MD at constant T



MD at constant temperature

*In an experiment, constant temperature T means
thermal equilibrium with a reservoir atT.

*In the canonical ensemble the system is also in
thermal equilibrium with a bath atT.

*However thermal equilibrium doesn’t mean
constant temperature!

*The instantaneous temperature of a system is
related to the kinetic energy, and KE fluctuates



kT = m<v, 22>

In equilibrium, the momenta are distributed according
to Boltzman statistics:

P(p)~ (B /2mtm)32 exp{- 3 p%/2m}
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<p?>=3mkT
<p*>=15 (mkT)?

02 /<T>2=2/3N)



*In a canonical ensemble of a finite system, the instantaneous kinetic
temperature T, fluctuates.

*In fact, if we were to keep the average kinetic energy per particle
rigorously constant, as is done in the so-called isokinetic MD scheme
or velocity-scaling schemes, then we would NOT simulate the true
constant-temperature ensemble.

* In practice, the difference between isokinetic and canonical
schemes is often negligible.

*Problems can be expected if isokinetic simulations are used to
measure equilibrium averages that are sensitive to fluctuations .

*Any kind of temperature regulation can be used while preparing the
system at a desired temperature (i.e., during equilibration).



MD in a Canonical Ensemble:
The Andersen Thermostat

*The system is coupled to a heat bath that imposes the desired
temperature.

*The coupling to a heat bath is represented by stochastic
impulsive forces that act occasionally on randomly selected
particles.

* These stochastic collisions with the heat bath can be
considered as Monte Carlo moves that transport the system
from one constant-energy shell to another.



*Between stochastic collisions, the system evolves at constant
energy according to the normal Newtonian laws of motion

(MD).

*The stochastic collisions ensure that all accessible constant-
energy shells are visited according to their Boltzmann weight.

* Before starting such a constant-temperature simulation, we
should first select the strength of the coupling to the heat
bath.

*This coupling strength is determined by the frequency of
stochastic collisions: vV



A constant-temperature simulation now consists of the
following steps:

|. Start with an initial set of positions and momenta {rN (0), pN
(0)} and integrate the equations of motion for a time At.

2. A number of particles are selected to undergo a collision
with the heat bath. The probability that a particle is selected
in a time step of length Atis v At.

3. If particle i has been selected to undergo a collision, its new
velocity will be drawn from a Maxwell-Boltzmann
distribution corresponding to the desired temperature T.
All other particles are unaffected by this collision.



The mixing of Newtonian dynamics with stochastic collisions
turns the Molecular Dynamics simulation into a Markov

process

The Andersen algorithm does, indeed, generate a canonical

distribution.

Implementation:
In subroutine SOLVE:

sigma=sqrt(temp)

do i=Il,npart
if(ranf.lt.nu*dt) then
v(i)=gauss(sigma)
endif

enddo

nu is a parameter (the frequency of
collisions)

The results should be independent
of the value of nu.

P(v)~ (1/211T)32 exp{-v2/2T}

o2=T



Distribution of velocities obtained with Andersen
Thermostat
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Andersen method is NOT deterministic, but STOCHASTIC.



*The Andersen thermostat yields good results for time-
independent properties, such as the equation of state.

* However, as the method is based on a stochastic scheme, is not
good for dynamic properties, such as the diffusion coefficient.

*The stochastic collisions disturb the dynamics in a way that is
not realistic—it leads to sudden random decorrelation of particle
velocities.

*This effect will result in an enhanced decay of the velocity
autocorrelation function, and hence the diffusion constant

*Clearly this effect will be more pronounced as the collision
frequency v is increased.



MD NVT: Nose-Hoover thermostat

Extended Lagrangian for the original system S +
one additional coordinate s

Lagrangian(r,,1,,s,8) = z(m /2)51’;2 ~UM)+)(0/2)5" - (L/B)Ins

*s is the coordinate of an extra particle representing the
“heat bath”

*Q is a coupling constant, (~the mass of the extra
particle)

*The system S can now exchange energy with the extra
particle

*The total energy of the extended system is constant

L is a constant



Extra degree of freedom:s, p,

L: parameter

Q: effective “mass” of the extra particle
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With the choice L = 3N + [, this ensemble reduces to the canonical ensemble



The Hamiltonian derived from this Lagrangian
generates a canonical ensemble for the system S:

Zy..=constants X Z(NVT)

Nose-Hoover

Distribution of velocities obtained by MD
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After 12,000 time steps the imposed temperature is suddenly
increased fromT = | toT = I|.5.

A small value of Q corresponds to a low inertia of the heat
bath and leads to rapid temperature fluctuations.

A large value of Q leads to a slow response to the temperature
jump.
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