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The confusion and ambiguity encountered by students, in understanding virtual displacement
and virtual work, is discussed in this article. A definition of virtual displacement is presented that
allows one to express them explicitly for holonomic (velocity independent), non-holonomic (veloc-
ity dependent), scleronomous (time independent) and rheonomous (time dependent) constraints.
It is observed that for holonomic, scleronomous constraints, the virtual displacements are the dis-
placements allowed by the constraints. However, this is not so for a general class of constraints.
For simple physical systems, it is shown that, the work done by the constraint forces on virtual
displacements is zero. This motivates Lagrange’s extension of d’Alembert’s principle to system of
particles in constrained motion. However a similar zero work principle does not hold for the allowed
displacements. It is also demonstrated that d’Alembert’s principle of zero virtual work is necessary
for the solvability of a constrained mechanical problem. We identify this special class of constraints,
physically realized and solvable, as the ideal constraints. The concept of virtual displacement and
the principle of zero virtual work by constraint forces are central to both Lagrange’s method of
undetermined multipliers, and Lagrange’s equations in generalized coordinates.
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I. INTRODUCTION

Almost all graduate level courses in classi-
cal mechanics include a discussion of virtual
displacement1,2,3,4,5,6,7,8,9,10,11 and Lagrangian
dynamics1,2,3,4,5,6,7,8,9,10,11,12. From the concept of
zero work by constraint forces on virtual displacement,
the Lagrange’s equations of motion are derived.

However, the definition presented in most accessible
texts often seem vague and ambiguous to students. Even
after studying the so called definition, it is rather com-
monplace that a student fails to identify, whether a sup-
plied vector is suitable as a virtual displacement, for a
given constrained system. Though some of the more ad-
vanced and rigorous treatise13,14 present a more precise
and satisfactory treatment, they are often not easily com-
prehensible to most students. In this article we attempt
a simple, systematic and precise definition of virtual dis-
placement, which clearly shows the connection between
the constraints and the corresponding allowed and virtual
displacements. This definition allows one to understand
how far the virtual displacement is ‘arbitrary’ and how
far it is ‘restricted’ by the constraint condition.

There are two common logical pathways of arriving at
Lagrange’s equation.

1. Bernoulli’s principle of virtual velocity7 (1717),
d’Alembert’s principle of zero virtual work7,15

(1743), Lagrange’s generalization of d’Alembert’s
principle to constrained system of moving particles,
and Lagrange’s equations of motion (1788)7,16,17.

2. Hamilton’s principle of least action7,18 (1834), and
variational approach to Lagrange’s equation.

The two methods are logically and mathematically in-
dependent and individually self contained. The first
method was historically proposed half a century earlier,
and it presents the motivation of introducing the La-
grangian as a new physical quantity. The second method
starts with the Lagrangian and the related action as
quantities axiomatically describing the dynamics of the
system. This method is applied without ambiguity in
some texts12,13 and courses19. However one also finds
intermixing of the two approaches in the literature and
popular texts, often leading to circular definition and re-
lated confusion. A rational treatment demands an in-
dependent presentation of the two methods, and then a
demonstration of their interconnection. In the present
article we confine ourselves to the first method.

In this approach, due to Bernoulli, d’Alembert and La-
grange, one begins with a constrained system, defined by
equations of constraints connecting positions, time and
often velocities of the particles under consideration. The
concept of virtual displacement is introduced in terms
of the constraint equations. The external forces alone
cannot maintain the constrained motion. This requires
the introduction of forces of constraints. The imposition
of the principle of zero virtual work by constraint forces
gives us a ‘special class of systems’, that are solvable.

A proper definition of virtual displacement is necessary
to make the said approach logically satisfactory. However
the various definitions found in popular texts are often
incomplete and contradictory with one another. These
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ambiguities will be discussed in detail in the next section.
In the literature, e.g., Greenwood2 Eq.1.26 and Pars14

Eq.1.6.1, one encounters holonomic constraints of the
form:

φj(x1, x2, . . . , x3N , t) = 0 , j = 1, 2, . . . , k. (1)

The differential form of the above equations are sat-
isfied by allowed infinitesimal displacements {dxi},
(Greenwood2 Eq.1.27; Pars14 Eq.1.6.3).

3N∑

i=1

∂φj

∂xi

dxi +
∂φj

∂t
dt = 0 , j = 1, 2, . . . , k. (2)

For a system under above constraints the virtual displace-
ments {δxi}, satisfy the following equations (Greenwood2

Eq.1.28; Pars14 Eq.1.6.5),

3N∑

i=1

∂φj

∂xi

δxi = 0 , j = 1, 2, . . . , k. (3)

The differential equations satisfied by allowed and virtual
displacements are different even for the non-holonomic
case. Here, the equations satisfied by the allowed dis-
placements {dxi} are (Goldstein1 Eq.2.20, Greenwood2

Eq.1.29 and Pars14 Eq.1.7.1),

3N∑

i=1

ajidxi + ajtdt = 0 , j = 1, 2, . . . , m. (4)

