Understanding
Molecular Simulation
From Algorithms to Applications

Daan Frenkel
FOM Institute for Atomic and Molecular Physics,
Amsterdam, The Netherlands

Department of Chemical Engineering,
Faculty of Sciences
University of Amsterdam
Amsterdam, The Netherlands

Berend Smit
Department of Chemical Engineering
Faculty of Sciences
University of Amsterdam
Amsterdam, The Netherlands

ACADEMIC PRESS

A Division of Harcourt, Inc.

San Diego San Francisco New York
Boston London Sydney Tokyo

This book is printed on acid-free paper.
Copyright © 2002, 1996 by ACADEMIC PRESS

All Rights Reserved.

No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval
system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the
work should be mailed to the following address: Permissions
department, Harcourt Inc., 6277 Sea Harbor Drive, Orlando,
Florida 32887-6777, USA

Academic Press
A division of Harcourt, Inc.
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
http:/ / www.academicpress.com

Academic Press
A division of Harcourt, Inc.
Harcourt Place, 32 Jamestown Road, London NW1 7BY, UK
http:/ / www.academicpress.com
ISBN 0-12-267351-4
Library of Congress Catalog Number: 2001091477
A catalogue record for this book is available from the British Library

Cover illustration: a 2,5-dimethyloctane molecule inside a
pore of a TON type zeolite (figure by David Dubbeldam)

Typeset by the authors
Printed and bound in Great Britain by MPG Books Ltd, Bodmin, Cornwall

0203040506 07MP987654321

Chapter 4

Molecular Dynamics
Simulations

Molecular Dynamics simulation is a technique for computing the equilib-
rium and transport properties of a classical many-body system. In this con-
text, the word classical means that the nuclear motion of the constituent par-
ticles obeys the laws of classical mechanics. This is an excellent approxima-
tion for a wide range of materials. Only when we consider the translational
or rotational motion of light atoms or molecules (He, H;, D) or vibrational
motion with a frequency v such that hv > kg T should we worry about quan-
tum effects.

Of course, our discussion of this vast subject is necessarily incomplete.
Other aspects of the Molecular Dynamics techniques can be found in [19,
39-41].

4.1 Molecular Dynamics: The Idea

Molecular Dynamics simulations are in many respects very similar to real
experiments. When we perform a real experiment, we proceed as follows.
We prepare a sample of the material that we wish to study. We connect this
sample to a measuring instrument (e.g., a thermometer, manometer, or vis-
cosimeter), and we measure the property of interest during a certain time
interval. If our measurements are subject to statistical noise (as most mea-
surements are), then the longer we average, the more accurate our measure-
ment becomes. In a Molecular Dynamics simulation, we follow exactly the
same approach. First, we prepare a sample: we select a model system con-
sisting of N particles and we solve Newton’s equations of motion for this
system until the properties of the system no longer change with time (we

64 Chapter 4. Molecular Dynamics Simulations

equilibrate the system). After equilibration, we perform the actual measure-
ment. In fact, some of the most common mistakes that can be made when
performing a computer experiment are very similar to the mistakes that can
be made in real experiments (e.g., the sample is not prepared correctly, the
measurement is too short, the system undergoes an irreversible change dur-
ing the experiment, or we do not measure what we think).

To measure an observable quantity in a Molecular Dynamics simulation,
we must first of all be able to express this observable as a function of the posi-
tions and momenta of the particles in the system. For instance, a convenient
definition of the temperature in a (classical) many-body system makes use
of the equipartition of energy over all degrees of freedom that enter quadrat-
ically in the Hamiltonian of the system. In particular for the average kinetic
energy per degree of freedom, we have

1
< zmv§> = %kBT. (4.1.1)

In a simulation, we use this equation as an operational definition of the tem-
perature. In practice, we would measure the total kinetic energy of the sys-
tem and divide this by the number of degrees of freedom N¢ (= 3N — 3 for
a system of N particles with fixed total momentum!). As the total kinetic
energy of a system fluctuates, so does the instantaneous temperature:

T(t) = i mavi(t (4.12)
- i= 1 kB N f . . .
The relative fluctuations in the temperature will be of order 1/4/N¢. As N¢
is typically on the order of 102-103, the statistical fluctuations in the temper-
ature are on the order of 5-10%. To get an accurate estimate of the tempera-
ture, one should average over many fluctuations.

4.2 Molecular Dynamics: A Program

The best introduction to Molecular Dynamics simulations is to consider a
simple program. The program we consider is kept as simple as possible to
illustrate a number of important features of Molecular Dynamics simula-
tions.

The program is constructed as follows:

1. We read in the parameters that specify the conditions of the run (e.g.,
initial temperature, number of particles, density, time step).

1 Actually, if we define the temperature of a microcanonical ensemble through (kgT)™! =
(01In Q/0E), then we find that, for a d-dimensional system of N atoms with fixed total momen-
tum, kg T is equal to 2E/(d(N — 1) — 2).

4.2 Molecular Dynamics: A Program 65

Algorithm 3 (A Simple Molecular Dynamics Program)

program md simple MD program
call init initialization
t=0
do while (t.lt.tmax) MD loop
call force(f,en) determine the forces
call integrate(f,en) integrate equations of motion
t=t+delt
call sample sample averages
enddo
stop
end

Comment to this algorithm:

1. Subroutines init, force, integrate, and sample will be described in
Algorithms 4, 5, and 6, respectively. Subroutine sample is used to calculate
averages like pressure or temperature.

2. We initialize the system (i.e., we select initial positions and velocities).
3. We compute the forces on all particles.

4. We integrate Newton's equations of motion. This step and the previ-
ous one make up the core of the simulation. They are repeated until we
have computed the time evolution of the system for the desired length
of time.

5. After completion of the central loop, we compute and print the aver-
ages of measured quantities, and stop.

Algorithm 3 is a short pseudo-algorithm that carries out a Molecular Dy-
namics simulation for a simple atomic system. We discuss the different op-
erations in the program in more detail.

421 Initialization

To start the simulation, we should assign initial positions and velocities to all
particles in the system. The particle positions should be chosen compatible
with the structure that we are aiming to simulate. In any event, the particles
should not be positioned at positions that result in an appreciable overlap
of the atomic or molecular cores. Often this is achieved by initially placing

66 Chapter 4. Molecular Dynamics Simulations

Algorithm 4 (Initialization of a Molecular Dynamics Program)

subroutine init initialization of MD program

sumv=0

sumv2=0

do i=1,npart
x(i)=lattice.pos (i) place the particles on a lattice
v(i)=(ranf()-0.5) give random velocities
sumv=sumv+v (1) velocity center of mass
sumv2=sumv2+v (i) **2 kinetic energy

enddo

sumv=sumv/npart velocity center of mass

sumv2=sumv2/npart mean-squared velocity

fs=sqrt (3*temp/sumv2) scale factor of the velocities

do i=1,npart set desired kinetic energy and set
v(i)=(v (i) -sumv) *fs velocity center of mass to zero
xm(i)=x(i)-v(i)*dt position previous time step

enddo

return

end

Comments to this algorithm:

1. Function lattice_pos gives the coordinates of lattice position i and
ranf () gives a uniformly distributed random number. We do not use a
Maxwell-Boltzmann distribution for the velocities; on equilibration it will be-
come a Maxwell-Boltzmann distribution.

2. In computing the number of degrees of freedom, we assume a three-di-
mensional system (in fact, we approximate N¢ by 3N).

the particles on a cubic lattice, as described in section 3.2.2 in the context of
Monte Carlo simulations.

In the present case (Algorithm 4), we have chosen to start our run from
a simple cubic lattice. Assume that the values of the density and initial tem-
perature are chosen such that the simple cubic lattice is mechanically un-
stable and melts rapidly. First, we put each particle on its lattice site and
then we attribute to each velocity component of every particle a value that
is drawn from a uniform distribution in the interval [—0.5,0.5]. This initial
velocity distribution is Maxwellian neither in shape nor even in width. Sub-
sequently, we shift all velocities, such that the total momentum is zero and
we scale the resulting velocities to adjust the mean kinetic energy to the de-

4.2 Molecular Dynamics: A Program 67

sired value. We know that, in thermal equilibrium, the following relation
should hold:
(V&) = kg T/m, (4.2.1)

where v, is the & component of the velocity of a given particle. We can use
this relation to define an instantaneous temperature at time t T (t):

mv?Z . (t)
i (4.2.2)

kT (t) =

N
1=

1

Clearly, we can adjust the instantaneous temperature T(t) to match the de-
sired temperature T by scaling all velocities with a factor (T/ T(t))'/2. This
initial setting of the temperature is not particularly critical, as the tempera-
ture will change anyway during equilibration.

As will appear later, we do not really use the velocities themselves in
our algorithm to solve Newton’s equations of motion. Rather, we use the
positions of all particles at the present (x) and previous (xm) time steps,
combined with our knowledge of the force (f) acting on the particles, to
predict the positions at the next time step. When we start the simulation,
we must bootstrap this procedure by generating approximate previous po-
sitions. Without much consideration for any law of mechanics but the con-
servation of linear momentum, we approximate x for a particle in a direc-
tion by xm(i) = x(i) - v (i)*dt. Of course, we could make a better
estimate of the true previous position of each particle. But as we are only
bootstrapping the simulation, we do not worry about such subtleties.

4.2.2 The Force Calculation

What comes next is the most time-consuming part of almost all Molecular
Dynamics simulations: the calculation of the force acting on every particle.
If we consider a model system with pairwise additive interactions (as we
do in the present case), we have to consider the contribution to the force on
particle i due to all its neighbors. If we consider only the interaction between
a particle and the nearest image of another particle, this implies that, for a
system of N particles, we must evaluate N x (N — 1)/2 pair distances.

This implies that, if we use no tricks, the time needed for the evaluation of
the forces scales as N2. There exist efficient techniques to speed up the eval-
uation of both short-range and long-range forces in such a way that the com-
puting time scales as N, rather than N2. In Appendix F, we describe some
of the more common techniques to speed up the simulations. Although the
examples in this Appendix apply to Monte Carlo simulations, the same tech-
niques can also be used in a Molecular Dynamics simulation. However, in
the present, simple example (see Algorithm 5) we will not attempt to make

68 Chapter 4. Molecular Dynamics Simulations

Algorithm 5 (Calculation of the Forces)

subroutine force(f,en)

en=0

do i=1,npart
f(i)=0

enddo

do i=1,npart-1
do j=i+l,npart
xr=x(1i)-x(3)
xXr=xr-box*nint (xr/box)
Y2=Xr**2
if (r2.1t.rc2) then
r2i=1/r2
r6i=r2i**3
ff=48*r2i*r6i*(r6i-0.5)
f(i)=f (i) +ff*xr
£(3)=£(j) -ff*xr
en=en+4*r6i* (r6i-1)-ecut
endif
enddo
enddo
return
end

determine the force
and energy

set forces to zero

loop over all pairs

periodic boundary conditions
test cutoff

Lennard-Jones potential
update force

update energy

Comments to this algorithm:

1. For efficiency reasons the factors 4 and 48 are usually taken out of the force
loop and taken into account at the end of the calculation for the energy.

2. The term ecut is the value of the potential at v = v.; for the Lennard-Jones

potential, we have

1
ecut :4(

]>
i
LS

the program particularly efficient and we shall, in fact, consider all possible

pairs of particles explicitly.

We first compute the current distance in the x, y, and z directions between
each pair of particles i and j. These distances are indicated by xr. As in the
Monte Carlo case, we use periodic boundary conditions (see section 3.2.2). In
the present example, we use a cutoff at a distance 1 in the explicit calculation
of intermolecular interactions, where r. is chosen to be less than half the
diameter of the periodic box. In that case we can always limit the evaluation

4.2 Molecular Dynamics: A Program 69

of intermolecular interactions between i and j to the interaction between i
and the nearest periodic image of j.

In the present case, the diameter of the periodic box is denoted by box. If
we use simple cubic periodic boundary conditions, the distance in any direc-
tion between i and the nearest image of j should always be less (in absolute
value) than box/2. A compact way to compute the distance between i and
the nearest periodic image of j uses the nearest integer function (nint (x)
in FORTRAN). The nint function simply rounds a real number to the near-
est integer.? Starting with the x-distance (say) between i and any periodic
image of j, xr, we compute the x-distance between i and the nearest image
of j as xr=xr-box*nint (xr/box). Having thus computed all Cartesian
components of ri;, the vector distance between i and the nearest image of
j, we compute 17 (denoted by r2 in the program). Next we test if 17, is
less than 12, the square of the cutoff radius. If not, we immediately skip to
the next value of j. It perhaps is worth emphasizing that we do not com-
pute |ry;] itself, because this would be both unnecessary and expensive (as it
would involve the evaluation of a square root).

If a given pair of particles is close enough to interact, we must compute
the force between these particles, and the contribution to the potential en-
ergy. Suppose that we wish to compute the x-component of the force

fo(r) = —a‘a‘f)

- -3

For a Lennard-Jones system (in reduced units),
48x (1 1
fx(r) = T‘—Z (1‘1—2 —OST—G) .

4.2.3 Integrating the Equations of Motion

Now that we have computed all forces between the particles, we can inte-
grate Newton's equations of motion. Algorithms have been designed to do
this. Some of these will be discussed in a bit more detail. In the program
(Algorithm 6), we have used the so-called Verlet algorithm. This algorithm
is not only one of the simplest, but also usually the best.

To derive it, we start with a Taylor expansion of the coordinate of a par-
ticle, around time t,

f(t) At ..

_ 2 4
r(t+ At) =r(t) +v(t)At + ﬂm + T T +O(At"),

2Unfortunately, many FORTRAN compilers yield very slow nint functions. It is often
cheaper to write your own code to replace the nint library routine.

70 Chapter 4. Molecular Dynamics Simulations

Algorithm 6 (Integrating the Equations of Motion)

subroutine integrate (f,en) integrate equations of motion

sumv=_0

sumv2=0

do i=1,npart MD loop
xx=2%*x (1) -xm (i) +delt**2*£f (i) Verlet algorithm (4.2.3)
vi=(xx-xm(i))/(2*delt) velocity (4.2.4)
sumv=sumv+vi velocity center of mass
SUMV2=SUumv2+vi**2 total kinetic energy
xm(i)=x(1i) update positions previous time
x(1)=xx update positions current time

enddo

temp=sumv2/ (3*npart) instantaneous temperature

etot=(en+0.5*sumv2) /npart total energy per particle

return

end

Comments to this algorithm:

1. The total energy etot should remain approximately constant during the sim-
ulation. A drift of this quantity may signal programming errors. It therefore
is important to monitor this quantity. Similarly, the velocity of the center of
mass sumv should remain zero.

2. In this subroutine we use the Verlet algorithm (4.2.3) to integrate the equa-
tions of motion. The velocities are calculated using equation (4.2.4).

similarly,

3
Tt —At) =r(t) —v(t)At + ;(—sl)Atz — %— T +O(AtY).

Summing these two equations, we obtain

Tt + At) + 1(t — At) = 2r(t) + f(—n:)Atz +0O(AtY)

or
f(t
Tt + At) & 2r(t) — v(t — At) + (W)Atz. (4.2.3)
The estimate of the new position contains an error that is of order At?,

where At is the time step in our Molecular Dynamics scheme. Note that the

4.3 Equations of Motion 71

Verlet algorithm does not use the velocity to compute the new position. One,
however, can derive the velocity from knowledge of the trajectory, using

T(t + At) — r(t — At) = 2v(t)At + O(At?)

or

= r(t + At) — r(t — At)
B 2At

This expression for the velocity is only accurate to order At?. However, it
is possible to obtain more accurate estimates of the velocity (and thereby
of the kinetic energy) using a Verlet-like algorithm (i.e., an algorithm that
yields trajectories identical to that given by equation (4.2.3)). In our program,
we use the velocities only to compute the kinetic energy and, thereby, the
instantaneous temperature.

