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We consider the problem of fitting curves to histograms in which the data obey multinomial or Poisson statistics. Techniques 
commonly used by physicists are examined in light of standard results found in the statistics literature. We review the relationship 
between multinomial and Poisson distributions, and clarify a sufficient condition for equality of the area under the fitted curve and 
the number of events on the histogram. Following the statisticians, we use the likelihood ratio test to construct a general X 2 statistic, 
X 2, which yields parameter and error estimates identical to those of the method of maximum likelihood. The X 2 statistic is further 
useful for testing goodness-of-fit since the value of its minimum asymptotically obeys a classical chi-square distribution. One should 
be aware, however, of the potential for statistical bias, especially when the number of events is small. 

1. Introduction 

Standard results from the theory of statistics are 
often overlooked by scientists searching for sophisti- 
cated methods to analyze their data. Though good 
high-level statistics books have been written expressly 
for experimentalists [1], we believe that some misunder- 
standing remains in the professional physics literature. 
A case in point is the fitting of curves to histograms in 
which the data are distributed according to multinomial 
or Poisson statistics [2,3]. It is well-known, for example, 
that common methods of chi-square minimization suffer 
certain difficulties (such as the under- or over-estima- 
tion of the area under a peak) which can be traced to 
the implicit assumption of a Gaussian distribution of 
the errors. Hence, the method of maximum likelihood is 
often employed, explicitly incorporating the appropriate 
distribution from the start. Some authors [4] nonetheless 
revert to a common (Gaussian derived) chi-square test 
for goodness-of-fit. Certainly one should question the 
straightforward use of a statistic as a test for goodness- 
of-fit when it is known to be based on an inappropriate 
parent distribution. Our examination of the professional 
statistics literature during the course of a graduate semi- 
nar on data analysis underlined the need for clarifica- 
tion of these and other problems in the physics litera- 
ture. 

To begin with, we must carefully define some 
nomenclature which is unambiguous and consistent with 
usage in the statistical literature. Curve-fitting typically 
involves three tasks: (a) determining the "bes t  fit" 
parameters of a curve, (b) determining the errors on the 
parameters, and (c) judging the goodness of the fit. In 
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the language of the statisticians, these are known as (a) 
point  estimation, (b) confidence interval estimation, and 
(c) goodness-of-fit testing. Because chi-square statistics 
are sometimes used for all three tasks, the distinction 
among them can become blurred. However, it is im- 
p o r t a n t  to maintain this distinction. In general, one 
need not use the same statistic for all three purposes. 
Indeed, some of the most powerful tests of goodness-of- 
fit have little practical utility for point estimation [1]. 
Thus, if one uses the method of maximum likelihood for 
point  and interval estimation, the choice of goodness-of- 
fit test(s) remains. 

Since statisticians typically consider multinomial 
problems, we review the connection between multi- 
nomial and Poisson statistics. This connection is related 
to the conditions under which the maximum likelihood 
fit preserves the number of events under the curve. Next 
we highlight some of the historical controversy in the 
statistics literature over the assumed superiority of the 
principle of maximum likelihood. We then review how 
the likelihood ratio test for goodness-of-fit gives a pre- 
scription for constructing a general chi-square statistic 
directly from the likelihood function. This general chi- 
square statistic can then be used for point estimation, 
confidence interval estimation, and goodness-of-fit test- 
ing. Finally, we mention the important  problem of 
biased versus unbiased estimation in the case of a finite 
sample size. 

