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Estadı́stica: un campo activo de investigación para fı́sicos

Lo que vamos a ver, en buena parte, surge de papers de estadı́stica

publicados por fı́sicos en los últimos 20-30 años.
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We consider the problem of fitting curves to histograms in which the data obey multinomial or Poisson statistics. Techniques 
commonly used by physicists are examined in light of standard results found in the statistics literature. We review the relationship 
between multinomial and Poisson distributions, and clarify a sufficient condition for equality of the area under the fitted curve and 
the number of events on the histogram. Following the statisticians, we use the likelihood ratio test to construct a general X 2 statistic, 
X 2, which yields parameter and error estimates identical to those of the method of maximum likelihood. The X 2 statistic is further 
useful for testing goodness-of-fit since the value of its minimum asymptotically obeys a classical chi-square distribution. One should 
be aware, however, of the potential for statistical bias, especially when the number of events is small. 

1. Introduction 

Standard results from the theory of statistics are 
often overlooked by scientists searching for sophisti- 
cated methods to analyze their data. Though good 
high-level statistics books have been written expressly 
for experimentalists [1], we believe that some misunder- 
standing remains in the professional physics literature. 
A case in point is the fitting of curves to histograms in 
which the data are distributed according to multinomial 
or Poisson statistics [2,3]. It is well-known, for example, 
that common methods of chi-square minimization suffer 
certain difficulties (such as the under- or over-estima- 
tion of the area under a peak) which can be traced to 
the implicit assumption of a Gaussian distribution of 
the errors. Hence, the method of maximum likelihood is 
often employed, explicitly incorporating the appropriate 
distribution from the start. Some authors [4] nonetheless 
revert to a common (Gaussian derived) chi-square test 
for goodness-of-fit. Certainly one should question the 
straightforward use of a statistic as a test for goodness- 
of-fit when it is known to be based on an inappropriate 
parent distribution. Our examination of the professional 
statistics literature during the course of a graduate semi- 
nar on data analysis underlined the need for clarifica- 
tion of these and other problems in the physics litera- 
ture. 

To begin with, we must carefully define some 
nomenclature which is unambiguous and consistent with 
usage in the statistical literature. Curve-fitting typically 
involves three tasks: (a) determining the "bes t  fit" 
parameters of a curve, (b) determining the errors on the 
parameters, and (c) judging the goodness of the fit. In 
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the language of the statisticians, these are known as (a) 
point  estimation, (b) confidence interval estimation, and 
(c) goodness-of-fit testing. Because chi-square statistics 
are sometimes used for all three tasks, the distinction 
among them can become blurred. However, it is im- 
p o r t a n t  to maintain this distinction. In general, one 
need not use the same statistic for all three purposes. 
Indeed, some of the most powerful tests of goodness-of- 
fit have little practical utility for point estimation [1]. 
Thus, if one uses the method of maximum likelihood for 
point  and interval estimation, the choice of goodness-of- 
fit test(s) remains. 

Since statisticians typically consider multinomial 
problems, we review the connection between multi- 
nomial and Poisson statistics. This connection is related 
to the conditions under which the maximum likelihood 
fit preserves the number of events under the curve. Next 
we highlight some of the historical controversy in the 
statistics literature over the assumed superiority of the 
principle of maximum likelihood. We then review how 
the likelihood ratio test for goodness-of-fit gives a pre- 
scription for constructing a general chi-square statistic 
directly from the likelihood function. This general chi- 
square statistic can then be used for point estimation, 
confidence interval estimation, and goodness-of-fit test- 
ing. Finally, we mention the important  problem of 
biased versus unbiased estimation in the case of a finite 
sample size. 

2. Definitions and notation 

We consider a histogram (one- or multi-dimensional) 
having k bins labelled by the index i running from 1 to 
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Statistics: an active field for physicists

Unified approach to the classical statistical analysis of small signals
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We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem
~apparently not previously recognized! that the choice of upper limit or two-sided intervals leads to intervals
which are not confidence intervals if the choice is based on the data. We apply the construction to two related
problems which have recently been a battleground between classical and Bayesian statistics: Poisson processes
with background and Gaussian errors with a bounded physical region. In contrast with the usual classical
construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism~frequentist coverage greater than the stated
confidence! in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We
generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We
show that this technique both gives correct coverage and is powerful, while other classical techniques that have
been used by neutrino oscillation search experiments fail one or both of these criteria.
@S0556-2821~98!00109-X#

PACS number~s!: 06.20.Dk, 14.60.Pq

I. INTRODUCTION

Classical confidence intervals are the traditional way in
which high energy physicists report errors on results of ex-
periments. Approximate methods of confidence interval con-
struction, in particular the likelihood-ratio method, are often
used in order to reduce computation. When these approxima-
tions are invalid, true confidence intervals can be obtained
using the original~defining! construction of Neyman@1#. In
recent years, there has been considerable dissatisfaction with
the usual results of Neyman’s construction for upper confi-
dence limits, in particular when the result is an unphysical
~or empty set! interval. This dissatisfaction led the Particle
Data Group~PDG! @2# to describe procedures for Bayesian
interval construction in the troublesome cases: Poisson pro-
cesses with background and Gaussian errors with a bounded
physical region.