Now that we have computed the new positions, we may discard the po-
sitions at time t — At. The current positions become the old positions and the
new positions become the current positions.

After each time step, we compute the current temperature (temp), the
current potential energy (en) calculated in the force loop, and the total en-
ergy (etot). Note that the total energy should be conserved.

This completes the introduction to the Molecular Dynamics method. The
reader should now be able to write a basic Molecular Dynamics program for
liquids or solids consisting of spherical particles. In what follows, we shall
do two things. First of all, we discuss, in a bit more detail, the methods avail-
able to integrate the equations of motion. Next, we discuss measurements
in Molecular Dynamics simulations. Important extensions of the Molecular
Dynamics technique are discussed in Chapter 6.

v(t + O(At?). (4.2.4)

4.3 Equations of Motion

It is obvious that a good Molecular Dynamics program requires a good al-
gorithm to integrate Newton’s equations of motion. In this sense, the choice
of algorithm is crucial. However, although it is easy to recognize a bad algo-
rithm, it is not immediately obvious what criteria a good algorithm should
satisfy. Let us look at the different points to consider.

Although, at first sight, speed seems important, it is usually not very rel-
evant because the fraction of time spent on integrating the equations of mo-
tion (as opposed to computing the interactions) is small, at least for atomic
and simple molecular systems.

Accuracy for large time steps is more important, because the longer the
time step that we can use, the fewer evaluations of the forces are needed per
unit of simulation time. Hence, this would suggest that it is advantageous
to use a sophisticated algorithm that allows use of a long time step.

72 Chapter 4. Molecular Dynamics Simulations

Algorithms that allow the use of a large time step achieve this by storing
information on increasingly higher-order derivatives of the particle coordi-
nates. As a consequence, they tend to require more memory storage. For
a typical simulation, this usually is not a serious drawback because, unless
one considers very large systems, the amount of memory needed to store
these derivatives is small compared to the total amount available even on a
normal workstation.

Energy conservation is an important criterion, but actually we should
distinguish two kinds of energy conservation, namely, short time and long
time. The sophisticated higher-order algorithms tend to have very good en-
ergy conservation for short times (i.e., during a few time steps). However,
they often have the undesirable feature that the overall energy drifts for long
times. In contrast, Verlet-style algorithms tend to have only moderate short-
term energy conservation but little long-term drift.

It would seem to be most important to have an algorithm that accurately
predicts the trajectory of all particles for both short and long times. In fact,
no such algorithm exists. For essentially all systems that we study by MD
simulations, we are in the regime where the trajectory of the system through
phase space (i.e., the 6N-dimensional space spanned by all particle coor-
dinates and momenta) depends sensitively on the initial conditions. This
means that two trajectories that are initially very close will diverge expo-
nentially as time progresses. We can consider the integration error caused by
the algorithm as the source for the initial small difference between the “true”
trajectory of the system and the trajectory generated in our simulation. We
should expect that any integration error, no matter how small, will always
cause our simulated trajectory to diverge exponentially from the true trajec-
tory compatible with the same initial conditions. This so-called Lyapunov
instability (see section 4.3.4) would seem to be a devastating blow to the
whole idea of Molecular Dynamics simulations but we have good reasons to
assume that even this problem need not be serious.

Clearly, this statement requires some clarification. First of all, one should
realize that the aim of an MD simulation is not to predict precisely what will
happen to a system that has been prepared in a precisely known initial con-
dition: we are always interested in statistical predictions. We wish to predict
the average behavior of a system that was prepared in an initial state about
which we know something (e.g., the total energy) but by no means every-
thing. In this respect, MD simulations differ fundamentally from numerical
schemes for predicting the trajectory of satellites through space: in the latter
case, we really wish to predict the true trajectory. We cannot afford to launch
an ensemble of satellites and make statistical predictions about their destina-
tion. However, in MD simulations, statistical predictions are good enough.
Still, this would not justify the use of inaccurate trajectories unless the tra-
jectories obtained numerically, in some sense, are close to true trajectories.

This latter statement is generally believed to be true, although, to our

4.3 Equations of Motion 73

knowledge, it has not been proven for any class of systems that is of in-
terest for MD simulations. However, considerable numerical evidence (see,
e.g., [66]) suggests that there exist so-called shadow orbits. A shadow orbit
is a true trajectory of a many-body system that closely follows the numerical
trajectory for a time that is long compared to the time it takes the Lyapunov
instability to develop. Hence, the results of our simulation are representa-
tive of a true trajectory in phase space, even though we cannot tell a priori
which. Surprisingly (and fortunately), it appears that shadow orbits are bet-
ter behaved (i.e., track the numerical trajectories better) for systems in which
small differences in the initial conditions lead to an exponential divergence
of trajectories than for the, seemingly, simpler systems that show no such
divergence [66]. Despite this reassuring evidence (see also section 4.3.5 and
the article by Gillilan and Wilson [67]), it should be emphasized that it is just
evidence and not proof. Hence, our trust in Molecular Dynamics simulation
as a tool to study the time evolution of many-body systems is based largely
on belief. To conclude this discussion, let us say that there is clearly still a
corpse in the closet. We believe this corpse will not haunt us, and we quickly
close the closet. For more details, the reader is referred to [27, 67, 68].

Newton’s equations of motion are time reversible, and so should be our
algorithms. In fact, many algorithms (for instance the predictor-corrector
schemes, see Appendix E, and many of the schemes used to deal with con-
straints) are not time reversible. That is, future and past phase space coor-
dinates do not play a symmetric role in such algorithms. As a consequence,
if one were to reverse the momenta of all particles at a given instant, the
system would not trace back its trajectory in phase space, even if the sim-
ulation would be carried out with infinite numerical precision. Only in
the limit of an infinitely short time step will such algorithms become re-
versible. However, what is more important, many seemingly reasonable al-
gorithms differ in another crucial respect from Hamilton’s equation of mo-
tion: true Hamiltonian dynamics leaves the magnitude of any volume ele-
ment in phase space unchanged, but many numerical schemes, in particu-
lar those that are not time reversible, do not reproduce this area-preserving
property. This may sound like a very esoteric objection to an algorithm, but
it is not. Again, without attempting to achieve a rigorous formulation of the
problem, let us simply note that all trajectories that correspond to a partic-
ular energy E are contained in a (hyper) volume € in phase space. If we
let Hamilton’s equation of motion act on all points in this volume (i.e., we
let the volume evolve in time), then we end up with exactly the same vol-
ume. However, a non-area-preserving algorithm will map the volume Q
on another (usually larger) volume Q'. After sufficiently long times, we ex-
pect that the non-area-preserving algorithm will have greatly expanded the
volume of our system in phase space. This is not compatible with energy
conservation. Hence, it is plausible that nonreversible algorithms will have
serious long-term energy drift problems. Reversible, area-preserving algo-

74 Chapter 4. Molecular Dynamics Simulations

rithms will not change the magnitude of the volume in phase space. This
property is not sufficient to guarantee the absence of long-term energy drift,
but it is at least compatible with it. It is possible to check whether an al-
gorithm is area preserving by computing the Jacobian associated with the
transformation of old to new phase space coordinates.

Finally, it should be noted that even when we integrate a time-reversible
algorithm, we shall find that the numerical implementation is hardly ever
truly time reversible. This is so, because we work on a computer with finite
machine precision using floating-point arithmetic that results in rounding
errors (on the order of the machine precision).

In the remainder of this section, we shall discuss some of these points in
more detail. Before we do so, let us first consider how the Verlet algorithm
scores on these points. First of all, the Verlet algorithm is fast. But we had
argued that this is relatively unimportant. Second, it is not particularly accu-
rate for long time steps. Hence, we should expect to compute the forces on
all particles rather frequently. Third, it requires about as little memory as is at
all possible. This is useful when we simulate very large systems, but in gen-
eral it is not a crucial advantage. Fourth, its short-term energy conservation
is fair (in particular in the versions that use a more accurate expression for
the velocities) but, more important, it exhibits little long-term energy drift.
This is related to the fact that the Verlet algorithm is time reversible and area
preserving. In fact, although the Verlet algorithm does not conserve the total
energy of this system exactly, strong evidence indicates that it does conserve
a pseudo-Hamiltonian approaching the true Hamiltonian in the limit of in-
finitely short time steps (see section 4.3.3). The accuracy of the trajectories
generated with the Verlet algorithm is not impressive. But then, it would
hardly help to use a better algorithm. Such an algorithm may postpone the
unavoidable exponential growth of the error in the trajectory by a few hun-
dred time steps (see section 4.3.4), but no algorithm is good enough that it
will keep the trajectories close to the true trajectories for a time comparable
to the duration of a typical Molecular Dynamics run.

4.3.1 Other Algorithms

Let us now briefly look at some alternatives to the Verlet algorithm. The
most naive algorithm is based simply on a truncated Taylor expansion of the
particle coordinates:

Tt + At) = () + v(t)At + fz(—;)Atz I

3Error-free integration of the equations of motion is possible for certain discrete models, such
as lattice-gas cellular automata. But these models do not follow Newton's equation of motion.

4.3 Equations of Motion 75

If we truncate this expansion beyond the term in At?, we obtain the so-called
Euler algorithm. Although it looks similar to the Verlet algorithm, it is much
worse on virtually all counts. In particular, it is not reversible or area pre-
serving and suffers from a (catastrophic) energy drift. The Euler algorithm
therefore is not recommended.

Several algorithms are equivalent to the Verlet scheme. The simplest
among these is the so-called Leap Frog algorithm [24]. This algorithm evalu-
ates the velocities at half-integer time steps and uses these velocities to com-
pute the new positions. To derive the Leap Frog algorithm from the Verlet
scheme, we start by defining the velocities at half-integer time steps as fol-
lows:

_ r(t) —r(t—At)

v(t —At/2) At

and
r(t + At) — r(t)

At

From the latter equation we immediately obtain an expression for the new
positions, based on the old positions and velocities:

v(t+At/2) =

Tt + At) = (t) + Atv(t + At/2). 4.3.1)

From the Verlet algorithm, we get the following expression for the update of
the velocities:
v(t+ At/2) =v(t — At/2) + Atin:). (4.3.2)

As the Leap Frog algorithm is derived from the Verlet algorithm, it gives rise
to identical trajectories. Note, however, that the velocities are not defined
at the same time as the positions. As a consequence, kinetic and potential
energy are also not defined at the same time, and hence we cannot directly
compute the total energy in the Leap Frog scheme.

It is, however, possible to cast the Verlet algorithm in a form that uses
positions and velocities computed at equal times. This velocity Verlet algo-
rithm [69] looks like a Taylor expansion for the coordinates:

T(t + At) =7(t) + v(t)At + m
2m

At (4.3.3)

However, the update of the velocities is different from the Euler scheme:

f(t + At) + f(t)

> At. (4.3.4)

v(t + At) = v(t) +

Note that, in this algorithm, we can compute the new velocities only after we
have computed the new positions and, from these, the new forces. It is not

76 Chapter 4. Molecular Dynamics Simulations

immediately obvious that this scheme, indeed, is equivalent to the original
Verlet algorithm. To show this, we note that

Tt + 2At) = T(t + At) + v(t + At)At + f(termAt) At2
and equation (4.3.3) can be written as
r(t) = r(t + At) — v(t)At — @Atz.
2m

By addition we get

f(t + At) — f(t)

At2.
2m

T(t + 2At) +7(t) = 2r(t + At) + [v(t + At) — v(t)]At +

Substitution of equation (4.3.4) yields

T(t 4 2At) + r(t) = 2r(t + At) + &;it)mz,
which, indeed, is the coordinate version of the Verlet algorithm.

Let us end the discussion of Verlet-like algorithms by mentioning two
schemes that yield the same trajectories as the Verlet algorithm, but provide
better estimates of the velocity. The first is the so-called Beeman algorithm.
It looks quite different from the Verlet algorithm:

4f(t) — f(t — At)

At? 4.3,
om t (4.3.5)

T(t + At) =7(t) + v(t)At +

2f(t + At) + 5f(t) — f(t — At)
6m

However, by eliminating v(t) from equation (4.3.5), using equation (4.3.6),
it is easy to show that the positions satisfy the Verlet algorithm. However,
the velocities are more accurate than in the original Verlet algorithm. As a
consequence, the total energy conservation looks somewhat better. A dis-
advantage of the Beeman algorithm is that the expression for the velocities
does not have time-reversal symmetry. A very simple solution to this prob-
lem is to use the so-called velocity-corrected Verlet algorithm for which the
error both in the positions and in the velocities is of order O(At*).

The velocity-corrected Verlet algorithm is derived as follows. First write
down a Taylor expansion for r(t + 2At), r(t + At), v(t — At) and r(t — 2At):

vt + At) =v(t) + At. (4.3.6)

T(t + 2At) r(t) + 2v(t)At + V(1) (2At)% /2! + V(2At)3 /3! + - - -
rt+At) = T(t) +V(t)At +V(t)At? /20 + VAL /3 4 - -
rlt—At) = t(t) — v(t)At +v(t)At? /2! — VAL /3! + -

r(t — 2At) T(t) — 2v(t)At + V(1) (2At)% /2! — $(2A1)3 /31 + - - - .

4.3 Equations of Motion 77

By combining these equations, we can write
12v(t)At = 8[r(t + At) — r(t — At)] — [F(t + 2At) — 7(t — 2At)] + O(AtY)

or, equivalently,

(t+ At/2) + v(t — At/2) +§[\-)(t_At)_\-,(t+At)]+(’)(At4). (4.3.7)

v
vit) = 2 12

Note that this velocity can be computed only after the next time step (i.e., we
must know the positions and forces at t + At to compute v(t)).

4.3.2 Higher-Order Schemes

For most Molecular Dynamics applications, Verlet-like algorithms are per-
fectly adequate. However, sometimes it is convenient to employ a higher-
order algorithm (i.e., an algorithm that employs information about higher-
order derivatives of the particle coordinates). Such an algorithm makes it
possible to use a longer time step without loss of (short-term) accuracy or,
alternatively, to achieve higher accuracy for a given time step. But, as men-
tioned before, higher-order algorithms require more storage and are, more
often than not, neither reversible nor area preserving. This is true in partic-
ular of the so-called predictor-corrector algorithms, the most popular class
of higher-order algorithms used in Molecular Dynamics simulations. For
the sake of completeness, the predictor-corrector scheme is described in Ap-
pendix E.1. We refer the reader who wishes to know more about the relative
merits of algorithms for Molecular Dynamics simulations to the excellent
review by Berendsen and van Gunsteren [70].

4.3.3 Liouville Formulation of Time-Reversible Algorithms

Thus far we have considered algorithms for integrating Newton's equations
of motion from the point of view of applied mathematics. However, re-
cently Tuckerman et al. [71] have shown how to systematically derive time-
reversible, area-preserving MD algorithms from the Liouville formulation of
classical mechanics. The same approach has been developed independently
by Sexton and Weingarten [72] in the context of hybrid Monte Carlo simula-
tions (see section 14.2). As the Liouville formulation provides considerable
insight into what makes an algorithm a good algorithm, we briefly review
the Liouville approach.

