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Introduction

Estadistica: un campo activo de investigacion para fisicos

Lo que vamos a ver, en buena parte, surge de papers de estadistica

publicados por fisicos en los ultimos 20-30 afos.
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CLARIFICATION OF THE USE OF CHI-SQUARE AND LIKELIHOOD FUNCTIONS

IN FITS TO HISTOGRAMS
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We consider the pmblem of fitting curves to histograms in which the data obey

ly used by physi are d in light of

between I and Poisson distri

Iti 1 or Poisson istics. Teck

d results found in the statistics literature. We review the relauons}up
3 and clanfy a sufficient condition for equamy of the area under the fitted curve and
i we use the li

the number of events on the h Foll g the

d ratio test to a general x? statistic,

x3. which yields parameter and error estimates identical to those of the method of maximum likelihood. The x3  statistic is further
useful for testing goodness-of-fit since the value of its minimum asymptotically obeys a classical chi-square distribution. One should

iall

be aware, however, of the p ial for statistical bias, espi

1. Introduction

Standard results from the theory of statistics are
often overlooked by scientists searching for sophisti-
cated methods to analyze their data. Though good
high-level statistics books have been written expressly
for experimentalists [1], we believe that some misunder-
slandmg remams in lhe professlonal physics literature.

T,

when the number of events is small.

the language of the statisticians, these are known as (a)
point estimation, (b) confidence interval estimation, and
(c) goodness-of-fit testing. Because chi-square statistics
are sometimes used for all three tasks, the distinction
among them can become blurred. However, it is im-
portant. to maintain this distinction. In general, one
need not use the same statistic for all three purposes.
Indeed, some of Lhe mosl powerful tesxs oi goodness»of-
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Statistics: an active field for physicists

PHYSICAL REVIEW D VOLUME 57, NUMBER 7 1 APRIL 1998
Unified approach to the classical statistical analysis of small signals

Gary J. Feldman
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousin's
Department of Physics and Astronomy, University of California, Los Angeles, California 90095
(Received 21 November 1997; published 6 March 1998

We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem
(apparently not previously recognizetthat the choice of upper limit or two-sided intervals leads to intervals
which are not confidence intervals if the choice is based on the data. We apply the construction to two related
problems which have recently been a battleground between classical and B; n statistics: Poisson processes
with background and Gaussian errors with a bounded physical region. In contrast with the usual classical
construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatfsmuentist coverage greater than the stated
confidencg in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We
generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We
show that this technique both gives correct coverage and is powerful, while other classical techniques that have
been used by neutrino oscillation search experiments fail one or both of these criteria.
[S0556-282198)00109-X]

PACS numbes): 06.20.Dk, 14.60.Pq

1. INTRODUCTION decide whether to consult confidence interval tables for up-
per limits or for central confidence intervals. In contrast, our
Classical confidence intervals are the traditional way inunified set of confidence intervals satisfiéy construction
which high energy physicists report errors on results of eXlhe classical criterion of frequentist coverage of the unknown
tru

perlments Approximate methods of confidence interval cont! ;S":f;v;rg'us the problem of wrong confidence intervals
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The statistical analysis of Gaussian and Poisson signals
near physical boundaries

Mark Mandelkern and Jonas Schultz
Department of Physics and Astronomy, University of California, Irvine, California 92697

(Received 22 February 2000; accepted for publication 17 April 2000

We propose a construction of frequentist confidence intervals that is effective near
unphysical regions and unifies the treatment of two-sided and upper limit intervals.
It is rigorous, has coverage, is computationally simple and avoids the pathologies
that affect the likelihood ratio and related constructions. Away from nonphysical
regions, the results are exactly the usual central two-sided intervals. The construc-
tion is based on including the physical constraint in the derivation of the estimator,
leading to an estimator with values that are confined to the physical domain.
© 2000 American Institute of Physids$0022-24880)03508-8

1. INTRODUCTION

Obtaining confidence intervals near physical boundaries is a long-standing problem. Experi-
ments designed to detect a nonzero neutrino mass by observing neutrino oscillation or to detect a
small resonance signal in the presence of background are examples in which a negative result may
be obtained for a quantity that is intrinsically positive. The difficulty arises when the estimate for
the Gaussian or Poisson mean, as obtained from the data, is near or beyond the physical boundary,
in which case the standardlassical result of Neyman's construction is an unphysical or null
interval as illustrated in Figs. 1 and 2.

For the Gaussian case, Fig. 1, one obtains central confidence intervals for the.ncean
strained to be non-negative, using the sample mears the estimator fope. ;sufﬁciently
negative leads to the null interval. Despite the fact that the construction has coverageéch
means that, for any given true mean, the confidence interval includes that value with probability
a, the null intervalcannotcontain any true mean. It is necessarily one of the measured intervals

that with nmrabhahilifvy 1 o fail +08 ~cantain the triies mesarn Even the narn nnill intearnsale Aabhtainad by
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PHYSICAL REVIEW D 67, 012002 (2003
Including systematic uncertainties in confidence interval construction for Poisson statistics

J. Conrad, O. Botner, A. Hallgren, and C.reéede los Heros
Division of High Energy Physics, Uppsala University, S-75121 Uppsala, Sweden
(Received 30 January 2002; published 10 January 2003

One way to incorporate systematic uncertainties into the calculation of confidence intervals is by integrating
over probability density functions parametrizing the uncertainties. In this paper we present a development of
this method which takes into account uncertainties in the prediction of background processes and uncertainties
in the signal detection efficiency and background efficiency, and allows for a correlation between the signal and
background detection efficiencies. We implement this method with the likelihood(tstimlly denoted as the
Feldman-Cousinsapproach with and without conditioning. We present studies of coverage for the likelihood
ratio and Neyman ordering schemes. In particular, we present two different types of coverage tests for the case
where systematic uncertainties are included. To illustrate the method we show the relative effect of including
systematic uncertainties in the case of the dark matter search as performed by modern neutrino telescopes.

