
Monte	Carlo	 		

the	algorithm	



in	conven1onal	Monte	Carlo	simula1onà	canonical	(NVT)	
ensemble.		
	
The	choice	of	ensembles	for	Monte	Carlo	simula1ons	is	wider:	
isobaric-isothermal,	constant-stress-isothermal,	grand	
canonical	(i.e.,	constant	),	and	even	microcanonical		
	
Simula1on	in	different	ensembles	à		observable	differences	in	
the	sta1s1cal	averages.	
	
Most	of	these	differences	disappear	in	the	thermodynamic	
limit	and	are	already	rela1vely	small	for	systems	of	a	few	
hundred	par1cles.		
	
However,	the	choice	of	ensemble	does	make	a	difference	when	
fluctua1ons	in	thermodynamic	quan11es.		
	



Applica1on	to	the	NVT	MC	simula1on	of	a	system	of	N	par1cles		

we	wish	to	know	the	ra1o	of	two	integrals.	What	Metropolis		showed	is	that	it	is	
possible	to	devise	an	efficient	Monte	Carlo	scheme	to	sample	such	a	ra1o.	

Z	 Probability	density		à	

we	don’t	know		Z	
	
we	know	à		

exp{-β	[Un-Uo]}	rela1ve	probability	
of	state	n	/	state	o	à	



Applica1on	to	the	NVT	MC	simula1on	of	a	system	of	N	par1cles		

we	wish	to	know	the	ra1o	of	two	integrals.	What	Metropolis		showed	is	that	it	is	
possible	to	devise	an	efficient	Monte	Carlo	scheme	to	sample	such	a	ra1o.	

“Brute”	MC	à			sampling	ALL	configura1on	space	(mostly	with	zero	ni)	
		
Metropolis	MC	à	“important”	sampling	(non-zero	ni)	



The	principal	idea	of	importance	sampling	is	to	use	a	Monte	
Carlo	procedure	to	generate	a	random	walk	in	those	regions	of	
phase	space	that	have	an	important	contribu1on	to	the	
ensemble	averages.		(high	ni	=	high	exp{-β	U}	/	Z		)	
	
	
	



The	principal	idea	of	importance	sampling	is	to	use	a	Monte	
Carlo	procedure	to	generate	a	random	walk	in	those	regions	of	
phase	space	that	have	an	important	contribu1on	to	the	
ensemble	averages.		
	
The	steps	in	the	random	walk	are	accepted	or	rejected	with	a	
given	probability		(acceptance	rules)	
	
The	acceptance	rules	have	to	be	chosen	such	that	these	
configura1ons	occur	with	a	frequency	prescribed	by	the	
desired	probability	distribu1on.		
	
if	detailed	balance	is	obeyed	we	are	guaranteed	to	have	a	
correct	sampling	scheme.	(although	DB	is	not	necessary)		
	



1.  Decide	which	distribu1on	we	want	to	sample,	in	which	
ensemble.	

2.  	Impose	the	condi1on	of	detailed	balance	(DB)		

WjiPeq (Sj ) =WijP(Si ).

j=	old	(o)	
i	=	new	(n)	

probability	of	change	jài		=		probability	of	change	iàj			

K(oàn)	=	K(nào)	



1.  Decide	which	distribu1on	we	want	to	sample,	in	which	
ensemble.	

2.  	Impose	the	condi1on	of	detailed	balance	(DB)		

K(oàn)	=	K(nào)	

N(o)	α(oàn)	acc(oàn)=N(n)	α(nào)	acc(nào)	
	

  	

probability	of	
being	in	“o”	

probability	of	
proposing	change	
oàn	

probability	of	
accep1ng	change	
oàn	



1.  Decide	which	distribu1on	we	want	to	sample,	in	which	
ensemble.	

2.  	Impose	the	condi1on	of	detailed	balance	(DB)		

K(oàn)	=	K(nào)	

N(o)	α(oàn)	acc(oàn)=N(n)	α(nào)	acc(nào)	
	

   N(o)	acc(oàn)=N(n)	acc(nào)				(for	symmetric	α)		
		
3.	Define		probability			acc(oàn)=min{1, N(n)/N (o)}	
	



1.  Decide	which	distribu1on	we	want	to	sample,	in	which	
ensemble.	

2.  	Impose	the	condi1on	of	detailed	balance	(DB)		

K(oàn)	=	K(nào)	