Let us consider an arbitrary function f that depends on all the coordi-
nates and momenta of the N particles in a classical many-body system. The
term f(p™(t),rN(t)) depends on the time t implicitly, that is, through the

78 Chapter 4. Molecular Dynamics Simulations

dependence of (pN,t™) on t. The time derivative of f is f:
2, of

ar " Pop
= iLf,

t = (4.3.8)

where we have used the shorthand notation r for rN and p for pN. The last
line of equation (4.3.8) defines the Liouville operator

. .0 .0
il = ra + pa. (4.3.9)

We can formally integrate equation (4.3.8) to obtain
f[pN(t), N (t)] = exp(iLt)f [pN(0),N(0)] . (4.3.10)

In all cases of practical interest, we cannot do much with this formal solu-
tion, because evaluating the right-hand side is still equivalent to the exact
integration of the classical equations of motion. However, in a few simple
cases the formal solution is known explicitly. In particular, suppose that our
Liouville operator contained only the first term on the right-hand side of
equation (4.3.9). We denote this part of iL by iL,:

(4.3.11)

where i(0) is the value of i at time t = 0. If we insert iL, in equation (4.3.10)
and use a Taylor expansion of the exponential on the right-hand side, we get

(iLyt)?

ft) = f(0) +il:tf(0) + —;

= exp (i‘(O)t%) f(0)

(#0)t)™ ™
a0

f0) +---

I
Mg

0
P (0), (r+ HO))N] . (4.3.12)

I

n
= f

—

Hence, the effect of exp(iL.t) is a simple shift of coordinates. Similarly, the
effect of exp(iL,t), with iL,, defined as

iL, = p(0)=— (4.3.13)

op

is a simple shift of momenta. The total Liouville operator, iL, is equal to iL,
+ iL,. Unfortunately, we cannot replace exp(iLt) by exp(iL,t) x exp(iL,t),

bl

4.3 Equations of Motion 79

because iL; and iL,, are noncommuting operators. For noncommuting oper-
ators A and B, we have

exp(A + B) # exp(A) exp(B). (4.3.14)
However, we do have the following Trotter identity:

(AB) — fim (eA/2eB/Pens2n) (4.3.15)

P—oo

e

In the limit P — oo, this relation is formally correct, but of limited practical
value. However, for large but finite P, we have

P
o(A+B) _ (eA/ZPeB/PeA/zp) eO(1/P?). (4.3.16)

Now let us apply this expression to the formal solution of the Liouville equa-
tion. To this end, we make the identification

A Lyt .. D
and 5

B il,t

F = P = Atr(O)a,

where At = t/P. The idea is now to replace the formal solution of the Liou-
ville equation by the discretized version, equation (4.3.16). In this scheme,
one time step corresponds to applying the operator

iLp At/2Gilr At il, At/2

€ e

once. Let us see what the effect is of this operator on the coordinates and
momenta of the particles. First, we apply exp(iL,At/2) to f and obtain

iL,At/2¢ [N N At | N N
elt»At/2f [p™(0),£™ (0)] =f{[p(0)+7p(0)} T (0)}.

Next, we apply exp(iL:At) to the result of the previous step
: At 1M
eltrAtf { [p(o) + 71'3(0)] ,rN(O)}

At N , N
—f { [p(O) + 7p(O)} , [1(0) + Ati(At/2)] } ,

80 Chapter 4. Molecular Dynamics Simulations

and finally we apply exp(iL,At/2) once more, to obtain

N

f{ [p(O) +5Tp(0)+ Sp(an| ko) + Atf(At/an} :
Note that every step in the preceding sequence corresponds to a simple shift
operation in either ™ or pN. It is of particular importance to note that the
shift in r is a function of p only (because t = p/m), while the shift in p
is a function of r only (because p = F(rN)). The Jacobian of the transfor-
mation from {p™N(0),rN(0)} to {pN(At), rN(At)} is simply the product of the
Jacobians of the three elementary transformations. But, as each of these Ja-
cobians is equal to 1, the overall Jacobian is also equal to 1. In other words,
the algorithm is area preserving.

If we now consider the overall effect of this sequence of operations on
the positions and momenta, we find the following:

At

p(0) — p(0)+ > (F(0) + F(At)) (4.3.17)
r(0) — r(0) + Ati(At/2)
2
= r(0) + Ati(0) + %F(O) (4.3.18)

But these are precisely the equations of the Verlet algorithm (in the velocity
form). Hence, we have shown that the Verlet algorithm is area preserving.
That it is reversible follows directly from the fact that past and future coor-
dinates enter symmetrically in the algorithm.

Finally, let us try to understand the absence of long-term energy drift in
the Verlet algorithm. When we use the Verlet algorithm, we replace the true
Liouville operator exp(iLt) by exp(iL;At/2) exp(iLpAt) exp(iL;At/2). In do-
ing so, we make an error. If all (nth-order) commutators of L, and L, exist
(ie., if the Hamiltonian is an infinitely differentiable function of p™ and r™)
then, at least in principle, we can evaluate the error that is involved in this
replacement:

exp(iL;At/2) exp(iLpAt) exp(iL;At/2) = exp(iLAt + €), (4.3.19)

where € is an operator that can be expressed in terms of the commutators of
L,and L,:

Z (A2 Cang, (4.3.20)

n=1
where ¢, denotes a combination of mth-order commutators. For instance,
the leading term is

1 1
—(At)3 (24[1Lr,[1l_r,1l_ 11+]2[1Lp,[1I_,,1L]])

4.3 Equations of Motion 81

Now the interesting thing to note is that, if the expansion in equation (4.3.20)
converges, then we can define a pseudo-Liouville operator

inseudo =il + €/At.

This pseudo-Liouville operator corresponds to a pseudo-Hamiltonian, and
the remarkable thing is that this pseudo-Hamiltonian (Hpseudo) is rigorously
conserved by Verlet style (or generalized multi-time-step) algorithms [73-
75]. The difference between the conserved pseudo-Hamiltonian and the true
Hamiltonian of the system is of order (At)?™ (where n depends on the order
of the algorithm). Clearly, by choosing At small (and, if necessary, n large),
we can make the difference between the true and the pseudo-Hamiltonian
as small as we like. As the true Hamiltonian is forced to remain close to a
conserved quantity, we can now understand why there is no long-term drift
in the energy with Verlet-style algorithms. In some cases, we can explicitly
compute the commutators (for instance, for a harmonic system) and can ver-
ify that the pseudo-Hamiltonian is indeed conserved [68]. And, even if we
cannot compute the complete series of commutators, the leading term will
give us an improved estimate of the pseudo-Hamiltonian. Toxvaerd [68] has
verified that even for a realistic many-body system, such an approximate
pseudo-Hamiltonian is very nearly a constant of motion.

The Liouville formalism allows us to derive the Verlet algorithm as a
special case of the Trotter expansion of the time-evolution operator. It should
be realized that the decomposition of il as a sum of iL. and il is arbitrary.
Other decompositions are possible and may lead to algorithms that are more
convenient.

4.3.4 Lyapunov Instability

To end this discussion of algorithms, we wish to illustrate the extreme sen-
sitivity of the trajectories to small differences in initial conditions. Let us
consider the position (r) of one of the N particles at time t. This position is
a function of the initial positions and momenta at t = 0:

r(t) = [fN(0),p™ (0);1] .

Let us now consider the position at time t that would result if we perturbed
the initial conditions (say, some of the momenta) by a small amount €. In
that case, we would obtain a different value for r at time t:

r'(t) = f [rN(0),p™(0) + &;t] .

We denote the difference between r(t) and r’(t) by Ar(t). For sufficiently
short times, Ar(t) is linear in €. However, the coefficient of the linear depen-
dence diverges exponentially; that is,

|Ar(t)| ~ e exp(At). (4.3.21)

82 Chapter 4. Molecular Dynamics Simulations

This so-called Lyapunov instability of the trajectories is responsible for our
inability to accurately predict a trajectory for all but the shortest simula-
tions. The exponent A is called the Lyapunov exponent (more precisely, the
largest Lyapunov exponent; there are more such exponents, 6N in fact, but
the largest dominates the long-time exponential divergence of initially close
trajectories). Suppose that we wish to maintain a certain bound Ap.x on
|Ar(t)], in the interval 0 < t < tmax. How large an initial error (€) can we
afford? From equation (4.3.21), we deduce

€ ~ Amax exp(—}\tmax)-

Hence, the acceptable error in our initial conditions decreases exponentially
with tmax, the length of the run. To illustrate that this effect is real, we show
the result of two almost identical simulations: the second differs from the
first in that the x components of the velocities of 2 particles (out of 1000)
have been changed by +107'° and —107° (in reduced units). We monitor
the sum of the squares of the differences of the positions of all particles:

N
3 It — i)
i=1

As can be seen in Figure 4.1, this measure of the distance does indeed grow
exponentially with time.

After 1000 time steps, the two systems that were initially very close have
become very nearly uncorrelated. It should be stressed that this run was
performed using perfectly normal parameters (density, temperature, time
step). The only unrealistic thing about this simulation is that it is extremely
short. Most Molecular Dynamics simulations do require many thousands of
time steps.

4.3.5 One More Way to Look at the Verlet Algorithm...

In Molecular Dynamics simulations, the Newtonian equations of motion are
integrated approximately. An alternative route would be to first write down
a time-discretized version of the action. (See Appendix A, and then find the
set of coordinates (i.e., the discretized trajectory) that minimizes this action.
This approach is discussed in some detail in a paper by Gillilan and Wil-
son [67].) Let us start with the continuous-time version of the action

L [)2
S_Lb dt [zm(T) —Ll(x)}

and discretize it as follows:

ie—1 N2
Sdiscr: Z At [%m (xq——HAt—m) —U(Xi)

i=ip

4.3 Equations of Motion 83

10° -
10" ¢ E
= 10° B 2
::;10‘12 ; ;
Py 3 :
10" E -
10 : ' ! 3
0 2 4 6

Figure 4.1: Illustration of the Lyapunov instability in a simulation of a
Lennard-Jones system. The figure shows the time dependence of the sum
of squared distances between two trajectories that were initially very close
(see text). The total length of the run in reduced units was 5, which corre-
sponds to 1000 time steps. Note that, within this relatively short time, the
two trajectories become essentially uncorrelated.

where t, = ipAt and t. = 1.At. As in the continuous case, we can determine
the set of values of the coordinates x; for which Sgis is stationary. At sta-
tionarity, the derivative of Sgisr with respect to all x; vanishes. It is easy to
verify that this implies that

2Xi — Xip1 — Xi—1 oU(x;)
m(At) At e 0

or

Atz oU(x;)
it = 2% —Xi1] — — ,
Xit] = 2Xi — X{—1 (o,)

which is, of course, the Verlet algorithm. This illustrates that the trajectories
generated by the Verlet algorithms have an interesting “shadow” property
(see ref. [67] and section 4.3): a “Verlet trajectory” that connects point x;,
and x;, in a time interval te — tp will tend to lie close to the true trajectory
that connects these two points. However, this true trajectory is not at all the
one that has the same initial velocity as the Verlet trajectory. That is,

(dx(tb)> 4 (Xibﬂ —Xib—1>
dt true 2At Verlet

Nevertheless, as discussed in section 4.3, the Verlet algorithm is a good algo-
rithm in the sense that it follows from a minimization principle that forces it

84 Chapter 4. Molecular Dynamics Simulations

to approximate a true dynamical trajectory of the system under considera-
tion.

This attractive feature of algorithms that can be derived from a discretized
action has inspired Elber and co-workers to construct a novel class of MD
algorithms that are designed to yield reasonable long-time dynamics with
very large time steps [76,77]. In fact, Elber and co-workers do not base their
approach on the discretization of the classical action but on the so-called
Onsager-Machlup action [78]. The reason for selecting this more general ac-
tion is that the Onsager-Machlup action is a minimum for the true trajectory,
while the Lagrangian action is only an extremum. It would carry too far to
discuss the practical implementation of the algorithm based on the Onsager-
Machlup action. For details, we refer the reader to refs. [76,77].

4.4 Computer Experiments

Now that we have a working Molecular Dynamics program, we wish to use
it to “measure” interesting properties of many-body systems. What proper-
ties are interesting? First of all, of course, those quantities that can be com-
pared with real experiments. Simplest among these are the thermodynamic
properties of the system under consideration, such as the temperature T, the
pressure P, and the heat capacity Cy. As mentioned earlier, the temperature
is measured by computing the average kinetic energy per degree of freedom.
For a system with f degrees of freedom, the temperature T is given by

_ (2K)
=

There are several different (but equivalent) ways to measure the pressure of
a classical N-body system. The most common among these is based on the
virial equation for the pressure. For pairwise additive interactions, we can
write (see, e.g., [79])

kg T (4.4.1)

1
P =pkgT + v <Z f(r;) 'rii>) (4.4.2)

i<j

where d is the dimensionality of the system, and £(r;;) is the force between
particles i and j at a distance ri;. Note that this expression for the pressure
has been derived for a system at constant N, V, and T, whereas our simula-
tions are performed at constant N, V, and E. In fact, the expression for the
pressure in the microcanonical ensemble (constant N, V, E) is not identical
to the expression that applies to the canonical (constant N, V, T) ensemble.
Lebowitz et al. [80] have derived a general procedure to convert averages
from one ensemble to another. A more recent (and more accessible) descrip-
tion of these interensemble transformations has been given by Allen and

4.4 Computer Experiments 85

Tildesley [41]. An example of a relation derived by such a transformation is
the expression for the heat capacity at constant volume, as obtained from the
fluctuations in the kinetic energy in the microcanonical ensemble:

k3 T2 3k
<’C2>NVE - (’C)IZ\JVE = % (1 - ﬁ) : (4.4.3)

However, one class of thermodynamic functions cannot be measured di-
rectly in a simulation, in the sense that these properties cannot be expressed
as a simple average of some function of the coordinates and momenta of all
the particles in the system. Examples of such properties are the entropy S,
the Helmholtz free energy F, and the Gibbs free energy G. Separate tech-
niques are required to evaluate such thermal quantities in a computer simu-
lation. Methods to calculate these properties are discussed in Chapter 7.

A second class of observable properties are the functions that character-
ize the local structure of a fluid. Most notable among these is the so-called
radial distribution function g(r). The radial distribution function is of in-
terest for two reasons: first of all, neutron and X-ray scattering experiments
on simple fluids, and light-scattering experiments on colloidal suspensions,
yield information about g(r). Second, g(r) plays a central role in theories of
the liquid state. Numerical results for g(r) can be compared with theoretical
predictions and thus serve as a criterion to test a particular theory. In a simu-
lation, it is straightforward to measure g(r): it is simply the ratio between the
average number density p(r) at a distance from any given atom (for sim-
plicity we assume that all atoms are identical) and the density at a distance
T from an atom in an ideal gas at the same overall density. In Algorithm 7
an implementation to compute the radial distribution function is described.
By construction, g(r) = 1 in an ideal gas. Any deviation of g(r) from unity
reflects correlations between the particles due to the intermolecular interac-
tions.

Both the thermodynamic properties and the structural properties men-
tioned previously do not depend on the time evolution of the system: they
are static equilibrium averages. Such averages can be obtained by Molecular
Dynamics simulations or equally well by Monte Carlo simulations. How-
ever, in addition to the static equilibrium properties, we can also measure
dynamic equilibrium properties in a Molecular Dynamics simulation (but
not with a Monte Carlo simulation). At first sight, a dynamic equilibrium
property appears to be a contradiction: in equilibrium all properties are in-
dependent of time; hence any time dependence in the macroscopic prop-
erties of a system seems to be related to nonequilibrium behavior. This
is true, but it turns out that the time-dependent behavior of a system that
is only weakly perturbed is completely described by the dynamic equilib-
rium properties of the system. Later, we shall provide a simple introduc-
tion to the quantities that play a central role in the theory of time-dependent

86

Chapter 4. Molecular Dynamics Simulations

Algorithm 7 (The Radial Distribution Function)

subroutine gr(switch)

if (switch.eq.0) then
ngr=0
delg=box/ (2*nhis)
do i=0,nhis
g(i)=0
enddo
else if (switch.eq.l1l) then
ngr=ngr+1
do i=1,npart-1
do j=i+1,npart
xr=x(1i)-x(3)
Xr=Xr-box*nint (xr/box)
r=sqrt (Xr**2)
if (r.lt.box/2) then
ig=int (r/delq)
g(ig)=g(ig)+2
endif
enddo
enddo
else if (switch.eq.2) then
do i=1,nhis
r=delg* (i+0.5)

vb=((1+1) **3-i%*3) *delg**3

nid=(4/3)*pi*vb*rho
g(i)=g(i)/ (ngr*npart*nid)
enddo
endif
return
end

radial distribution function
switch = 0 initialization,
= 1 sample, and = 2 results
initialization

bin size

nhis total number of bins

sample

loop over all pairs
periodic boundary conditions
only within half the box length

contribution for particle i and j

determine g(r)

distance r

volume betweenbin i+1 and i
number of ideal gas part. in vb
normalize g(r)

Comments to this algorithm:

1. For efficiency reasons the sampling part of this algorithm is usually combined
with the force calculation (for example, Algorithm 5).