DOI: 10.1103/PhysRevD.67.012002 PACS nuniler06.20.Dk, 95.55.Vj

1. INTRODUCTION [7], and Durhan{8] for a review of the status of the field.
In this paper we extend the method of confidence belt
A limit on, or a measurement of, a physical quantity at aconstruction proposed ] to include systematic uncertain-
given confidence level is usually set by comparing a numbeties in both the signal and background efficiencies as well as
of detected events),, with the number of expected events theoretical uncertainties in the background prediction. The
from the known background sources contributing to theProposed method also allows us to use newer ordering
physical process in question,. How “compatible” these ~Schemes. A recent attempt to include systematic uncertainty
numbers are determines how much room there is for nevn the background prediction in a similar manner has been
processes, i.e., for a signal. How well the number of ob-Presented if9]. The paper is organized as follows. In Sec. I
served events and expected background compare stronghe give a short review of the confidence belt construction
depends on the systematic uncertainties present in the megphemes that we wiI_I use. In Sec. Ill we describe h(_)w to
surement. Systematic uncertainties must, therefore, be taképclude the systematic uncertainties; in Sec. IV we discuss
into account in the limit or confidence belt calculation that ishow the confidence belt construction is performed and
finally published. present some selected results. We compare the results of this
Traditionally, confidence limits are set using a Neymanmethod with other methods to include systematics in Sec. V.
construction[1]. This is a purely frequentist method. Feld- We introduce the tests of coverage performed in Sec. VI and
man and Cousinf2] have proposed an improved method to Present an example based on data from the Antarctic Muon

I T anA Nartitrinma Patartar ArravARMARNBA \ natitrinm avinar
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Limits and confidence intervals in the presence of
nuisance parameters

Wolfgang A. Rolke™*, Angel M. Lépez®, Jan Conrad®
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Abstract

We study the frequentist properties of confidence intervals computed by the method known to statisticians as the
Profile Likelihood. It is seen that the coverage of these intervals is surprisingly good over a wide range of possible
parameter values for important classes of problems, in particular whenever there are additional nuisance parameters
with statistical or systematic errors. Programs are available for calculating these intervals.
© 2005 Elsevier B.V. All rights reserved.
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PHYSICAL REVIEW D 74, 092003 (2006)

Signal discovery in sparse spectra: A Bayesian analysis

A. Caldwell and K. Kréninger
Max-Planck-Institut fiir Physik, Miinchen, Fohringer Ring 6, 80805 Miinchen, Germany
(Received 19 September 2006; published 20 November 2006)

A Bayesian analysis of the probability of a signal in the presence of background is developed, and
criteria are proposed for claiming evidence for, or the discovery of a signal. The method is general and, in
particular, applicable to sparsely populated spectra. Monte Carlo techniques to evaluate the sensitivity of
an experiment are described. As an example, the method is used to calculate the sensitivity of the GERDA

experiment to neutrinoless double beta decay.

DOI: 10.1103/PhysRevD.74.092003

L INTRODUCTION

In the analysis of sparsely populated spectra common
approximations, valid only for large numbers, fail for the
small number of events encountered. A Bayesian analysis
of the probability of a signal in the presence of background
is developed, and criteria are proposed for claiming evi-
dence for, or the discovery of a signal. It is independent of
the physics case and can be applied to a variety of
situations.

Model comparisons from a Bayesian perspective have
been discussed extensively in the literature [1]. These
analyses typically calculate the “odds* for one model to
be correct relative to the other(s) [2]. In this paper, a
somewhat different approach was taken in that a procedure
for claiming a discovery is proposed-i.e., for claiming that
known processes alone are not enough to describe the
measured data.

To make predictions about possible outcomes of an
experiment, distributions of quantities under study are
calculated. As an approximation, ensembles, sets of
Monte Carlo data which mimic the expected spectrum

PACS numbers: 02.50.—1, 02.70.Rr, 02.70.Uu, 14.60.St

signal process to the observed spectrum? What is the
probability that the spectrum is due to background only?
Given a model for the signal and background, what is the
(most probable) parameter value describing the number of
signal events in the spectrum? In case no signal is ob-
served, what is the limit that can be set on the signal
contribution? The analysis method introduced in this paper
is based on Bayes’ Theorem and developed to answer these
questions and is, in particular, suitable for spectra with a
small number of events.

The assumptions for the analysis are

(i) The spectrum is confined to a certain region of

interest.

(ii) The spectral shape of a possible signal is known.

(iii) The spectral shape of the background is known [4].

(iv) The spectrum is divided into bins and the event

numbers in the bins follow Poisson distributions.