Whereas, the virtual displacements {δxi} satisfy
(Goldstein1 Eq.2.21, Greenwood2 Eq.1.30; Pars14

Eq.1.7.2),

3N∑

i=1

ajiδxi = 0 , j = 1, 2, . . . , m. (5)

Thus, there appear in the literature certain equations,
namely Eq.(3) and Eq.(5), which are always satisfied by
the not so precisely defined virtual displacements. It may
be noted that these equations are connected to the con-
straints but are not simply the infinitesimal forms of the
constraint equations, i.e., Eqs.(2) and (4). This fact is
well documented in the literature1,2,14. However, the na-
ture of the difference between these sets of equations,
i.e, Eqs.(3) and (5) on one hand and Eqs.(2) and (4) on
the other, and their underlying connection are not ex-
plained in most discussions. One may consider Eq.(3)
or Eq.(5), as independent defining equation for virtual
displacement. But it remains unclear as to how, the vir-
tual displacements {δxi} defined by two different sets of
equations for the holonomic and the non-holonomic cases,
viz., Eq.(3) and Eq.(5), correspond to the same concept
of virtual displacement.

We try to give a physical connection between the defi-
nitions of allowed and virtual displacements for any given
set of constraints. The proposed definition of virtual dis-
placement (Sec.IIA) as difference of two unequal allowed

displacements (satisfying Eq.(2) or Eq.(4)) over the same
time interval; automatically ensures that virtual displace-
ments satisfy Eq.(3) and Eq.(5) for holonomic and non-
holonomic systems respectively. We show that in a num-
ber of natural systems, e.g., pendulum with fixed or mov-
ing support, particle sliding along stationary or moving
frictionless inclined plane, the work done by the forces
of constraint on virtual displacements is zero. We also
demonstrate that this condition is necessary for the solv-
ability of a constrained mechanical problem. Such sys-
tems form an important class of natural systems.

A. Ambiguity in virtual displacement

In the literature certain statements appear in reference
to virtual displacement, which seem confusing and mu-
tually inconsistent, particularly to a student. In the fol-
lowing we present few such statements found in common
texts.

1. It is claimed that (i)a virtual displacement δr is

consistent with the forces and constraints imposed

on the system at a given instant t1; (ii) a virtual dis-

placement is an arbitrary, instantaneous, infinites-

imal change of position of the system compatible

with the conditions of constraint7; (iii) virtual dis-

placements are, by definition, arbitrary displace-

ments of the components of the system, satisfy-

ing the constraint5; (iv) virtual displacement does

not violate the constraints10; (v) we define a vir-

tual displacement as one which does not violate the

kinematic relations11; (vi) the virtual displacements

obey the constraint on the motion4. These state-
ments imply that the virtual displacements satisfy
the constraint conditions, i.e., the constraint equa-
tions. However this is true only for holonomic, scle-
renomous constraints. We shall show that for non-
holonomic constraints, or rheonomous constraints,
e.g., a pendulum with moving support, this defini-
tion violates the zero virtual work principle.

2. It is also stated that (i) virtual displacements do

not necessarily conform to the constraints2; (ii) the

virtual displacements δq have nothing to do with

actual motion. They are introduced, so to speak, as

test quantities, whose function it is to make the sys-

tem reveal something about its internal connections

and about the forces acting on it7; (iii) the word

“virtual” is used to signify that the displacements

are arbitrary, in the sense that they need not corre-

spond to any actual motion executed by the system5;
(iv) it is not necessary that it (virtual displacement)
represents any actual motion of the system9; (v)
it is not intended to say that such a displacement

(virtual) occurs during the motion of the particle

considered, or even that it could occur3; (vi) virtual

displacement is any arbitrary infinitesimal displace-

ment not necessarily along the constrained path6.
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From the above we understand that the virtual dis-
placements do not necessarily satisfy the constraint
equations, and they need not be the ones actually
realized. We shall see that these statements are
consistent with physical situations, but they cannot
serve as a satisfactory definition of virtual displace-
ment. Statements like: “not necessarily conform to
the constraints” or “not necessarily along the con-
strained path” only tell us what virtual displace-
ment is not, they do not tell us what it really is.
Reader should note that there is a conflict between
the statements quoted under items 1 and 2.

Thus it is not clear from the above, whether the
virtual displacements satisfy the constraints, i.e.,
the constraint equations, or they do not.

3. It is also stated that (i)virtual displacement is to

be distinguished from an actual displacement of the

system occurring in a time interval dt1; (ii) it is

an arbitrary, instantaneous, change of position of

the system7; (iii) virtual displacement δr takes place

without any passage of time10. (iv) virtual displace-

ment has no connection with the time - in contrast

to a displacement which occurs during actual mo-

tion, and which represents a portion of the actual

path3; (v) one of the requirements on acceptable vir-

tual displacement is that the time is held fixed4. We
even notice equation like : “δxi = dxi for dt = 0”10.
The above statements are puzzling to a student. If
position is a continuous function of time, a change
in position during zero time has to be zero. In
other words, this definition implies that the vir-
tual displacement cannot possibly be an infinitesi-
mal (or differential) of any continuous function of
time. In words of Arthur Haas: since its (virtual
displacement) components are thus not functions of

the time, we are not able to regard them as differ-

entials, as we do for the components of the element

of the actual path3. It will be shown later (Sec.II),
that virtual displacement can be looked upon as a
differential. It is indeed a differential change in po-
sition or an infinitesimal displacement, consistent
with virtual velocity ṽk(t), taken over a time inter-
val dt (see Eq.(13)).