2. The factor pi = 3.14159. . ..

4.4 Computer Experiments 87

processes near equilibrium, in particular the so-called time-correlation func-
tions. However, we shall not start with a general description of nonequi-
librium processes. Rather we start with a discussion of a simple specific
example that allows us to introduce most of the necessary concepts.

4.4.1 Diffusion

Diffusion is the process whereby an initially nonuniform concentration pro-
file (e.g., an ink drop in water) is smoothed in the absence of flow (no stir-
ring). Diffusion is caused by the molecular motion of the particles in the
fluid. The macroscopic law that describes diffusion is known as Fick’s law,
which states that the flux j of the diffusing species is proportional to the
negative gradient in the concentration of that species:

j=-DVc, 4.4.4)

where D, the constant of proportionality, is referred to as the diffusion coef-
ficient. In what follows, we shall be discussing a particularly simple form
of diffusion, namely, the case where the molecules of the diffusing species
are identical to the other molecules but for a label that does not affect the
interaction of the labeled molecules with the others. For instance, this label
could be a particular polarization of the nuclear spin of the diffusing species
or a modified isotopic composition. Diffusion of a labeled species among
otherwise identical solvent molecules is called self-diffusion.

Let us now compute the concentration profile of the tagged species, un-
der the assumption that, at time t = 0, the tagged species was concentrated
at the origin of our coordinate frame. To compute the time evolution of the
concentration profile, we must combine Fick’s law with an equation that ex-
presses conservation of the total amount of labeled material:

oc(r,t)
ot

+V-j(r,t) =0. (4.4.5)

Combining equation (4.4.5) with equation (4.4.4), we obtain

oc(r, t)

_pv? _
5i— —DVe(rt) = 0. (4.4.6)

We can solve equation (4.4.6) with the boundary condition
c(r,0) = §(r)

(8(r) is the Dirac delta function) to yield

1 2
C(T,t) = Wexp —ﬁ .

88 Chapter 4. Molecular Dynamics Simulations

As before, d denotes the dimensionality of the system. In fact, for what fol-
lows we do not need c(r, t) itself, but just the time dependence of its second
moment:

<T2(t)> = Jdr c(r, t)r?,

where we have used the fact that we have imposed
Jdr c(r,t) =1.

We can directly obtain an equation for the time evolution of (r?(t)) by mul-
tiplying equation (4.4.6) by v and integrating over all space. This yields

—%Jdr r2e(r,t) = DJdr Vic(rt). (4.4.7)
The left-hand side of this equation is simply equal to
0 <r2 (t))
ot
Applying partial integration to the right-hand side, we obtain

d (r? (
ha—t“» = D |drr?Vc(rt)

= D|drV-: (r*Vc(rt)) — DJdr Vr? . Ve(r,t)

r

= D {dS (r*V¢(r,t)) - 2D Jdr r- Ve(r,t)

J

= 0 —ZDJdr (V -rc(r,t)) + ZDJdr (V -r)c(r, t)

= (0+42dD jdr c(r,t)
= 2dD. (4.4.8)

Equation (4.4.8) relates the diffusion coefficient D to the width of the con-
centration profile. This relation was first derived by Einstein. It should be
realized that, whereas D is a macroscopic transport coefficient, (r?(t)) has a
microscopic interpretation: it is the mean-squared distance over which the
labeled molecules have moved in a time interval t. This immediately sug-
gests how to measure D in a computer simulation. For every particle i, we
measure the distance traveled in time t, Ar;(t), and we plot the mean square
of these distances as a function of the time t:

N
(Ar(t)?) = —]17 Z Ari ()2
iz

4.4 Computer Experiments 89

This plot would look like the one that will be shown later in Figure 4.6. We
should be more specific about what we mean by the displacement of a par-
ticle in a system with periodic boundary conditions. The displacement that
we are interested in is simply the time integral of the velocity of the tagged

particle:
t

Ar(t) :J dt’ v(t').
0

In fact, there is a relation that expresses the diffusion coefficient directly in

terms of the particle velocities. We start with the relation

2
2D = lim M

Jim ==t (4.4.9)

where, for convenience, we consider only one Cartesian component of the
mean-squared displacement. If we write x(t) as the time integral of the x
component of the tagged-particle velocity, we get

((fose)’)

— E E dt'dt” (v (t" v (t"))

I

(1)

topt!
= ZJ J dt'dt” (v (t" i (t")) . (4.4.10)
0Jo

The quantity (v, (t')vx(t")) is called the velocity autocorrelation function. It
measures the correlation between the velocity of a particle at times t’ and
t". The velocity autocorrelation function (VACF) is an equilibrium property
of the system, because it describes correlations between velocities at differ-
ent times along an equilibrium trajectory. As equilibrium properties are in-
variant under a change of the time origin, the VACF depends only on the
difference of t’ and t". Hence,

(W (t Ve (t7)) = (v (t" =ty (0)) .

Inserting equation (4.4.10) in equation (4.4.9), we obtain

t
2D = lim ZJ dt” (vy(t — t")vx (0))
t—o0 0
D = dew (Ve (T)vx (0)) . (4.4.11)
0

In the last line of equation (4.4.11) we introduced the coordinate T = t — t".
Hence, we see that we can relate the diffusion coefficient D to the integral

90 Chapter 4. Molecular Dynamics Simulations

of the velocity autocorrelation function. Such a relation between a trans-
port coefficient and an integral over a time-correlation function is called a
Green-Kubo relation (see Appendix C for some details). Green-Kubo relations
have been derived for many other transport coefficients, such as the shear
viscosity 1,

] xO
n= ViaT L dt (o™¥(0)a*¥(t)) (4.4.12)

with
- 1
oY = Z mivivy + 3 Z.Xij fyl(riy) | ; (4.4.13)
i=1 j#i
the thermal conductivity Ar,
—] * e .e
At = VkgT2 L dt (jz(0)jz(t)) (4.4.14)

with

N

N
e d 1 5 .
)z = a 1; Zi (mivi + ZV(T‘-U')) ; (4415)

i1

and electrical conductivity o,

T2, ety
O = T L dt (52(0)je' (1)) (4.4.16)
with
N
=) aiv}. (4.4.17)
i=1

For details, see, for example, [79]. Time-correlation functions can easily be
measured in a Molecular Dynamics simulation. It should be emphasized
that for classical systems, the Green-Kubo relation for D and the Einstein
relation are strictly equivalent. There may be practical reasons to prefer
one approach over the other, but the distinction is never fundamental. In
Algorithm 8 an implementation of the calculation of the mean-squared dis-
placement and velocity autocorrelation function is described.

4.4.2 Order-n Algorithm to Measure Correlations

The calculation of transport coefficients from the integral of a time-correla-
tion function, or from a (generalized) Einstein relation, may require a lot
of memory and CPU time, in particular if fluctuations decay slowly. As
an example, we consider again the calculation of the velocity autocorrela-
tion function and the measurement of the diffusion coefficient. In a dense

4.4 Computer Experiments

91

Algorithm 8 (Diffusion)

subroutine dif (switch,nsamp)

if (switch.eq.0) then
ntel=0
dtime=dt*nsamp
do i=1,tmax
ntime (1
vacf (1)
r2t (i) =
enddo
else if (switch.eg.1) then
ntel=ntel+1
if (mod(ntel,it0).eq.0) then
t0 = t0 + 1
tt0=mod(t0-1,tOmax) +1
time0 (tt0) =ntel
do i=,npart
x0(1i,tt0)=x(1)
vx0(1i,tt0)=vx (1)
enddo
endif
do t=1,min(t0, tOmax)
delt=ntel-timeO(t)+1
if (delt.lt.tmax) then
ntime (delt)=ntime (delt) +1
do i=1,npart
vacf (delt) =vacf (delt)+

)=0
=0
0

+ vx (1) *vx0 (i, t)
r2t (delt)=r2t (delt) +
+ (x(1)-x0(1i,t))**2
enddo
endif
enddo
else if (switch.eqg.2) then

do i=1,tmax
time=dtime* (i+0.5)
vacf (i) =vacf (i)

+ / (npart*ntime (1))
r2t (i) =r2t (1)
+ / (npart*ntime (i))
enddo
endif
return

end

diffusion; switch = 0 init.

= 1 sample, and = 2 results
Initialization

time counter

time between two samples
tmax total number of time step
number of samples for time i

sample

decide to take anewt =0
update number of t =0

see note 1

store the time of t = 0

store position for givent =0
store velocity for given t = 0

update vacf and r2, fort = 0
actual time minus t = 0

update velocity autocorr.

update mean-squared displ.

determine results

time
volume velocity autocorr.

mean-squared displacement

92 Chapter 4. Molecular Dynamics Simulations

Comments to this algorithm:

1. We define a new t = 0 after each 1t 0 times this subroutine has been called.
For each t = 0, we store the current positions and velocities. The term t Omax
is the maximum number of t = 0 we can store. If we sample more, the first
t = O will be removed and replaced by a new one. This limits the maximum
time we collect data to t Omax*it0; this number should not be smaller than
tmax, the total number of time steps we want to sample.

2. Because nsamp gives the frequency at which this subroutine is called, the
time between two calls is nsamp*delt, where delt is the time step.

medium, the velocity autocorrelation function changes rapidly on typically
microscopic time scales. It therefore is important to have an even shorter
time interval between successive samples of the velocity. Yet, when probing
the long-time decay of the velocity autocorrelation function, it is not nec-
essary to sample with the same frequency. The conventional schemes for
measuring correlation functions do not allow for such adjustable sampling
frequencies. Here, we describe an algorithm that allows us to measure fast
and slow decay simultaneously at minimal numerical cost. This scheme can
be used to measure the correlation function itself, but in the example that we
discuss, we show how it can be used to compute the transport coefficient.

Let us denote by At the time interval between successive measurements
of the velocity of the particles in the system. We can define block sums of the
velocity of a given particle as follows:

viig = Y v (4.4.18)

with

v (1) =v(), (4.4.19)

where v(l) is the velocity of a particle at time 1. Equation (4.4.18) is a re-
cursive relation between block sums of level i and 1 — 1. The variable n
determines the number of terms in the summation. For example, v(3) (j) can

4.4 Computer Experiments 93

o((n-Dj+1) | v((n-1)j+2) v((n-1)j+n)

z,(2)(1)

Figure 4.2: Coarse graining the velocities.

be written as

in
e o=) v
li=(j~1)n+1
jin Lin 1an

S A S W%

Li=0-1)n+1] [La=(L1 =)n+1] z3=(l2=1)n+1]
n3j

= Z v(l)

1=(j—1)n3+1

3 . .
Lr’ dtv() = () =1’ -1 +1)
At 1=(—1)n3+1 At

Q

Clearly, the block sum of the velocity is related to the displacement of the
particle in a time interval n*At. In Figure 4.2 the blocking operation is illus-
trated. From the preceding block sumes, it is straightforward to compute the
velocity autocorrelation function with a resolution that decreases with in-
creasing time. At each level of blocking, we need to store n x N block sums,
where N is the number of particles (in practice, it will be more convenient to
store the block-averaged velocities).

The total storage per particle for a simulation of length t = n'At is i x
n. This should be compared to the conventional approach where, to study
correlations over the same time interval, the storage per particle would be
n'. In the conventional calculation of correlation functions, the number of
floating-point operations scales at t? (or t Int, if the fast Fourier technique is
used). In contrast, in the present scheme the number of operations scales as t.

94 Chapter 4. Molecular Dynamics Simulations

At each time step we have to update v(®) (t) and correlate it with all n entries
in the v(®)-array. The next block sum has to be updated and correlated once
every n time steps, the third every every n? steps, etc. This yields, for the
total number of operations,

t]] 1 1 t n

Using this approach, we can quickly and efficiently compute a wide variety
of correlation functions, both temporal and spatial. However, it should be
stressed that each blocking operation leads to more coarse graining. Hence,
any high-frequency modulation of long-time behavior of such correlation
functions will be washed out.

Interestingly enough, even though the velocity autocorrelation function
itself is approximate at long times, we can still compute the integral of the
velocity autocorrelation function (i.e., the diffusion coefficient), with no loss
in numerical accuracy. Next, we discuss in some detail this technique for
computing the diffusion coefficient.

Let us define

j
AxV () = Y v (DAL = r(n') —1(0). (4.4.20)
1=0
The square of the displacement of the particle in a time interval n*At can be
written as

(A82) 1 () = [r(n') — £(0)]% = AV 5) - AT (j). (4.4.21)
To compute the diffusion coefficient, we should follow the time dependen-
ce of the mean-squared displacement. As a first step, we must determine
A¥Y) (j) for all i and all j. In fact, to improve the statistics, we wish to use
every sample point as a new time origin. To achieve this, we again create

arrays of length n. However, these arrays do not contain the same block
sums as before, but partial block sums (see Algorithm 9).

1. At every time interval At, the lowest-order blocking operation is per-
formed through the following steps:

(a) We first consider the situation that all lowest-order accumulators
have already been filled at least once (this is true if t > nAt). The
value of the current velocity v(t) is added to

Vaum(1,7) = Vsum(]aj +1) +v(t)

for 5 1,n-1,and

Vsum(1,7) = v(t)

for j

i
B

4.4 Computer Experiments

95

Algorithm 9 (Diffusion: Order-n Algorithm)

subroutine dif (switch,nsamp)

if (switch.eq.0) then
ntel=0
dtime=dt*nsamp
do ib=1, ibmax
ibl (ib) =0
do j=1,n
tel (ib,j) =0
delr2(ib, j)=0
do i=1,npart
vxsum(ib,j,1)=0
enddo
enddo
enddo
else if (switch.eqg.2) then
do ib=1,max (ibmax, iblm)
do j=2,min(ibl (ib),n)
time=dtime*j*n** (ib-1)
r2=delr2 (ib,j) *dtime**2
/tel(ib,)
enddo
enddo
. (continue)....

diffusion

switch = 0 initialization,

= 1 sample, and = 2 results
initialization

time counter for this subroutine
time between two samples
ibmax max. number of blocks
length of current block

n number of steps in a block
counter number of averages
running average mean-sq. displ.

coarse-grained velocity particle i

print results

time
mean-squared displacement

(b) These operations yield

Vsum(]»l) =

j=t

>).

j=t—mn+1

The equation allow us to update the accumulators for the mean-
squared displacement (4.4.21) for 1l =1,2,... n

(AF) O (1) = (AF) O (1) + v, (1, DAL,

2. If the current time step is a multiple of n, we perform the first blocking
operation, if it is a multiple of n? the second, etc. Performing blocking
operation i involves the following steps:

96 Chapter 4. Molecular Dynamics Simulations

. (continue)....
else if (switch.eqg.1l) then
ntel=ntel+1l
iblm=MaxBlock (ntel, n)

do ib=1,iblm
if (mod(ntel,n** (ib-1))
+ .eq.0) then
ibl (ib)=ibl (ib) +1
inm=max (ibl (ib) , n)
do i=1,npart
if(ib.eg.l) then
delx=vx (i)
else
delx=vxsum(ib-1,1,1)
endif
do in=1, inm
if (inm.ne.n) then
inp=in
else
inp=in+1
endif
if (in.lt.inm) then
vxsum(ib,in,i)=

+ vxsum(ib, inp, i) +delx
else
vxsum(ib, in,i)=delx
endif
enddo

do in=1,inm
tel (ib,in)=tel (ib, in)+1
delr2 (ib, in)=delr2 (ib, in)
+ +vxsum(ib, inm-in+1,1) **2
enddo
enddo
endif
enddo
endif
return
end

sample

maximum number of possible
blocking operations

test if ntel is a multiple of n*®
increase current block length
set maximum block length to n
Oth block: ordinary velocity

previous block velocity

test block length equal ton

eqns. (4.4.22) or (4.4.25)

eqns. (4.4.23) or (4.4.26)

counter number of updates
update equation (4.4.24)

Comment to this algorithm:

1. MaxBlock (ntel,n) gives the maximum number of blocking operations
that can be performed on the current time step ntel.