The analysis consists of two steps. First, the probability
that the observed spectrum is due to background only is
calculated. If this probability is less than an a priori defined
value, the discovery (or evidence) criterion, the signal
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Abstract

For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic
parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method,' the
systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim
method (see footnote 1), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution
of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is
derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an
individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of
events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim
model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case,
the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be
made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can
have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a
factor of &°.

(© 2006 Elsevier B.V. All rights reserved.
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Computation of confidence levels for search
experiments with fractional event counting and the
treatment of systematic errors

Peter Bock
Physikalisches Institut der Universitit Heidelberg,
Philosophenweg 12, D69120 Heidelberg, Germany
E-mail: peter.bock@physi.uni-heidelberg.de

ABSTRACT: A method is described which computes, from an observed sample of events,
upper limits for the production rate of new particles, or, for the case of an observed excess of
events over background, the probability for an upward fluctuation of the background. It is
based on weighted event counting depending on a discriminating variable. Candidates may
be produced in different reaction channels with different detection efficiencies and different
background. Systematic errors with arbitrary correlations are taken into account in the
confidence level calculations. In addition, they are are incorporated in the weight definition.
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Evaluation of three methods for calculating statistical significance when
incorporating a systematic uncertainty into a test of the background-only
hypothesis for a Poisson process
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Keywords:
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Hypothesis tests for the presence of new sources of Poisson counts amidst background processes are
frequently performed in high energy physics (HEP), gamma ray astronomy (GRA), and other branches of
science. While there are conceptual issues already when the mean rate of background is precisely
known, the issues are even more difficult when the mean background rate has non-negligible
uncertainty. After describing a variety of methods to be found in the HEP and GRA literature, we
consider in detail three classes of algorithms and evaluate them over a wide range of parameter space,
by the criterion of how close the ensemble-average Type I error rate (rejection of the background-only
hypothesis when it is true) compares with the nominal significance level given by the algorithm. We
recommend wider use of an algorithm firmly grounded in frequentist tests of the ratio of Poisson means,
although for very low counts the overcoverage can be severe due to the effect of discreteness. We extend
the studies of Cranmer, who found that a popular Bayesian-frequentist hybrid can undercover severely
when taken to high Z-values. We also examine the profile likelihood method, which has long been used
in GRA and HEP; it provides an excellent approximation in much of the parameter space, as previously
studied by Rolke and collaborators.

© 2008 Flsevier RV All riehts re<served



Eur. Phys. J. C (2011) 71: 1554
DOI 10.1140/epjc/s10052-011-1554-0

Introduction

THE EUROPEAN
PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan', Kyle Cranmer?, Eilam Gross3, Ofer Vitells>*

;Physics Department, Royal Holloway, University of London, Egham TW20 0EX, UK

Physics Department, New York University, New York, NY 10003, USA
3Weizmann Institute of Science, Rehovot 76100, Tsracl

Received: 15 October 2010 / Revised: 6 January 2011 / Published online: 9 February 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We describe likelihood-based statistical tests for
use in high energy physics for the discovery of new phenom-
ena and for construction of confidence intervals on model
parameters. We focus on the properties of the test proce-
dures that allow one to account for systematic uncertainties.
Explicit formulae for the asymptotic distributions of test sta-
tistics are derived using results of Wilks and Wald. We moti-
vate and justify the use of a representative data set, called the
“Asimov data set”, which provides a simple method to ob-
tain the median experimental sensitivity of a search or mea-
surement as well as fluctuations about this expectation.

1 Introduction

In particle physics experiments one often searches for
processes that have been predicted but not yet seen, such as

data sets by a single representative one, referred to here as
the “Asimov” data set.! In the past, this method has been
used and justified intuitively (e.g., [4, 5]). Here we provide
a formal mathematical justification for the method, explore
its limitations, and point out several additional aspects of its
use.

The present paper extends what was shown in [5] by giv-
ing more accurate formulas for exclusion significance and
also by providing a quantitative measure of the statistical
fluctuations in discovery significance and exclusion limits.
For completeness some of the background material from [5]
is summarized here.

In Sect. 2 the formalism of a search as a statistical test is
outlined and the concepts of statistical significance and sen-
sitivity are given precise definitions. Several test statistics
based on the profile likelihood ratio are defined.

In Sect 23 we nee the annroximations diie to Wilke and
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Handling uncertainties in background shapes: the
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ABSTRACT: A common problem in data analysis is that the functional form, as well as the parame-
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In this review statistical issues appearing in astrophysical searches for particle dark matter, i.e. indirect
detection (dark matter annihilating into standard model particles) or direct detection (dark matter par-
ticles scattering in deep underground detectors) are discussed. One particular aspect of these searches is
the presence of very large uncertainties in nuisance parameters (astrophysical factors) that are degener-
ate with parameters of interest (mass and annihilation/decay cross sections for the particles). The likeli-
hood approach has become the most powerful tool, offering at least one well motivated method for
incorporation of nuisance parameters and increasing the sensitivity of experiments by allowing a combi-
nation of targets superior to the more traditional data stacking. Other statistical challenges appearing in
astrophysical searches are to large extent similar to any new physics search, for example at colliders, a
prime example being the calculation of trial factors. Frequentist methods prevail for hypothesis testing
and interval estimation, Bayesian methods are used for assessment of nuisance parameters and param-
eter estimation in complex parameter spaces. The basic statistical concepts will be exposed, illustrated
with concrete examples from experimental searches and caveats will be pointed out.