In this paper, we use the freedom inherent in Neyman’s
construction in a novel way to obtain a unified set of classi-
cal confidence intervals for setting upper limits and quoting
two-sided confidence intervals. The new element is a particu-
lar choice of ordering, based on likelihood ratios, which we
substitute for more common choices in Neyman’s construc-
tion. We then obtain confidence intervals which are never
unphysical or empty. Thus they remove an original motiva-
tion for the description of Bayesian intervals by the PDG.

Moreover, we show below that commonly quoted confi-
dence intervals are wrongmore than allowed by the stated
confidenceif ~as is typical! one uses the experimental data to

decide whether to consult confidence interval tables for up-
per limits or for central confidence intervals. In contrast, our
unified set of confidence intervals satisfies~by construction!
the classical criterion of frequentist coverage of the unknown
true value. Thus the problem of wrong confidence intervals
is also solved.

Our intervals also effectively decouple the calculation of
intervals from the test of goodness-of-fit, which is desirable
but in fact not the case for traditional classical upper limit
calculations.

After developing the new intervals for the two prototypi-
cal 1D problems, we generalize them for use in the analysis
of experiments searching for neutrino oscillations, continu-
ing to adhere to the Neyman construction.

In Sec. II, we review and contrast Bayesian and classical
interval construction. In Sec. III, we review the troublesome
cases of Poisson processes with background and Gaussian
errors with a bounded physical region. We introduce the uni-
fying ordering principle in Sec. IV, and apply it to the pre-
viously discussed problems. In Sec. V, we generalize the
method for use in neutrino oscillation searches, and compare
it to other classical methods. Finally, in Sec. VI, we intro-
duce an additional quantity helpful in describing experiments
which observe less background than expected. We conclude
in Sec. VII.

We adopt the following notation: the subscriptt on a
parameter means the unknown true value; the subscript 0
means a particular measured value obtained by an experi-
ment. Thus, for example,m is a parameter whose true value
m t is unknown;n0 is the particular result of an experiment
which measures the number of events,n. For most of our
discussion, we use for illustration 90% confidence level
~C.L.! confidence intervals on a single parameterm. The C.L.
is more generally calleda.

*Email address: feldman@physics.harvard.edu
†Email address: cousins@physics.ucla.edu
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The statistical analysis of Gaussian and Poisson signals
near physical boundaries
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We propose a construction of frequentist confidence intervals that is effective near
unphysical regions and unifies the treatment of two-sided and upper limit intervals.
It is rigorous, has coverage, is computationally simple and avoids the pathologies
that affect the likelihood ratio and related constructions. Away from nonphysical
regions, the results are exactly the usual central two-sided intervals. The construc-
tion is based on including the physical constraint in the derivation of the estimator,
leading to an estimator with values that are confined to the physical domain.
© 2000 American Institute of Physics.@S0022-2488~00!03508-8#

I. INTRODUCTION

Obtaining confidence intervals near physical boundaries is a long-standing problem. Experi-
ments designed to detect a nonzero neutrino mass by observing neutrino oscillation or to detect a
small resonance signal in the presence of background are examples in which a negative result may
be obtained for a quantity that is intrinsically positive. The difficulty arises when the estimate for
the Gaussian or Poisson mean, as obtained from the data, is near or beyond the physical boundary,
in which case the standard~classical! result of Neyman’s construction is an unphysical or null
interval as illustrated in Figs. 1 and 2.

For the Gaussian case, Fig. 1, one obtains central confidence intervals for the meanm con-
strained to be non-negative, using the sample meanx̄ as the estimator form. x̄ sufficiently
negative leads to the null interval. Despite the fact that the construction has coveragea, which
means that, for any given true mean, the confidence interval includes that value with probability
a, the null intervalcannotcontain any true mean. It is necessarily one of the measured intervals
that, with probability 12a, fail to contain the true mean. Even the non-null intervals obtained by
this method for some negative values of the estimator are unphysically small in that,for most
possible (true) means, the confidence interval does not contain the true mean.

The other difficult case, illustrated in Fig. 2, is that of Poisson distributed data with unknown
signal meanm>0, in the presence of a background with known non-negative meanb; n is the
result of a single observation. Forn,b the interval form is unphysically small. For sufficiently
small n the interval is null. The implausibility of the resulting intervals is well illustrated by the
example shown. For a background-free (b50) experiment that measures zero events (n50), the
90% upper limit form is 2.62, for the explicit construction exhibited in Fig. 2.~We note that,
depending upon the particular choice of construction, the 90% upper limit obtained for the case
b50, n50 can vary over a small range; e.g., the limit is 2.30 for a one-sided upper limit
construction, 2.44 for the methods of Refs. 3 and 4 and 2.62 for the construction presented here.!
For an experiment with known mean backgroundb53.0 that measures 0~1! events, the upper limit
for m is 0~1.7!. Thus the poorer experiment has the potential to yield a much smaller~but not
believable! upper limit.

When the estimator takes on a value near or beyond the physical limit, we have information
greater than that available when no boundary is present since we knowa priori that the true value
is not beyond the boundary. For the Gaussian case, where the confidence intervals are of fixed
length for measurements away from the boundary, we expect smaller confidence intervals for
measurements near or beyond the boundary. The classical construction gives this feature. We also
know that an estimate for the parameter beyond the physical limit is relatively improbable. The

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 8 AUGUST 2000

57010022-2488/2000/41(8)/5701/9/$17.00 © 2000 American Institute of Physics

Downloaded 04 Apr 2008 to 157.92.44.71. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Introduction 6

Including systematic uncertainties in confidence interval construction for Poisson statistics

J. Conrad, O. Botner, A. Hallgren, and C. Pe´rez de los Heros
Division of High Energy Physics, Uppsala University, S-75121 Uppsala, Sweden

~Received 30 January 2002; published 10 January 2003!

