
Molecular	Dynamics 	 		

Chapter	4	



Molecular	Dynamics	Simula6on		
	

technique	for	compu6ng	the	equilibrium	and	transport	proper6es	of	
a	classical	many-body	system.		

	
classical	means	that	the	mo6on	par6cles	obeys	the	laws	of	classical	
mechanics.	
	
Quantum	effects	are	important	for	example		when	we	consider	the	
transla6onal	or	rota6onal	mo6on	of	light	atoms	or	molecules	(He,	
H2,	D2)	or	vibra6onal	mo6on	
	
MD	simulates	experiments.		
	



In	a	real	experiment:				

• prepare	a	sample		
• connect	this	sample	to	a	measuring	instrument		
• measure	the	property	during	a	certain	6me	interval.		
• the	longer	we	average,	the	more	accurate		
	
Molecular	Dynamics:				

	
• prepare	a	sample:	select	a	model	system	consis6ng	of	N	par6cles	
• solve	Newton’s	equa6ons	of	mo6on	un6l	the	proper6es	of	the	
system	no	longer	change	with	6me	(we	equilibrate	the	system).		
• AMer	equilibra6on,	we	perform	the	actual	measurement.	
	



To	measure	an	observable	quan6ty	in	a	Molecular	Dynamics	
simula6on,	we	must	first	of	all	be	able	to	express	this	observable	as	a	
func6on	of	the	posi6ons	and	momenta	of	the	par6cles	in	the	system.	
	
	
Example:		defini6on	of	the	temperature	using	equipar66on	of	
energy.	
	
Average	kine6c	energy	per	degree	of	freedom:	
	
	

we	use	this	equa6on	as	an	opera6onal	defini6on	of	the	temperature.		
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the	total	kine6c	energy	of	a	system	fluctuates	
	
	so	does	the	instantaneous	temperature		
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2

kN f

Here	Nf	=	#	degrees	of	freedom	
	
For	N	par6cles	in	3D:	Nf	=3N					



The	program	
	
	

Ini6alize:	posi6on	and	velocity	of	all	par6cles	
	
Calculate	the	forces	over	all	par6cles	
	
Integrate	the	equa6ons	of	mo6on	(Newton’s	law)	
	
Sample	averages:	calculate	pressure,	density,	temperature,	energy	etc		
	

MD	loop	



• To	start	the	simula6on		we	assign	ini6al	posi6ons	and	veloci6es	
to	all	par6cles	in	the	system.		

• The	par6cle	posi6ons		à	compa6ble	with	the	structure	to	
simulate	

• 	Do	NOT	put		the	par6cles	posi6ons		with	overlap	of	the	atomic	
or	molecular	cores.	

• 	Usually	in	a	cubic	laZce,	as	in	MC	

• Give	to	each	par6cle	a	RANDOM	velocity	

• ShiM	all	veloci6es,	such	that	the	total	momentum	is	zero	

• Scale	the		veloci6es	to	adjust	the	temperature	T		to	the	desired	
value.		Scaling:		vàv	(T/Ti)1/2	

Ini6aliza6on	



MD	is	NOT	done	at	constant	T	but	constant	energy.	
	
	
The	value	of	the	average	equilibrium	temperature	is	computed	
in		the	simula6on,	will	not	be	the	ini6al	T.		
	
The	ini6al	veloci6es	are	necessary	to	integrate	the	equa6ons	of	
mo6on	the	first	6me.	
	
In	the	simula6on,	the	distribu6on	of	veloci6es	will	become	
Maxwell-Boltzman	



Computa6on	of	the	Force	

The	force	has	to	be	computed	with	all	near	par6cles,	the	compu6ng	6me	
scales	as	N2		
	
As	in	MC,	we	use	periodic	boundaries	
	
Algorithm:	
	
Compute	the	distance	between	par6cles	i,j	
	
Choosing	the	cut	off	rc	=	Box/2à	compute	interac6on	between	nearest	
periodic	image	of	j.	
	