© 2014 Elsevier B.V. All rights reserved.
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Estadistica, el problema inverso de la probabilidad

Por ejemplo, la distribucion exponencial.

N | =

Probabilidad : conociendo 7, decir algo de .

Estadistica : conociendo z, decir algo de 7.



Estadistica, el problema inverso de la probabilidad
Probabilidad (facil):

@ sabiendo que la vida media de un nlcleo es 7 = 2s

@ cual es la fraccién de decaimientos entre 1y 3s?

3
@ Unica solucién: P(1 < t < 3|7=2) :/ fz|r)de=e2 —e”
1

1=2)

Exponential (-

3
2

= 0.3834
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Estadistica, el problema inverso de la probabilidad

Estadistica (dificil):
@ Se hace una medicién al azar de la distribucién exponencial y da : = = 2.7

@ Qué podemos decir del parametro 7 ? 7 = 2.7752 with 68% CL.

@ La solucién es “correcta”, pero no Unica: muchas otras soluciones correctas.

@ A menudo no hay una solucién“buena”: muchas soluciones aproximadas.
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Herramientas estadisticas en funcionamiento
Make 40 “measurements”: from the exponential = = 2 distribution, f(z) = % e‘x/Q,

generate 40 random numbers.

1.96 0.45 0.10 3.39 0.62 0.50 1.03 1.03 3.72 1.62 3.72 4.61 5.69 1.56 0.29 2.19 1.02 3.89
0.69 0.86 7.77 5.75 0.06 0.65 0.37 0.13 3.10 14.32 3.41 0.02 3.39 0.96 2.38 0.98 1.29 9.90
1.68 7.54 2.47 1.29
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Herramientas estadisticas en funcionamiento
Make 40 “measurements”: from the exponential = = 2 distribution, f(z) = % e‘x/Q,

generate 40 random numbers.

1.96 0.45 0.10 3.39 0.62 0.50 1.03 1.03 3.72 1.62 3.72 4.61 5.69 1.56 0.29 2.19 1.02 3.89
0.69 0.86 7.77 5.75 0.06 0.65 0.37 0.13 3.10 14.32 3.41 0.02 3.39 0.96 2.38 0.98 1.29 9.90
1.68 7.54 2.47 1.29

What to do with these? @
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Herramientas estadisticas en funcionamiento

generate 40 random numbers.

Make 40 “measurements”: from the exponential = = 2 distribution, f(x) = % e‘I/Q,

1.96 0.45 0.10 3.39 0.62 0.50 1.03 1.03 3.72 1.62 3.72 4.61 5.69 1.56 0.29 2.19 1.02 3.89
0.69 0.86 7.77 5.75 0.06 0.65 0.37 0.13 3.10 14.32 3.41 0.02 3.39 0.96 2.38 0.98 1.29 9.90

1.68 7.54 2.47 1.29

What to do with these? ©

Fill a histogram and fit with exponential

r = ROOT.TRandom(0)
h1 = ROOT.TH1D ("h1","Expo",20,0,20)
for x in range(0,40):

x = r.Exp(2)

h1.Fill(x)

hi.Fit("expo")

Exponential
e e
14 —
Entries 40
X2/ ndf 76717
2 Prob 0.3626
Constant 2.804 £ 0.332
10 Slope -0.4878 + 0.1504

N oy ®

~

orTTT

PSRN BRI B | L
2 4 6 8 10 12 14 16

| ST AN A VT A I A i
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Herramientas estadisticas en funcionamiento

Ya este simple resultado involucra las tres principales areas de la estadistica.

L L e e e o I IR e B B S
14 - —
r Entries 40 |
L X2 I ndf 76717 | 4
2 Prob 0.3626 |
r Constant 2.804 0332 |
10— Slope -0.4878 + 0.1504 | —
- =
o =
= =
:F =
Cov vl by 1 L m\ | .|
0 2 4 6 8 10 12 14 16 18 2
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Herramientas estadisticas en funcionamiento

Ya este simple resultado involucra las tres principales areas de la estadistica.

L L e e e o I IR e B B S
14 _ p
r Entries 40 |
L X2 I ndf 76717 | 4
2 Prob 0.3626 |
r Constant 2.804 +0.332 |
10 Slope ~0.4878 30.1504 | —|
- =
o =
= =
:F =
Cov vl by 1 L m\ | .|
0 2 4 6 8 10 12 14 16 18 2

Cual es el valor del parametro 77 —  Teoria de Estimadores
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Herramientas estadisticas en funcionamiento

Ya este simple resultado involucra las tres principales areas de la estadistica.

W T T
r Entries 40 |
L X2 I ndf 76717 | 4
20 Prob 0.3626 |
r Constant 2.804 0332 |
10f Slope  —0.487¢(x 0.1504)| —
s A
el A
4 A
oF =
:A\\‘\\\‘\\\ i L m\ l B
0 2 4 6 8 10 12 14 16 18 2C
Cual es el valor del parametro 77 —  Teoria de Estimadores

Cuanto es el error (incerteza) en 6,? — Intervalos de Confianza
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Herramientas estadisticas en funcionamiento

Ya este simple resultado involucra las tres principales areas de la estadistica.