4.5 Some Applications 97

(a) As before, we first consider the situation that all ith-order accu-
mulators have already been filled at least once (i.e.,, t > n'At).
Using the i — 1th block sum (vsym (i — 1, 1)), we update

Vsum(i»j) = Veum(i,j + 1)+ Vsum(i— 1, 1) (4422)
forj = 1,n-1,and
Voum(1,j) = Veum(i — 1, 1) (4.4.23)

forj = n.
(b) These operations yield

j=n
Vam(LU =) Vam(i—1,5).

j=n—14+1

The equations allows us to update the accumulators for the mean-
squared displacement, equation (4.4.21), for 1 =1,2,... n:

(Ar2) (1) = (APP)V (1) + v2n (4, DAL, (4.4.24)

3. Finally, we must consider how to handle arrays that have not yet been
completely filled. Consider the situation that only nmax of the n loca-
tions of the array that contains the ith-level sums have been initialized.
In that case, we should proceed as follows:

(a) Update the current block length: nmax = nmax+1 (nmax < n).
(b) Forj = 1,nmax-1

Vsum(1,§) = Vsum(1,3) + Veum (i — 1, 1). (4‘4-25)

(c) Forj = nmax
Vsum(1,7) = Vsum (i —1,1). (4.4.26)

The update of equation (4.4.21) remains the same.

In Case Study 6, a detailed comparison is made between the present al-
gorithm and the conventional algorithm for the diffusion of the Lennard-
Jones fluid.

4.5 Some Applications

Let us illustrate the results of the previous sections with an example. Like in
the section on Monte Carlo simulations we choose the Lennard-Jones fluid

98 Chapter 4. Molecular Dynamics Simulations

as our model system. We use a truncated and shifted potential (see also
section 3.2.2):
tr—sh wifr) —uli(re) r<e
(r) = ,
0 > T,

where uli(r) is the Lennard-Jones potential and for these simulations v, =
2.50 is used.

Case Study 4 (Static Properties of the Lennard-Jones Fluid)

Let us start a simulation with 108 particles on a simple cubic lattice. We give
the system an initial temperature T = 0.728 and density p = 0.8442, which is
close to the triple (gas-liquid-solid) point of the Lennard-Jones fluid [81-83].

In Figure 4.3 the evolution of the total energy, kinetic energy, and potential
energy is shown. Itis important to note that the total energy remains constant
and does not show a (slow) drift during the entire simulation. The kinetic
and potential energies do change initially (the equilibration period) but during
the end of the simulation they oscillate around their equilibrium value. This
figure shows that, for the calculation of the average potential energy or kinetic
energy, we need approx. 1000 time steps to equilibrate the simulation. The
figure also shows significant fluctuations in the potential energy, some of
which may take several (100) time steps before they disappear.

Appendix D shows in detail how to calculate statistical error in the data
of a simulation. In this example, we use the method of Flyvbjerg and Pe-
tersen [84]. The following operations on the set of data points are performed:
we start by calculating the standard deviation of all the data points, then we
group two consecutive data points and determine again the standard devia-
tion of the new, blocked, data set. This new data set contains half the number
of data points of the original set. The procedure is repeated until there are
not enough data points to compute a standard deviation; the number of times
we perform this operation is called M. What do we learn from this?

First of all, let us assume that the time between two samples is so large
that the data points are uncorrelated. If the data are uncorrelated the stan-
dard deviation (as calculated according to the formula in Appendix D, i.e.,
correcting for the fact we have fewer data points) should be invariant to this
blocking operation and we should get a standard deviation that is indepen-
dent of M. In a simulation, however, the time between two data points is
usually too short to obtain a statistically independent sample; as a conse-
quence consecutive data points would be (highly) correlated. If we would
calculate a standard deviation using these data, this standard deviation will
be too optimistic. The effect of the block operation will be that after group-
ing two consecutive data points, the correlation between the two new data
points will be less. This, however, will increase the standard deviation; the
data will have more noise since consecutive data points no longer resemble

4.5 Some Applications 99

UN
=

N o e - ’
PRV SL LY \q"\,/\‘__/\\,".’\,‘,‘\", "‘~_’|'_l_,_.-‘

0 1000 2000
N

time

Figure 4.3: Total, potential, and kinetic energy per particle U/N as a func-
tion of the number of time steps Ntime.

each other that closely. This decrease of accuracy as a function of the num-
ber of blocking operations will continue until we have grouped so many data
points that two consecutive points are really uncorrelated. This is exactly
the standard deviation we want to determine. It is important to note that we
have to ensure that the standard deviations we are looking at are significant;
therefore, we have to determine the standard deviation of the error at the
same time.

The results of this error calculation for the potential energy are shown
in Figure 4.4, as expected, for a low value of M; the error increases until a
plateau is reached. For high values of M, we have only a few data points,
which results in a large standard deviation in the error. The advantage of this
method is that we have a means of finding out whether we have simulated
enough; if we do not find such a plateau, the simulation must have been too
short. In addition we find a reliable estimate of the standard deviation. The
figure also shows the effect of increasing the total length of the simulation by
a factor of 4; the statistical error in the potential energy has indeed decreased
by a factor of 2.

In this way we obtained the following results. For the potential energy
U = —4.4190 £ 0.0012 and for the kinetic energy K = 2.2564 + 0.0012, the
latter corresponds to an average temperature of T = 1.5043 £+ 0.0008. For the
pressure, we have obtained 5.16 + 0.02.

In Figure 4.5, the radial distribution function is shown. To determine this
function we used Algorithm 7. This distribution function shows the charac-
teristics of a dense liquid. We can use the radial distribution function to
calculate the energy and pressure. The potential energy per particle can be

100 Chapter 4. Molecular Dynamics Simulations

0O 600000 +

° ¢¢+%
0.002 | 08" + -
a
a 0000000¢¢+
g o
§380° o
0.000 &2——— ' Lo
10 15

Figure 4.4: The standard deviation o in the potential energy as a function
of the number of block operations M for a simulation of 150,000 and 600,000
time steps. This variance is calculated using equation (D.3.4).

calculated from

UN = ol drutmgin
2 0
:2deM%MW) (4.5.1)
0
and for the pressure from
_ _” 2 (7, du(r)
P = pks 35° L dr e (r)
B 2, o du(r) ;4
= pkgT 37Tp L dr ar rog(r), (4.5.2)

where u(r) is the pair potential.

Equations (4.5.1) and (4.5.2) can be used to check the consistency of
the energy and pressure calculations and the determination of the radial
distribution function. In our example, we obtained from the radial distribution
function for the potential energy U/N = —4.419 and for the pressure P =
5.181, which is in good agreement with the direct calculation.

Case Study 5 (Dynamic Properties of the Lennard-Jones Fluid)

As an example of a dynamic property we have determined the diffusion coef-
ficient. As shown in the previous section, the diffusion coefficient can be de-
termined from the mean-squared displacement or from the velocity autocor-
relation function. We have determined these properties using Algorithm 8.

4.5 Some Applications 101

30 ——————

0.0

0.0 3.0

Figure 4.5: Radial distribution function of a Lennard-Jones fluid close to the
triple point: T = 1.5043 4 0.0008 and p = 0.8442.

In Figure 4.6 the mean-squared displacement is shown as a function of
the simulation time. From the mean-squared displacement we can determine
the diffusion using equation (4.4.9). This equation, however, is valid only in
the limit t — oo. In practice this means that we have to verify that we have
simulated enough that the mean-squared displacement is really proportional
to t and not to another power of t.

The velocity autocorrelation function can be used as an independent
route to test the calculation of the diffusion coefficient. The diffusion co-
efficient follows from equation (4.4.11). In this equation we have to integrate
to t — oo. Knowing whether we have simulated sufficiently to perform this in-
tegration reliably is equivalent to determining the slope in the mean-squared
displacement. A simple trick is to determine the diffusion coefficient as a
function of the truncation of the integration; if a plateau has been reached
over a sufficient number of integration limits, the calculation is probably reli-
able.

Case Study 6 (Algorithms to Calculate the Mean-Squared Displacement)
In this case study, a comparison is made between the conventional (Al-
gorithm 8) and the order-n methods (Algorithm 9) to determine the mean-
squared displacement. For this comparison we determine the mean-squared
displacement of the Lennard-Jones fluid.

In Figure 4.7 the mean-squared displacement as a function of time as
computed with the conventional method is compared with that obtained from
the order-n scheme. The calculation using the conventional scheme could
not be extended to times longer than t > 10 without increasing the number of

102 Chapter 4. Molecular Dynamics Simulations

1.0 X T v T v T T 50 L T M T
08 L ’ 4.0 i
I 1 A 30F .
. 06} 1 €
= - 1 = 20} 4
= o
<04t 4 3
L | vV 10r J
0.2 .
_ ‘ 0.0 FHo——r-
0.0 " 1 " 1 N 1 " -1.0 s 1 " 1 "
0.0 0.5 1.0 15 20 0.0 0.5 1.0 15

t t

Figure 4.6: (left) Mean-squared displacement Ar(t)? as a function of the
simulation time t. Note that for long times, Ar(t)? varies linearly with t.
The slope is then given by 2dD, where d is the dimensionality of the system
and D the self-diffusion coefficient. (right) Velocity autocorrelation function
(v(0) - v(t)) as a function of the simulation time t.

conventional method

O order-n scheme

Figure 4.7: Mean-squared displacement as a function of time for the
Lennard-Jones fluid (p = 0.844, N = 108, and T = 1.50); comparison of
the conventional method with the order-n scheme .

time steps between two samples because of lack of memory. With the order-
n scheme the calculation could be extended to much longer times with no
difficulty. It is interesting to compare the accuracy of the two schemes. In the
conventional scheme, the velocities of the particles at the current time step
are used to update the mean-squared displacement of all time intervals. In

4.5 Some Applications 103

9 T T 1 1) T T T T T T T T T T
ok 4
: KXY +
a | « S + ' ; i
5 fooootid 5° +++
oo . . S l
3 8r 1 3 .
o " © 8.' » 7
.. e []
" § |]
|
i 1 i 1 n 1 i L i 1 1 1 s 1 " T. 1 I 1 i 1 J 1 i 1 i 1 " 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14
data block data block

Figure 4.8: Relative error in the mean-squared displacement as a function of
the number of data blocks as defined by Flyvbjerg and Petersen. The figures
compare the conventional scheme (solid squares) with the order-n method
(open circles) to determine the mean-squared displacement. The right figure
is for t = 0.1 and the left figure for t = 1.0.

the order-n scheme the current time step is only used to update the lowest-
order array of vy, (see Algorithm 9). The block sums of level i are updated
only once every n' time step. Therefore, for a total simulation of M time
steps, the number of samples is much less for the order-n scheme; for the
conventional scheme, we have M samples for all time steps, whereas the
order-n scheme has M/n' samples for the ith block velocity. Naively, one
would think that the conventional scheme therefore is more accurate. In the
conventional scheme, however, the successive samples will have much more
correlation and therefore are not independent. To investigate the effect of
these correlations on the accuracy of the results, we have used the method
of Flyvbjerg and Petersen [84] (see Appendix D.3 and Case Study 4). In this
method, the standard deviation is calculated as a function of the number of
data blocks. If the data are correlated, the standard deviation will increase as
a function of the number of blocks until the number of blocks is sufficient that
the data in a data block are uncorrelated. If the data are uncorrelated, the
standard deviation will be independent of the number of blocks. This limiting
value is the standard deviation of interest.

In these simulations the time step was At = 0.001 and the block length
was set to n = 10. For both methods the total number of time steps was
equal. To calculate the mean-squared displacement, we have used 100,000
samples for all times in the conventional scheme. For the order-n scheme,
we have used 100,000 samples for t € [0,0.01], 10,000 for t € [0.01,0.1],
1,000 for fort € [0.1, 1], etc. This illustrates that the number of samples in the
order-n scheme is considerably less than in the conventional scheme. The

104 Chapter 4. Molecular Dynamics Simulations

® conventional method
) O---0Oorder-n scheme ™
T 100 ¢ 3
O .
[¢]
% []

O=-==0O-=-=====ux O---O--m-===-rme= Re)
5
£ 10 3 = E
3 .
1 aaal aaaal aisad
-2 -1 0
10 10 10

Figure 4.9: Percentage increase of the total CPU time as a function of the total
time for which we determine the mean-squared displacement; comparison
of the conventional scheme with the order-n scheme for the same system as
is considered in Figure 4.7

accuracy of the results, however, turned out to be the same. This is shown
in Figure 4.8 for t = 0.1 and t = 1.0. Since the total number of data blocking
operations that can be performed on the data depends on the total number
of samples, the number of blocking operations is less for the order-n method.
Figure 4.8 shows that for t = 0.1 the order-n scheme yields a standard devi-
ation that is effectively constant after three data blocking operations, indicat-
ing the samples are independent, whereas the standard deviation using the
conventional method shows an increase for the first six to eight data blocking
operations. For t = 1.0 the order-n method is independent of the number of
data blocks, the conventional method only after 10 data blocks. This implies
that one has to average over 2'° x~ 1000 successive samples to have two
independent data points. In addition, the figure shows that the plateau value
of the standard deviation is essentially the same for the two methods, which
implies that for this case the two methods are equally accurate.

In Figure 4.9 we compare the CPU requirements of the two algorithms
for simulations with a fixed total number of time steps. This figure shows the
increase of the total CPU time of the simulation as a function of the total time
for which the mean-squared displacement has been calculated. With the
order-n scheme the CPU time should be (nearly) independent of the total
time for which we determine the mean-squared displacement, which is in-
deed what we observe. For the conventional scheme, however, the required
CPU time increases significantly for longer times. At t = 1.0 the order-n
scheme gives an increase of the total CPU time of 17%, whereas the con-
ventional scheme shows an increase of 130%.

4.6 Questions and Exercises 105

This example illustrates that the saving in memory as well as in CPU time
of the order-n scheme can be significant, especially if we are interested in
the mean-squared displacement at long times.

4.6 Questions and Exercises

Question 10 (Integrating the Equations of Motion)

1. If you do an MD simulation of the Lennard-Jones potential with a time step
that is much too large you will find an energy drift. This drift is towards a
higher energy. Why?

2. Why don’t we use Runga-Kutta methods to integrate the equations of motion
of particles in MD?

3. Which of the following quantities are conserved in the MD simulation of Case

Study 4: potential energy, total momentum, position of the center of mass of
the system, or total angular momentum?