4. Virtual displacement is variously described as: ar-

bitrary, virtual, and imaginary1,5,6,7,9. These ad-
jectives make the definition more mysterious to a
student.

Together with the above ambiguities, students are of-
ten unsure whether it is sufficient to discuss virtual dis-
placement as an abstract concept or it is important to
have a quantitative definition. Some students appreciate
that the virtual displacement as a vector should not be
ambiguous. The principle of zero virtual work is required
to derive Lagrange’s equations. For a particle under con-
straint this means that the virtual displacement is always
orthogonal to the force of constraint.

At this stage a student gets further puzzled. Should he
take the forces of constraint as supplied, and the principle
of zero virtual work as a definition of virtual displacement
? In that case the principle reduces merely to a defini-
tion of a new concept, namely virtual displacement. Or
should the virtual displacement be defined from the con-
straint conditions independently ? The principle of zero
virtual work may then be used to obtain the forces of
constraint. These forces of constraint ensure that the
constraint condition is maintained throughout the mo-
tion. Hence it is natural to expect that they should be
connected to and perhaps derivable from the constraint
conditions.

II. VIRTUAL DISPLACEMENT AND FORCES

OF CONSTRAINT

A. Constraints and Virtual displacement

Let us consider a system of constraints that are ex-
pressible as equations involving positions and time. They
represent some geometric restrictions (holonomic) either
independent of time (sclerenomous) or explicitly depen-
dent on it (rheonomous). Hence for a system of N par-
ticles moving in three dimensions, a system of (s) holo-
nomic, rheonomous constraints are represented by func-
tions of {rk} and (t),

fi(r1, r2, . . . , rN , t) = 0, i = 1, 2, . . . , s. (6)

The system may also be subjected to non-holonomic con-
straints which are represented by equations connecting
velocities {vk}, positions {rk} and time (t).

N∑

k=1

Aik · vk + Ait = 0 , i = 1, 2, . . . , m, (7)

where {Aik} and {Ait} are functions of positions
{r1, r2, . . . , rN} and time (t). The equations for non-
holonomic constraints impose restrictions on possible or
allowed velocity vectors {v1,v2, . . . ,vN}, for given posi-
tions {r1, r2, . . . , rN} and time (t). The holonomic con-
straints given by Eq.(6), are equivalent to the following
equations imposing further restriction on the possible or
allowed velocities.

N∑

k=1

(
∂fi

∂rk

)
· vk +

∂fi

∂t
= 0, i = 1, 2, . . . , s. (8)

For a system of N particles under (s) holonomic
and (m) non-holonomic constraints, a set of vectors
{v1,v2, . . . ,vN} satisfying Eq.(7) and Eq.(8) are called
allowed velocities. It is worth noting at this stage that
there are many, in fact infinitely many, allowed velocities,
since we have imposed only (s+m) number of scalar con-
straints, Eq.(7) and Eq.(8), on (3N) scalar components
of the allowed velocity vectors.
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At any given instant of time, the difference of any
two such non-identical allowed sets of velocities, inde-
pendently satisfying the constraint conditions, are called
virtual velocities.

ṽk(t) = vk(t) − v′
k(t) k = 1, 2, . . . , N.

An infinitesimal displacement over time (t, t+dt), due to
allowed velocities, will be called the allowed infinitesimal

displacement or simply allowed displacement.

drk = vk(t)dt, k = 1, 2, . . . , N. (9)

Allowed displacements {drk} together with differential of
time (dt) satisfy the infinitesimal form of the constraint
equations. From Eq.(8) and Eq.(7), we obtain,

N∑

k=1

(
∂fi

∂rk

)
· drk +

∂fi

∂t
dt = 0, i = 1, 2, . . . , s, (10)

N∑

k=1

Aik · drk + Aitdt = 0 , i = 1, 2, . . . , m. (11)

As there are many independent sets of allowed veloci-
ties, we have many allowed sets of infinitesimal displace-
ments. We propose to define virtual displacement as the
difference between any two such (unequal) allowed dis-
placements taken over the same time interval (t, t + dt),

δrk = drk − dr′k, k = 1, 2, . . . , N. (12)

Thus virtual displacements are infinitesimal displace-
ments over time interval dt due to virtual velocity ṽk(t),

δrk = ṽk(t)dt = (vk(t) − v′
k(t))dt, k = 1, 2, . . . , N. (13)

This definition is motivated by the possibility of (i) iden-
tifying a special class of ‘ideal constraints’ (Sec.IIC), and
(ii) verifying ‘the principle of zero virtual work’ in com-
mon physical examples (Sec.III). It may be noted that,
by this definition, virtual displacements {δrk} are not in-
stantaneous changes in position in zero time. They are
rather smooth, differentiable objects.