14

12

10

©

IS

=)
L L NI BN DL R

N

Entries
X2 I ndf
Prob
Constant
Slope

IN
S

7.6

2.804 + 0.332
-0.4878 + 0.1504

b b b b b b b i |

=5

Cual es el valor del parametro 77

FEIN ER R
2 4

6

Cuanto es el error (incerteza) en 5.7 —

El fit es bueno?

8

—  Teoria de Estimadores

Intervalos de Confianza

—  Tests de Hipdtesis



Herramientas estadisticas en funcionamiento

Man page de la clase TH1:

TFitResultPtr TH1:Fit ( TF1* 1,
Option_t* option =",
Option_t* gopti
Double t xxmin=9,
Double_t xxmax =@

Fit histogram with function f1.

Parameters
[in] option fit options is given in parameter option.

- "W set all weights to 1 for non empty bins; ignore error bars

« "WW" Set all weights to 1 including empty bins; ignore error bars

= "I Use integral of function in bin, normalized by the bin volume, instead of value at bin center

« "L" Use Loglikelihood method (default is chisquare method)

= "WL" Use Loglikelihood method and bin contents are not integer, i.e. histogram is weighted (must have Sumwz() set)

« "P" Use Pearson chi2 (using expected errors instead of observed errors)

= "U" Use a User specified fitting algorithm (via SetFCN)

« Q" Quiet mode (minimum printing)

= "V" Verbose mode (default is between Q and V)

« "E" Perform better Errors estimation using Minos technique

- "B" User defined parameter settings are used for predefined functions like "gaus", "expe", "poin”, "landau". Use this opt
« "M" More. Improve fit results. It uses the IMPROVE command of TMinuit (see TMinuit::mnimpr). This algorithm attem
= "R" Use the Range specified in the function range

« "N" Do not store the graphics function, do not draw

= "0" Do not plot the result of the fit. By default the fitted function is drawn unless the option"N" above is specified.

Add this new fitted function to the list of fitted functions (by defauit, any previous function is deleted)

= "C" In case of linear fitting, don't calculate the chisquare (saves time)

« "F"Iffitting & polN, switch to minuit fitter

= "S"The result of the fit is returned in the TFitResultPtr (see below Access to the Fit Result)




Herramientas estadisticas en funcionamiento

Man page de la clase TH1: dos opciones de fiteo adicionales

TFitResultPtr TH1:Fit ( TF1* 11,
Option_t* option =",

Option_t* gopti

Double t xxmin=9,
Double_t xxmax =@

Fit histogram with function f1.

Parameters
[in] option fit options is given in parameter option.

- "W set all weights to 1 for non empty bins; ignore error bars

« "WW" Set all weights to 1 including empty bins; ignore error bars

= "I Use integral of function in bin, normalized by the bin volume, instead of value at bin center

+(L"Use Loglikelinood method (defaull s chisquare method) )

= "WL" Use Loglikelihood method and bin contents are not integer, i.e. histogram is weighted (must have Sumwz() set)
«("P" Use Pearson chi2 (using expected errors instead of observed errors) )

= "U" Use a User specified fitting algorithm (via SetFCN)

« Q" Quiet mode (minimum printing)

= "V" Verbose mode (default is between Q and V)

« "E" Perform better Errors estimation using Minos technique

- "B" User defined parameter settings are used for predefined functions like "gaus", "expe", "poin”, "landau". Use this opt
« "M" More. Improve fit results. It uses the IMPROVE command of TMinuit (see TMinuit::mnimpr). This algorithm attem
= "R" Use the Range specified in the function range

« "N" Do not store the graphics function, do not draw

= "0" Do not plot the result of the fit. By default the fitted function is drawn unless the option"N" above is specified.

Add this new fitted function to the list of fitted functions (by defauit, any previous function is deleted)

= "C" In case of linear fitting, don't calculate the chisquare (saves time)

« "F"Iffitting & polN, switch to minuit fitter

= "S" The result of the fit is returned in the TFitResultPtr (see below Access to the Fit Result)
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Man page de la clase TH1: dos opciones de fiteo adicionales

TFitResultPtr TH1:Fit ( TF1* 11,
Option_t* option =",

Option_t* gopti

Double t xxmin=9,
Double_t xxmax =@

Fit histogram with function f1.

Parameters
[in] option fit options is given in parameter option.

- "W set all weights to 1 for non empty bins; ignore error bars

« "WW" Set all weights to 1 including empty bins; ignore error bars

= "I Use integral of function in bin, normalized by the bin volume, instead of value at bin center

+(L"Use Loglikelinood method (defaull s chisquare method) )

= "WL" Use Loglikelihood method and bin contents are not integer, i.e. histogram is weighted (must have Sumwz() set)
«("P" Use Pearson chi2 (using expected errors instead of observed errors) )

= "U" Use a User specified fitting algorithm (via SetFCN)

« Q" Quiet mode (minimum printing)

= "V" Verbose mode (default is between Q and V)

«(°E" Perform better Errors estimation using Minos technique )

- "B" User defined parameter settings are used for predefined functions like "gaus", "expe", "poin”, "landau". Use this opt
« "M" More. Improve fit results. It uses the IMPROVE command of TMinuit (see TMinuit::mnimpr). This algorithm attem
= "R" Use the Range specified in the function range

« "N" Do not store the graphics function, do not draw

= "0" Do not plot the result of the fit. By default the fitted function is drawn unless the option"N" above is specified.