	
	
	
	



With	simple	cubic	periodic	boundary	condi6ons,	the	distance	in	any	
direc6on	between	i	and	the	nearest	image	of	j	should	always	be	less	(in	
absolute	value)	than	box/2.		
	
Compute	all	Cartesian	components	of	rij,	and	|rij|2	
	
Test	if	is	less	than	rc2	à	if	NOT	we	immediately	skip	to	the	next	value	of	j.	

	 	 	 				à	if	YES	compute	the	force	fij 	(each	component)	
	
Do	NOT	compute	|rij|	itself,	because	this	would	be	both	unnecessary	and	
expensive	(as	it	would	involve	the	evalua6on	of	a	square	root).		
	

The	force	is	obtained	as		
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Integra6ng	the	equa6ons	of	mo6on	

€ 

ma = f

Numerical	integra6on	is	done	in	small	6me	steps,	using	Taylor	
expansions	in	dt		
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r(t + dt) = r(t) + v(t)dt +
f (t)
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Euler	algorithm		

r(t + dt) = r(t)+ v(t)dt + f (t)
2m

dt2 +O(dt3)

NOT	recommended	
Catastrophic	Energy	driM	



Integra6ng	the	equa6ons	of	mo6on	

€ 

ma = f

Numerical	integra6on	is	done	in	small	6me	steps,	using	Taylor	
expansions	in	dt		
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(VERLET	algorithm):	trick	to	get	rid	of	the	velocity:		
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r(t − dt) = r(t) − v(t)dt +
f (t)
2m

dt 2 − d
3r
dt 3

dt 3

3!
+O(dt 4 )

r(t + dt)+ r(t − dt) = 2r(t)+ f (t)
m

dt2 +O(dt 4 )

r(t + dt) ≈ 2r(t)− r(t − dt)+ f (t)
m

dt2 +O(dt 4 )



The	Verlet	algorithm	DO	NOT	use	the	veloci6es.	
	
However	we	may	want	to	compute	the	veloci6es	to	calculate	for	
example	the	kine6c	energy	and	temperature.	
	
To	compute	the	veloci6es:	
	

€ 

r(t + dt) − r(t − dt) = 2v(t)dt +O(dt 3)

v(t) =
r(t + dt) − r(t − dt)

2dt
+O(dt 2)



Leap-frog	altorithm		
(derived	from	Verlet)	
	
	
	

veloci6es	and	posi6ons	calculated	at	different	6mes	
Can	be	problema6c	with	evalua6on	of	the	total	energy		



What	is	a		good	algorithm?		
What	criteria	should	sa6sfy?	
	
•  Speed	
•  Accuracy	
•  Energy	conserva6on	
•  Orbit	stability	
•  Time	reversibility	
•  Theorem	of	Liouville	
	



• speedà		not	very	relevant	because	the	frac6on	of	
6me	spent	on	integra6ng	the	equa6ons	of	mo6on	(as	
opposed	to	compu6ng	the	interac6ons)	is	small	
	
• accuracy	for	large	6me	steps	à		more	important,	
because	the	longer	the	6me	step	that	we	can	use,	the	
fewer	evalua6ons	of	the	forces	are	needed	per	unit	of	
simula6on	6me.		
	

some	algorithms		allow	the	use	of	a	large	6me	
step	achieve	this	by	storing	informa6on	on	
increasingly	higher-order	deriva6ves	of	the	
par6cle’s	coordinates		à	require	more	
memory	storage.	(not	a	serious	problem)		

	



• Energy	conserva6on	à	important	criterion,	two	kinds:		
short	6me	
long	6me		

	
Sophis6cated	higher-order	algorithms		have	
very	good	SHORT	TIME	energy	conserva6on	but	
NOT	long	6me:		energy	driM.		
	
