astrophysics, gravitational lensing is an inverse technique
that is used to detect the presence of dark matter in the
universe.2 The light from a distant star or galaxy is bent by
gravity as it passes near an invisible body closer to the ob-
server. Multiple images are formed from which the mass of
the unseen object can be estimated. In seismological explo-
ration, travel times of elastic waves produced by pulsed
sources are recorded to determine the depth, thickness, and
composition of geological layers of the earth.3 As part of a
study of global warming, oceanographers are measuring the
long-term changes in underwater sound speeds associated
with temperature variations.4

As an example of an inverse problem, consider the one-
dimensional motion of a particle subject to a force that is a
function of thex coordinate alone:

m
d2x

dt2
5F~x!.

A single integration of this equation gives the law of conser-
vation of energy,

1

2
mS dx

dt D
2

1V~x!5E, ~1!

in which V(x) is the potential energy andE the total energy.
Since the kinetic energy is non-negative, the particle must be
confined to regions of space whereV(x)<E. In the example
of Fig. 1, the motion can only occur in the regionsx1,x
,x2 or x.x3 . The pointsx1 , x2 , and x3 , at which V(x)
5E, are theturning pointsof the motion, where the velocity
is zero.

If the particle is initially in the region between the turning
points x1 and x2 , the subsequent motion is bounded and

oscillatory. The period of the motion is found by solving for
dx/dt in Eq. ~1! and integrating with respect tox. The result
is

t~E!5~2m!1/2E
x1

x2 dx

@E2V~x!#1/2. ~2!

In the direct problem, we assume that the potential energy
function is known, in which case Eq.~2! can in principle be
used to obtain the period. Our concern here, however, is in
the inverse problem: Given the period as a function of the
total energy, find the functional form of the potential energy.
This problem is discussed by Landau and Lifshitz.5 It in-
volves the solution of Abel’s integral equation, which was
investigated more than a century ago.6

We are interested in showing how similar problems arise
in several different areas of physics. One may ask, for ex-
ample: Can the force of interaction between colliding par-
ticles be determined from a knowledge of the angular depen-
dence of the impact parameter? Can the variation of the
index of refraction of an optical medium be found from the
ray paths? Or, in quantum mechanics, can the form of the
potential energy function be deduced from a knowledge of
the energy level spacings?

Section II gives the Landau and Lifshitz solution of the
inverse oscillatory problem. Section III illustrates the inverse
problem in classical scattering theory. Sections IV and V
present problems in geometrical optics and quantum me-
chanics and show some interesting special cases.

II. THE INVERSE OSCILLATOR PROBLEM

Suppose that from Eq.~2! we wish to findV(x), assuming
that t(E) is known. In the integrand we consider the coor-
dinatex to be a function ofV, replacingdx by (dx/dV)dV.
We shall restrict ourselves to even functionsV(x)
5V(2x), symmetrical about theV axis. Then Eq.~2! be-
comes

t~E!52~2m!1/2E
0

E ~dx/dV!dV

~E2V!1/2 . ~3!

For convenience, we have taken the origin at the point of
minimum potential energy, which we assume to be zero; that
is, V(0)50.
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To solve this integral equation, multiply both sides by
(s2E)21/2 and integrate with respect toE over the range
0<E<s. Heres is simply a parameter. The result is

E
0

s t~E!dE

~s2E!1/252~2m!1/2E
0

s dE

~s2E!1/2E
0

E ~dx/dV!dV

~E2V!1/2

52~2m!1/2E
0

sE
0

E ~dx/dV!dVdE

~s2E!1/2~E2V!1/2. ~4!

Next we change the order of integration. From Fig. 2, we see
that the double integral in Eq.~4! is over the triangle in the
first quadrant above the lineV5E and extending from the
origin to the horizontal lineE5s. The V integral ranges
from zero to the lineV5E, indicated by the horizontal strip
of width dE in the figure. Then theE integral sums over the
horizontal strips fromE50 to E5s, covering the whole
triangle.