Add this new fitted function to the list of fitted functions (by defauit, any previous function is deleted)

= "C" In case of linear fitting, don't calculate the chisquare (saves time)

« "F"Iffitting & polN, switch to minuit fitter

= "S"The result of the fit is returned in the TFitResultPtr (see below Access to the Fit Result)
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Introduction

Herramientas estadisticas en funcionamiento

Generate 40 random numbers from the exponential f(x) = 3¢

Fit them using the three alternatives:

r = ROOT.TRandom(0)
hi = ROOT.TH1D ("h1","Expo",20,0,20)
for x in range(0,40):

x = r.Exp(2)

hi.Fill(x)

h1.Fit("expo")

1

—x/2
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Generate 40 random numbers from the exponential f(x) = 3¢

Fit them using the three alternatives:

r = ROOT.TRandom(0)
hi = ROOT.TH1D ("h1","Expo",20,0,20)
for x in range(0,40):

x = r.Exp(2)

hi.Fill(x)

hi.Fit("expo")
hi.Fit("expo","P+")

1

—x/2
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Introduction

Herramientas estadisticas en funcionamiento

Generate 40 random numbers from the exponential f(x) = 3¢

Fit them using the three alternatives:

r = ROOT.TRandom(0)
hi = ROOT.TH1D ("h1","Expo",20,0,20)
for x in range(0,40):

x = r.Exp(2)

hi.Fill(x)

hi.Fit("expo")
hil.Fit("expo","P+")
h1.Fit("expo","L+")

1

—x/2

21
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Herramientas estadisticas en funcionamiento

tau: 1.76 +/- 0.28
tau: 3.20 +/- 0.33
tau: 2.31 +/-0.24
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Introduction

Herramientas estadisticas en funcionamiento

@ Asi que tres resultados diferentes!

@ Cual es el correcto? Respuesta: NINGUNO

@ Curiosamente, la respuesta podria haber sido: LOS TRES

@ Pero, que significa “el correcto”?

23



Introduction

Herramientas estadisticas en funcionamiento

@ Asi que tres resultados diferentes!
@ Cual es el correcto? Respuesta: NINGUNO
@ Curiosamente, la respuesta podria haber sido: LOS TRES

@ Pero, que significa “el correcto”?

o That is the question.

23



Introduction

Herramientas estadisticas en funcionamiento

Para eso hacemos pseudo-experimentos:

Repetimos muchas veces el experimento de extraer 40 nimeros al

azar de la distribucion Exp(2), hacemos los fits N P L, y anotamos:

@ los resultados estimados de los parametros, #n, 7p, 7L.

24
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Herramientas estadisticas en funcionamiento

Para eso hacemos pseudo-experimentos:

Repetimos muchas veces el experimento de extraer 40 nimeros al

azar de la distribucion Exp(2), hacemos los fits N P L, y anotamos:

@ los resultados estimados de los parametros, #n, 7p, 7L.

@ sielrango 7 4 &, incluye o no el verdadero valor 7 = 2.



Introduction

Herramientas estadisticas en funcionamiento

tau: 1.76 +/- 0.28
tau: 3.20 +/- 0.33
tau: 2.31 +/-0.24
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Introduction

Herramientas estadisticas en funcionamiento
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tau: 1.76 +/- 0.28
tau: 3.20 +/- 0.33
tau: 2.31 +/-0.24
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Herramientas estadisticas en funcionamiento
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C tau: 1.61 +/- 0.24
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Herramientas estadisticas en funcionamiento

tau: 1.61 +/- 0.28
tau: 2.97 +/- 0.37
tau: 2.03 +/- 0.23
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Herramientas estadisticas en funcionamiento
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Herramientas estadisticas en funcionamiento
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Herramientas estadisticas en funcionamiento

tau: 2.36 +/- 0.34
tau: 2.63 +/- 0.32
tau: 2.27 +/- 0.24
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Herramientas estadisticas en funcionamiento
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Unbinned fits

Binned vs Unbinned Fits

@ The histogram fit uses the number of entries per bin.

@ The information of each individual value is lost = BINNED FIT.

@ Another possibility is to fit the 40 numbers themselves = UNBINNED FIT.

42



Unbinned fits

Binned vs Unbinned Fits

Binned Fit

r = ROOT.TRandom(0)
hi = ROOT.THID("h1","Expo",20,0,20)
£E = ROOT.TF1("£E"," [a]*exp(-x/[b])",0,20)
for i in range(0,40):
x = r.Exp(2)
h1.Fill(x)

fE.SetParameters(2.,2.)
hi.Fit("£fE")

Unbinned Fit

r = ROOT.TRandom(0)
t1 = ROOT.TNtuple("t1","Expo","x")
£E = ROOT.TF1("£E","(1/[b])*exp(-x/[b])",0,20)
for i in range(0,40):
x = r.Exp(2)
t1.Fill(x)

fE.SetParameter ("b",2.)
t1.UnbinnedFit ("fE","x");




The Likelihood Function The parabolic approximation 61

Intervalos de Confianza: la aproximacion parabdlica

Desarrollemos la verosimilitud log £ (6) en serie alrededor de 0

0log Z(0)
00

2 <
0 —d)+ 0°log &

. 1
log .Z(0) = log Z(0) + s
; 2 90°

(6 —6)°

6

En el término lineal, la derivada es cero.
0*log L |1
002 o

En el cuadratico, es el inverso del estimador Cramer-Rao de sigma, 5°

AN 2
log Z(0) = log ZLmax — 1 (0 — 0)
2 o

En la proximidad del estimador ML, log.# es parabdlica.