One way to incorporate systematic uncertainties into the calculation of confidence intervals is by integrating
over probability density functions parametrizing the uncertainties. In this paper we present a development of
this method which takes into account uncertainties in the prediction of background processes and uncertainties
in the signal detection efficiency and background efficiency, and allows for a correlation between the signal and
background detection efficiencies. We implement this method with the likelihood ratio~usually denoted as the
Feldman-Cousins! approach with and without conditioning. We present studies of coverage for the likelihood
ratio and Neyman ordering schemes. In particular, we present two different types of coverage tests for the case
where systematic uncertainties are included. To illustrate the method we show the relative effect of including
systematic uncertainties in the case of the dark matter search as performed by modern neutrino telescopes.

DOI: 10.1103/PhysRevD.67.012002 PACS number~s!: 06.20.Dk, 95.55.Vj

I. INTRODUCTION

A limit on, or a measurement of, a physical quantity at a
given confidence level is usually set by comparing a number
of detected events,no , with the number of expected events
from the known background sources contributing to the
physical process in question,nb . How ‘‘compatible’’ these
numbers are determines how much room there is for new
processes, i.e., for a signal. How well the number of ob-
served events and expected background compare strongly
depends on the systematic uncertainties present in the mea-
surement. Systematic uncertainties must, therefore, be taken
into account in the limit or confidence belt calculation that is
finally published.

Traditionally, confidence limits are set using a Neyman
construction@1#. This is a purely frequentist method. Feld-
man and Cousins@2# have proposed an improved method to
construct confidence intervals based on likelihood ratios, a
method already known in statistics and originally described
in @3#. Still, this method is based on the original Neyman
construction, and needs to be extended to incorporate sys-
tematic uncertainties in the measurement. Along this line, a
modification of the Neyman method that incorporates sys-
tematic uncertainties in the experimental signal efficiency
has been proposed by Highland and Cousins@4#. These au-
thors use a ‘‘semi-Bayesian’’ approach where an average
over the probability distribution of the experimental sensitiv-
ity ~and its uncertainty! is performed. By construction, the
method is of limited accuracy in the limit of high relative
systematic uncertainties.

Recently, an entirely frequentist approach has been pro-
posed for the uncertainty in the background rate prediction
@5#. That approach is based on a two-dimensional confidence
belt construction and likelihood ratio hypothesis testing and
treats the uncertainty in the background as a statistical un-
certainty rather than as a systematic one.

The interest aroused recently in the high energy physics
community about the many open issues on setting limits and
quoting confidence levels is stressed by the organization of
workshops devoted to the subject. We refer the reader to the
proceedings of the recent workshops at CERN@6#, Fermilab

@7#, and Durham@8# for a review of the status of the field.
In this paper we extend the method of confidence belt

construction proposed in@4# to include systematic uncertain-
ties in both the signal and background efficiencies as well as
theoretical uncertainties in the background prediction. The
proposed method also allows us to use newer ordering
schemes. A recent attempt to include systematic uncertainty
in the background prediction in a similar manner has been
presented in@9#. The paper is organized as follows. In Sec. II
we give a short review of the confidence belt construction
schemes that we will use. In Sec. III we describe how to
include the systematic uncertainties; in Sec. IV we discuss
how the confidence belt construction is performed and
present some selected results. We compare the results of this
method with other methods to include systematics in Sec. V.
We introduce the tests of coverage performed in Sec. VI and
present an example based on data from the Antarctic Muon
and Neutrino Detector Array~AMANDA ! neutrino experi-
ment in Sec. VII.

II. THE CONSTRUCTION OF CONFIDENCE INTERVALS

The frequentist construction of confidence intervals is de-
scribed in detail elsewhere@10#. Here we will give just a
short review.

Let us consider a Poissonian probability density function
~PDF! p(n)s1b for a fixed but unknown signals in the pres-
ence of a known background with meanb. For every value
of s we can find two valuesn1 andn2 such that

(
n85n1

n2

p~n8!s1b512a ~1!

where 12a denotes the confidence level@usually quoted as
a 100(12a)% confidence interval#. Since we assume a
Poisson distribution, the equality will generally not be satis-
fied exactly. A set of intervals@n1(s1b,a),n2(s1b,a)# is
called aconfidence belt. Graphically, upon a measurementno
theconfidence interval@s1 ,s2# is determined by the intersec-
tion of the vertical line drawn from the measured valueno
and the boundary of the confidence belt. This is illustrated in

PHYSICAL REVIEW D 67, 012002 ~2003!
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Abstract

We study the frequentist properties of confidence intervals computed by the method known to statisticians as the

Profile Likelihood. It is seen that the coverage of these intervals is surprisingly good over a wide range of possible

parameter values for important classes of problems, in particular whenever there are additional nuisance parameters

with statistical or systematic errors. Programs are available for calculating these intervals.

r 2005 Elsevier B.V. All rights reserved.

