Molecular Dynamics



Molecular Dynamics Simulation

technique for computing the equilibrium and transport properties of
a classical many-body system.

classical means that the motion particles obeys the laws of classical
mechanics.

Quantum effects are important for example when we consider the
translational or rotational motion of light atoms or molecules (He,
H2, D2) or vibrational motion

MD simulates experiments.



In a real experiment:

*prepare a sample

econnect this sample to a measuring instrument
*measure the property during a certain time interval.
*the longer we average, the more accurate

Molecular Dynamics:

eprepare a sample: select a model system consisting of N particles
*solve Newton’s equations of motion until the properties of the
system no longer change with time (we equilibrate the system).
*After equilibration, we perform the actual measurement.



To measure an observable quantity in a Molecular Dynamics
simulation, we must first of all be able to express this observable as a
function of the positions and momenta of the particles in the system.

Example: definition of the temperature using equipartition of
energy.

Average kinetic energy per degree of freedom:
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we use this equation as an operational definition of the temperature.
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Here N, = # degrees of freedom

For N particles in 3D: N;=3N

the total kinetic energy of a system fluctuates

so does the instantaneous temperature




The program

Initialize: position and velocity of all particles

Calculate the forces over all particles
P . MD loop

Integrate the equations of motion (Newton’s law) |

Sample averages: calculate pressure, density, temperature, energy etc



Initialization
*To start the simulation we assign initial positions and velocities

to all particles in the system.

*The particle positions = compatible with the structure to
simulate

* Do NOT put the particles positions with overlap of the atomic
or molecular cores.

* Usually in a cubic lattice, as in MIC
*Give to each particle a RANDOM velocity
*Shift all velocities, such that the total momentum is zero

*Scale the velocities to adjust the temperature T to the desired
value. Scaling: v>v (T/T)¥?



MD is NOT done at constant T but constant energy.

The value of the average equilibrium temperature is computed
in the simulation, will not be the initial T.

The initial velocities are necessary to integrate the equations of
motion the first time.

In the simulation, the distribution of velocities will become
Maxwell-Boltzman



Computation of the Force

The force has to be computed with all near particles, the computing time
scales as N2

As in MC, we use periodic boundaries
Algorithm:
Compute the distance between particles i,j

Choosing the cut off rc = Box/2—> compute interaction between nearest
periodic image of j.



With simple cubic periodic boundary conditions, the distance in any
direction between i and the nearest image of j should always be less (in
absolute value) than box/2.

Compute all Cartesian components of r;, and |r;|?

ij’

Test if is less than rc? =2 if NOT we immediately skip to the next value of j.
—> if YES compute the force f;  (each component)

Do NOT compute |r;| itself, because this would be both unnecessary and
expensive (as it would involve the evaluation of a square root).

The force is obtained as f =-VU
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Integrating the equations of motion ma = f

Numerical integration is done in small time steps, using Taylor
expansions in dt

_ SO d_%’di
r(t+dt)=r(t)+v(t)dt + —= 5 3 +0(dt*)

m

Euler algorithm
r(t+dt)=r(t)+v(t)dt + AY )dt +0(dt’)
2m

NOT recommended
Catastrophic Energy drift



Integrating the equations of motion ma =

Numerical integration is done in small time steps, using Taylor
expansions in dt

[0 g, dr
r(t+dt)=r(t)+v(t)dt + —= 5 3 +0(dt*)

m

(VERLET algorithm): trick to get rid of the velocity:
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(1= df) = r(0) = v(Odi + - 2de? ===+ Ol

r(t+dt)+r(t—dt)=2r(t)+f( )dt +0(dt")
m

r(t+dt)z2r(t)—r(t—dt)+f( )dt +0(dt")

m

f



The Verlet algorithm DO NOT use the velocities.

However we may want to compute the velocities to calculate for
example the kinetic energy and temperature.

To compute the velocities:

r(t+ dt) — r(t - dt) = 2v(t)dt + O(dt’)

_ r(t+dt)—r(t-dt)

+ O(dt*
2dt (dr”)

V(1)



Leap-frog altorithm
(derived from Verlet)

v(t + At/2) = v(t — At/2) + Atf-T(]—:—)

r(t + At) = 1(t) + Atv(t + At/2)

velocities and positions calculated at different times
Can be problematic with evaluation of the total energy



What is a good algorithm?
What criteria should satisfy?

e Speed

* Accuracy

* Energy conservation
* Orbit stability
 Time reversibility

* Theorem of Liouville



*speed—> not very relevant because the fraction of
time spent on integrating the equations of motion (as
opposed to computing the interactions) is small

*accuracy for large time steps = more important,
because the longer the time step that we can use, the
fewer evaluations of the forces are needed per unit of
simulation time.

some algorithms allow the use of a large time
step achieve this by storing information on
increasingly higher-order derivatives of the
particle’s coordinates —> require more
memory storage. (not a serious problem)



*Energy conservation = important criterion, two kinds:
short time
long time

Sophisticated higher-order algorithms have
very good SHORT TIME energy conservation but
NOT long time: energy drift.