The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

Para ver en que rango vale la aproximacion, es Util la interpretacion grafica de o.

1760 —0\2
log £, (0) = log;fmax—i( - )

2

log Zp(0 = 6 £ no) = log Lmax — %

2
log 25 (0 £ no) = log Lmax — %
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

Para ver en que rango vale la aproximacion, es Util la interpretacion grafica de o.

1/0—0\2
log £ (0) = log Lmax — 5( )

o
2

log Zp(0 = 6 £ no) = log Lmax — %

2
log %, (0 £ no) = log. Lmax — %

~ 12
68.3%CL (0t1o) : logZp(0ci) = log Lmax — — (0.5)

2
~ 22
954%CL (0 +20) : log.%p(0c1) = log Lmax — > (2.0)

~ 32
99.7% CL (0 +30) : log.%y(0c1) = log.,%’max—T (4.5)



The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

Log Likelihood

PRI B
18

20
Parameter 1

The log-likelihood for n = 15 measurements from an exponential distribution

Lr|a) = — e ZT/T

7—7’L
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The Likelihood Function The parabolic approximation 64

Intervalos de Confianza: la aproximacion parabdlica

Log Likelihood

PRI B
18

20
Parameter 1

The log-likelihood for n = 15 measurements from an exponential distribution

L(r|x) = L -S@/T  The ML estimate in this example is 7 = % =5.0

7—”



The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

Log Likelihood

PRI B
18

20
Parameter 1

Trace the parabolic approximation ¢}, that matches . at the maximum (/% max)
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

Log Likelihood
|
B

LLmax - 0.5

n=15

| I S

6 8 10 12 14 16 18 20
Parameter 1

Draw a line at Zmax — 0.5
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

n=15

Log Likelihood

‘A‘lu‘\l“‘l“‘l“‘
8 10 12 14

| I S

6 18 20
Parameter 1

The 68.3% CL interval limits correspond to the points where ¢, = Zmax — 0.5
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

n=15

Log Likelihood

‘A‘lu‘\l“‘l“‘l“‘
8 10 12 14

| I S

6 18 20
Parameter 1

log Zp(Tc1) = log L max — 0.5 68.3% CL (7 +10):

5.0+ 1.3
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

n=15
LLmax - 2.0

N a2

| I S

6 18 20
Parameter 1

‘A‘lu‘\l“‘l“‘l“‘
8 10 12 14

log Zp(Tc1) = log L max — 0.5 68.3% CL (7 +10):

5.0+ 1.3
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

n=15
LLmax - 2.0

—45}/ /
A VI T R TEAA P T I NI
2

4 6 8 10 12 14 16 18 20
Parameter 1

log Zp(Tc1) = log L max — 0.5 68.3% CL (7 +10):

log % (Tc1) = log L max — 2.0 954% CL (7 £20):

5.0+ 1.3

5.0+£2.6
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

,,,,,,,,,,,,,,,,,,,,,, LLmax - 0.5
n=15
,,,,,,,,,,,,,,,,,,, LLmax - 2.0
,,,,,,,,,,,,,,,, LLmax -4.5
MH\MHMHMHMHMH
8 10 12 14

6 18 20
Parameter 1

log Zp(Tc1) = log L max — 0.5 68.3% CL (7 +10): 50+1.3

log % (Tc1) = log L max — 2.0 954% CL (f£20): 5.0£26
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

,,,,,,,,,,,,,,,,,,,,,, LLmax - 0.5
n=15
,,,,,,,,,,,,,,,,,,, LLmax - 2.0
,,,,,,,,,,,,,,,,,, LLmax -4.5
V‘\MHMHMHMHMH
8 10 12 14

6 18 20
Parameter 1

log Zp(Tc1) = log L max — 0.5 68.3% CL (7 +10): 50+1.3
log % (Tc1) = log L max — 2.0 954% CL (f£20): 5.0£26

log Zy(Tc1) =108 Lmax — 4.5 99.7%CL (F+30): 50+3.9
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

LLmax - 4.5

PRI B

18 20
Parameter 1

For n = 15, the parabolic approximation works fine up to +1o
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

o
s L
o .
s v 4N ] LLmax - 0.5
D -98—
Lk
5 F
2 C n =40
3 -991—
Y | A | N LLmax - 2.0
-100{—
-101—
R S I LLmax - 4.5
-102—
Lo [ B BRI I B
0 20

Parameter 1

For n = 40, the parabolic approximation should work fine for +10, +20, and +3¢
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The Likelihood Function The parabolic approximation

Intervalos de Confianza: la aproximacion parabdlica

°
o o ———
(@] | -
= =2 LLmax - 0.5
= /N T A D
g_g L
5 L
o [ n=1
S

C LLmax - 2.0

-5

TTTT‘TT

-6

P B e W =

Parameter 1

For n = 1, the parabolic approximation does not work even for +1o
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The Likelihood Function The parabolic approximation 76

Confidence Intervals: the log-likelihood ratio (LLR) approximation

The recipe for the LLR intervals (also called MINOS confidence intervals) is very simple.