PACS: 06.20.DK; 02.50.�r; 05.10.Ln
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1. Introduction

The calculation of confidence intervals (or
setting of limits) on a parameter of a theory is
one of the most important problems an experi-
mental physicist can face. In the frequentist
approach which we follow here, the main property
which confidence intervals have to fulfill is to have
coverage. A method is said to yield a 100ð1� aÞ%

confidence interval if, were the experiment to be
repeated many times, the resulting intervals would
include (or cover) the true parameter at least
100ð1� aÞ% of the time, no matter what the true
parameter is. Using a construction method due to
Neyman [1], Feldman and Cousins [2] in 1998
found confidence intervals for the case of one
nuisance parameter when its value is known
exactly. An alternative method used widely in
high-energy physics prior to the publication of
Feldman and Cousins is to extract confidence
intervals by finding the points where the �2 log
likelihood function increases by a factor defined by
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Signal discovery in sparse spectra: A Bayesian analysis
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A Bayesian analysis of the probability of a signal in the presence of background is developed, and
criteria are proposed for claiming evidence for, or the discovery of a signal. The method is general and, in
particular, applicable to sparsely populated spectra. Monte Carlo techniques to evaluate the sensitivity of
an experiment are described. As an example, the method is used to calculate the sensitivity of the GERDA
experiment to neutrinoless double beta decay.

DOI: 10.1103/PhysRevD.74.092003 PACS numbers: 02.50.�r, 02.70.Rr, 02.70.Uu, 14.60.St

I. INTRODUCTION

In the analysis of sparsely populated spectra common
approximations, valid only for large numbers, fail for the
small number of events encountered. A Bayesian analysis
of the probability of a signal in the presence of background
is developed, and criteria are proposed for claiming evi-
dence for, or the discovery of a signal. It is independent of
the physics case and can be applied to a variety of
situations.

Model comparisons from a Bayesian perspective have
been discussed extensively in the literature [1]. These
analyses typically calculate the ‘‘odds‘‘ for one model to
be correct relative to the other(s) [2]. In this paper, a
somewhat different approach was taken in that a procedure
for claiming a discovery is proposed-i.e., for claiming that
known processes alone are not enough to describe the
measured data.

To make predictions about possible outcomes of an
experiment, distributions of quantities under study are
calculated. As an approximation, ensembles, sets of
Monte Carlo data which mimic the expected spectrum,
are randomly generated and analyzed. The frequency dis-
tributions of output parameters of the Bayesian analysis are
interpreted as probability densities and are used to evaluate
the sensitivity of the experiment to the process under study.

As an example, the analysis method is used to estimate
the sensitivity of the GERDA experiment [3] to neutrino-
less double beta decay.

The analysis strategy is introduced in Sec. II. The gen-
eration of ensembles and the application of the method
onto those is discussed in Sec. III. The application of the
analysis method in the GERDA experiment is given as an
example in Sec. IV where the sensitivity of the experiment
is evaluated.

II. SPECTRAL ANALYSIS

A common situation in the analysis of data is the follow-
ing: two types of processes (referred to as signal and
background in the following) potentially contribute to a
measured spectrum. The basic questions which are to be
answered can be phrased as: What is the contribution of the

signal process to the observed spectrum? What is the
probability that the spectrum is due to background only?
Given a model for the signal and background, what is the
(most probable) parameter value describing the number of
signal events in the spectrum? In case no signal is ob-
served, what is the limit that can be set on the signal
contribution? The analysis method introduced in this paper
is based on Bayes’ Theorem and developed to answer these
questions and is, in particular, suitable for spectra with a
small number of events.

The assumptions for the analysis are
(i) The spectrum is confined to a certain region of

interest.
(ii) The spectral shape of a possible signal is known.
(iii) The spectral shape of the background is known [4].
(iv) The spectrum is divided into bins and the event

numbers in the bins follow Poisson distributions.
The analysis consists of two steps. First, the probability

that the observed spectrum is due to background only is
calculated. If this probability is less than an a priori defined
value, the discovery (or evidence) criterion, the signal
process is assumed to contribute to the spectrum and a
discovery (or evidence) is claimed. If the process is known
to exist, this step is skipped. Based on the outcome, in a
second step the signal contribution is either estimated or an
upper limit for the signal contribution is calculated.

A. Hypothesis test

In the following, H1 denotes the hypothesis that the
observed spectrum is due to background only; the nega-
tion, interpreted here as the hypothesis that the signal
process contributes to the spectrum [5], is labeled H2.
The conditional probabilities for the hypotheses H1 and
H2 to be true or not, given the measured spectrum are
labeled p�H1jdata; I� and p�H2jdata; I�, respectively. The
I represents all additional information available and used
to propose the hypotheses. The conditional probabilities
obey the following relation:

 p�H1jdata; I� � p�H2jdata; I� � 1: (1)

The conditional probabilities for H1 and H2 can be
calculated using Bayes’ Theorem:

PHYSICAL REVIEW D 74, 092003 (2006)
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Abstract

For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic

parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method,1 the

systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim

method (see footnote 1), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution

of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is

derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an

individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of

events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim

model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case,

the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be

made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can

have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a

factor of k2.

r 2006 Elsevier B.V. All rights reserved.