2. Definitions and notation 

We consider a histogram (one- or multi-dimensional) 
having k bins labelled by the index i running from 1 to 
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k. We let 

n, = the n u m b e r  of events in the i th  bin, 
n = (n l ,n  2 . . . . .  nk), 
N - total n u m b e r  of events = Y~, n,. 
Our  task is to fit to the data  a theoretical curve with J 
parameters  labelled with the i n d e x j .  We let 

a = ( a l , O ~  2 . . . . .  a j  . . . . .  a j )  = the set of parameters ,  
y, = n u m b e r  of events predicted by the model to be 

in the i th  bin, 

Y = (.YI,Y2 . . . . .  Yk), 
N o = Y~, y, = total n u m b e r  of events predicted by the 

model. 
Note  that  y is a funct ion of a. If the model gives a 
con t inuous  probabi l i ty  dis t r ibut ion f instead of discrete 
bin contents ,  then rigorously we should compute  

y, = f f ,  (1)  

where the integral  is over the i t h  bin.  In this case, N o is 
truly equal to the area under  the fitted curve. In prac- 
tice, y/ is often approximated  by  the product  of the 
width  of the i th  bin and  the value o f f  somewhere in bin 
i, so that  N o is only approximately  the area under  the 
fi t ted curve. 

At  this point ,  we must  dist inguish between two dif- 
ferent  cases depending  on the na ture  of the experimen- 
tal data.  If the total  n u m b e r  of events N is f ixed by the 
design of the experiment,  then the dis t r ibut ion of the 
events among the b ins  is rigorously multinomial. On the 
o ther  hand,  if a count ing  exper iment  is designed to 
measure N,  then independen t  Poisson statistics apply [5]. 
In more subtle in-between cases, one must  decide which 
statistics are more  applicable.  Fortunately,  we report  
below that  in a large class of fitt ing problems,  the 
mul t inomial  and Poisson approaches  give identical 
est imates of the parameters  a. 

Numerous  statistics can be constructed from the 
quant i t ies  defined above. We let 
S = weighted least-squares statistic. 

= ~ i  W t ( F l i -  Y i )  z (neglecting correlations).  
Depend ing  on what  one uses for the weights %, this 
of ten takes on  one of the classical chi-square forms: 

X~ = Pearson 's  X 2 = Y~ 2 ( , , , -y,)  ×v,, 
i 

X~ = N e y m a n ' s  X 2 = Y'~ 2 ( h i - - y , )  / n , .  
t 

In mul t inomial  problems,  these defini t ions must  always 
be supplemented  by  the cons t ra in t  on y [6]: 

N = N  o, i.e., Ey,=~_~n¢.  
t t 

Part of the confusion about  X 2 statistics in the physics 
l i terature is due to a free use of the symbol X 2 and  
various forms laballed "modi f i ed  X 2' ' .  When  statisti- 
cians simply say "X 2 ", they usually mean  Pearson 's  X 2. 

When  they refer to a "modi f ied  X 2 ", they usually mean 
Neyman ' s  X 2. To avoid any misunders tanding,  we shall 
refer to each statistic by its full name or complete 
symbol. 

It is impor tan t  to note thai these are not the only 
possible X 2 statistics that one can construct.  A general 
definit ion of a "chi -square  statistic" is any function of n 
and y that  is asymptotically distr ibuted in the classical 
chi-square dis t r ibut ion [7]. This definit ion does not  al- 
ways include the weighted least-squares statistic S when 
the weights are chosen arbitrarily. For this reason, we 
have avoided the common  practice of calling it "X 2' '  

As is well-known, the principle of maximum likeli- 
hood may be used as a start ing point  to " 'derive" the 
statistic S with weights w, = 1/o, 2 when the parent  dis- 
t r ibut ions  are Gauss ian  with variances o, 2. One may 
equally well define statistics using the principle of maxi- 
m u m  likelihood directly for Poisson- and mult inomial-  
dis t r ibuted histograms. The two relevant likelihood 
funct ions are: 

Lp ( y: n ) = likelihood function for Poisson histograms 

= l l  e x p ( - y i ) ) 7 ' , / n , !  (2) 
i 

L,, ( y ;  n ) =  likelihood funct ion for mul t inomial  

his tograms 

= N ! l - I P ; ' / n i !  
i 

= N ! N N H y f f i / r t i  !, (3) 
i 

where ps = n i / N  in the mul t inomial  case. It is easy to 
verify that  Lp and L~  are related by 

L p ( y ; n )  = P(  N )  × Lm( y : n ) ,  

where 

P (  N ) = exp( - No ) N 2 ' / N ! ,  

N o = E ) '  , . 