The virtual displacements thus defined, satisfy the ho-
mogeneous part of the constraint equations, i.e., Eq.(10)
and Eq.(11) with ∂fi/∂t = 0 and Ait = 0. Hence,

N∑

k=1

∂fi

∂rk

· δrk = 0, i = 1, 2, . . . , s, (14)

N∑

k=1

Aik · δrk = 0, i = 1, 2, . . . , m. (15)

The logical connection between the equations of con-
straint, equations for allowed displacements and equa-
tions for virtual displacements are presented in FIG.1.

FIG. 1: Virtual displacement defined as difference of allowed
displacements

The absence of the (∂fi/∂t) and Ait in the above equa-
tions, Eq.(14) and Eq.(15), gives the precise meaning to
the statement: “virtual displacements are the allowed dis-

placements in the case of frozen constraints”. The con-
straints are frozen in time in the sense that we make
the (∂fi/∂t) and Ait terms zero, though the ∂fi/∂rk

and Aik terms still involve both position {r1, r2, . . . , rN},
and time (t). In the case of stationary constraints, i.e.,
fi(r1, . . . , rN ) = 0, and

∑
k Aik(r1, . . . , rN ) · vk = 0, the

virtual displacements are identical with allowed displace-
ments as (∂fi/∂t) and Ait are identically zero.

B. Existence of forces of constraints

In the case of an unconstrained system of N particles
described by position vectors {rk} and velocity vectors
{vk}, the motion is governed by Newton’s Law,

mkak = Fk(rl,vl, t), k, l = 1, 2, . . . , N (16)

where mk is the mass of the kth particle, ak is its accel-
eration and Fk is the total external force acting on it.
However, for a constrained system, the equations of con-
straint, namely Eq.(6) and Eq.(7), impose the following
restrictions on the allowed accelerations,

N∑

k=1

∂fi

∂rk

· ak +

N∑

k=1

d

dt

(
∂fi

∂rk

)
vk +

d

dt

(
∂fi

∂t

)
= 0,

i = 1, 2, . . . , s (17)
N∑

k=1

Aik · ak +
d

dt
Aik · vk +

d

dt
Ait = 0,

i = 1, 2, . . . , m. (18)
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Given {rk}, {vk} one is no longer free to choose all the
accelerations {ak} independently. Therefore in general
the accelerations {ak} allowed by Eq.(17), Eq.(18) are
incompatible with Newton’s Law, i.e., Eq.(16).

This implies that during the motion the constraint con-
dition cannot be maintained by the external forces alone.
Physically some additional forces, e.g., normal reaction
from the surface of constraint, tension in the pendulum
string, come into play to ensure that the constraints are
satisfied throughout the motion. Hence one is compelled
to introduce forces of constraints {Rk} and modify the
equations of motion as,

mkak = Fk + Rk, k = 1, 2, . . . , N. (19)

FIG. 2: Existence of constraint forces

FIG.2 presents the connection between the equations
of constraints and forces of constraints.

Now the problem is to determine the motion of N par-
ticles, namely their positions {rk(t)}, velocities {vk(t)}
and the forces of constraints {Rk}, for a given set of
external forces {Fk}, constraint equations, Eq.(6) and
Eq.(7), and initial conditions {rk(0),vk(0)}. It is im-
portant that the initial conditions are also compatible
with the constraints. There are a total of (6N) scalar
unknowns, namely the components of rk(t) and Rk, con-
nected by (3N) scalar equations of motion, Eq.(19), and
(s + m) equations of constraints, Eq.(6) and Eq.(7). For
(6N > 3N + s + m) we have an under-determined sys-
tem. Hence to solve this problem we need (3N − s − m)
additional scalar relations.

C. Solvability and ideal constraints

In simple problems with stationary constraints, e.g.,
motion of a particle on a smooth stationary surface, we
observe that the allowed displacements are tangential to
the surface. The virtual displacement being a difference
of two such allowed displacements, is also a vector tan-
gential to it. For a frictionless surface, the force of con-
straint, the so called ‘normal reaction’, is perpendicular
to the surface. Hence the work done by the constraint

force is zero, on allowed as well as virtual displacement.

N∑

k=1

Rk · drk = 0,

N∑

k=1

Rk · δrk = 0.

When the constraint surface is in motion, the allowed
velocities, and hence the allowed displacements are no
longer tangent to the surface (see Sec.III). The virtual
displacement however remains tangent to the constraint
surface. As the surface is frictionless, it is natural to
assume that the force of constraint is still normal to the
instantaneous position of the surface. Hence the work
done by normal reaction on virtual displacement is zero.
However the work done by constraint force on allowed
displacements is no longer zero.