Verlet-style	algorithms:		moderate	short-term	
energy	conserva6on	but	lihle	long-term	driM.	

	



• Lyapunov	instability	à	two	trajectories	that	are	
ini6ally	very	close	will	diverge	exponen6ally	as	6me	
progresses.		

any	integra6on	error,	no	maher	how	small,	will	
always	cause	our	simulated	trajectory	to	diverge	
exponen6ally	from	the	true	trajectory	compa6ble	
with	the	same	ini6al	condi6ons.		not	serious!	

	
The	aim	of	an	MD	simula6on	is	NOT	to	predict	precisely	
the	trajectory	of	all	molecules,		we	are	always	
interested	in	sta6s6cal	predic6ons.		
	
there	is	considerable	numerical	evidence		that	in	MD	
simula6ons,	sta6s6cal	predic6ons	are	good	enough.		
	
	



• Time	reversibility	à	equa6ons	of	mo6on	are	6me	
reversible,	and	so	should	be	the	MD	algorithms.		
	
In	fact,	many	algorithms	are	NOT	6me	reversible.	That	is,	
future	and	past	phase	space	coordinates	do	not	play	a	
symmetric	role	in	such	algorithms.		
	
As	a	consequence,	if	one	were	to	reverse	the	momenta	of	
all	par6cles	at	a	given	instant,	the	system	would	not	trace	
back	its	trajectory	in	phase	space,	even	if	the	simula6on	
would	be	carried	out	with	infinite	numerical	precision.		
	
Only	in	the	limit	of	an	infinitely	short	6me	step	will	such	
algorithms	become	reversible.		
	



• 	Liouville’s	Theorem:	Preserva6on	of	volume	in	phase	
space	
Hamiltonian	dynamics	leaves	the	magnitude	of	any	
volume	element	in	phase	space	unchanged	
	
	

many	numerical	schemes	(like	non-reversible	algorithms)		
are	NOT		area-preserving:	this	is	not	compa6ble	with	
energy	conserva6on	à	nonreversible	algorithms	will	
have	serious	long-term	energy	driM		



numerical	implementa6on	is	NOT		6me	reversible	
	(even	when	we	use	a	6me-reversible	algorithm)		
	
due	to	finite	machine	precision	using	floa6ng-point	
arithme6c	that	results	in	rounding	errors	



How	about	Verlet	algorithm?	
	
• is	fast.		
• not	par6cularly	accurate	for	long	6me	steps.		
• requires	lihle	memory		à	This	is	useful	when	we	

	simulate	very	large	systems	
• short-term	energy	conserva6on	is	fair		
• lihle	long-term	energy	driM	
• 6me	reversible		
• area	preserving	
• not	very	accurate	trajectories		
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Velocity-corrected	Verlet	algorithm		
	

8	x	{(1)-(2)}	–	{(3)-(4)}	=	

12v(t)dt = 8[r(t + dt) − r(t − dt)]− [r(t + 2dt) − r(t − 2dt)]+O(dt 4 )

• the	error	in	the	veloci6es	is	of	order	O(dt3).	
• the	velocity	can	be	computed	aMer	the	next	6me	



Errors	in	MD	and	MC	

Errors	in	MD	and	MC		are	of	3	type:	
	
• Systema6c:	for	example	related	to	finite	size	effects,	interac6on	
cutoff.	INTRINSIC	to	the	simula6on.		

• Errors	due	inadequate	sampling,	for	example	a	bad	RNG,	or	
acceptance	rules	not	sa6sfying	DB:		POOR	DESIGN,	must	be	
corrected.	

• Sta6s6cal	errors	due	to	random	fluctua6ons.	These	errors	
determine	the	degree	of	confidence	in	our	results.		
	
	
Only	for	the	sta6s6cal	errors	we	can	apply	sta6s6cal	analysis.	