This  is equivalent  to the s ta tement  that  the independent  
Poisson probabi l i ty  of observing a par t icular  n is the 
product  of the Poisson probabi l i ty  of observing the total 
n u m b e r  of events N and the mul t inomial  probabi l i ty  of 
observing n, given N [8]. 

One can make use of the powerful theorem on the 
l ikelihood ratio test for goodness-of-fit ,  found in ele- 
mentary  statistics textbooks [9], to construct  another  
statistic. This theorem, perhaps  not  as widely appreci- 
ated by physicists as it might  be, enables one to convert  
the likelihood funct ion into the form of a general X 2 
statistic. We let m be the true (unknown)  values of n 
that  one would get if there were no errors. Then one 
forms the l ikelihood ratio X defined by 

X = L ( y ; n ) / L ( m ; n ) .  

The likelihood ratio test theorem says that  the "likeli- 
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hood ×2, ,  defined by 

X 2 = - 2  In ~, = - 2  In L ( y ; n )  + 2 In L ( m ; n ) ,  

asymptotically obeys a chi-square distribution. One 
notes that the second term is independent of y, so that 
minimization of X 2 is entirely equivalent to maximiza- 
tion of the likelihood function L. The X 2 statistic may 
thus be useful for both estimation and goodness-of-fit 
testing. 

For the Poisson- and multinomial-distributed histo- 
grams, we may replace the unknown m by its bin-by-bin 
model-indpendent maximum likelihood estimation 
which is just n in both cases [10]. With the details given 
in the appendix, this leads to the Poisson likelihood 
chi-square, 

X 2 - 2 Y ] y , -  n, + n, ln(ni /y ,) ,  
s 

and the multinomial likelihood chi-square, 

2 - 2~]n,  ln(ni /y , ) .  X M m  - -  

t 

3. Historical background 

With all these possible test statistics available, one 
has naturally asked which is "best" in some sense, and 
perhaps, which is more "fundamental"? Interestingly, 
these "classical" statistics problems continue to arouse 
some controversy. In the 1981 opinion of Efron [11], the 
superiority of maximum likelihood as a device for sum- 
marizing data with a probability density function has 
never been seriously challenged. However, he dis- 
tinguishes this from maximum likelihood estimation of 
parameters, where it is less well founded. 

Before one is tempted to try to choose a "best" 
statistic, it is instructive to look at the historical devel- 
opments in the theory of statistics. The maximum likeli- 
hood method was in fact considered by Gauss, and 
studied extensively by Fisher and others [12]. We have 
already noted its familiar use to "derive" some 
chi-square statistics. 

The chi-square statistics can, however, stand on their 
own merits. Statisticians have considered them prim- 
arily in the multinomial context, including Pearson's 

2 [13]. In a landmark 1949 study of classic studies of Xp 
the multinomial problem, Neyman [14] studied the 

2 X2N, and t m a s  point estimators in the merits of Xp, 
asymptotic (large N) region. He found that all three 
estimators had a set of properties which he considered 
optimal. He called them "best asymptotically normal" 
(BAN) estimators. 

In 1962, Rao [15] introduced the concept of "second 
order efficiency" to try to describe the speed (as N 
increases) with which the various estimators approach 
their asymptotic properties. In a paper greeted en- 

thusiastically by many statisticians, Rao found that Lm 
was "best" according to his criteria, followed by X2v, 
with X~ being the worst of the three. 