N∑

k=1

Rk · drk 6= 0,

N∑

k=1

Rk · δrk = 0. (20)

In a number of physically interesting simple problems,
such as, motion of a pendulum with fixed or moving sup-
port, motion of a particle along a stationary and moving
slope, we observe that the above interesting relation be-
tween the force of constraint and virtual displacement
holds (see Sec.III). As the 3N scalar components of the
virtual displacements {δrk} are connected by (s + m)
equations, Eq.(14) and Eq.(15), only n = (3N −s−m) of
these scalar components are independent. If the (s + m)
dependent quantities are expressed in terms of remaining
(3N − s − m) independent objects we get,

n∑

j=1

R̃j · δx̃j = 0. (21)

where {x̃j} are the independent components of {rk}.

{R̃j} are the coefficients of {δx̃j}, and are composed of
different {Rk}. Since the above components of virtual
displacements {δx̃j} are independent, one can equate

each of their coefficients to zero (R̃j = 0). This brings in
exactly (3N − s−m) new scalar conditions or equations
that are needed to make the system solvable (see FIG.3).

Thus we have found a special class of constraints,
which is observed in nature (Sec.III) and which gives us a
solvable mechanical system. We call this special class of
constraints, where the forces of constraint do zero work
on virtual displacement, i.e.,

∑
k Rk · δrk = 0, the ideal

constraint.

Our interpretation of the principle of zero virtual work,
as a definition of an ideal class of constraints, agrees with
Sommerfeld. In his exact words, “a general postulate of

mechanics: in any mechanical systems the virtual work

of the reactions equals zero. Far be it from us to want to

give a general proof of this postulate, rather we regard it

practically as definition of a mechanical system”7.
(Boldface is added by the authors).
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FIG. 3: Solvability under ideal constraints

III. EXAMPLES OF VIRTUAL

DISPLACEMENTS

A. Simple Pendulum with stationary support

The motion of a pendulum is confined to a plane and
its bob moves keeping a fixed distance from the point
of suspension (see FIG.4). The equation of constraint
therefore is,

f(x, y, t)
.
= x2 + y2 − r2

0 = 0,

where r0 is the length of the pendulum. Whence

∂f

∂x
= 2x,

∂f

∂y
= 2y,

∂f

∂t
= 0.

The constraint equation for allowed velocities, Eq.(8),
becomes,

x · vx + y · vy = 0.

Hence the allowed velocity (vx, vy) is orthogonal to the
instantaneous position (x,y) of the bob relative to sta-
tionary support. The same may also be verified taking a
plane polar coordinate.

The allowed velocities and the allowed displacements
are perpendicular to the line of suspension. The virtual
velocities and the virtual displacements, being the differ-
ence of two unequal allowed velocities and displacements
respectively, are also perpendicular to the line of suspen-
sion.

dr = v(t)dt, dr′ = v′(t)dt,

δr = (v(t) − v′(t))dt.

FIG. 4: Allowed and virtual displacements of a pendulum
with stationary support

Although the virtual displacement is not uniquely speci-
fied by the constraint, it is restricted to be in a plane per-
pendicular to the instantaneous line of suspension. Hence
it is not ‘completely arbitrary’.

The ideal string of the pendulum provides a tension
(T) along its length, but no shear. The work done by
this tension on both allowed and virtual displacements is
zero,

T · dr = 0, T · δr = 0.

B. Simple Pendulum with moving support

Let us first consider the case when the support is mov-
ing vertically with a velocity u. The motion of the pen-
dulum is still confined to a plane. The bob moves keep-
ing a fixed distance from the moving point of suspension
(FIG.5). The equation of constraint is,

f(x, y, t)
.
= x2 + (y − ut)2 − r2

0 = 0,

where u is the velocity of the point of suspension along
a vertical direction.

Whence

∂f

∂x
= 2x,

∂f

∂y
= 2(y − ut),

∂f

∂t
= −2u(y − ut).

Hence the constraint equation gives,

x · vx + (y − ut) · vy − u(y − ut) = 0,

or,

x · vx + (y − ut) · (vy − u) = 0.

The allowed velocities (vx, vy) and the allowed displace-
ments, are not orthogonal to the instantaneous position
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FIG. 5: Allowed and virtual displacements of a pendulum
with moving support

of the bob relative to the instantaneous point of suspen-
sion (x, y − ut). It is easy to verify from the above equa-
tion that the allowed velocity (vx, vy) is equal to the
sum of a velocity vector (vx, vy − u) perpendicular to
the position of the bob relative to the point of suspen-
sion (x,y − ut), and the velocity of the support (0, u).
If we denote v(t) = (vx, vy), v⊥(t) = (vx, vy − u) and
u = (0, u), then,

v(t) = v⊥(t) + u.

The allowed displacements are vectors collinear to al-
lowed velocities. A virtual displacement being the differ-
ence of two allowed displacements, is a vector collinear to
the difference of allowed velocities. Hence it is orthogonal
to the instantaneous line of suspension.

dr = v(t)dt = v⊥(t)dt + udt,

dr′ = v′(t)dt = v′
⊥(t)dt + udt,

δr = (v(t) − v′(t))dt = (v⊥(t) − v′
⊥(t))dt.

