because Planck outlived Hertz by 53 years!

31n his Scientific Autobiography Planck refers to Kundt as: “...the tempera-
mental director of the Physics Institute, universally liked for his genuinely
kind human feelings.” [Max Planck (Ref. 1), on p. 25].

*0n this see Heilbron (Ref. 33), especially chapter 4, pp. 149~203.
4OMax Planck, “Mein Besuch bei Adolf Hitler,” Phys. Bl. 3, 143 (1947). In

this very brief report, Planck writes that he was still able to repeat verba-
tim Hitler’s words to him.
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Examination of two alternative models of a bead slidiﬂg on a rotating circular wire reveals the
meaning of a conserved Hamiltonian where it is not the total energy. Analogies to other such dual

treatments are discussed.

I. INTRODUCTION

When first exposed to Lagrangian mechanics many stu-
dents experience a sense of euphoria which translates into an
ability to forge ahead with the formulation of mechanics
problems which, just previously, had seemed frought with
almost insurmountable difficulty. In the typical course the
emergence of the Lagrangian from the instructor’s bag of
tricks is preceded by an F=ma approach to “toughies,” such
as the double pendulum and a cylinder rolling on a cylinder
rolling on a plane, which seriously tax students’ geometric
abilities.

Once past the honeymoon of the first set of hand-picked
problems chosen to advertise the method, the student realizes
that Lagrangian mechanics also has its nonintuitive aspects,
now perhaps made more so by being buried under one more
level of formalism. Finding forces of constraint via Lagrange
multipliers, and the various caveats associated with time-
dependent Lagrangians, velocity-dependent forces and cases
in which L#T—V were not designed by the Madison Av-
enue of Physics. (All of these terms and more are explained
and exemplified in standard graduate mechanics texts such as
those by Goldstein! and Corben and Stehle)z. Nevertheless,
the use of a scalar function rather than vectors and (implicit)
antisymmetric tensors such as angular momentum is univer-
sally accepted as worth almost any price. In the pedagogy of
the subject it is therefore useful to have simple examples
which showcase problems that arise in more complex “real-
istic” cases.

We wish to point out a new use, in this spirit, for a well-
known example: a bead (i.e., point mass m) sliding on a
smooth, vertical, circular wire rotating with angular velocity
w in a uniform gravitational field g. This delightful problem
is an example of a case in which, although the transformation
to generalized (in this case rotating) coordinates is time-
dependent, the Lagrangian is not time-dependent, and hence
the Hamiltonian is a constant of the motion. It is used to
study linear stability around steady motion. It even contains
a parametric bifurcation or “crossover” between two linearly
stable solutions, allowing a simple example of the treatment
of nonlinear stability. The details of this problem appear in
many books on mechanics, notably the impressive one by
Amold,®> and also the undergraduate text by Baierlein,*
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which also offers an F=ma approach, and we will not repeat
them here. One may now ask, “If the Hamiltonian is a con-
stant of the motion, but not the. total energy, what is it? After
all, it does seem like an energy.” The answer, given most
completely by Landau and Lifshitz,” is that it is the energy in
the rotating reference frame. Here we will construct a model
with one more degree of freedom for the same physical situ-
ation for which the Hamiltonian is the total energy and com-
pare the two models.

II. THE USUAL TREATMENT

The Lagrangian for the bead sliding on a circular wire is
given by

L=(ma?/2)(*+ w?® sin®> @) +mga cos 6,

where m is the mass of the bead, a is the radius of the wire,
w is the angular velocity of the wire, and (constant) gravity
(g) is in the —z direction (see Fig. 1). Note that there is an
implicit time dependence because the bead is moving with an
azimuthal angular velocity ¢=w, otherwise expressed as the
time-dependent constraint ¢=wt in a system with two de-
grees of freedom. For simplicity we de-dimensionalize this
expression by measuring energy in units of mga and time in
units of (a/g)'/*: Let L=mga.$%, t=(a/g)""*r. We make
the new identification x=dx/dr and also define
w=(g/a)"*Q. We find

F=(1/2)(8*+ Q2 sin® 6)+cos 6.
Using the usual definition, the conserved Hamiltonian is
H,=(1/2)(8*—Q? sin® §)— cos 4.

Here the subscript on # identifies this expression as related
to the constant frequency formulation. We have not made use
of the obvious identification p ;=6 because there will be no
further use of Hamiltonian formalism. The naive expectation
would surely be that what appears to be the kinetic energy
would consist of positive terms. We will return to this point
after examining an alternative treatment.
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Fig. 1. The bead of mass m sliding on a smooth circular wire of radius a
rotating about the vertical (z) axis, which is a diameter of the wire. The
horizontal (x,y) plane is shaded. The plane of the wire is unshaded where it
is above the (x,y) plane. All significant lines below the horizontal plane are
dashed. Spherical coordinates (6,¢) are used to describe the position of the
bead. In the usual treatment, ¢=wt.