As emphasized by Neyman and Rao, the class of 
BAN estimators is quite large. The conjecture that max- 
imum likelihood estimators are preferable to all other 
BAN estimators has not been proven generally, Indeed, 
there are plenty of examples in the literature where the 
likelihood method performs poorly. For a recent exam- 
ple where the likelihood function has bad problems, 
with many references to earlier examples, see the paper 
by Ferguson [16]. 

A small but persistent minority (most visibly Berk- 
son [7]) has repeatedly argued in favor of a general X 2 
statistic as the most "fundamental" statistic. They note 
that one can, for example, consider Lm to be "derived" 
from X2m. Thus, the question of which is the more 
fundamental statistic is, on one level, a semantic ques- 
tion, since various X 2 estimators are completely equiva- 
lent to corresponding likelihood estimators, and vice 
versa. On a deeper level, however, one would like to 
know which of different estimators to use, particularly 
since Berkson can give no general prescription, except 
to choose the easiest one to compute. This criterion of 
ease of computation, suggested in many contexts by 
various classical statisticians, seems somewhat artificial 
and rather obsolete for today's physicist armed with 
high-speed computers. For a lively 1980 paper presenta- 
tion of Berkson, followed by discussion from eminent 
statisticians, see ref. [7]. 

4. Preservation of the area 

While statisticians continue to debate the fine points 
of estimation theory, physicists continue to accumulate 
vast practial experience in fitting histograms. One topic 
which has attracted great interest is discovering which 
statistics, when minimized, preserved the number of 
events: 

N o = - E y , = ~ n , = - N .  (4) 

Often this condition is described as "preserving the 
area". This nomenclature is rigorously valid when y is 
actually computed from eq. (1), but is a slight misnomer 
when one uses approximate values of y in constructing 
the test statistic. Of course, in multinomial problems, 
the area is preserved for any statistic minimized, since 
the constraint N O = N is imposed. For Poisson-distrib- 
uted data, it has long been observed that in many cases 
maximum likelihood fits using Lp preserves the area, 
while chi-square fits using X~ and X 2 over-estimate and 
under-estimate the area, respectively. One can clarify a 
sufficient condition for a Poisson maximum likelihood 
fit to preserve the area. We prefer the following ap- 
proach. 
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For well-behaved likelihood functions, the extrema 
can be found by solving the "normal  equations" 
(vanishing first derivatives with respect to each parame- 
ter): 

~Lp/Oaj  = 0 ~ 0 In Lp/~Ot t = 0; j = 1 . . . . .  J .  (5) 

Plugging in Lp from eq. (2), we obtain 

O = ~ _ , ( n , - y i ) ( 1 / y , ) ( O y J O % ) :  j =  1 . . . . .  J. (6) 
i 

Suppose that one can find a new set of J parameters 
a '  = (a~ . . . . .  aS) which are functions of the old parame- 
ters with non-vanishing Jacobian 

a ( <  . . . . .  a S ) / a ( a ,  . . . . .  , , j )  * O, 

such that the functions y ( a )  can be rewritten as 

v, = < - g , ( , ~ i , , ~ ;  . . . . .  < , ) ,  (7)  

where the gi are functions which do not depend on a{. 
One can maximize Lp with respect to a': 

OLp/Sa  5 = 0 ~ 3 In Lp/Oa'j = 0; j = 1 . . . . .  J. (8) 

That  is, 

o = Y ~ ( n , - y , ) ( 1 / Y i ) ( O y J a a ' a ) ;  j = l  . . . . .  J .  (9) 
i 

Since the Jacobian is non-zero, the same extrema of Lp 
are found whether one uses eq. (6) or eq. (9). Using eq. 
(9) with j = 1, we obtain 

0 = ~ ( n, - y, ) ( 1 / a ~ & ) ( g i  ), 
i 

whence N = N 0. Hence, if the above parameter redefini- 
tion is possible, the maximization of Lp preserves the 
area [17]. Of course, one need not actually use the new 
parameter set when fitting. 