4. Show that the Verlet and velocity Verlet algorithms lead to identical trajecto-
ries.

5. Derive the Leap-Frog Algorithm by using Taylor expansions for v (t + 4t),
v (t — %), x (t + At), and x (t).

Question 11 (Correlation Functions)

1. The value of the velocity autocorrelation function (vacf) at t = 0 is related to
an observable quantity. Which one?

2. Calculate the limit of the vacf for t — oo.
3. What is the physical significance of vacf < 0?

4. When you calculate the mean-squared displacement for particles in a system
in which periodic boundary conditions are used and in which particles are
placed back in the box, you should be very careful in calculating the displace-
ment. Why?

5. What is more difficult to calculate accurately: the self-diffusion coefficient or
the viscosity? Explain.

Exercise 10 (Molecular Dynamics of a Lennard-Jones System)

On the book’s website you can find a Molecular Dynamics (MD) program
for a Lennard-Jones fluid in the NVE ensemble. Unfortunately, the program
does not conserve the total energy because it contains three errors.

1. Find the three errors in the code. Hint: there are two errors in integrate.f
and one in force.f. See the file system.inc for documentation about some
of the variables used in this code.

106

Chapter 4. Molecular Dynamics Simulations

How is one able to control the temperature in this program? After all,
the total energy of the system should be constant (not the tempera-
ture).

. To test the energy drift AU of the numerical integration algorithm for a

given time step At after N integration steps, one usually computes [85]

1 i=N
AU (At) = N ; T (g)(

u(0) — mt)‘

In this equation, U (x) is the total energy (kinetic + potential) of the
system at time x. Change the program (only in mdloop.f) in such a way
that AU is computed and make a plot of AU as a function of the time
step. How does the time step for a given energy drift change with the
temperature and density?

One of the most time-consuming parts of the program is the calculation
of the nearest image of two particles. In the present program, this
calculation is performed using an if-then-else-endif construction. This
works only when the distance between two particles is smaller than
1.5 and larger than —1.5 times the size of the periodic box. A way to
overcome this problem is to use a function that calculates the nearest
integer nint
x =X — box *nint (x *xibox),

in which ibox = 1.0/box. Which expression is faster? (Hint: You only
have to make some modifications in force.f.) Which expression will be
faster on a vector computer like a Cray C90? Because the nint func-
tion is usually slow, you can write your own nint function. For exam-
ple, when x < —998, we can use

nint (x) = int (x + 999.5) — 999. (4.6.1)
What happens with the speed of the program when you replace the
standard nint function? Do you have an explanation for this? *
In equation (4.6.1), ibox is used instead of 1/box. Why?
An important quantity of a liquid or gas is the so-called self-diffusivity
D. There are two methods to calculate D:

(a) by integrating the velocity autocorrelation function:

D = %J:o <v(t) -v(t+t/)>dt'
By i (v (i,t;];lv (Lt+t))at w62

4The result will strongly depend on the computer/compiler that is used.

4.6 Questions and Exercises 107

in which N is the number of particles and v (i, t) is the velocity
of particle i at time t. One should choose t in such a way that
independent time origins are taken, i.e., t =iaAt,i=1,2,--- ,00
and (v (t) - v (t + aAt)) = 0.

(b) by calculating the mean-squared displacement:

- <'x (t+1) —x(t)‘2>.

t' =00 6t’

(4.6.3)

One should be very careful with calculation of the mean-squared
displacement when periodic boundary conditions are used. Why?

Modify the program in such a way that the self-diffusivity can be calcu-
lated using both methods. Only modifications in subroutine sample_diff.f
are needed. Why is it sufficient to use only independent time origins
for the calculation of the means-squared displacement and the velocity
autocorrelation function? What is the unit of D in Sl units? How can
one transform D into dimensionless units?

7. For Lennard-Jones liquids, Naghizadeh and Rice [86] report the fol-
lowing equation for self-diffusivity (dimensionless units, T* < 1.0 and
p* < 3.0):

1.04 +0.1p*

log (D*) = 0.05 + 0.07p" — =

(4.6.4)
Try to verify this equation with simulations. How can one translate D*
to a diffusivity in Sl units?

8. Instead of calculating the average energy (U) directly, one can use the
radial distribution function g (r). Derive an expression for (Ul) using
g (r). Compare this calculation with a direct calculation of the aver-
age energy. A similar method can be used to compute the average
pressure.

9. In the current version of the code, the equations of motion are inte-
grated by the Verlet algorithm. Make a plot of the energy drift AU for
the following integration algorithms:

e Verlet
e Velocity Verlet
e Euler (never use this algorithm in real simulations).

Chapter 6

Molecular Dynamics in
Various Ensembles

The Molecular Dynamics technique discussed in Chapter 4 is a scheme for
studying the natural time evolution of a classical system of N particles in
volume V. In such simulations, the total energy E is a constant of motion. If
we assume that time averages are equivalent to ensemble averages, then the
(time) averages obtained in a conventional MD simulation are equivalent to
ensemble averages in the microcanonical (constant-NVE) ensemble. How-
ever, as was discussed in Chapter 5, it is often more convenient to perform
simulations in other ensembles (e.g., N,V, T or N,P,T). At first sight, it would
seem that it is impossible to perform MD simulations in ensembles other
than the microcanonical. Fortunately, it turns out that this is not the case.
Two rather different solutions to this problem have been proposed. One is
based on the idea that dynamical simulation of other ensembles is possible
by mixing Newtonian MD with certain Monte Carlo moves. The second ap-
proach is completely dynamical in origin: it is based on a reformulation of
the Lagrangian equations of motion of the system.

Both approaches occur time and again in many areas of MD simulation,
and we will not attempt to list them all. In particular, the extended La-
grangian method, first introduced by Andersen in the context of constant-
pressure MD simulations [104], has become one of the most important tricks
to extend the applicability of MD simulations. To name but a few of the more
conspicuous examples, the method is used in the Parrinello-Rahman scheme
to simulate crystalline solids under conditions of constant stress [102,103].
In this approach, both the volume and the shape of the crystal unit cell are
allowed to fluctuate. As a consequence, the Parrinello-Rahman scheme is
particularly useful for studying displacive phase transitions in solids.

140 Chapter 6. Molecular Dynamics in Various Ensembles

In this chapter, we do not attempt to give a comprehensive, or even his-
torical, presentation of non-NVEMD simulations. Rather, we have selected a
single (but important) case that will be discussed in detail, namely, constant
temperature simulations. This example allows us to illustrate the main fea-
tures of the different approaches. The extension of this method to constant-
pressure and -temperature simulations is discussed in less detail. With this
background, the relevant literature on other applications of these Molecular
Dynamics methods should be more accessible to the reader.

6.1 Molecular Dynamics at Constant Temperature

Before considering different schemes to perform Molecular Dynamics sim-
ulations at constant temperature, we should first specify what we mean by
constant temperature. From a statistical mechanical point of view, there is
no ambiguity: we can impose a temperature on a system by bringing it
into thermal contact with a large heat bath (see section 2.1). Under those
conditions, the probability of finding the system in a given energy state is
given by the Boltzmann distribution and, for a classical system, the Maxwell-
Boltzmann velocity distribution follows:

B \¥2
Plp) = —— exp [-Bp?/(2m)] . (6.1.1)

2mm
In particular, we then obtain the simple relation between the imposed tem-

perature T and the (translational) kinetic energy per particle:
kT =m <Vi> R

where m is the mass of the particle and v4 is the ath component of its ve-
locity. As discussed in Chapter 4, this relation is often used to measure the
temperature in a (microcanonical) MD simulation. However, the condition
of constant temperature is not equivalent to the condition that the kinetic en-
ergy per particle is constant. To see this, consider the relative variance of the
kinetic energy per particle in a canonical ensemble. If we constrain the ki-
netic energy to be always equal to its average, then the variance vanishes by
construction. Now consider a system that is in thermal equilibrium with a
bath. The relative variance in the kinetic energy of any given particle is sim-
ply related to the second and fourth moments of the Maxwell-Boltzmann
distribution. For the second moment, p? = 3~ p2, we have

3m

(%) = [dpv?Pip) = 3

and for the fourth moment, p* = (3", p%) 2 we can write

(p*) = Jdpp p) =15 (%)2

6.1 Molecular Dynamics at Constant Temperature 141

The relative variance of the kinetic energy of that particle is

o _ ()= (p2)* _ 15(m/B)2 - (3m/B)> _2
e (3m/p)? 3
If we would use the kinetic energy per particle as a measure of the instan-

taneous temperature, then we would find that, in a canonical ensemble, this
temperature (denoted by Ty) fluctuates. Its relative variance is

of, _ (Twvri— (T nvT
(Mavr (T v
_ N ENIN=1) (p?) (pF) — N2 ()
N2 (p2)?
1TEH - 2
N (p2y2 3N

So indeed, in a canonical ensemble of a finite system, the instantaneous ki-
netic temperature Ty fluctuates. In fact, if we were to keep the average ki-
netic energy per particle rigorously constant, as is done in the so-called isoki-
netic MD scheme [29] or the more naive velocity-scaling schemes, then we
would not simulate the true constant-temperature ensemble. In practice, the
difference between isokinetic and canonical schemes is often negligible. But
problems can be expected if isokinetic simulations are used to measure equi-
librium averages that are sensitive to fluctuations. Moreover, one should
distinguish between the isokinetic scheme of [29] and other, more or less ad
hoc velocity-scaling methods. The isokinetic scheme of Evans and Morriss
is well behaved in the sense that it yields the correct canonical ensemble
averages for all properties that depend only on the positions of the parti-
cles [29,126].

The ad hoc methods yield only the desired kinetic energy per particle but
otherwise do not correspond to any known ensemble. Of course, any kind
of temperature regulation, no matter how unphysical, can be used while
preparing the system at a desired temperature (i.e., during equilibration).
But, as efficient MD schemes exist that do generate a true canonical distribu-
tion, there is little need to use more suspect techniques to fix the temperature.
Here we discuss two of the most widely used canonical MD schemes.

6.1.1 The Andersen Thermostat

In the constant-temperature method proposed by Andersen [104] the system
is coupled to a heat bath that imposes the desired temperature. The coupling
to a heat bath is represented by stochastic impulsive forces that act occasion-
ally on randomly selected particles. These stochastic collisions with the heat

142 Chapter 6. Molecular Dynamics in Various Ensembles

bath can be considered as Monte Carlo moves that transport the system from
one constant-energy shell to another. Between stochastic collisions, the sys-
tem evolves at constant energy according to the normal Newtonian laws of
motion. The stochastic collisions ensure that all accessible constant-energy
shells are visited according to their Boltzmann weight.

Before starting such a constant-temperature simulation, we should first
select the strength of the coupling to the heat bath. This coupling strength is
determined by the frequency of stochastic collisions. Let us denote this fre-
quency by v. If successive collisions are uncorrelated, then the distribution
of time intervals between two successive stochastic collisions, P(t;v), is of
the Poisson form [127,128]

P(t;v) = vexp[—vt]. (6.1.2)

where P(t;v)dt is the probability that the next collision will take place in the
interval [t, t + dt].
A constant-temperature simulation now consists of the following steps:

1. Start with an initial set of positions and momenta {r"(0), p™(0)} and
integrate the equations of motion for a time At.

2. A number of particles are selected to undergo a collision with the heat
bath. The probability that a particle is selected in a time step of length
At is vAt.

3. If particle i has been selected to undergo a collision, its new velocity
will be drawn from a Maxwell-Boltzmann distribution corresponding
to the desired temperature T. All other particles are unaffected by this
collision.

The mixing of Newtonian dynamics with stochastic collisions turns the Mo-
lecular Dynamics simulation into a Markov process [47]. As shown in [104],
a canonical distribution in phase space is invariant under repeated appli-
cation of the Andersen algorithm. Combined with the fact that the Markov
chain is also irreducible and aperiodic [104,127,128], this implies that the An-
dersen algorithm does, indeed, generate a canonical distribution. In Algo-
rithms 14 and 15, we show how the Andersen method can be implemented
in a Molecular Dynamics simulation.

Case Study 10 (Lennard-Jones: Andersen Thermostat)

In the present case study, we illustrate some of the strong and weak points of
the Andersen thermostat. The first, and most important, thing to show is that
this thermostat does produce a canonical distribution. Unfortunately, we can
show this only indirectly: we can check whether the Andersen thermostat re-
produces known properties of a canonical ensemble. In Figure 6.1 we com-
pare the velocity distribution of a Lennard-Jones fluid as generated by the

6.1 Molecular Dynamics at Constant Temperature 143

Algorithm 14 (Molecular Dynamics: Andersen Thermostat)

program md_Andersen MD at constant temperature
call init (temp) initialization
call force(f,en) determine the forces
t=0
do while (t.lt.tmax) MD loop
call integrate(l,f,en, temp) first part of the egs. of motion
call force(f,en) determine the forces
call integrate(2,f,en, temp) second part of egs. of motion
t=t+dt
call sample sample averages
enddo
stop
end

Comments to this algorithm:

1. This part of the algorithm is very similar to the simple Molecular Dynam-
ics program (Algorithm 3). The difference is that we use the velocity Verlet
algorithm (see section 4.3) for the integration of the equations of motion:

_ 1) 72
r(t+At) = 7v(t)+v(t)At+ 2mAt
vit+At) = v(t)+ fle+ay+ f(t)At.

2m

This algorithm is implemented in two steps, in step 1, call inte-
grate (1, f,en, temp), we know the forces and velocities at time t, and
we update v(t) and determine

f(t

v =v(t) + —(—lAt.

2m
Then, in call force (f, en) we determine the forces at t+At; and finally
we determine in step 2, call integrate (2, f,en, temp), the veloci-
ties at time t + At,

f(t + At)

At.
2m t

v(it+At) =v' +

The subroutine integrate is described in Algorithm 15.

2. Subroutines init and force are described in Algorithms 4 and 5, respec-
tively. Subroutine sample is used to calculate ensemble averages.

144

Chapter 6. Molecular Dynamics in Various Ensembles

Algorithm 15 (Equations of Motion: Andersen Thermostat)

subroutine integrate(switch,f integrate equations of motion:
,en, temp) with Andersen thermostat
if (switch.eqg.l) then first step velocity Verlet
do i=1,npart
x(1)=x(1)+dt*v (i) + update positions current time
+ de*dt*f (i) /2
v(i)=v(i)+dt*f (1)/2 first update velocity
enddo
else if (switch.eqg.2) then second step velocity Verlet
tempa=0
do i=1,npart
v(i)=v(i)+dt*f (i) /2 second update velocity
tempa=tempa+v (i) **2
enddo
tempa=tempa/ (s*npart) instantaneous temperature
sigma=sqgrt (temp) Andersen heat bath
do i=1,npart
if (ranf().lt.nu*dt) then test for collision with bath
v (i) =gauss (sigma) give particle Gaussian velocity
endif
enddo
endif
return
end

Comments to this algorithm:

1.

3.

In this subroutine we use the velocity Verlet algorithm [69] (see notes to Al-
gorithm 14).

The function gauss (sigma) returns a value taken from a Gaussian distri-
bution with zero mean and standard deviation sigma (see Algorithm 44);
ranf () is a uniform random number € (0, 1].

The collisions with the heat bath are Poisson distributed (6.1.2). The collision
frequency nu is set at the beginning of the simulation.

In this algorithm, neither the total energy nor the total momentum is con-
served. s depends on the mass of the particles s = 3/m.

6.1 Molecular Dynamics at Constant Temperature 145

™ T T T T T
Maxwell-Boltzmann
Qv =0.001
{ e v =0.01

Figure 6.1: Velocity distribution in a Lennard-Jones fluid (T = 2.0, p =
0.8442, and N = 108). The solid line is the Maxwell-Boltzmann distribu-
tion (6.1.1), and the symbols are from a simulation using v = 0.01 and
v = 0.001 as collision rates.