PACS: 2.50.Ng; 2.70.�c; 2.70.Uu; 7.05.Kf

Keywords: Systematic errors; Monte Carlo

1. Introduction

In many experiments there are a number of systematic
error parameters. If the experimental data is divided into a
set of bins, the effect of a change in a given systematic
parameter on a given data bin can be quite complicated.
For example, in a visual detector, the effect of a change in
an optical model parameter on the number of events of a
given type in a data bin may not be directly calculable.
Monte Carlo (MC) techniques are often used.

Two of the MC methods used involve either unisims or
multisims to determine the systematic error within each
data bin. In the unisim method, the systematic parameters
are varied one at a time by one standard deviation, each
parameter corresponding to a MC run. In the multisim
method, each MC run has all of the parameters varied; the
amount of variation is chosen from the expected distribu-
tion of each systematic parameter, usually assumed to be a
normal distribution.
It is assumed in this note that the errors in bins have a

linear dependence on the values of the deviations of the
systematic parameters from the assumed values. If non-
linear effects are important then a more sophisticated
analysis is needed [1].
Define:

� For the unisim method, an MC run is made with the
value of all systematic parameters set to their best

ARTICLE IN PRESS
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Computation of confidence levels for search

experiments with fractional event counting and the

treatment of systematic errors
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Abstract: A method is described which computes, from an observed sample of events,

upper limits for the production rate of new particles, or, for the case of an observed excess of

events over background, the probability for an upward fluctuation of the background. It is

based on weighted event counting depending on a discriminating variable. Candidates may

be produced in different reaction channels with different detection efficiencies and different

background. Systematic errors with arbitrary correlations are taken into account in the

confidence level calculations. In addition, they are are incorporated in the weight definition.

Conditions under which the Bayesian and the frequentist treatment of systematic errors give

identical results are derived. It is shown that the significance of an observation of a signal

is generally overestimated in low statistics experiments. Simple approximate formulae for

observed and expected confidence levels are given for the limiting case of high count rates.

A special statistical test of a given signal-to-background-ratio using the distributions of the

discriminating variable and fixing the total theoretical intensity to the observed number of

events, is described.

Keywords: Statistical Methods, Higgs Physics.
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incorporating a systematic uncertainty into a test of the background-only
hypothesis for a Poisson process
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a b s t r a c t

Hypothesis tests for the presence of new sources of Poisson counts amidst background processes are

frequently performed in high energy physics (HEP), gamma ray astronomy (GRA), and other branches of

science. While there are conceptual issues already when the mean rate of background is precisely

known, the issues are even more difficult when the mean background rate has non-negligible

uncertainty. After describing a variety of methods to be found in the HEP and GRA literature, we

consider in detail three classes of algorithms and evaluate them over a wide range of parameter space,

by the criterion of how close the ensemble-average Type I error rate (rejection of the background-only

hypothesis when it is true) compares with the nominal significance level given by the algorithm. We

recommend wider use of an algorithm firmly grounded in frequentist tests of the ratio of Poisson means,

although for very low counts the overcoverage can be severe due to the effect of discreteness. We extend

the studies of Cranmer, who found that a popular Bayesian-frequentist hybrid can undercover severely

when taken to high Z-values. We also examine the profile likelihood method, which has long been used

in GRA and HEP; it provides an excellent approximation in much of the parameter space, as previously

studied by Rolke and collaborators.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

The incorporation of systematic uncertainties into hypothesis
tests (and by implication into confidence intervals and limits)
remains a murky area of data analysis in spite of much study in the
professional statistics community and in high energy physics (HEP),
in gamma ray astronomy (GRA), and in other branches of science
[1]. Exact methods using the frequentist definition of probability
typically do not exist, while purely Bayesian methods, as commonly
used in HEP, invoke uniform priors which make the resulting
probability statements hard to interpret if not completely arbitrary.

The foundational issues already arise in startlingly simple
prototype problems such as the one that we examine in this
paper: non events are observed from the Poisson process with
mean ms þ mb, where ms is the unknown parameter of interest (the
mean number of signal events), while mb is the mean number of
background events (mimicking signal events), measured to have a
value m̂b with some uncertainty from subsidiary observations. One

wishes to test the hypothesis H0 that ms ¼ 0, i.e., that the observed
number of events is statistically consistent with being all back-
ground. In this paper, we focus on the significance level a of the
hypothesis test, also known as the size of the test, and in particular
consider the very small values of a corresponding to a statistical
significance of up to five standard deviations. In the formal theory
of Neyman–Pearson hypothesis testing, a is specified in advance;
once data are obtained, the p-value is the smallest value of a for
which H0 would be rejected. In a real application, the power of the
test, which depends on the alternative hypothesis, should be
considered as well, but we do not explore that complementary
aspect of the test here [2]. Also, we do not address the complex
issue of the utility of p-values, which is discussed by Berger and
others (e.g., Refs. [3,4]); we merely remind the reader that at best,
a p-value conveys the probability under H0 of obtaining a value of
the test statistic at least as extreme as that observed, and that it
should not be interpreted as the probability that H0 is true. Having
said that, given the ubiquity of p-values in the literature, we study
in detail the efficacy of three methods for calculating p-values in
the presence of systematic uncertainties.

Frequently the p-value is communicated by specifying the
corresponding number of standard deviations in a one-tailed test

ARTICLE IN PRESS
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Abstract We describe likelihood-based statistical tests for
use in high energy physics for the discovery of new phenom-
ena and for construction of confidence intervals on model
parameters. We focus on the properties of the test proce-
dures that allow one to account for systematic uncertainties.
Explicit formulae for the asymptotic distributions of test sta-
tistics are derived using results of Wilks and Wald. We moti-
vate and justify the use of a representative data set, called the
“Asimov data set”, which provides a simple method to ob-
tain the median experimental sensitivity of a search or mea-
surement as well as fluctuations about this expectation.