Take the recipe for the parabolic approximation:

68.3%CL : log.%(0c1) = log Lmax — 0.5
95.4%CL : log,fp(GCI)

log . max — 2.0

99.7%CL : log Zy(0cr) log L max — 4.5



The Likelihood Function The parabolic approximation 76

Confidence Intervals: the log-likelihood ratio (LLR) approximation

The recipe for the LLR intervals (also called MINOS confidence intervals) is very simple.

Take the recipe for the parabolic approximation:

68.3%CL : log%p(0c1) = log Zmax — 0.5

95.4%CL : log.%y(0cr) log % max — 2.0

99.7%CL : log Zy(0cr) log L max — 4.5

and use the correct likelihood instead of its parabolic approximation:

68.3%CL : logZ (0¢c1) = log Zmax — 0.5
95.4%CL : logZ (6c1) = log L max — 2.0
99.7%CL : log.Z (6c1) = log L max —4.5



The Likelihood Function The parabolic approximation

Confidence Intervals: the log-likelihood ratio (LLR) approximation

.8*395, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
B AR \ LLmax - 0.5
E}—‘mj
=5 r / n=15
o-a- S/ NN\ LLmax - 2.0
S E 7 \
—a2f— /
ol |
e L N — LLmax -4.5
—44}/
—45}’
N R DI T B I N
0 2 4 6 s 10 12 14 16 18 20

Draw lines at % max —

Parameter 1

Start with the full likelihood (7).

2 2

2

2
177 zmax—%: and gmax—i-
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The Likelihood Function The parabolic approximation

Confidence Intervals: the log-likelihood ratio (LLR) approximation

°
O T
g J NN LLmax - 0.5
g
=5 n=15
2 AN LLmax - 2.0
-

,,,,,,,,,,,,,,,, LLmax - 4.5

| I S

A‘lu‘\l“‘l‘A‘lH‘
8 10 12 14

6 18 20
Parameter 1

log Z(rc1) =108 Lmax — 0.5 68.3%CL : 50715  (5.0+1.3)
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The Likelihood Function The parabolic approximation

Confidence Intervals: the log-likelihood ratio (LLR) approximation

,,,,,,,,,,,,,,,,,,,,, LLmax - 0.5
n=15
,,,,,,,,,,,,,,,,, LLmax - 2.0
,,,,,,,,,,,,,,,, LLmax -4.5
H\MHMHMHMHMH
10 12 14

6 18 20
Parameter 1

log Z(rc1) =108 Lmax — 0.5 68.3%CL : 50715  (5.0+1.3)

log Z(1c1) =108 Lmax —2.0  954%CL : 50135  (5.0+2.6)
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The Likelihood Function The parabolic approximation

Confidence Intervals: the log-likelihood ratio (LLR) approximation

LLmax - 0.5

n=15
LLmax - 2.0

LLmax - 4.5

PRI B

6 18 20
Parameter 1

log Z(rc1) =108 Lmax — 0.5 68.3%CL : 50715  (5.0+1.3)
log Z(1c1) =108 Lmax —2.0  954%CL : 50135  (5.0+2.6)

log Z(tc1) =108 Lmax — 4.5  99.7%CL : 50702  (5.0+3.9)
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The Likelihood Function The parabolic approximation

Confidence Intervals: the log-likelihood ratio (LLR) approximation

o

o e
e vt N LLmax- 05
T -4
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N
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LLmax - 4.5

|
i
®

-19

Vool b

30 35 40
Parameter 1

log Z(rc1) = 10g Lmax — 0.5  68.3%CL : 50731  (5.0+2.2)
log £ (Tcr) =108 Lmax — 2.0 95.4%CL : 50753  (5.0+4.5)

log.Z(rc1) =108 Lmax — 4.5  99.7%CL : 5.073%%  (5.0+6.7)

81



The Likelihood Function The parabolic approximation 82

Confidence Intervals: the log-likelihood ratio (LLR) approximation

Assessing the quality of the likelihood intervals:

@ Generate a sample of n measurements from the exponential 7 = 2 distribution.
@ Calculate for this sample the parabolic or LLR interval at a given CL.

@ Check if the true value (7 = 2) is included in (covered by) the interval.

@ Repeat the experiment many times (V = 106, for instance).

@ Measure coverage: fraction of experiments where Cl contains the true value.

@ Verify if the coverage of the interval is equal to its Confidence Level.



The Likelihood Function: extracting the Confidence Interval from &

Coverage results for n measurements from an exponential distribution with = = 2.

The Cl are obtained at each CL using the parabolic and the LLR approximations.

68.3% 95.4% 99.7%
Parab. LLR Parab. LLR Parab. LLR

S

1 60.5 64.4 71.8 80.7 774 81.2
2 66.6 66.3 79.8 92.6 85.9 93.6
3 67.7 66.9 83.4 95.1 89.6 97.4
4 68.4 67.2 85.4 94.6 92.1 99.1
5 68.1 68.0 87.0 94.9 93.1 99.5
6 68.2 68.5 87.8 95.2 94.7 99.6
8 90.1 95.3 95.4 99.6
10 90.5 95.0 96.3 99.6
15 92.3 95.5 97.0 99.6
20 92.8 95.2 97.8 99.6
30 93.7 95.4 98.3 99.7

40 93.8 95.2 98.8 99.7