Let us integrate with respect toE first. The E integral
extends from the lineE5V to E5s, indicated by the vertical
strip of widthdV. TheV integral sums over the vertical strips
from V50 to V5s. Making this change, we obtain

E
0

s t~E!dE

~s2E!1/252~2m!1/2E
0

sS dx

dVDdV

3E
V

s dE

~s2E!1/2~E2V!1/2. ~5!

In the second integral on the right-hand side of Eq.~5!, we
introduce the new variablew5(s2E)/(s2V). This integral
is then found to be a beta function whose value isp :

E
0

s dE

~s2E!1/2~E2V!1/25E
0

1 dw

w1/2~12w!1/2

5B~ 1
2 , 1

2!5p.

The integration overV is trivial. When we writeV in place
of s, we obtain the final result

x~V!5
1

2p~2m!1/2E
0

V t~E!dE

~V2E!1/2. ~6!

As an example, suppose it is found thatt(E)}E21/4. The
integral in Eq.~6! in this instance is

x~V!}E
0

V dE

E1/4~V2E!1/25V1/4E
0

1

w21/4~12w!21/2dw

5V1/4B~ 3
4 , 1

4!.

Thusx}V1/4, or V}uxu4, taking into account the symmetry
requirement. This is the case of the classical anharmonic
oscillator.

As mentioned in Sec. I, the oscillatory problem with solu-
tion Eq. ~6! illustrates the generalized Abel equation,

f ~s!5E
a

s f~j!dj

~s2j!a ~0,a,1!, ~7!

where f (s) is a known function andf(j) is to be deter-
mined. Upon inverting Eq.~7!, we obtain

f~j!5
sinpa

p

d

dj Ea

j f ~s!ds

~j2s!12a . ~8!

The factor (sinpa)/p is just the reciprocal of the beta func-
tion B(12a,a). In the special casea51/2, Eq. ~7! is
known as Abel’s integral equation.7

The conditions that Eq.~7! have the continuous solution
Eq. ~8! in the intervala<s<b are given by Boˆcher:8 ~1!
f (s) must be continuous in the interval;~2! f (a)50; and
~3!, *a

j f (s)(j2s)a21 ds must have a continuous derivative
in the interval, except thatf (s) may possess a finite number
of finite discontinuities in the interval.

The generalized Abel equation, Eq.~7!, can also be solved
by applying the Laplace convolution theorem.9 The Abel
equation appears in a wide variety of inverse problems, ex-
amples of which are given below.

III. CLASSICAL SCATTERING

Inverse methods are used extensively in scattering prob-
lems, in which the objective is to determine the force of
interaction between the incident and scattered particles from
the differential cross section or some related quantity. It is
not our purpose to discuss the general analysis but rather to
give an example encountered in classical mechanics—that of
Rutherford scattering. The general problem has been dis-
cussed by Keller, Kay, and Shmoys.10 The analysis presented
here differs somewhat from theirs. The aim is to find the
scattering potential,V(r ), as a function of the polar coordi-
nater.

In Rutherford scattering, an incident particle of massm,
chargeq1 , and center-of-mass kinetic energyE is scattered
by a heavy stationary particle of chargeq2 ~see Fig. 3!. Sup-
pose that from analysis of experiments the impact parameter,
b, is found to be

b5
q1q2

8pe0E
cotS u

2D , ~9!

Fig. 1. A potential function with three turning points. Particle motion can
occur in the regionsx1,x,x2 or x.x3 .

Fig. 2. Region of integration for Eq.~4!.
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where u is the scattering angle.11 The impact parameter is
related to the angular momentum,L, and the energy,E, by

L5mvb5~2mE!1/2b. ~10!

The scattering angle is given by

u5p22f, ~11!

where

f5
L

~2m!1/2E
0

umax du

F ~E2V!2
L2u2

2m G1/2. ~12!

Equations~10!–~12! are independent of the details ofV(r ).
Here u5r 21, where r is the polar coordinate;umax corre-
sponds tor min , the distance of closest approach of the inci-
dent particle to the scattering center.

Our goal is to findV(r ) by using integral equations, given
Eq. ~12! and the preceding equations. If we setU[V
1L2u2(2m)21, Eq. ~12! becomes

f5
L

~2m!1/2E
0

umax du

~E2U !1/2. ~13!