1 Introduction

In particle physics experiments one often searches for
processes that have been predicted but not yet seen, such as
production of a Higgs boson. The statistical significance of
an observed signal can be quantified by means of a p-value
or its equivalent Gaussian significance (discussed below). It
is useful to characterize the sensitivity of an experiment by
reporting the expected (e.g., mean or median) significance
that one would obtain for a variety of signal hypotheses.

Finding both the significance for a specific data set and
the expected significance can involve Monte Carlo calcula-
tions that are computationally expensive. In this paper we
investigate approximate methods based on results due to
Wilks [1] and Wald [2] by which one can obtain both the
significance for given data as well as the full sampling dis-
tribution of the significance under the hypothesis of different
signal models, all without recourse to Monte Carlo. In this
way one can find, for example, the median significance and
also a measure of how much one would expect this to vary
as a result of statistical fluctuations in the data.

A useful element of the method involves estimation of the
median significance by replacing the ensemble of simulated

a e-mail: ofer.vitells@weizmann.ac.il

data sets by a single representative one, referred to here as
the “Asimov” data set.1 In the past, this method has been
used and justified intuitively (e.g., [4, 5]). Here we provide
a formal mathematical justification for the method, explore
its limitations, and point out several additional aspects of its
use.

The present paper extends what was shown in [5] by giv-
ing more accurate formulas for exclusion significance and
also by providing a quantitative measure of the statistical
fluctuations in discovery significance and exclusion limits.
For completeness some of the background material from [5]
is summarized here.

In Sect. 2 the formalism of a search as a statistical test is
outlined and the concepts of statistical significance and sen-
sitivity are given precise definitions. Several test statistics
based on the profile likelihood ratio are defined.

In Sect. 3, we use the approximations due to Wilks and
Wald to find the sampling distributions of the test statis-
tics and from these find p-values and related quantities for
a given data sample. In Sect. 4 we discuss how to deter-
mine the median significance that one would obtain for
an assumed signal strength. Several example applications
are shown in Sect. 5, and numerical implementation of the
methods in the RooStats package is described in Sect. 6.
Conclusions are given in Sect. 7.

2 Formalism of a search as a statistical test

In this section we outline the general procedure used to
search for a new phenomenon in the context of a frequen-
tist statistical test. For purposes of discovering a new signal
process, one defines the null hypothesis, H0, as describing
only known processes, here designated as background. This

1The name of the Asimov data set is inspired by the short story Fran-
chise, by Isaac Asimov [3]. In it, elections are held by selecting the
single most representative voter to replace the entire electorate.
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a b s t r a c t

In this review statistical issues appearing in astrophysical searches for particle dark matter, i.e. indirect
detection (dark matter annihilating into standard model particles) or direct detection (dark matter par-
ticles scattering in deep underground detectors) are discussed. One particular aspect of these searches is
the presence of very large uncertainties in nuisance parameters (astrophysical factors) that are degener-
ate with parameters of interest (mass and annihilation/decay cross sections for the particles). The likeli-
hood approach has become the most powerful tool, offering at least one well motivated method for
incorporation of nuisance parameters and increasing the sensitivity of experiments by allowing a combi-
nation of targets superior to the more traditional data stacking. Other statistical challenges appearing in
astrophysical searches are to large extent similar to any new physics search, for example at colliders, a
prime example being the calculation of trial factors. Frequentist methods prevail for hypothesis testing
and interval estimation, Bayesian methods are used for assessment of nuisance parameters and param-
eter estimation in complex parameter spaces. The basic statistical concepts will be exposed, illustrated
with concrete examples from experimental searches and caveats will be pointed out.

� 2014 Elsevier B.V. All rights reserved.
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Estadı́stica, el problema inverso de la probabilidad

Por ejemplo, la distribución exponencial.

f(x ; τ) =
1

τ
e−x/τ

Probabilidad : conociendo τ , decir algo de x.

Estadı́stica : conociendo x, decir algo de τ .
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Estadı́stica, el problema inverso de la probabilidad

Probabilidad (fácil):

sabiendo que la vida media de un núcleo es τ = 2 s

cual es la fracción de decaimientos entre 1 y 3 s?

Única solución: P (1 < t < 3 | τ=2) =

∫ 3

1

f(x | τ) dx = e−
1
2 − e−

3
2 = 0.3834
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Estadı́stica, el problema inverso de la probabilidad

Estadı́stica (difı́cil):

Se hace una medición al azar de la distribución exponencial y da : x = 2.7

Qué podemos decir del parámetro τ ? τ = 2.7+1.2
−0.8 with 68%CL.

La solución es “correcta”, pero no única: muchas otras soluciones correctas.

A menudo no hay una solución“buena”: muchas soluciones aproximadas.
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Herramientas estadı́sticas en funcionamiento

Make 40 “measurements”: from the exponential τ = 2 distribution, f(x) =
1

2
e−x/2,

generate 40 random numbers.