Hence none of these allowed or virtual vectors are ‘arbi-
trary’.

At any given instant, an ideal string provides a ten-
sion along its length, with no shear. Hence the constraint
force, namely tension T, does zero work on virtual dis-
placement.

T · dr = T · u dt 6= 0, T · δr = T · v⊥ dt = 0

For the support moving in a horizontal or any arbitrary
direction, one can show that the allowed displacement
is not normal to the instantaneous line of suspension.
But the virtual displacement, as defined in this article,
always remains perpendicular to the instantaneous line
of support.

C. Motion along a stationary inclined plane

Let us consider a particle sliding along a stationary
inclined plane as shown in FIG.6. The constraint here is
more conveniently expressed in polar coordinates. The
constraint equation is,

f(r, θ)
.
= θ − θ0 = 0

where θ0 is the angle of the slope. Hence the constraint
equation for allowed velocities, Eq.(8), gives,
(

∂f

∂r

)
· v +

∂f

∂t
=

(
∂f

∂r

)
vr +

(
∂f

∂θ

)
vθ +

∂f

∂t

= 0 · ṙ + 1 · (rθ̇) + 0 = 0

Hence θ̇ = 0, implying that the allowed velocities are
along the constant θ plane. Allowed velocity, allowed
and virtual displacements are,

v = ṙ r̂, dr = ṙ r̂ dt,

v′ = ṙ′ r̂, dr′ = ṙ′ r̂ dt,

δr = (v − v′)dt = (ṙ − ṙ′) r̂ dt.

where r̂ is a unit vector along the slope.

FIG. 6: Allowed and virtual displacements of a particle sliding
along a stationary slope

As the inclined slope is frictionless, the constraint force
N is normal to the surface. The work done by this force
on allowed as well as virtual displacement is zero.

N · dr = 0, N · δr = 0

D. Motion along a moving inclined plane

For an inclined plane moving along the horizontal side
(FIG.7), the constraint is given by,

(x − ut)

y
− cot(θ0) = 0,

f(x, y)
.
= (x − ut) − cot(θ0)y = 0.

Whence the constraint for allowed velocities Eq.(8) be-
comes,

(ẋ − u) − cot(θ0)ẏ = 0.
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FIG. 7: Allowed and virtual displacements of a particle sliding
along a moving slope

Hence the allowed velocity (ẋ, ẏ) is the sum of two
vectors, one along the plane (ẋ − u, ẏ), and the other
equal to the velocity of the plane itself (u, 0).

v(t) = v‖(t) + u.

Allowed displacements are vectors along the allowed ve-
locities, however the virtual displacement is still a vector
along the instantaneous position of the plane.

dr = (v‖(t) + u)dt, dr′ = (v′
‖(t) + u)dt,

δr = (v(t) − v′(t))dt = (v‖(t) − v′
‖(t))dt.

For the moving frictionless slope, the constraint force pro-
vided by the surface is perpendicular to the plane. Hence
the work done by the constraint force on virtual displace-
ment remains zero.

N · dr 6= 0, N · δr = 0.

IV. LAGRANGE’S METHOD OF

UNDETERMINED MULTIPLIERS

A constrained system of particles obey the equations
of motion given by,

mkak = Fk + Rk, k = 1, 2, . . . , N

where mk is the mass of the kth particle, ak is its accel-
eration. Fk and Rk are the total external force and force
of constraint on the kth particle. If the constraints are
ideal, we can write,

N∑

k=1

Rk · δrk = 0, (22)

whence we obtain,

N∑

k=1

(mkak − Fk) · δrk = 0. (23)

If the components of {δrk} were independent, we could
recover Newton’s Law for unconstrained system from this

equation. However for a constrained system {δrk} are de-
pendent through the constraint equations, Eq.(14) and
Eq.(15), for holonomic and non-holonomic systems re-
spectively.

N∑

k=1

∂fi

∂rk

δrk = 0, i = 1, 2, . . . , s (14)

N∑

k=1

Ajk · δrk = 0, j = 1, 2, . . . , m (15)

We multiply Eq.(14) successively by (s) scalar multi-
pliers {λ1, λ2, . . . λs}, Eq.(15) successively by (m) scalar
multipliers {µ1, µ2, . . . µm} and then subtract them from
the zero virtual work equation, namely Eq.(22).

N∑

k=1



Rk −

s∑

i=1

λi

∂fi

∂rk

−

m∑

j=1

µjAjk



 δrk = 0. (24)

These multipliers {λi} and {µj} are called the Lagrange’s
multipliers. Explicitly in terms of components,

N∑

k=1


Rk,x −

s∑

i=1

λi

∂fi

∂xk

−
m∑

j=1

µj(Ajk)
x


 δxk

+

N∑

k=1

[Y ]kδyk +

N∑

k=1

[Z]kδzk = 0, (25)

where [Y ]k and [Z]k denote the coefficients of δyk and
δzk respectively.