Verlet-style algorithms: moderate short-term
energy conservation but little long-term drift.



*Lyapunov instability = two trajectories that are
initially very close will diverge exponentially as time
progresses.
any integration error, no matter how small, will
always cause our simulated trajectory to diverge
exponentially from the true trajectory compatible
with the same initial conditions. not serious!

The aim of an MD simulation is NOT to predict precisely
the trajectory of all molecules, we are always
interested in statistical predictions.

there is considerable numerical evidence thatin MD
simulations, statistical predictions are good enough.



*Time reversibility = equations of motion are time
reversible, and so should be the MD algorithms.

In fact, many algorithms are NOT time reversible. That is,
future and past phase space coordinates do not play a
symmetric role in such algorithms.

As a consequence, if one were to reverse the momenta of
all particles at a given instant, the system would not trace
back its trajectory in phase space, even if the simulation
would be carried out with infinite numerical precision.

Only in the limit of an infinitely short time step will such
algorithms become reversible.



* Liouville’s Theorem: Preservation of volume in phase

space
Hamiltonian dynamics leaves the magnitude of any
volume element in bhase space unchanged

P;

4q;

many numerical schemes (like non-reversible algorithms)
are NOT area-preserving: this is not compatible with
energy conservation = nonreversible algorithms will
have serious long-term energy drift



numerical implementation is NOT time reversible
(even when we use a time-reversible algorithm)

due to finite machine precision using floating-point
arithmetic that results in rounding errors



How about Verlet algorithm?

*is fast.

*not particularly accurate for long time steps.

srequires little memory -2 This is useful when we
simulate very large systems

*short-term energy conservation is fair

elittle long-term energy drift

*time reversible

earea preserving

*not very accurate trajectories



Velocity-corrected Verlet algorithm

D) r(t + dt) = r(0) + vnds + 22 dr? 4 ﬂdi +0(dt")
2m dt® 3!
2) 1t - dt) = r(t) - v(t)dr + &d 2 _drdr oty
om a3l
3) 1t +2d1) = () + v(0)2dt + L2 aar? + CL 3L oarty
om a3l
4) r(t = 2dt) = r(t) — v(t)2dt + AU )4d 2 _d : 8t +0(dt")
om a3l

8 x{(1)-(2)} = 1(3)-(4)} =

12v(t)dt = 8[r(t + dt) — r(t — dt)] - [r(t + 2dt) — r(t - 2dt)] + O(dt*)

the error in the velocities is of order O(dt3).
*the velocity can be computed after the next time



Errors in MD and MC

Errors in MD and MC are of 3 type:

*Systematic: for example related to finite size effects, interaction
cutoff. INTRINSIC to the simulation.

*Errors due inadequate sampling, for example a bad RNG, or

acceptance rules not satisfying DB: POOR DESIGN, must be
corrected.

eStatistical errors due to random fluctuations. These errors
determine the degree of confidence in our results.

Only for the statistical errors we can apply statistical analysis.



Suppose the fluctuating property A is measured n times in a system in
equilibrium. The mean value is:

1 n
< A>= —EAZ.
n=o
and if each measurement is independent with variance

o’ (A) = lE(AZ.— <A>)=<A’>-<A>’
n i=1

then the variance of the mean is:

0’ (<A>)=0"(A)/n



In MC we average over many n MC steps.
In MD we average over n time-steps.

The problem is:

there is a correlation between consecutive
configurations, then the of nvalues A, inthe sample
are not all independent

The effective value of independent measurements is
less than n.

A variance calculated with all the Ai values would
underestimate the real o.



Estimation of errors in MD

If averages are evaluated over blocks of successive values, as
the block size increases the block averages will be decreasingly
correlated.

For example, blocks of 4:

Al A2 A3 Ad,.....ooviiiiiiiiiiee, An

Bl B2 .o Bn/4

{B } are less correlated than {A}

if the block length exceeds the correlation-time, we
will have an independent sample.



The correlation time is unknown.

How long should the block be to estimate the error?

If the block length is too short, there is little improvement

If it is too long, reduces the number of values in our sample.

Scheme: Series of succesive block sizes b=1,2,4,8...