The simple interpretation of the above result is that 
if the parametrization allows complete freedom to ad- 
just the overall scale of the fit, then the area is pre- 
served. This will be true, for example, when the fitting 
function is a sum of arbitrarily complicated terms, each 
of which is multiplied by an independently adjustable 
parameter. 

5. Point estimation 

Now, suppose that the functions y~ can be 
transformed to the form given by eq. (7). Then at the 
extrema of Lp the constraint which distinguishes the 
multinomial distribution from the Poisson distribution 

is automatically satisfied. In this case we have the 
important  result that point estimation of the parameters 
will be the same whether one starts with Poisson or 
multinomial likelihood functions. 

This result can be envisioned in two ways. Geometri-  
cally, maximizing Lp finds the most likely parameters a o 
in the entire J-dimensional  parameter space, while max- 

imizing L m finds the most likely parameten~ m the 
( J -  1)-dimensional subspace constrained by the equa- 
tion N = N o. If the form (7) applies, then a 0 lies ill the 
( J  -- 1)-dimensional subspace, so that both methods are 
able to reach the same point. One arrives at the same 
conclusion algebraically by noting that X~,p (equivalent 
to Lp) and 2 Xa.m (equivalent to Ln,) differ only by the 
term ~ ( n , - y , ) .  If we know that this term vanishes at 
the extrema of Lp, we can impose this from the begin- 
ning, so that 2 XX.p and identical. XY,,,~ are 

When the point estimates from using L m and Lp are 
identical, then we may apply the results of many statis- 
tical studies of L m (which have generally ignored Lp) to 
our Poisson-distributed histograms. Thus, the question 
of "Poisson or multinomial?'" becomes moot in many 
common cases of maximum likelihood point estimation. 

6. Confidence interval estimation 

In the asymptotic region, the likelihood ratio test 
again allows us to find confidence intervals using X~ as 
a general chi-square statistic. Confidence interval esti- 
mation is discussed in detail by Eadie et al. [1], and 
summarized clearly by James [18]. Both give a prescrip- 
tion for tracing out the boundaries of confidence re- 
gions by finding contours of constant Lp (or equiva- 
lently, 2 XX.p). For finite N, one must in general study the 
specific problem (often by Monte Carlo methods [19]) 
in order to obtain the best results. 

We note that the question of "Poisson or multi- 
nomial?" can be relevant here, since the interval esti- 
mates are not identical even if eq. (7) is satisfied. 

7. Goodness-of-fit 

Traditionally, Lp has been used as a point- and 
interval-estimator, but not as often formulated as a 
goodness-of-fit test. For  example, one has sometimes 
used Lp for point estimation, but reverted to the statis- 
tic X~ or X~ for goodness-of-fit testing [4]. However, Lp 
can be used in a goodness-of-fit test simply by using the 
likelihood ratio test to define X~, as was done in section 
2. Thus, for those who desire a three-in-one (point 
estimation, interval estimation, and goodness-of-fit) test 
statistic, Xx 2 gives gives estimation results identical to 
maximum likelihood, and behaves asymptotically in the 
way that physicists expect a chi-square statistic to be- 
have. 

Even though X 2 has been discussed in the statistics 
literature for many years [20], one still finds papers in 
the physics literature which re-discover the maximum 
likelihood method of point estimation and call it "new"  
[3], while failing to take advantage of the likelihood 
ratio test of goodness-of-fit. 
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8. Small sample size: biased vs. unbiased estimation 

It would seem desirable to have the true value of a 
parameter equal to the mean of the distribution of 
estimates obtained from repeated independent identical 
experiments. Estimators with this property are called 
unbiased. Estimators from least squares and maximum 
likelihood methods are often biased, even though they 
are consistent (converge asymptotically to the true 
value). Correction for bias may be possible by direct 
evaluation of the expectation value of the estimator 
when the form of the parent distribution is known. 
However, in most cases the bias can easily be removed 
only to order 1 / N ,  and then usually at the expense of 
increased variance [21]. The method of weighted least- 
squares always produces unbiased parameter estimates 
provided the fitting function is linear in the parameters 
and the weights are independent of the parameters [22]. 