1I1. THE ALTERNATIVE TREATMENT

In our “strictly conservative” model we let the wire have
a mass M, with M>m. The Lagrangian for this model is
given by

L=(1/2)I¢*+(ma?/2)(+sin® 6¢%)+mga cos 6,

where I=Ma?/2 is the moment of inertia of the wire. Intro-
ducing the same changes in notation as in the previous
model, with the additional definition, .Z=M/2m, which is a
measure of the ratio of the inertias of the wire and the bead,
we find the following Lagrangian:

F=(1/2)[ 0*+ (H+sin? 6)$*]+cos 6.

This model has two degrees of freedom, but use of conser-
vation of angular momentum about the axis of rotation,
which is the physical way of saying that ¢ is a cychc vari-

able, and is expressed dimensionlessly as I=(.Z +sin® )¢,
results in the following Hamiltonian:

H,=(1/2)[ 6>+ 12/(M+sin® 6)]—cos 6,

where #, refers to the conservative formulation. By naive
intuition this formulation does all of the “right things.” In
particular the kinetic energy consists of positive terms. This
is to be expected, because the coordinate system used is not
rotating.

IV. COMPARISON OF THE TWO FORMULATIONS

7

Of course the two formulations are not entirely equivalent,
but they become ever more so as .# becomes ever larger. To
see this we expand the second term in the kinetic energy in
powers of .Z ! with the result

H,.=(1/2)[ 6%+ /.4~ (1| #)?sin® §+h.o.t.]
—cos 6.
Our expression for angular momentum makes it clear that

I/ is the angular velocity of the wire, which maintains a
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constant value in the limit that .# becomes very large.® We
identify I/ # = (), the angular velocity in the first formu-
lation, and drop all terms which go to zero as inverse powers
of 7. The result is

FH.=10/2+(1/2)(6*—Q? sin® 6)—cos 6.

The final identification #,=%#,—1€)/2 establishes the
equivalence of the two formulations. The difference between
the two Hamiltonians is seen to be just the enormous kinetic
energy of rotation of the wire, a suitably intuitive result. The
occurrence of the negative term in S, plays the same role
here as the term —(1/2)Q? sin®  plays in #,,, in accord
with the treatment of Ref. 5. It is also interesting to note that
no qualitative changes occur in the motion even if the mass
of the wire is not very large!

V. DISCUSSION

There are many similar cases in which a dynamical con-
straint can be replaced to a very good approximation by an
extra degree of freedom along with an extra conservation
law. “Very good approximation” usually means that some
property of the extra degree of freedom is exceptional in
some way, just as the mass of the wire is very large in our
calculation, so that the backreaction on the extra degree of
freedom is not apparent. In most of these cases the added
conservation law is conservation of energy, particularly when
“the usual treatment” is time-dependent, whereas in our
problem the added conservation law is conservation of angu-
lar momentum, because the Hamiltonian is conserved in both
alternative models. Some examples are:

(1) The behavior of a dielectric moving in and out of a
capacitor whose plates are maintained at constant potential
difference by a generator which can be modeled as an extra
degree of freedom with a very large charge

(2) A corresponding magnetic problem in which a small
magnet rotates in the field of a large electromagnet. A La-
grangian treatment of this system treating the source of the
magnetic field as an extra degree of freedom was carried out
long ago by Broer.® (3) The semiclassical theory of the inter-
action of radiation with an atom, as treated in every first year
graduate text on quantum mechanics, involves a similar ap-
proximation. The radiation field is thought of as a single field
mode which can interact resonantly with the atom. It has
many quanta so that it can be treated as a classical field with
minimum disturbance to itself.

(4) In the same spirit an analog pair of treatments exists
for the study of the kind of simple dynamical system that a
physicist is likely to consider: A periodically driven nonlin-
ear system with one degree of freedom can be modeled with
accuracy by a conservative system with a heavy mass oscil-
lator replacing the driver. In effect one replaces an equal time
map by a Poincaré section. These treatments are similar in
the sense that they both are capable of deterministic chaos.
Jargon has it that both of these have “one-and-a-half degrees
of freedom.”? However, chaotic systems are sufficiently sen-
sitive so that details of the attractor and basin of attraction
structures may show small qualitative changes in a compari-
son of the two models.