		



Suppose	the	fluctua6ng	property	A	is	measured	n	6mes	in	a	system	in	
equilibrium.	The	mean	value	is:	
			
	
	
	
	
and	if	each	measurement	is	independent	with	variance		
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then	the	variance	of	the	mean	is:	



In	MC	we			average		over	many	n	MC	steps.	
In	MD	we	average	over	n	6me-steps.	

The	problem	is:	
	
there	is	a	correla6on	between	consecu6ve	
configura6ons,	then	the		of		n	values		Ai		in	the	sample	
are	not	all	independent	
	
The	effec6ve	value	of	independent	measurements	is	
less	than	n.	
	
A	variance	calculated	with	all	the	Ai	values	would	
underes6mate	the	real	σ.	



Es6ma6on	of	errors	in	MD	

If	averages	are	evaluated	over	blocks	of	successive	values,	as	
the	block	size	increases	the	block	averages	will	be	decreasingly	
correlated.	

A1		A2		A3		A4,……………………………An	

					B1																			B2	…………….Bn/4	

{B	}	are	less	correlated	than	{A}	

if	the	block	length	exceeds	the	correla6on-6me,	we	
will	have	an	independent	sample.	

For	example,		blocks	of	4:		



The	correla6on	6me	is	unknown.	
	
How	long	should	the	block	be		to	es6mate	the	error?	
	
	
If	the	block	length	is	too	short,		there	is	lihle	improvement	
	
If	it	is	too	long,			reduces	the	number	of	values	in	our	sample.	

A1		A2		A3		A4,……………………………An	

B1									B2		………………………….Bn/2	

					C1												C2………………..Cn/4	

Scheme:	Series	of	succesive	block	sizes	b=1,2,4,8…	



We	calculate	the	variance	of	each	sample	A,	B,	C….	
The	successive	values	of	σ	will	increase	un6l	a	plateau	is	
reached.	
The	plateau	value	is	the	result	for		σ.	

The	standard	devia6on	σ	in	the	poten6al	energy	as	a	func6on	of	the	
number	of	block	opera6ons	M	for	a	simula6on	of	150,000	and	
600,000	6me	steps.		



It	also	shows	if	the	simula6on	6me	is	adequate:	
	
If	total	6me	is	too	short,	the	plateau	is	not	reached	or	is	too	narrow	



MD	at	constant	T	



MD	at	constant	temperature	

In	an	experiment,	constant	temperature	T	means	
thermal	equilibrium	with	a	reservoir	at	T.	
	
In	the	canonical	ensemble	the	system	is	also	in	
thermal	equilibrium	with	a	bath	at	T.	
	
However	thermal	equilibrium	doesn’t	mean	
constant	temperature!	
	
The	instantaneous	temperature	of	a	system	is	
related	to	the	kine6c	energy,	and	KE	fluctuates	



In	a	canonical	ensemble	of	a	finite	system,	the	instantaneous	kine6c	
temperature	Tk	fluctuates.		
	
In	fact,	if	we	were	to	keep	the	average	kine6c	energy	per	par6cle	
rigorously	constant,	as	is	done	in	the	so-called	isokine6c	MD	scheme	
or	velocity-scaling	schemes,	then	we	would	not	simulate	the	true	
constant-temperature	ensemble.	
	
	In	prac6ce,	the	difference	between	isokine6c	and	canonical	schemes	
is	oMen	negligible.		
	
Problems	can	be	expected	if	isokine6c	simula6ons	are	used	to	
measure	equilibrium	averages	that	are	sensi6ve	to	fluctua6ons	.	
	
Any	kind	of	temperature	regula6on	can	be	used	while	preparing	the	
system	at	a	desired	temperature	(i.e.,	during	equilibra6on).			



The	system	is	coupled	to	a	heat	bath	that	imposes	the	
desired	temperature.		
	
The	coupling	to	a	heat	bath	is	represented	by	stochas6c	
impulsive	forces	that	act	occasionally	on	randomly	selected	
par6cles.	
	