Andersen thermostat, with the exact Maxwell-Boltzmann distribution (6.1.1).
The figure illustrates that the desired distribution is generated independent
of the value of the collision frequency ~v.

The results of constant N,V,T Molecular Dynamics simulations should
be identical to those of canonical Monte Carlo simulations as presented in
Figure 3.5. In making this comparison, we should be a bit careful because
the Monte Carlo simulations were performed on a model with a truncated and
shifted Lennard-Jones potential — the appropriate tail correction was added
afterward. In our Molecular Dynamics program we simulate the Lennard-
Jones model with a truncated and shifted potential. Again, the appropriate
tail correction is added afterward (see section 3.2.2). For the Lennard-Jones
fluid, the tail correction to the pressure is

tai1]6262°9 o\’
P —snpea [§(E> (;)}
In Figure 6.2 the results of the Molecular Dynamics and Monte Carlo simu-
lations are compared. In addition, we also compare them with the analytical
equation-of-state data of [62]. Clearly, the canonical MD and MC simulations
yield the same answer and agree with the equation-of-state data of [62].
This case study shows that the Andersen thermostat yields good results for
time-independent properties, such as the equation of state. However, as the
method is based on a stochastic scheme, one may wonder whether it can
also be used to determine dynamic properties, such as the diffusion coeffi-

146 Chapter 6. Molecular Dynamics in Various Ensembles

Figure 6.2: Equation of state of the Lennard-Jones fluid (T = 2.0 and
N = 108); comparison of the Molecular Dynamics results using the Ander-
sen thermostat (open symbols) with the results of Monte Carlo simulations
(closed symbols) and the equation of state of Johnson et al. [62].

cient. In general, the answer to this question is no. The stochastic collisions
disturb the dynamics in a way that is not realistic — it leads to sudden random
decorrelation of particle velocities. This effect will result in an enhanced de-
cay of the velocity autocorrelation function, and hence the diffusion constant
(.e., the time integral of the velocity autocorrelation function) is changed.
Clearly this effect will be more pronounced as the collision frequency v is
increased. In fact, Tanaka et al. [129] have measured the diffusion coeffi-
cient of the Lennard-Jones fluid for various values of the collision frequency
v. They observed that the diffusion coefficient is independent of v in a rather
narrow frequency range. This effect is also illustrated in Figure 6.3. In practi-
cal cases, v is usually chosen such that the decay rate of energy fluctuations
in the simulation is comparable to that of energy fluctuations in a system
of the same size embedded in an infinite heat bath. Typically, this can be
achieved with relatively small collision rates and hence the effect of colli-
sions on the dynamics may be small [104]. Nevertheless, one should always
bear in mind that the dynamics generated by the Andersen thermostat is
unphysical. It therefore is risky to use the Andersen method when study-
ing dynamical properties. Figure 6.3 shows that the frequency of stochastic
collisions has a strong effect on the time dependence of the mean-squared
displacement. The mean-squared displacement becomes only independent
of v in the limit of very low stochastic collision rates. Yet, all static properties
such as the pressure or potential energy are rigorously independent of the
stochastic collision frequency.

6.1 Molecular Dynamics at Constant Temperature 147

1.0 |
08 | — i3
_____ v=s
e
~ 0.6
< 04
ol S
00 L
0.0 0.5 1.0 -]

Figure 6.3: Mean-squared displacement as a function of time for various
values of the collision frequency v of the Lennard-Jones fluid (T = 2.0 and
N =108).

6.1.2 Nosé-Hoover Thermostat

In the Andersen approach to isothermal Molecular Dynamics simulation,
constant temperature is achieved by stochastic collisions with a heat bath.
Nosé has shown that one also can perform deterministic Molecular Dynam-
ics at constant temperature [126,130]. The approach of Nosé is based on the
clever use of an extended Lagrangian; that is, a Lagrangian that contains ad-
ditional, artificial coordinates and velocities. The extended-Lagrangian ap-
proach was introduced by Andersen [104] in the context of constant-pressure
MD simulations. However, at present, extended Lagrangian methods are
widely used not only for simulations in ensembles other than constant NVE,
but also as a stable and efficient approach to perform simulations in which
an expensive optimization has to be carried out at each time step. We discuss
the Nosé thermostat as an illustration of an extended-Lagrangian method.
However, for constant-temperature MD simulations, it is now more com-
mon to use the Nosé scheme in the formulation of Hoover [131,132]. We
therefore also discuss the so-called Nosé-Hoover thermostat.

In this section we assume that the reader is familiar with the Lagrangian
and Hamiltonian formulation of classical mechanics. In Appendix A a re-
view of these concepts is given.

148 Chapter 6. Molecular Dynamics in Various Ensembles

Extended-Lagrangian Formulation

To construct isothermal Molecular Dynamics, Nosé introduced an additional
coordinate s in the Lagrangian of a classical N-body system:

r im 2- N Q. Ll 1
Nose = —2‘)+—2—S ’—E ns, (6 3)

where L is a parameter that will be fixed later. Q is an effective “mass”
associated to s. The momenta conjugate to r; and s follow directly from
equation (6.1.3):

pi = —gf = mis’iy (6.1.4)
1
oL .

This gives for the Hamiltonian of the extended system of the N particles plus
additional coordinate s:

2 A Ins
HiNose = _pl_s_ LU + ;’Q HLg (6.1.6)

We consider a system containing N atoms. The extended system generates a
microcanonical ensemble of 6N + 2 degrees of freedom. The partition func-
tion of this ensemble! is

1
QNose = N—’ [’dpstdPNdrNé (E — HnNose)
1
= N dpsdsdp NarNs3N
[N 12 2
p L L
i = 4+ —-Ins—E 1.7
X8 ; 2m1 U™ ZQ f5 ns) (6.1.7)
in which we have introduced
p'=p/s.
Let us define
N p'-z
Hip'r) =) o—= +UY). (6.1.8)
i=1 1

1We assume implicitly that conservation of energy is the only conservation law; in Ap-
pendix B.2 the more general case is considered.

6.1 Molecular Dynamics at Constant Temperature 149

For a b function of a function h(s), we can write
8[h(s)] = 8(s —s0)/|h'(s0)l,

where h(s) is a function that has a single root at so. If we substitute this
expression into equation (6.1.7) and use equation (6.1.8), we find, for the
partition function,

[553N+1
L

|
! 2 .
5 {5 —enp [-p HELAEPR/2Q) “ET)
B

QNose = '

dpsdp’ NarVds

L

N+ 1
- R [, exp |5 02/120)]
X Jdp'NdrN exp [—BSNL+ 1H(P'>l‘)}
_ c-]—Jdp dr™ exp [—BSNL+]H(p',r)]. (6.1.9)

If we perform a simulation in this extended ensemble, the average of a quan-
tity that depends on p’, ris given by

™00 T

A = lim ljo dt A(p(t)/s(t),r(t)) = (A(P/S,) Nose - (6.1.10)

With the choice L = 3N + 1, this ensemble average reduces to the canonical
average:

[dp'NdrNA(p’ 1) exp [-pH(p’,r)(3N + 1)/L]
[dp'™drN exp[-BH(p’,r)(3N +1)/1]
(1/N!) [dp'™drNA (p/, r) exp [-BH(p', 1)]
Q(NVT)
= (Alp",) nvr- (6.1.11)

<A(p/s>r)>Nose =

It is instructive to consider the role of the variable s in some detail. In the
ensemble average in equation (6.1.11), the phase space is spanned by the co-
ordinates r and the scaled momenta p’. As the scaled momentum is related
most directly to observable properties, we refer to p’ as the real momentum,
while p is interpreted as a virtual momentum. We make a similar distinction
between real and virtual for the other variables. Real variables are indicated
by a prime, to distinguish them from their unprimed virtual counterparts.

150 Chapter 6. Molecular Dynamics in Various Ensembles

The real and virtual variables are related as follows:

o= 7 (6.1.12)
p' = p/s (6.1.13)
s = s (6.1.14)
At' = At/s. (6.1.15)

From equation (6.1.15) it follows that s can be interpreted as a scaling
factor of the time step. This implies that the real time step fluctuates during
a simulation. The sampling in equation (6.1.10) is done at integer multiples
of the (virtual) time step At, which corresponds to real time steps that are not
constant. It is also possible to sample at equal intervals in real time. In that
case, we measure a slightly different average. Instead of equation (6.1.10) we
define

!

lim l,JT dt’ Alp(t')/s(t"), r(t")]. (6.1.16)

/=00 T 0

Equation (6.1.15) shows that the real and virtual measuring times 1’ and 7,
respectively, are related through

:JTdt 1/s(t).
0

This gives, for equation (6.1.16),

lim l,r dt’ Alp(t')/s(t'), x(t")]

/=00 T' Jo

~ lim l,lj dt Alp(t)/s(t),r(t)] /s(t)

' T' T
lime_eo 2 [T dt Alp(t)/s(t), r(t)] /s(t)
limr_,o0 1 jo dt 1/s(t)
= (A(p/s,1)/s)/(1/s). (6.1.17)

If we consider again the partition function (6.1.9), we can write for the en-
semble average,

[dp'Ndr™N A(p’,r) exp[—BH(p',r)3N/L]
(A(p/s‘r)/s) [dp’NdrN exp[—BH(p’,r)3(N+1)/L]

(1/s) - [dp'NdrN expl—BIH(p’,r)]3N/L]
JdpNdrN exp[—B[H(p)1 (N+1)/00

[dp'™drN A(p/s,r) exp [-BH(p’,1)3N/L]
[dp™NdrN exp[—B[H(p’,r)13N/L]
= (A(p/s,1))nvT- (6.1.18)

6.1 Molecular Dynamics at Constant Temperature 151

In the last step we have assumed that L = 3N. Therefore, if we use a sam-
pling scheme based on equal time steps in real time, we have to use a differ-
ent value for L.

From the Hamiltonian (6.1.6), we can derive the equations of motion for
the virtual variables p, r, and t:

dr; OHNose

v ZIENose . o2
dt ap1 PI/(mls)
d—P'L _ _aHNose . —au(rN)
dt ory, or;
ds _ 0HNose i

Et' - aps - ps/Q

dps _ a’HNose_ -
(o)

In terms of the real variables, these equations of motion can be written as

i{t = s% = pi/(mis) = p'y/mq (6.1.19)
- —a“a(:,'iN) (s'p1/QP;
lji, E zj—i —s'p!/Q (6.1.21)
d(s'’p/Q) _ s dps
dt’ Q dt
- (Z p's/m; — %) /Q. (6.1.22)
For these equations of motion, the f(;llowing quantity is conserved:
H'Nose = }__ 2pn:1 FUE™) + S';gé + Llnﬁsl. (6.1.23)

It should be stressed, however, that this HI’\Iose is not a Hamiltonian, since
the equations of motion cannot be derived from it.

Implementation

In the previous section we showed how the introduction of an additional
dynamical variable (s) in the Lagrangian can be used to perform MD simu-
lations subject to a constraint (in this case, constant temperature). We stress

152 Chapter 6. Molecular Dynamics in Various Ensembles

once again that the importance of such extended Lagrangian techniques
transcends the specific application. In addition, the problems encountered
in the numerical implementation of the Nosé scheme are representative of a
wider class of algorithms (namely, those where forces depend explicitly on
velocities). It is for this reason that we discuss the numerical implementation
of the Nosé thermostat in some detail (see also Appendix E.2).

The Nosé equations of motion can be written in terms of virtual variables
or real variables. In a simulation it is not convenient to work with fluctuat-
ing time intervals. Therefore the real-variable formulation is recommended.
Hoover [132] has shown that the equations derived by Nosé can be further
simplified [133]. In equations (6.1.20), (6.1.21), and (6.1.22), the variables s’,
ps, and Q occur only as s'p//Q. To simplify these equations, we can intro-
duce the thermodynamic friction coefficient £ = s'p//Q. The equations of
motion then become (dropping the primes and using dots to denote time
derivatives)

I = pi/my (6.1.24)
N

p. = _aua(;) _tpi (6.1.25)

{ = (Zp%/mi—%) /Q (6.1.26)

§/s = dérzs:& (6.1.27)

Note that the last equation, in fact, is redundant, since equations (6.1.24)-
(6.1.26) form a closed set. However, if we solve the equations of motion for
s as well, we can use equation (6.1.23) as a diagnostic tool, since H' has to be
conserved during the simulation. In terms of the variables used in equations
(6.1.24)-(6.1.27), H reads

N 2 2
- Ny . &°Q Ins
. = i < -, 1.2
Hnos ;:]2 i-l—u(r)+ 3 +L B (6.1.28)

As we use the real-variable formulation in this set of equations, we have to
take L = 3N.

An important implication of the Nosé equations is that in the Lagrangian
(6.1.3) a logarithmic term (Ins) is needed to have the correct scaling of time.
Any other scheme that does not have such a logarithmic term will fail to
describe the canonical ensemble correctly.

An important result obtained by Hoover [132] is that the equations of
motion (6.1.24)-(6.1.26) are unique, in the sense that other equations of the
same form cannot lead to a canonical distribution. In Appendix E.2 we dis-
cuss an efficient way of implementing the Nosé-Hoover scheme.

6.1 Molecular Dynamics at Constant Temperature 153

The equations of motion of the Nosé-Hoover scheme cannot be derived
from a Hamiltonian. This implies that one cannot use the standard methods
(see Appendix A) to make the connection of the dynamics generated by solv-
ing these equations of motion with Statistical Mechanics. In Appendix B we
discuss how one can analyze such non-Hamiltonian dynamics. The result
of this analysis is that the conventional Nosé-Hoover algorithm only gener-
ates the correct distribution if there is a single constant of motion. Normally,
the total energy defined by Hnose, See equation (6.1.28), is always conserved.
This implies that one should not have any other conserved quantity. In most
conventional simulations this is the case if the momentum is not conserved,
for example, if their is an external force; i.e., the sum of the forces Y . F#0.
If we simulate a system without external forces,) ; F; = 0, which implies
we have an additional conservation law, the Nosé-Hoover scheme is still
correct provided that the center of mass remains fixed. This condition can
be fulfilled easily if we ensure that during the equilibration the velocity of
the center of mass is set to 0. If we simulate a system using no external field
and in which the center of mass is not fixed or if we have more than one
conservation law, we have to use Nosé-Hoover chains to obtain the correct
canonical distribution. This method will be discussed in section 6.1.3.

Application

We illustrate some of the points discussed above in a Nosé-Hoover simula-
tion of the Lennard-Jones fluid.

Case Study 11 (Lennard-Jones: Nosé-Hoover Thermostat)

As in Case Study 10, we start by showing that the Nosé-Hoover method re-
produces the behavior of a system at constant NVT. In Figure 6.4 we com-
pare the velocity distribution generated by the Nosé-Hoover thermostat with
the correct Maxwell-Boltzmann distribution for the same temperature (6.1.1).
The figure illustrates that the velocity distribution indeed is independent of
the value chosen for the coupling constant Q.

It is instructive to see how the system reacts to a sudden increase in the
imposed temperature. Figure 6.5 shows the evolution of the kinetic temper-
ature of the system. After 12,000 time steps the imposed temperature is
suddenly increased from T = 1 to T = 1.5. The figure illustrates the role of
the coupling constant Q. A small value of Q corresponds to a low inertia of
the heat bath and leads to rapid temperature fluctuations. A large value of Q
leads to a slow, ringing response to the temperature jump.