The reader unfamiliar with these examples is encouraged
to look up the references given and consider each one from
the point of view of our present treatment.
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It is useful to point out the mechanical origin and the
similarities of a set of current problems of this diversity
when teaching “passé” classical mechanics.

'H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading,
MA, 1980).
2H. C. Corben and P. Stehle, Classical Mechanics (Wiley, New York, 1960;
2nd edition, reprinted by Dover, New York, 1994).
3V. 1. Amold, Mathematical Methods of Classical Mechanics (Springer,
New York, 1978, or 1989), pp. 87 and 88.
“R. Baierlein, Newtonian Dynamics (McGraw—Hill, New York, 1983), pp.
131-136.
L. D. Landau and E. M. Lifshitz, Mechanics, Volume 1 of Course of
Theoretical Physics, 3rd ed. (Pergamon, Oxford, 1976).

®Although paradoxically this expression may appear to depend on m be-
cause .7 depends on m, one must remember that the dimensionless angu-
lar momentum / also depends upon m, and the dependences cancel. This is
an example of the loss of intuition that may occur when using dimension-
less units, partially negating the simplicity they afford.

7J. R. Reitz, F. I. Milford, and R. W. Christy, Foundations of Electromag-
netic Theory, 31d ed. (Addison—Wesley, Reading, MA, 1979), pp. 125—
128.

31, J. F. Broer, “On the statistical mechanics in a magnetic field,” Physica
XII, 49-60 (1946).

°G. M. Zaslavsky, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov, Weak
Chaos and Quasiregular Patterns (Cambridge University, Cambridge,
1991); in particular, see Chap. 5.
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One of the more familiar systems in electrostatics is the parallel plate capacitor (PPC). While this
system has received considerable attention in the close plate approximation, little is known about the
exact solution for arbitrary plate separations. Although the solution was first given, in cylindrical
coordinates by Sneddon, it was part of a more general treatise on mixed boundary value problems
and appears to be unknown to much of the physics community. We present here a dedicated
derivation of the solution to the boundary value problem for parallel disks, in cylindrical
coordinates. The resulting expressions for potential and capacitance are in closed form, but depend
on a function f(¢) which is determined from an integral equation of the Fredholm type, known as
Love’s equation. By adopting an orthogonal series approach to the solution of Love’s equation, we
have calculated the capacitance for a number of plate separation to plate radius ratios. A quantitative
measure of the close plate approximation is then presented by comparing these values to those one

would obtain using the elementary capacitance equation €,A/d.

L. INTRODUCTION

In beginning studies of electrostatics, the parallel plate ca-
pacitor (PPC) receives as much attention as any topic cov-
ered. With one simplifying condition, “plate separation small
compared to plate area,” the system is reduced to elementary
status and becomes an ideal vehicle for exploring a variety of
concepts: symmetry, Gauss’s law, field energy, and of course
capacitance, to name a few. One topic which does not get
much attention, however, is the capacitance of a PPC with
arbitrary, but finite, plate separation and area. Although text-
book authors will qualitatively discuss “edge effects,” we
have not seen any attempt to quantify the “small separation
to plate area” phrase nor have we seen any reference to the
existence of exact solutions. In fact this system was solved
(for circular parallel disks) by two rather d1fferent ap-
proachcs The first solution was obtained by Nicholson,! us-
ing oblate spheroidal coordinates and later embellished by
Love.? A second solution was given by Snedden,’ using cy-
lindrical coordinates.

The Nicholson/Love approach is somewhat complicated
because it uses dual oblate coordinate systems. The solution
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requires Legendre functions of both types and the symmetry
is a bit forced as the circular plates are represented by flat
spheroids. The Snedden approach has its own complications
arising from the finite size of the circular plates. In cylindri-
cal coordinates the plates are not closed coordinate surfaces,
as in the oblate approach, and mixed boundary conditions are
required. The real difficulty with Snedden’s solution, how-
ever, is that solving the PPC is not the main focus of his
work. Sneddon’s primary interest is in solving dual integral
equations. His formalism, developed for maximum general-
ity, involves a maze of integral operators and abstract nota-
tion, which is then applied to the special case of the PPC.
Finally, we note that both approaches described above ar-
rive at the same result. The capacitance and also the potential
are derivable from a function f(¢), which is determined (us-
ing numerical techniques) from an integral equation of the
Fredholm type, known as Love’s equation. Much of the re-
cent interest in this problem begins with Love’s equation.*
Our objectives in this paper are first to solve the PPC in
cylindrical coordinates, the most natural coordinate system
for this system of circular parallel plates. This will assure
that our approach is equivalent to Snedden’s. Unlike Sned-
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