We change variables by writingdu5(du/dU)dU, and note
that U(umax)5E. Thus

f5
L

~2m!1/2E
0

E ~du/dU!dU

~E2U !1/2 . ~14!

This is Abel’s integral equation, which can be solved using
Eqs.~7! and~8! to give the equation of the potential function
in the form

u~U !5
~2m!1/2

pL E
0

U f~E!dE

~U2E!1/2. ~15!

The functionf(E) is found by combining Eqs.~9!–~11!:

f~E!5
p

2
2cot21S LE1/2

a D , ~16!

where

a[~2m!1/2S q1q2

8pe0
D .

Substituting Eq.~16! in Eq. ~15! gives

F pL

~2m!1/2Gu5E
0

U f~E!dE

~U2E!1/25I 5I 12I 2 , ~17!

where

I 15
p

2 E
0

U dE

~U2E!1/2 ~18!

and

I 25E
0

U cot21~LE1/2/a!dE

~U2E!1/2 . ~19!

IntegratingI 2 by parts, we get

I 25pU1/22
L

a E
0

U ~U2E!1/2dE

E1/2~11L2E/a2!
.

Settingy25E/U andd25a2/L2U, we obtain

I 5
2a

L E
0

1 ~12y2!1/2dy

d21y2 5
2a

L
•

p

2 F ~d211!1/2

d
21G .

~20!

Then Eq.~17! gives

F pL

~2m!1/2Gu5
pa

L F S 11
L2U

a D 1/2

21G . ~21!

Solving for U, we obtain

U5
2au

~2m!1/21
L2u2

2m
5V~u!1

L2u2

2m
.

Recalling thatu51/r , we have, finally,

V~r !5
2a

~2m!1/2r
5

q1q2

4pe0r
, ~22!

as expected for Rutherford scattering.
In some applications, the differential scattering cross sec-

tion D(u) may be more readily determined than the impact
parameterb(u). The function f(E) in that case can be
found from the relation

L252mEE
0

p22f

D~u!sinu du, ~23!

assuming that the integral can be evaluated as a function
of f.

IV. GEOMETRICAL OPTICS

An inverse problem in ray optics is the following: Given
the trajectories of light~or sound! rays, find the variation of
the refractive index of the mediumn, with respect to a posi-
tion coordinate. Consider a ray path in thex–y plane in a
medium in whichn varies continuously in they direction
only. Let u be the ray angle at an arbitrary point~x,y!, mea-
sured with respect to thex axis, andu0 be its value at the
origin ~see Fig. 4!. We taken(0)51. Snell’s law, valid for
any point in the medium, is then

n~y!cosu5cosu0 . ~24!

Sincedx/dy5cotu, it follows that

x5E cosu0 dy

@n2~y!2cos2 u0#1/2. ~25!

It is convenient to introduce dimensionless variables
x85ax andy85ay and write

Fig. 3. The classical scattering problem showing the impact parameterb and
the scattering angleu.
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x85E cosu0 dy8

@n2~y8!2cos2 u#1/2. ~26!

Consider optical media in which the ray with angleu0 at the
origin has a turning point (u50) aty85h, whereh is given
by n(h)5cosu0, according to Eq.~24!. If we define the
‘‘half-range’’ of such a ray by the relation

xy5h8 [r~u0!, ~27!

then Eq.~26! yields

r~u0!5E
0

h cosu0 dy8

@n2~y8!2cos2 u0#1/2. ~28!

With the substitutionsn2(y8)5j, cos2 u05s, and dy8
5(dy8/dj)dj, this equation becomes

r~u0!56
1

i E1

s s1/2~dy8/dj!dj

~s2j!1/2 . ~29!

If, further, we setr(u0)/s1/25 f (s), and 6(1/i )(dy8/dj)
5f(j), Eq. ~29! assumes the form of Eq.~7! with a51, a
5 1

2. The solution, following Eq.~8!, is

y85
1

p E
1

j r~u0!ds

s1/2~s2j!1/2. ~30!