The constraint equations, Eq.(14) and Eq.(15), allow
us to write the (s + m) dependent virtual displacements
in terms of the remaining n = (3N − s−m) independent
ones. We choose (s +m) multipliers {λ1, λ2, . . . , λs} and
{µ1, µ2, . . . , µm}, such that the coefficients of (s + m)
dependent components of virtual displacement vanish.
The remaining virtual displacements being independent,
their coefficients must vanish as well. Thus it is possible
to choose {λ1, λ2, . . . , λs} and {µ1, µ2, . . . , µm} such that
all coefficients {[X ]k,[Y ]k,[Z]k} of virtual displacements
{δxk,δyk,δzk} in Eq.(25) vanish. Hence we can express
the forces of constraint in terms of the Lagrange’s multi-
pliers.

Rk =

s∑

i=1

λi

∂fi

∂rk

+

m∑

j=1

µjAjk, k = 1, 2, . . . , N (26)

Thus the problem reduces to finding a solution for the
equations,

mkak = Fk+

s∑

i=1

λi

∂fi

∂rk

+

m∑

j=1

µjAjk, k = 1, 2, . . . , N (27)

together with the equations of constraint,

fi(r1, r2, . . . , rN , t) = 0, i = 1, 2, . . . , s (6)
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FIG. 8: Lagrange’s method of undetermined multipliers: solv-
ability

and

N∑

k=1

Aik · vk + Ait = 0 , i = 1, 2, . . . , m. (7)

Here we have to solve (3N + s + m) scalar equations
involving (3N+s+m) unknown scalar quantities, namely
{xk, yk, zk, λi, µj} (see FIG.8). After solving this system
of equations for {xk, yk, zk, λi, µj}, one can obtain the
forces of constraint {Rk} using Eq.(26).

V. LAGRANGE’S EQUATIONS IN

GENERALIZED COORDINATES

For the sake of completeness we discuss very briefly
Lagrange’s equations in generalized coordinates. A
more complete discussion can be found in most
texts1,2,3,4,5,6,7,8,9,10,11,12,13,14. Consider a system of N
particles under (s) holonomic and (m) non-holonomic
constraints. In certain suitable cases, one can express
(s+m) dependent coordinates in terms of the remaining
(3N − s − m) independent ones. It may be noted that
such a complete reduction is not possible for general cases
of non-holonomic and time dependent constraints7,14. If
we restrict our discussion to cases where this reduction is
possible, one may express all the 3N scalar components

of position {r1, r2, . . . , rN} in terms of (3N − s − m) in-
dependent parameters {q1, q2, . . . , qn} and time (t).

rk = rk(q1, q2, . . . , qn, t), k = 1, 2, . . . , N (28)

The allowed and virtual displacements are given by,

drk =

n∑

j=1

∂rk

∂qj

δqj +
∂rk

∂t
dt, k = 1, 2, . . . , N

δrk =

n∑

j=1

∂rk

∂qj

δqj , k = 1, 2, . . . , N. (29)

From Eq.(23) we obtain,

N∑

k=1

mk

dṙk

dt




n∑

j=1

∂rk

∂qj

δqj



 −
N∑

k=1

Fk




n∑

j=1

∂rk

∂qj

δqj



 = 0

(30)

Introduce the expression of kinetic energy,

T =
1

2

N∑

k=1

mkṙ
2
k,

and that of the generalized force,

Qj =

N∑

k=1

Fk

∂rk

∂qj

, j = 1, 2, . . . , n. (31)

After some simple algebra one finds,

n∑

j=1

(
d

dt

∂T

∂q̇j

−
∂T

∂qj

− Qj

)
δqj = 0. (32)

As {q1, q2, . . . , qn} are independent coordinates, coeffi-
cient of each δqj must be zero separately. Hence (see
FIG.9),

d

dt

∂T

∂q̇j

−
∂T

∂qj

= Qj , j = 1, 2, . . . , n. (33)

These are called Lagrange’s equations in generalized co-
ordinates. To proceed further one has to impose addi-
tional conditions on the nature of forces {Fk} or {Qj}.

In problems where forces {Fk} are derivable from a

scalar potential Ṽ (r1, r2, . . . , rN ),

Fk = −∇kṼ (r1, r2, . . . , rN ), k = 1, 2, . . . , N. (34)

One can obtain the generalized force as,

Qj = −∇kṼ ·

(
∂rk

∂qj

)
= −

∂V

∂qj

, j = 1, 2, . . . , n. (35)
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FIG. 9: Lagrange’s equations in generalized coordinates

Where V is the potential Ṽ expressed as a function of
{q1, q2, . . . , qn}. In addition as the potential V is in-
dependent of the generalized velocities, we obtain from
Eq.(33),

d

dt

∂(T − V )

∂q̇j

−
∂(T − V )

∂qj

= 0, j = 1, 2, . . . , n. (36)

At this stage one introduces the Lagrangian function,
L = T −V . In terms of the Lagrangian, the equations of
motion take up the form,

d

dt

∂L

∂q̇j

−
∂L

∂qj

= 0, j = 1, 2, . . . , n. (37)

VI. CONCLUSION

In this article we make an attempt to present a quan-
titative definition of the virtual displacement. We show
that for certain simple cases the work done by the forces
of constraint on virtual displacement is zero. We also
demonstrate that this zero virtual work principle gives
us a solvable class of problems. Hence we define this
special class of constraint as the ideal constraint. We
demonstrate in brief how one can solve a general mechan-
ical problem by: i) Lagrange’s method of undetermined
multipliers and ii) Lagrange’s equations in generalized
coordinates.

