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MD at constant temperature 

• In an experiment, constant temperature T means 
thermal equilibrium with a reservoir at T. 

• In the canonical ensemble the system is also in 
thermal equilibrium with a bath at T. 

• However thermal equilibrium doesn’t mean 
constant temperature! 

• The instantaneous temperature of a system is 
related to the kinetic energy, and KE fluctuates 



 
In equilibrium, the momenta are distributed according 
to Boltzman statistics: 
 

   P(p)~ (β/2πm)3/2 exp{-βp2/2m} 

With this distribution 
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• In a canonical ensemble of a finite system, the instantaneous kinetic 
temperature Tk fluctuates.  

• In fact, if we were to keep the average kinetic energy per particle 
rigorously constant, as is done in the so-called isokinetic MD scheme 
or velocity-scaling schemes, then we would NOT simulate the true 
constant-temperature ensemble. 

•  In practice, the difference between isokinetic and canonical 
schemes is often negligible.  

• Problems can be expected if isokinetic simulations are used to 
measure equilibrium averages that are sensitive to fluctuations . 

• Any kind of temperature regulation can be used while preparing the 
system at a desired temperature (i.e., during equilibration).   



• The system is coupled to a heat bath that imposes the desired 
temperature.  

• The coupling to a heat bath is represented by stochastic 
impulsive forces that act occasionally on randomly selected 
particles. 

•  These stochastic collisions with the heat bath can be 
considered as Monte Carlo moves that transport the system 
from one constant-energy shell to another.  

MD in a Canonical Ensemble: 
 The Andersen Thermostat  



• Between stochastic collisions, the system evolves at constant 
energy according to the normal Newtonian laws of motion 
(MD).  

• The stochastic collisions ensure that all accessible constant-
energy shells are visited according to their Boltzmann weight. 

•  Before starting such a constant-temperature simulation, we 
should first select the strength of the coupling to the heat 
bath.  

• This coupling strength is determined by the frequency of 
stochastic collisions:  ν 



A constant-temperature simulation now consists of the 
following steps:  
 
1.  Start with an initial set of positions and momenta {rN (0), pN 

(0)} and integrate the equations of motion for a time Δt.  

2.   A number of particles are selected to undergo a collision 
with the heat bath. The probability that a particle is selected 
in a time step of length Δt is νΔt.  

3.  If particle i has been selected to undergo a collision, its new 
velocity will be drawn from a Maxwell-Boltzmann 
distribution corresponding to the desired temperature T.  
All other particles are unaffected by this collision.  



The mixing of Newtonian dynamics with stochastic collisions 
turns the Molecular Dynamics simulation into a Markov 
process 

 
The Andersen algorithm does, indeed, generate a canonical 

distribution.  
 

Implementation: 
 
In subroutine SOLVE:  
 
sigma=sqrt(temp) 
do i=1,npart 

 if(ranf.lt.nu*dt) then 
 v(i)=gauss(sigma) 
 endif 

enddo 

nu is a parameter (the frequency of 
collisions) 
 
The results should be independent 
of the value of nu. 

P(v)~ (1/2πT)3/2 exp{-v2/2T} 

σ2=T 



Distribution of velocities obtained with Andersen 
Thermostat 

Andersen method is NOT deterministic, but STOCHASTIC. 
 
 



• The Andersen thermostat yields good results for time-
independent properties, such as the equation of state. 

•  However, as the method is based on a stochastic scheme, is not 
good for dynamic properties, such as the diffusion coefficient. 

• The stochastic collisions disturb the dynamics in a way that is 
not realistic—it leads to sudden random decorrelation of particle 
velocities.  

• This effect will result in an enhanced decay of the velocity 
autocorrelation function, and hence the diffusion constant  

• Clearly this effect will be more pronounced as the collision 
frequency v is increased. 



MD NVT: Nose-Hoover thermostat 

Extended Lagrangian for the original system S + 
one additional coordinate s 
 
 

€ 

Lagrangian(ri, ˙ r i,s, ˙ s ) = (m /2)s˙ r i
2∑ −U(r3N )+)(Q /2)˙ s 2 − (L /β)ln s

• s is the coordinate of an extra particle representing the 
“heat bath” 
• Q is a coupling constant, (~the mass of the extra 
particle) 
• The system S can now exchange energy with the extra 
particle 
• The total energy of the extended system is constant 
• L is a constant  



Extra degree of freedom: s, ps 

Q: effective “mass” of the extra particle 
 

L: parameter 

momenta:  
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partition function –> 

�With the choice L = 3N + 1, this ensemble reduces to the canonical ensemble 



The Hamiltonian derived from this Lagrangian 
generates a canonical ensemble for the system S: 
 
ZNose=constants X ZS(NVT) 
 
 
Distribution of velocities obtained by MDNose-Hoover 
 
 



After 12,000 time steps the imposed temperature is suddenly 
increased from T = 1 to T = 1.5.  
 
 A small value of Q corresponds to a low inertia of the heat 
bath and leads to rapid temperature fluctuations.  
 
A large value of Q leads to a slow response to the temperature 
jump. 