1.96 0.45 0.10 3.39 0.62 0.50 1.03 1.03 3.72 1.62 3.72 4.61 5.69 1.56 0.29 2.19 1.02 3.89

0.69 0.86 7.77 5.75 0.06 0.65 0.37 0.13 3.10 14.32 3.41 0.02 3.39 0.96 2.38 0.98 1.29 9.90

1.68 7.54 2.47 1.29

What to do with these?

Fill a histogram and fit with exponential

r = ROOT.TRandom(0)

h1 = ROOT.TH1D ("h1","Expo",20,0,20)

for x in range(0,40):

x = r.Exp(2)

h1.Fill(x)

h1.Fit("expo")

Entries  40
 / ndf 2χ   7.67 / 7

Prob   0.3626
Constant  0.332± 2.804 
Slope     0.1504±0.4878 − 

0 2 4 6 8 10 12 14 16 18 20
0

2

4
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8
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14
Entries  40

 / ndf 2χ   7.67 / 7
Prob   0.3626
Constant  0.332± 2.804 
Slope     0.1504±0.4878 − 

Exponential
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Herramientas estadı́sticas en funcionamiento

Ya este simple resultado involucra las tres principales áreas de la estadı́stica.
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 / ndf 2χ   7.67 / 7
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Constant  0.332± 2.804 
Slope     0.1504±0.4878 − 

Exponential

Cual es el valor del parámetro τ̂? → Teorı́a de Estimadores

Cuanto es el error (incerteza) en σ̂τ? → Intervalos de Confianza

El fit es bueno? → Tests de Hipótesis
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Herramientas estadı́sticas en funcionamiento

Man page de la clase TH1:

dos opciones de fiteo adicionales
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Herramientas estadı́sticas en funcionamiento
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Herramientas estadı́sticas en funcionamiento

Generate 40 random numbers from the exponential f(x) =
1

2
e−x/2

Fit them using the three alternatives:

r = ROOT.TRandom(0)

h1 = ROOT.TH1D ("h1","Expo",20,0,20)

for x in range(0,40):

x = r.Exp(2)

h1.Fill(x)

h1.Fit("expo")

h1.Fit("expo","P+")

h1.Fit("expo","L+")
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Herramientas estadı́sticas en funcionamiento
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Herramientas estadı́sticas en funcionamiento

Ası́ que tres resultados diferentes!

Cual es el correcto? Respuesta: NINGUNO

Curiosamente, la respuesta podrı́a haber sido: LOS TRES

Pero, que significa “el correcto”?

That is the question.
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Herramientas estadı́sticas en funcionamiento

Para eso hacemos pseudo-experimentos:

Repetimos muchas veces el experimento de extraer 40 números al

azar de la distribución Exp(2), hacemos los fits N P L, y anotamos:

1 los resultados estimados de los parámetros, τ̂N , τ̂P , τ̂L.

2 si el rango τ̂ ± σ̂τ incluye o no el verdadero valor τ = 2.
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Herramientas estadı́sticas en funcionamiento
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Herramientas estadı́sticas en funcionamiento
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Herramientas estadı́sticas en funcionamiento
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Herramientas estadı́sticas en funcionamiento
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Herramientas estadı́sticas en funcionamiento
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Herramientas estadı́sticas en funcionamiento
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Herramientas estadı́sticas en funcionamiento
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Binned vs Unbinned Fits

The histogram fit uses the number of entries per bin.

The information of each individual value is lost⇒ BINNED FIT.

Another possibility is to fit the 40 numbers themselves⇒ UNBINNED FIT.
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Binned vs Unbinned Fits

Binned Fit

r = ROOT.TRandom(0)

h1 = ROOT.TH1D("h1","Expo",20,0,20)

fE = ROOT.TF1("fE","[a]*exp(-x/[b])",0,20)

for i in range(0,40):

x = r.Exp(2)

h1.Fill(x)

fE.SetParameters(2.,2.)

h1.Fit("fE")

Unbinned Fit

r = ROOT.TRandom(0)

t1 = ROOT.TNtuple("t1","Expo","x")

fE = ROOT.TF1("fE","(1/[b])*exp(-x/[b])",0,20)

for i in range(0,40):

x = r.Exp(2)

t1.Fill(x)

fE.SetParameter("b",2.)

t1.UnbinnedFit("fE","x");



The Likelihood Function The parabolic approximation 61

Intervalos de Confianza: la aproximación parabólica

Desarrollemos la verosimilitud logL (θ) en serie alrededor de θ̂

logL (θ) = logL (θ̂) +
∂ logL (θ)

∂ θ

∣∣∣∣
θ̂

(θ − θ̂) + 1

2

∂2logL

∂θ 2

∣∣∣∣
θ̂

(θ − θ̂)2

En el término lineal, la derivada es cero.