It is important to remember that the properties of 
the various X 2 statistics that make them useful for 
confidence interval estimation and goodness-of-fit test- 
ing are asymptotic. Unfortunately, for a finite sample 
size the probability distribution function of the mini- 
mum value of a test X 2 statistic may deviate from a X 2 
distribution, resulting in biased estimates and tests. Bias 
in confidence interval estimation means that statements 
made about expected frequency of occurrence will be 
misleading; bias in goodness-of-fit testing means that 
the probability of accepting a bad fit is higher than the 
probability of accepting a good fit. We would like to 
avoid both of these situations if possible. Sometimes a 
change of variable in the parameters can remove the 
estimation bias, but for the likelihood ratio the bias is 
invariant under such transformations [23]. The likeli- 
hood ratio test can be made unbiased by correcting for 
the bias in the parameters [24]. In any case, an unequiv- 
ocal improvement can be made to X 2 by applying a 
scale factor correction which adjusts the expectation 
value of X 2 so as to coincide with the expectation value 
of a X 2 variate with the same number of degrees of 
freedom [25]. Probably the safest thing one can do when 
N is small is to study the probability distribution func- 
tion of a test statistic by Monte Carlo simulation. 

Though it has considerable intuitive appeal, unbi- 
asedness is by no means a necessary condition for a 
good estimation rule [26]. One can argue that it is more 
desirable for an estimator to have the smallest possible 
expected mean-square-error (i.e., the smallest possible 
variance about the true value). It is quite possible for a 
biased estimate to have a smaller expected mean- 
square-error than does an unbiased one [27]. To quote a 
1975 article by Efron . . . .  in more complicated situations 
involving the estimation of several parameters at the same 
time, statisticians have begun to realize that biased estima- 
tion rules have definite advantages over the usual unbiased 

estimators [28]. This is a current topic of research in the 
field of statistical estimation. For a further discussion of 
this and other controversial topics in statistics, see ref. 
[11] and especially ref. [26] and references therein. 

9. Conclusion 

Of the many statistics available for fitting curves to 
Poisson-distributed histograms, the likelihood statistic 
Lp is popular because under condition (7) it guarantees 
that N O = N, i.e., that the area is preserved. Under these 
conditions, Lp and L m yield, upon maximization, the 
same point estimates of the parameters. Alternatively, 
one may obtain identical results by minimizing the 
chi-square statistics X2p and X]m in place of maxi- 
mizing Lp and L m, respectively. These chi-square statis- 
tics are also useful in interval estimation and tests of 
goodness-of-fit. For finite sample size (small N) general 
results are lacking; one must carefully study the prob- 
lem at hand in order to choose and interpret a test 
statistic. 

Appendix 

One obtains the form of 2 2 XX.p and Xx,m from the 
likelihood ratio test as follows. We estimate the true 
values m by n [10]. Then 

xp = Lp(y; ,,)/L~(n; n), 

where Lp( y; n) is given by eq. (2), from which 

Lp(n ;  n ) = 1 - I  e x p ( - n i ) n n ' / n i  !. 
i 

Thus 

Xp = l - I  exp( - y ,  + n i ) ( Y J n i ) " ' ,  
i 

from which 

X 2 - 2 1 n X p = 2 Y ' ~ y i - n i + n i l n ( n i / Y i ) .  X , p  = 

i 

Similarly, 

Xrn = t i n (  y ;  n ) / / t m ( n ;  R) ,  

where Zm( y; n) is given by eq. (3), from which 

L. , (  n; n)  = N!NUI-InT'/n,!. 
i 

Thus [29] 

x . ,  = I-I ( y , / n , ) " ' .  
i 

from which 

XZ,m = --2 In a m = 2 E n  i In (h i / y , ) .  
i 
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