In the usual presentations of Lagrange’s equation
based on virtual displacement and d’Alembert’s princi-
ple, Eq.(3) and Eq.(5) are satisfied by the virtual dis-
placements. One may consider these equations as the
definition of virtual displacements. However the situ-
ation is far from satisfactory, as separate defining equa-
tions are required for different classes of constraints. This
adhoc definition also fails to clarify the actual connection
between the virtual displacements and the equations of
constraints.

At this stage one introduces d’Alembert’s principle of
zero virtual work. Bernoulli7 (1717) and d’Alembert7,15

(1743) originally proposed this principle for a system in
static equilibrium. The principle states that the forces of
constraint do zero work on virtual displacement. For sys-
tems in static equilibrium, virtual displacement meant an
imaginary displacement of the system that keeps its stat-
ical equilibrium unchanged. Lagrange generalized this
principle to a constrained system of particles in motion.
This principle is crucial in arriving at Lagrange’s equa-
tion. However, most texts do not clearly address the
questions, (i) why one needs to extend d’Alembert’s prin-
ciple to particles in motion, and (ii) why the work done
by constraint forces on virtual displacements, and not on
allowed displacements, is zero ?

In the present article the allowed infinitesimal displace-
ments are defined as ones that satisfy the infinitesimal
form of the constraint equations. They are the displace-
ments that could have been possible if only the con-
straints were present. Actual dynamics, under the given
external forces, would choose one of these various sets of
displacements as actual displacement of the system. The
definition of virtual displacement as difference of two un-
equal allowed displacements over the same infinitesimal
time interval (t, t+dt), gives a unified definition of virtual
displacement. This definition of virtual displacement sat-
isfies the appropriate equations found in the literature,
for both holonomic and non-holonomic systems.

It is shown that Newton’s equation of motion with ex-
ternal forces alone, is inconsistent with equations of con-
straint. Hence the forces of constraint are introduced.
Now there are 3N equations of motion and (s + m)
equations of constraint involving 6N unknown scalars
{rk(t),Rk}. Without additional condition (d’Alembert
principle), the problem is underspecified and unsolvable.

It is verified that for simple physical systems, the
virtual displacements, as defined in this article, sat-
isfy d’Alembert principle for particles in motion. The
rheonomous examples discussed in Sec.III show why the
forces of constraint do zero work on virtual displace-
ments and not on allowed displacements. The additional
equations introduced by d’Alembert principle make the
problem solvable. These justify (i) the peculiar defini-
tion of virtual displacements and the equations they sat-
isfy, (ii) Lagrange’s extension of d’Alembert’s principle
to particles in motion, (iii) why the zero work princi-
ple is related to virtual displacement and not to allowed
displacement. Once the system is solvable, two meth-
ods, originally proposed by Lagrange can be used, and
are demonstrated. For Lagrange’s method of undeter-
mined multipliers, one solves (3N + s) equations to ob-
tain the motion of the system {rk(t), . . . , rN (t)} and La-
grange’s multipliers {λi, . . . , λs}. The forces of constraint
{Rk, . . . ,RN} are expressed in terms of these multipli-
ers. For Lagrange’s equations in generalized coordinates
one solves (3N − s) equations to obtain the time evo-
lution of the generalized coordinates {qj = qj(t), j =
1, . . . , 3N − s}. This gives the complete description of
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the motion {rk = rk(q1, q2, . . . , qn, t), k = 1, . . . , N}, ig-
noring the calculation of the constraint forces. It may be
noted that about a century later Appell’s equations7,14,20

were introduced for efficiently solving non-holonomic sys-
tems.

It is interesting to note that both the above mentioned
methods require the principle of zero virtual work by con-
straint forces as a crucial starting point. In the case of
Lagrange’s method of undetermined multipliers we start
with the ideal constraint condition Eq.(22). From there
we obtain Eq.(23)-Eq.(27). Eq.(26) expresses the con-
straint forces in terms of Lagrange’s multipliers. For La-
grange’s equations in generalized coordinates, we start
with the ideal constraint, Eq.(22). We work our way
through Eq.(23), Eq.(30), Eq.(32) and finally obtain La-
grange’s equations in generalized coordinates, Eq.(33)
and Eq.(37). The last figure, FIG.(10), gives the com-
plete logical flow of this article.
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