
 Ch 7 



• why are  free energies are important? 

• when we are interested in the relative stability of several phases.  

• The second law of thermodynamics:  for a closed system with energy E, 
volume V, and number of particles N, (NVE)  the entropy S is at a maximum 
when the system is in equilibrium. 

• if NVT are fixed: Helmholtz free energy F � E – TS is at a minimum in 
equilibrium.  

• NPT: the Gibbs free energy G � F + PV is at a minimum.  

2 phases � and � in equilibrium:  

• at a given temperature and density, we should simply compare the 
Helmholtz free energies F� and F� of these phases.  



 it is not possible to measure the free energy  or entropy  
directly in a simulation!  

Entropy, free energy, and related quantities are not simply 
averages of functions of the phase space coordinates of the 
system.  

Rather they are directly related to the partition function 

The partition function is NOT calculated in a simulation.  

For instance, in classical statistical mechanics, the Helmholtz 
free energy  

F =-kT ln Q (N,V, ,T) 

Same for  G=U-TS+PV 



S, F, G can not be directly measured in an experiment!  

Can be calculated from measured properties: P(V,T), E  
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For example, to compute the F for a system at a  given temperature 
and density, we should find a reversible path in the V-T plane that links 
the state under consideration to a state of known free energy. The 
change in F along that path can then simply be evaluated by 
thermodynamic integration. 



There are only very few thermodynamic states for which the free energy of a 
substance is known, for example:  the ideal gas  

The free energy of a liquid can be integrated from the ideal gas if we measured 
P(V,T) 

Artificial thermodynamic integration 

In computer simulations we are not limited to using a physical 
thermodynamic integration path 

For example, if we know the free energy of the Lennard-Jones fluid, we can 
determine the free energy of the Stockmayer fluid  by turning on the 
dipolar interactions: the integration path goes from zero term to finite 
dipolar term. 

Stockmayer fluid : U=ULJ+Udipolar 



Let us consider an N-particle system with a potential energy function 
U.  

U = U(�) = U=(1-�) ULJ+�Udipolar 

�: parameter that turns on the dipolar interatcions:  

for � = 0, U=ULJ (system I)  
� = 1, Stockmayer (system II) 

U(�) = U=(1-�) UI+�UII 

We assume that we know UI  by analitical or numerical calculation 



F(λ = 1) − F(λ = 0) =
∂F

∂λ
0

1

∫ dλ

F(λ) = −kT lnQ(λ)

Q = dr
3N exp{−βU(λ)}∫

∂F

∂λ
= −kT

∂ lnQ

∂λ
= −kT dr

3N (−β∂U / ∂λ)exp{−βU(λ)}∫ /Q

=
∂U

∂λ

FII FI 

F can NOT be calculated as an ensemble average 

�F: yes we can 



Chemical Potential 

Particle insertion method 

µ =
∂F

∂N VT

F = −kT lnQ

For large N:   

µ = F(N +1) − F(N )

= −kT ln(QN +1 /QN )
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F = Fid + Fex

µ = µid + µex

known 
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 we can calculate � as an ensemble average 



Implementation Widom scheme: 

• carry out a conventional constant-NVT Monte Carlo simulation on the 
system of N particles.  

• At frequent intervals during this simulation, we randomly generate a 
coordinate SN + 1, uniformly over the unit cube.  

• For (N + 1)th particle,  compute exp(—��U).  

• Average the exp(—��U) over MC steps.  

• The extra particle is NOT included in the system. 



Algorithm: 
Subroutine WIDOM 

xtest=box*ranf 
call ener(xtest,entest) 
wtest=wtest+exp(-beta*entest) 
return 
end 

• This subroutine is usually called in sample.f 

• Excess chemical potential:  ��ex = -ln (wtest / M), where M is the total 
number of test particle insertions.  

• Subroutine ener calculates the energy of the test particle.  

• The test particle insertion is virtual and is never accepted.  



Chemical potential in NPT 
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We must evaluate � = (∂G/∂N)PT.  

� = G (N + 1,P, T) - G (N,P,T) 
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•  the ideal gas reference state at the same pressure, rather than at the 
same average density as the system under study. 

•  the fluctuating quantity that we are averaging is V exp (—��U) 