Al A2 A3 A4, ..o, An
)

B1 B2 e Bn/2

C1 C2.iiiiiiinis Cn/4



We calculate the variance of each sample A, B, C....

The successive values of o will increase until a plateau is
reached.

The plateau value is the result for o.
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The standard deviation o in the potential energy as a function of the

number of block operations M for a simulation of 150,000 and
600,000 time steps.




It also shows if the simulation time is adequate:

If total time is too short, the plateau is not reached or is too narrow
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MD at constant T



MD at constant temperature

In an experiment, constant temperature T means
thermal equilibrium with a reservoir at T.

In the canonical ensemble the system is also in
thermal equilibrium with a bath at T.

However thermal equilibrium doesn’t mean
constant temperature!

The instantaneous temperature of a system is
related to the kinetic energy, and KE fluctuates



In a canonical ensemble of a finite system, the instantaneous kinetic
temperature Tk fluctuates.

In fact, if we were to keep the average kinetic energy per particle
rigorously constant, as is done in the so-called isokinetic MD scheme
or velocity-scaling schemes, then we would not simulate the true
constant-temperature ensemble.

In practice, the difference between isokinetic and canonical schemes
is often negligible.

Problems can be expected if isokinetic simulations are used to
measure equilibrium averages that are sensitive to fluctuations.

Any kind of temperature regulation can be used while preparing the
system at a desired temperature (i.e., during equilibration).



MD in a Canonical Ensemble:
The Andersen Thermostat

The system is coupled to a heat bath that imposes the
desired temperature.

The coupling to a heat bath is represented by stochastic
impulsive forces that act occasionally on randomly selected
particles.

These stochastic collisions with the heat bath can be
considered as Monte Carlo moves that transport the system
from one constant-energy shell to another.



Between stochastic collisions, the system evolves at
constant energy according to the normal Newtonian
laws of motion (MD).

The stochastic collisions ensure that all accessible
constant-energy shells are visited according to their
Boltzmann weight.

Before starting such a constant-temperature
simulation, we should first select the strength of the
coupling to the heat bath.

This coupling strength is determined by the frequency
of stochastic collisions: v



A constant-temperature simulation now consists of the
following steps:

1. Start with an initial set of positions and momenta {r™ (0), p"
(0)} and integrate the equations of motion for a time At.

2. A number of particles are selected to undergo a collision
with the heat bath. The probability that a particle is
selected in a time step of length At is vAt.

3. If particle i has been selected to undergo a collision, its new
velocity will be drawn from a Maxwell-Boltzmann
distribution corresponding to the desired temperature T.
All other particles are unaffected by this collision.



The mixing of Newtonian dynamics with stochastic collisions turns the
Molecular Dynamics simulation into a Markov process

The Andersen algorithm does, indeed, generate a canonical
distribution.

Implementatlon: nu is a parameter (the frequency of

collisions)

In subroutine SOLVE:

The results should be independent of

sigma=sqrt(temp) the value of nu.

do i=1,npart
if(ranf.lt.nu*dt) then
v(i)=gauss(sigma)
endif

enddo

Anderson thermostat is NOT deterministic, but stochastic.
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Figure 6.1: Velocity distribution in a Lennard-Jones fluid (T = 2.0, p
= 0.8442, and N = 108). The solid line is the Maxwell-Boltzmann
distribution (6.1.1), and the symbols are from a simulation using v =

0.01 and v = 0.001 as collision rates.



The results of constant N,V,T Molecular Dynamics simulations should be
identical to those of canonical Monte Carlo

Figure 6.2: Equation of state of the Lennard-Jones fluid (T = 2.0 and N = 108);
comparison of the Molecular Dynamics results using the Andersen thermostat (open
symbols) with the results of Monte Carlo simulations (closed symbols) and the

equation of state of Johnson et al. [62].



Andersen thermostat is fine for equilibrium properties
Fails for dynamic properties

The stochastic collisions disturb the dynamics in a way that
is not realistic

it leads to sudden random decorrelation of particle
velocities. This effect will result in an enhanced decay of the
velocity autocorrelation function.



MD at constant T: deterministic approach
Nose-Hoover thermostat

The thermal bath is added to the system as extra coordinates
in the Lagrangian
The MD simulation is carried out for the “extended” system

Energy is allowed to flow dynamically from the reservoir to
the system and back

“It is like controlling the volume with a piston in NPT”



Extra degree of freedom: s, p,

L: parameter

Q: effective “mass” of the extra particle

oL ,
. =——=m.SF
momenta: P, ir ST
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p= =08
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With the choice L = 3N + 1, this ensemble reduces to the canonical ensemble