	These	stochas6c	collisions	with	the	heat	bath	can	be	
considered	as	Monte	Carlo	moves	that	transport	the	system	
from	one	constant-energy	shell	to	another.		
	

MD	in	a	Canonical	Ensemble:	
	The	Andersen	Thermostat		



Between	stochas6c	collisions,	the	system	evolves	at	
constant	energy	according	to	the	normal	Newtonian	
laws	of	mo6on	(MD).		
	
The	stochas6c	collisions	ensure	that	all	accessible	
constant-energy	shells	are	visited	according	to	their	
Boltzmann	weight.	
	
	Before	star6ng	such	a	constant-temperature	
simula6on,	we	should	first	select	the	strength	of	the	
coupling	to	the	heat	bath.		
	
	
This	coupling	strength	is	determined	by	the	frequency	
of	stochas6c	collisions:		ν	
	



A	constant-temperature	simula6on	now	consists	of	the	
following	steps:		
	
1.  Start	with	an	ini6al	set	of	posi6ons	and	momenta	{rN	(0),	pN	

(0)}	and	integrate	the	equa6ons	of	mo6on	for	a	6me	Δt.		

2.  	A	number	of	par6cles	are	selected	to	undergo	a	collision	
with	the	heat	bath.	The	probability	that	a	par6cle	is	
selected	in	a	6me	step	of	length	Δt	is	νΔt.		

3.  If	par6cle	i	has	been	selected	to	undergo	a	collision,	its	new	
velocity	will	be	drawn	from	a	Maxwell-Boltzmann	
distribu6on	corresponding	to	the	desired	temperature	T.		
All	other	par6cles	are	unaffected	by	this	collision.		



The	mixing	of	Newtonian	dynamics	with	stochas6c	collisions	turns	the	
Molecular	Dynamics	simula6on	into	a	Markov	process	

	
The	Andersen	algorithm	does,	indeed,	generate	a	canonical	

distribu6on.		
	

Implementa6on:	
	
In	subrou6ne	SOLVE:		
	
sigma=sqrt(temp)	
do	i=1,npart	

	if(ranf.lt.nu*dt)	then	
	v(i)=gauss(sigma)	
	endif	

enddo	

nu	is	a	parameter	(the	frequency	of	
collisions)	
	
The	results	should	be	independent	of	
the	value	of	nu.	
	

Anderson	thermostat	is	NOT	determinis6c,	but	stochas6c.	





�The	results	of	constant	N,V,T	Molecular	Dynamics	simula6ons	should	be	
iden6cal	to	those	of	canonical	Monte	Carlo	



�Andersen	thermostat	is	fine	for	equilibrium	proper6es	
Fails	for	dynamic	proper6es	
	
The	stochas6c	collisions	disturb	the	dynamics	in	a	way	that	
is	not	realis6c	
	
it	leads	to	sudden	random	decorrela6on	of	par6cle	
veloci6es.	This	effect	will	result	in	an	enhanced	decay	of	the	
velocity	autocorrela6on	func6on.	



MD	at	constant	T:		determinis6c	approach	
Nose-Hoover	thermostat	

The	thermal	bath	is	added	to	the	system	as	extra	coordinates	
in	the	Lagrangian	

The	MD	simula6on	is	carried	out	for	the	“extended”	system	
	
Energy	is	allowed	to	flow	dynamically	from	the	reservoir	to	
the	system		and	back	
	
“It	is	like	controlling	the	volume	with	a	piston	in	NPT”	



Extra	degree	of	freedom:	s,	ps	

Q:	effec6ve	“mass”	of	the	extra	par6cle	
	

L:	parameter	

momenta:		

 

pi =
∂L
!∂ri

= mi s
2 !ri

ps =
∂L
∂!si

= Q!s



par66on	func6on	–>	

�With	the	choice	L	=	3N	+	1,	this	ensemble	reduces	to	the	canonical	ensemble	