En el cuadrático, es el inverso del estimador Cramer-Rao de sigma, σ̂2= −
∂2logL

∂θ 2

∣∣∣-1
θ̂

logL (θ) = logLmax −
1

2

(
θ − θ̂
σ̂

)2

En la proximidad del estimador ML, logL es parabólica.
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Intervalos de Confianza: la aproximación parabólica

Para ver en que rango vale la aproximación, es útil la interpretación gráfica de σ.

logLp(θ) = logLmax −
1

2

(θ − θ̂
σ

)2
logLp(θ = θ̂ ± nσ) = logLmax −

n2

2

logLp(θ̂ ± nσ) = logL max −
n2

2

68.3%CL (θ̂ ± 1σ) : log Lp(θCI) = log L max −
12

2
(0.5)

95.4%CL (θ̂ ± 2σ) : log Lp(θCI) = log L max −
22

2
(2.0)

99.7%CL (θ̂ ± 3σ) : log Lp(θCI) = log L max −
32

2
(4.5)
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Intervalos de Confianza: la aproximación parabólica

0 2 4 6 8 10 12 14 16 18 20

τParameter 

46−

45−

44−

43−

42−

41−

40−

39−

Lo
g 

Li
ke

lih
oo

d
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The log-likelihood for n = 15 measurements from an exponential distribution

L (τ |x) = 1

τn
e−
∑
xi/τ

The ML estimate in this example is τ̂ =

∑
xi
n

= 5.0
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Intervalos de Confianza: la aproximación parabólica
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Intervalos de Confianza: la aproximación parabólica
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Trace the parabolic approximation L p that matches L at the maximum (L max)

L (τ |x) = 1
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xi/τ The ML estimate in this case is τ̂ =
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Intervalos de Confianza: la aproximación parabólica
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n = 15

LLmax - 0.5

Draw a line at L max − 0.5

L (τ |x) = 1
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∑xi/τ The ML estimate in this case is τ̂ =
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Intervalos de Confianza: la aproximación parabólica
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The 68.3% CL interval limits correspond to the points where L p = L max − 0.5

L (τ |x) = 1

τn
e−
∑xi/τ The ML estimate in this case is τ̂ =

∑
xi
n

= 5.0
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Intervalos de Confianza: la aproximación parabólica
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Intervalos de Confianza: la aproximación parabólica
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Intervalos de Confianza: la aproximación parabólica
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Intervalos de Confianza: la aproximación parabólica
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Intervalos de Confianza: la aproximación parabólica
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For n = 15 , the parabolic approximation works fine up to ±1σ

L (τ |x) = 1

τn
e−
∑
xi/τ The ML estimate in this case is τ̂ =

∑
xi
n

= 5.0
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Intervalos de Confianza: la aproximación parabólica
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For n = 40 , the parabolic approximation should work fine for ±1σ, ±2σ, and ±3σ

L (τ |x) = 1
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xi/τ The ML estimate in this case is τ̂ =
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Intervalos de Confianza: la aproximación parabólica
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For n = 1 , the parabolic approximation does not work even for ±1σ

L (τ |x) = 1

τn
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∑
xi/τ The ML estimate in this case is τ̂ =

∑
xi
n

= 5.0
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Confidence Intervals: the log-likelihood ratio (LLR) approximation

The recipe for the LLR intervals (also called MINOS confidence intervals) is very simple.

Take the recipe for the parabolic approximation:

68.3%CL : log Lp(θCI) = log L max − 0.5

95.4%CL : log Lp(θCI) = log L max − 2.0

99.7%CL : log Lp(θCI) = log L max − 4.5

and use the correct likelihood instead of its parabolic approximation:

68.3%CL : log L (θCI) = log L max − 0.5

95.4%CL : log L (θCI) = log L max − 2.0

99.7%CL : log L (θCI) = log L max − 4.5
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Confidence Intervals: the log-likelihood ratio (LLR) approximation
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Start with the full likelihood L (τ) .
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Confidence Intervals: the log-likelihood ratio (LLR) approximation
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logL (τCI) = logL max − 0.5 68.3%CL : 5.0+1.5
−1.1 (5.0± 1.3)

logL (τCI) = logL max − 2.0 95.4%CL : 5.0+3.8
−1.9 (5.0± 2.6)

logL (τCI) = logL max − 4.5 99.7%CL : 5.0+7.2
−2.5 (5.0± 3.9)



The Likelihood Function The parabolic approximation 79

Confidence Intervals: the log-likelihood ratio (LLR) approximation
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Confidence Intervals: the log-likelihood ratio (LLR) approximation
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Confidence Intervals: the log-likelihood ratio (LLR) approximation
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Confidence Intervals: the log-likelihood ratio (LLR) approximation

Assessing the quality of the likelihood intervals:

Generate a sample of n measurements from the exponential τ = 2 distribution.

Calculate for this sample the parabolic or LLR interval at a given CL.

Check if the true value (τ = 2) is included in (covered by) the interval.

Repeat the experiment many times (N = 10 6, for instance).

Measure coverage: fraction of experiments where CI contains the true value.

Verify if the coverage of the interval is equal to its Confidence Level.
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The Likelihood Function: extracting the Confidence Interval from L

Coverage results for n measurements from an exponential distribution with τ = 2.

The CI are obtained at each CL using the parabolic and the LLR approximations.

68.3% 95.4% 99.7%

n Parab. LLR Parab. LLR Parab. LLR

1 60.5 64.4 71.8 80.7 77.1 81.2

2 66.6 66.3 79.8 92.6 85.9 93.6

3 67.7 66.9 83.4 95.1 89.6 97.4

4 68.4 67.2 85.4 94.6 92.1 99.1

5 68.1 68.0 87.0 94.9 93.1 99.5

6 68.2 68.5 87.8 95.2 94.7 99.6

8 90.1 95.3 95.4 99.6

10 90.5 95.0 96.3 99.6

15 92.3 95.5 97.0 99.6

20 92.8 95.2 97.8 99.6

30 93.7 95.4 98.3 99.7

40 93.8 95.2 98.8 99.7