Next, we consider the effect of the Nosé-Hoover coupling constant Q on
the diffusion coefficient. As can be seen in Figure 6.6, the effect is much
smaller than in Andersen’s method. However, it would be wrong to conclude
that the diffusion coefficient is independent of Q. The Nosé-Hoover method
simply provides a way to keep the temperature constant more gentle than

154 Chapter 6. Molecular Dynamics in Various Ensembles

Maxwell-Boltzmann
0Q=01
Q=10

Figure 6.4: Velocity distribution in a Lennard-Jones fluid (T = 1.0, p = 0.75,
and N = 256). The solid line is the Maxwell-Boltzmann distribution (6.1.1)
the symbols were obtained in a simulation using the Nosé-Hoover thermo-
stat.

0.5 : L
10000 20000
time step

Figure 6.5: Response of the system to a sudden increase of the imposed tem-
perature. The various lines show the actual temperature of the system (a
Lennard-Jones fluid p = 0.75, and N = 256) as a function of the number of
time steps for various values of the Nosé-Hoover coupling constant Q.

Andersen’s method where particles suddenly get new, random velocities.
For the calculations of transport properties, we prefer simple N,V ,E simula-
tions.

6.1 Molecular Dynamics at Constant Temperature 155

0.00, L=t
000 010 020 0.30

t

Figure 6.6: Effect of the coupling constant Q on the mean-squared displace-
ment for a Lennard-Jones fluid (T = 1.0, p = 0.75, and N = 256).

6.1.3 Nosé-Hoover Chains

In the preceding examples, we have applied the Andersen and Nosé-Hoover
thermostats to the Lennard-Jones fluid. For the Nosé-Hoover thermostat
we have shown that for a system in which there are no external forces and
the center of mass remains fixed, a canonical distribution will be generated.
However, even though for systems with external forces the Nosé-Hoover
thermostat generates the desired distribution, there can be exceptional cases
in which we do not find the expected behavior. To illustrate this, we consider
a particularly pathological case, namely, the one-dimensional harmonic os-
cillator.

Case Study 12 (Harmonic Oscillator (I))
As the equations of motion of the harmonic oscillator can be solved analyt-
ically, this model system is often used to test algorithms. However, the har-
monic oscillator is also a rather atypical dynamical system. This will show
up clearly when we apply our thermostating algorithms to this simple model
system.

The potential energy function of the harmonic oscillator is

1
u(r) = zrz.
The Newtonian equations of motion are
= v

156 Chapter 6. Molecular Dynamics in Various Ensembles

40 . . . 40 , . . 40

20 - 20} 20 |

00 f Q 00 | oo F O
20 F 4 20 [20

40 I a0 40

. s L L 1 - " . L N)
4.0 20 0.0 20 4.0 -40 20 00 20 4.0 a0 2.0 0.0 20 4.0

Figure 6.7: Trajectories of the harmonic oscillator: (from left to right) in the
microcanonical ensemble, using the Andersen method, and using the Nosé-
Hoover method. The y axis is the velocity and the x axis is the position.

If we solve the equations of motion of the harmonic oscillator for a given set
of initial conditions, we can trace the trajectory of the system in phase space.
Figure 6.7 shows a typical phase space trajectory of the harmonic oscillator,
in a closed loop, which is characteristic of periodic motion. It is straight-
forward to simulate a harmonic oscillator at constant temperature using the
Andersen thermostat (see section 6.1.1). A trajectory is shown in Figure 6.7.
In this case the trajectories are points that are not connected by lines. This
is due to the stochastic collisions with the bath. In this example, we allowed
the oscillator to interact with the heat bath at each time step. As a result, the
phase space density is a collection of discrete points. The resulting veloc-
ity distribution is Gaussian by construction; also for the positions we find a
Gaussian distribution.

We can also perform a constant-temperature Nosé-Hoover simulation us-
ing the algorithm described in Appendix E.2. A typical trajectory of the har-
monic oscillator generated with the Nosé-Hoover scheme is shown in Fig-
ure 6.7. The most striking feature of Figure 6.7 is that, unlike the Andersen
scheme, the Nosé-Hoover method does not yield a canonical distribution in
phase space. Even for very long simulations, the entire trajectory would lie
in the same ribbon shown in Figure 6.7. Moreover, this band of trajectories
depends on the initial configuration. This nonergodic behavior of the Nosé-
Hoover algorithm was first discovered by Hoover [131]. Toxvaerd and Olson
have shown that similar effects can also be observed in the simulation of a
realistic model for butane [134]. The reason why we do not find a canonical
distribution is that conservation of energy is not the only conservation law.
Tuckerman et al. [135] have shown that an additional conservation law ex-
ists. In Appendix B.2.1 we show that in the presence of such an additional
conservation law the algorithm does not generate the desired distribution.

In the previous section it is argued that the Nosé-Hoover algorithm only
generates a correct canonical distribution for molecular systems in which

6.1 Molecular Dynamics at Constant Temperature 157

there in only one conserved quantity or if there are no external forces and the
center of mass remains fixed. The last condition can be obeyed in most prac-
tical systems by initializing the system with a zero center-of-mass velocity.
However, if one is interested in simulating more general systems one cannot
rely on the simple Nosé-Hoover algorithm. At this point it is important to
note that the Andersen thermostat does not suffer from such problems, but
its dynamics is less realistic.

To alleviate the restriction for the Nosé-Hoover thermostat, Martyna et
al. [136] proposed a scheme in which the Nosé-Hoover thermostat is coupled
to another thermostat or, if necessary, to a whole chain of thermostats. As
we show in Appendix B.2.2 these chains take into account additional con-
servation laws. In [136] it is shown that this generalization of the original
Nosé-Hoover method still generates a canonical distribution (provided that
it is ergodic).

The equations of motion for a system of N particles coupled with M
Nosé-Hoover chains are given (in real variables, hence L = 3N) by

P (6.1.29)
my
pi = F—Iiip (6.1.30)
1
£ = Db k=1,....M (6.1.31)
Qx
2
. Pi P&
= X+ — LkgT | — — 6.1.32
P&, (- -~ B) Q, Pe, ()
[v? Pe
¢ = |1 —kpT|— 6.1.33
Pex | Qk-1 ® } Qurr o ()
2
Doy = | =Mt kBT} . (6.1.34)
| QM-
For these equations of motion the conserved energy is
M pz M
Hane = H(r,p)+ Y Z(Zk +LkpTEr+ Y kpTé (6.1.35)
k=1 k=2

We can use this conserved quantity to check the integration scheme. It is im-
portant to note that the additional M — 1 equations of motion form a simple
one-dimensional chain and therefore are relatively simple to implement. In
Appendix E.2, we describe an algorithm for a system with a Nosé-Hoover
chain thermostat.

158 Chapter 6. Molecular Dynamics in Various Ensembles

4.0 T ——————
[e 0.04 r 1

20 e R

> 00[i ki - 1 3

I ; : o
I 0.02

20 _

4.0 [PUSEERT I S R AT R SRR] 0.00 L

Figure 6.8: Test of the phase space trajectory of a harmonic oscillator, cou-
pled to a Nosé-Hoover chain thermostat. The left-hand side of the figure
shows part of a trajectory: the dots correspond to consecutive points sepa-
rated by 10,000 time steps. The right-hand side shows the distributions of
velocity and position. Due to our choice of units, both distributions should
be Gaussians of equal width.

Case Study 13 (Harmonic Oscillator (II))

The harmonic oscillator is the obvious model system on which we test the
Nosé-Hoover chain thermostat. If we use a chain of two coupling parame-
ters, the equations of motion are

= v

v = —T‘——((_,ﬂ)

: vi-T

&1 = o, —&1&2
Q&3 —T

&2 0,
A typical trajectory generated with the Nosé-Hoover chains is shown in Fig-
ure 6.8. The distribution of the velocity and position of the oscillator are also
shown in Figure 6.8. Comparison with the results obtained using the Ander-
sen thermostat (see Case Study 12) shows that the Nosé-Hoover chains do
generate a canonical distribution, even for the harmonic oscillator.

6.2 Molecular Dynamics at Constant Pressure

Most experiments are performed at constant pressure instead of constant
volume. If one is interested in simulating the effect of, for example, the com-

6.2 Molecular Dynamics at Constant Pressure 159

position of the solvent on the properties of a system one has to adjust the
volume of an N,V, T simulation to ensure that the pressure remains constant.
For such a system it is therefore much more convenient to simulate at con-
stant pressure. To simulate at constant pressure in a Molecular Dynamics
simulation the volume is considered as a dynamical variable that changes
during the simulation.

In Chapter 5 we have seen that one can perform Monte Carlo simulations
at constant pressure by changing the volume of the simulation box. Here we
consider the equivalent for a Molecular Dynamics simulation. Similar to the
Monte Carlo case, this is an excellent method for homogeneous fluids. For
inhomogeneous systems, however, one may need to change the shape of the
simulation box as well [102,103].

In Appendix B we have shown that the correct thermostating of a Molec-
ular Dynamics simulation has many subtleties related to the conservation
laws and whether a simulation is performed with a fixed center of mass.
Similar problems arise with the isothermal-isobaric ensemble. The earlier
scheme of Hoover [132] can only approximate the desired distribution [137].
Since the scheme of Martyna et al. does give the desired distribution, we fo-
cus on this scheme. All these schemes are based on the extended ensemble
approach pioneered by Andersen [104].

The equations of motion proposed by Martyna et al. [138] for the posi-
tions and the momenta are

. Pi Pe

. = LSy 21
I -~ + Wr (6.2.1)
5 o R _d_ Pe P&
pi = F (1 + dN) va1 2 Pi, (6.2.2)

where N is the number of particles. In these equations of motion we recog-
nize a thermostat that is introduced via the variables &, p¢,, and Q1, similar
to the N,V,T version of the Nosé-Hoover chain algorithm. A barostat is in-
troduced via the variables €, p., and W. € is defined as the logarithm of the
volume V of the system

e =In(V/V(0)),

where V(0) is the volume at t = 0, W is the mass parameter associated to €,
and p. is the momentum conjugate to €.

The equations of motion (6.2.1) and (6.2.2) are complemented with an
equation of motion for the volume, which reads in d dimensions

. dVpe
V = ——
W (6.2.3)

1 ZN P{ _ Pe
0 c = Pin — —_ r e . 2.
p dV(t Pext) + N = m.i_ Q] pe (6 24)

160 Chapter 6. Molecular Dynamics in Various Ensembles

In these equations Pey is the external pressure, which is imposed (like the
temperature). Piy is the internal pressure, which can be calculated during
the simulation

1

Pint = E\‘/‘

)

N 2
p? AU(V)
g_] (m try - F) dV—av

where U is the potential. This equation differs from the conventional virial
equation for a constant-volume simulation.
The equations of the chain of length M are?

Ex = tg“: fork=1,....M (6.2.5)
pr, = ZP‘ +p€ dN+1)kBT—Z&2‘pL| (6.2.6)
Pe. = PL —kgT — p“*'pgk fork=2,...,M—1 (6.2.7)
Qk—1 Q k+1
2
_ P
Pen = #—kgt (6.2.8)

The conserved quantity for these equations of motion is

Hnpom = Hip + (dN + 1)kgT&;
) =
+kgT Y &k + PextV. (6.2.9)
k=1

In Appendix B.3 we demonstrate that this method indeed generates the cor-
rect distribution. The implementation of this algorithm is described in Ap-
pendix E.2.2.

6.3 Questions and Exercises

Question 14 (Andersen Thermostat)

1. Why is it that the static properties calculated by NVT-MD using the Ander-
sen thermostat do not depend on v?

2Here we give the equations of motion in which the particles and the barostat are coupled to
the same Nosé-Hoover chain. The more general case is to couple the particle and the barostat
to two different thermostats. The advantage of having two different chains is that they can
be optimized to the different time scales associated with temperature and volume fluctuations.
Since in practice these times scales can be very different it is advised to use two different chains.
The equations of motion can be found in Ref. [137].

6.3 Questions and Exercises 161

2. Why does the diffusivity decrease with increasing v?

Question 15 (Nosé-Hoover Thermostat)

1. Explain when do we have to use g = 3N + 1 and g = 3N in the Nosé-Hoover
thermostat.

2. Instead of a single Nosé-Hoover thermostat, one can also use a chain of ther-
mostats. Does this lead to a significant increase of the total CPU time for the
simulation of a large system?

3. Another widely used thermostat is the “temperature coupling” of Berendsen
et al. [139]. This method, however, does not generate the canonical ensem-
ble exactly. In this algorithm, the temperature of the system is controlled by
scaling the velocities to every time step with a factor A

_ At [Ty 7
e (] o

in which Ty is the desired temperature, T is the actual temperature, At is the
time step of the integration algorithm and v is a constant.

e Show that this scaling is equivalent to a temperature coupling of the
system with a heat bath at T = Ty

J=a(To—T), (6.3.2)

in which | is the heat flux and o is the heat transfer coefficient.
o What is the relation between x and t1?

Exercise 13 (Barrier Crossing (Part 1))
Consider the movement of a single particle that moves on a 1D potential
energy surface with the following functional form:

eBx? x < 0
U(x)={¢ €(l—cos(2mx)) 0<x< 1.
B (x — 1)? x> 1

The energy, force, and the derivative of the force are continuous functions of
the position x and € > 0.

1. Derive an expression for B. Make a sketch of the potential energy
landscape.

2. You can find a program on the book’s website that integrates the equa-
tion of motion of the particle starting at x (t =0) = 0 using several
methods:

162

Chapter 6. Molecular Dynamics in Various Ensembles

(a) No thermostat (NVE ensemble). What do you expect the phase
space trajectories to look like?

(b) Andersen thermostat. In this method, the velocity of the particle
is coupled to a stochastic heat bath, which leads to a canonical
distribution.

(c) A Nosé-Hoover chain. In this method, the motion of the particle
is coupled to a chain of thermostats. The equations of motion are
integrated using an explicit time-reversible algorithm that might
look a little bit complicated at first sight (see Appendix E.2.1), see
integrate_res.f. One can prove that this method yields a canonical
distribution provided that the system is ergodic.

(d) No molecular dynamics, but a simple Monte Carlo scheme.

The Andersen thermostat and the NVE integration algorithm are not
implemented yet, so you will have to do this yourself (see integrate_ nve.f
and integrate_and.f). Try to use all methods for a low temperature,
T = 0.05, for which the system behaves like a harmonic oscillator. Pay
special attention to the following:

(a) Why does the distribution of the MC scheme look so much differ-
ent at low temperatures?

(b) Why does the phase space distribution of the NVE scheme look
like a circle (or ellipse)?

(c) Compare the phase space distributions of the Nosé-Hoover chain
method with distribution generated by the Andersen thermostat.
How long should the Nosé-Hoover chain be to generate a canon-
ical distribution?

Investigate at which temperature the probability that the particle cros-
ses the energy barrier becomes nonnegligible.

Another widely used algorithm is the “temperature coupling” of Berend-
sen et al. [139]. This method does not produce a true canonical en-
semble. In this algorithm, the temperature of the system is controlled
by scaling the velocities every time step with a factor A

A= [1+-A—t(k—l>r, (6.3.3)

TT T

in which T, is the desired temperature, T is the actual temperature,
At is the time step of the integration algorithm, and T+ is a constant.
The temperature coupling algorithm can be used in combination with a

6.3 Questions and Exercises 163

Leap-Frog Algorithm

v(e+F) = A (t-F)x (v(t_%—t) + o)

A
x(t+At) = x(t)+v (t + 7t> At. (6.3.4)
Compare the distributions of the Berendsen et al. temperature bath
with the canonical distributions.

5. Modify the program in such a way that the potential energy function
U = e [1 — cos (27x)] (6.3.5)

is used. Calculate the diffusion coefficient as a function of the tempera-
ture. Why is it impossible to calculate the diffusivity at low temperatures
using ordinary molecular dynamics? Why is the diffusion coefficient
obtained by using the Andersen thermostat a function of the collision
frequency?