Note that r(u0) is a function of s through the relation
cos2 u05s. Equation~30! is the result we seek. We solve for
y8(j)5y8(n2), thence forn(y8).

The variation ofn with y can also be found from the travel
time along the ray to the turning point using the formula

dy8

dj
5

1

pj

d

dj E1

j tr8ds

~s2j!1/2.

Here t8 is the dimensionless timeac0t, wherec0 is the op-
tical velocity at the origin, andtr8 is its value at the half-range
point r(u0). Like r(u0), tr8 is a function of s, since s
[cos2 u0.

An example is provided by parabolic ray paths, satisfying

x852 cosu0@sinu06~sin2 u02y8!1/2#. ~31!

For this case, the half-range is

r~u0!52 cosu0 sinu052s1/2~12s!1/2.

Then Eq.~30! gives

y85
2

p E
1

j ~12s!1/2ds

~s2j!1/2 512j512n2~y8!.

Thus

n2~y8!512y8, or n2~y!512ay. ~32!

This example furnishes a nice illustration of the well-
known analogy between geometrical optics and classical me-
chanics. Parabolic rays correspond to parabolic particle tra-
jectories in projectile motion, witha→2g/v0

2, wherev0 is
the initial velocity andg the acceleration due to gravity.
Therefore,

n2~y!512ay→12S 2g

v0
2 D y512

mgy
1
2 mv0

2
512

V

E
.

A kind of Snell’s law for two-dimensional classical-
mechanical motion is

S 12
V

ED 1/2

cosu5cosu0 .

The inverse formulation for geometrical optics allows us
to address an especially intriguing question: Is there a refrac-
tion index profile such that all rays, regardless of initial ray
angle, have the same half-range and hence return to thex8
axis at the same point? This is the case for whichr(u0) is a
constant, independent ofu0 , and which we might as well
take to be unity. For this example, Eq.~30! is

y85
1

p E
1

j ds

s1/2~s2j!1/2. ~33!

Here it is convenient to letu25s. Then

y85
2

p E
1

j1/2 du

~u22j!1/25
2

p
cosh21S u

j1/2D U
1

j1/2

52
2

p
cosh21~j21/2!.

Taking account of the fact that the hyperbolic cosine is an
even function, and recalling thatj1/25n(y8), we obtain the
solution

n~y8!5sechS py8

2 D , ~34!

for the required variation of the index of refraction.
It turns out that the travel time in the horizontal direction

is also the same for all rays. We can easily find an expression
for the dimensionless travel timet85ac0t analogous to Eq.
~26!:

t85E n2~y8!dy8

@n2~y8!2cos2 u0#1/2.

The travel timeDt8 to half-range is calculated by evaluating
this integral between zero andh, wheren(h)5cosu0. Using
Eq. ~34!, we can show thatDt851, or Dt51/ac0 , indepen-
dent of the initial angleu0 . Thus the hyperbolic secant pro-
file gives rise to perfect focusing and zero time dispersion.

This very special case has been studied in connection with
fiber optics. The theoretical optimum index of refraction pro-
file for graded-index optical fibers that optimizes the meridi-
onal modes isn(r )5n0 sech(ar), wherer is the radial coor-
dinate of a cylindrical fiber.12

Fig. 4. Geometry of a ray path for whichn5n(y).
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V. QUANTUM MECHANICAL BOUND STATES

In quantum mechanics an inverse problem for bound
states is as follows: Given a set of discrete energy eigenval-
ues, find the functional form of the potential energy,V(x).
The problem can be approached via the Wentzel–Kramers–
Brillouin ~WKB! method, also known as the semiclassical
approximation. The approximation is valid when the poten-
tial is a slowly varying function ofx, i.e., when

UdV~x!

dx U! 1

\m
@2m~E2V~x!!#3/2.

Herem is the particle mass,E2V is its kinetic energy, and\
is Planck’s constant divided by 2p.

The WKB quantization condition for a one-dimensional
potentialV(x) is

E
x1

x2
@E2V~x!#1/2dx5~n1e!

p\

~2m!1/2, n50,1,2,...,

~35!

wheree is a fraction, andx1 andx2 are the classical turning
points of the motion. IfV(x) is an even functionV(x)
5V(2x), increasing monotonically forx.0, thene5 1

2 and
Eq. ~35! can be written13

F~E![E
0

a

@E2V~x!#1/2dx5S n1
1

2D p\

2~2m!1/2, ~36!

wherea is given byV(a)5E. DifferentiatingF with respect
to E, and changing the variable of integration fromx to V,
we get

dF

dE
5

1

2 E0

E ~dx/dV!dV

~E2V!1/2 . ~37!

Here we tacitly assume thatV(0)50 by a suitable choice of
energy scale. Equation~37! has the same form as Eq.~7!,
whose solution is Eq.~8!. The latter yields the result

dx

dV
5

2

p

d

dV E
0

V ~dF/dE!dE

~V2E!1/2 .

Integration gives

x~V!5
2

p E
0

V ~dF/dE!dE

~V2E!1/2 . ~38!

Equation~36! is an implicit relationship between the dis-
crete energy levelsEn and the corresponding quantum num-
bersn50,1,2... . Thus the derivativedF/dE is more prop-
erly approximated byDF/DE. We note, however, that the
WKB approximation improves asn increases andDE/E gets
smaller. In this limit the energy spectrum becomes quasi-
continuous. Thus

dF

dE
5 lim

DE→0
S DF

DE D5 lim
DE→0

S DF

Dn

Dn

DED
5

p\

2~2m!1/2 lim
DE→0

S Dn

DED
5

p\

2~2m!1/2 S dE

dnD 21

, ~39!

where we regarddE/dn as a function ofE. Substituting this
expression in Eq.~38!, we arrive at

x~V!5
\

~2m!1/2E
0

V dE

~dE/dn!~V2E!1/2. ~40!

The example of the harmonic oscillator illustrates the
method. For this case,En5(n11/2)\v anddE/dn5\v, so
that

x~V!5
\

~2m!1/2

1

\v E
0

V dE

~V2E!1/25
2

v S V

2mD 1/2

.

Squaring and rearranging terms, we obtainV(x)
5 1

2 mv2x2. Thus, knowledge of the energy levelspacing
~the dependence onn! is sufficient to determine the func-
tional form of V(x), at least under the conditionsV(x)
5V(2x) andV(0)50, and within the limits of applicability
of the WKB approximation.

To generalize the preceding example, suppose thatE is
proportional tonk. ThendE/dn}nk21}E121/k. Substituting
this in Eq.~40!, we obtain

x~V!}E
0

V

E1/k21~V2E!21/2dE

5V~22k!/2kE
0

1

z1/k21~12z!21/2dz

5V~22k!/2kBS 1

k
,
1

2D . ~41!

As in the oscillator problem,B(1/k,1/2) is the beta function,
valid for positivek. Hence Eq.~41! gives

V~x!}x2k/~22k!. ~42!

Some cases of physical interest are given in Table I. Note
that for En}n22 ~not listed!, Eq. ~42! gives the correct
‘‘quasi-Coulomb’’ potentialV(x)}1/x. ~Although the beta
function is not defined fork522, the integral nevertheless
exists.! The tabulation shows how the energy level spacing
depends on the ‘‘rate of climb’’ of the potential function.

In applying the WKB quantization condition to the above
cases, we assume thatx varies from 2` to 1`. For the
analysis of a spherically symmetric potential in which the
coordinater varies from 0 tò , the quantization condition is

F~E![E
0

r 0
@E2V~r !#dr5S n1

3

4D p\

~2m!1/2,

n50,1,2,..., ~43!

Table I. Functional form of potential energy forEn}nk in the WKB ap-
proximation in quantum mechanics.

n dependence
of En V(x) Physical case

n2/3 }uxu Ramp
n }x2 Harmonic

oscillator
n4/3 }x4 Anharmonic

oscillator
n2

¯ Infinite square well
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where the turning pointr 0 is given byV(r 0)5E.14 Equation
~43! is valid for s states~zero angular momentum!. The
method of solution is the same as before, withr replacingx.
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