N(o)	α(oàn)	acc(oàn)=N(n)	α(nào)	acc(nào)	
	

   N(o)	acc(oàn)=N(n)	acc(nào)				(for	symmetric	α)		
		
3.	Define		probability			acc(oàn)=min{1, N(n)/N (o)}	
	
	

Proof	that	complies	DB:			
suppose	N(n)<N (o)à	acc(oàn)=	N(n)/N (o)	
				 	 	 	 	 	and				acc(nào)=	1	
then	acc(oàn)/acc(nào)=N(n)/N (o)			✔	



for	example	in	the	canonical	ensemble,	the	par11on	func1on	is:	

the	probability	of	a	configura1on	is:	

= exp{−βU}

acc(oàn)	=	 min(1,exp{−β(Un −Uo)})

Q(N ,V ,T ) = 1
Λ3NN !

drN exp[−βU ]∫
N(U)	

N	

MC	move:			ro	à	rn	



	
Applica1on	to	the	NVT	MC	simula1on	of	a	system	of	N	par1cles	
	
• Select	randomly	a	par1cle	
• Give	a	random	displacement	to	the	par1cle	selected	
• Accept		the	move	with	probability	:	
	
acc(o->n)	=	Min[1,	exp{-β	[Un-Uo]}		
		

	If	the	new	energy	is	lower	à	Un	<	Uo	à	Un-Uo<0	à	exp{-β	[Un-Uo]}	>	1	
		acc=1	
i.e.	a	move	that	lowers	the	total	energy	is	accepted	right	away.	
	
If	the	new	energy	is	higher	we	don’t	accept	it	nor	reject	it	right	away.	
Those	moves	will	be	accepted	“some1mes”	
	
Some1mes	means	with	probability	p	=		acc	=	exp{-β	[Un-Uo]	<1		
	

Heart	of	MC:	Basic	Metropolis	Scheme	



How	to	accept	something	with	probability	p?	
	
We	choose	randomly		a	number	(rn)	between	[0,1]	
	
if	the		rn	<p	we	accept,	otherwise	reject	

The	probability	that	a	random	number	is	less	than	p	is	p	

For	example	
p=1,	probability	is	1	(all	rn	in	[0,1]	are	less	than	1!	
	
p=0,	probability	is	0	
	
p=	0.4,	probability	is	0.4	(40%	are	less	than	0.4)	



We	use	the	RNG	many	1mes!	
RNG	is	an	important	component	of	a	MC	simula1on.	
	
	
If	RNG	is	not	good:	L	
	
• we	may		not	sample	the	phase	space	as	in	a	“Markov	chain”	

• Ergodicity	is	lost	

• we	may	have	a	bias	toward	over	(under)	acceptance	
	
	
			

Today	there	are	good	RNG	in	the	market	
	
In	the	old	1mes,	the	RN	came	in	tables	!!!	



Ini1al	set	up	
	
• The	goal	of	the	simula1ons	is	(not	always	but	most	of	the	1mes)	to	study	a	
“macroscopic”	system.	However	we	can	simulate	only	1000s	of	par1cles,	not	1023	

• At	the	start	the	par1cles	are	set	in	posi1ons	in	a	“simula1on	cell”		

• Never	start	from	a	random	distribu1on	since	par1cles	may	“overlap”	and	result	in	
infinitely	large	energy	or	force.	

• Although	ideally	the	results	do	not	depend	on	the	ini1al	configura1on,	a	bad	choice	
can	result	in	compu1ng	instabili1es.	
	
• 	The	MC	algorithm	is	applied	millions	of	1mes	before	we	start	doing	the	ensemble	
averages.	The	first	millions	of	runs	are	discarded,	in	that	way	we	know	the	system	
has:	

	 	 	reached	equilibrium	
	 	 	forgoqen	the	ini1al	condi1on	

• The	ini1al	posi1ons	are	usually	a	larce	or	a	previous	run.	

	
	



	
• 	The	simula1on	cell	is	usually	a	cube	or	rectangular,	but	not	
necessarily.	

• 	The	size	of	the	simula1on	cell	can	not	be	too	small	or	too	large.	

• 	If	it	is	too	small,	the	simula1on	will	have	“size	effects”	,	i.e.	the	
results	will	depend	on	the	size	of	the	cell.		Always	check	that	the	
results	are	not	size	dependent.	If	they	are,	the	cell	is	too	small.	
	
	
• 	If	the	cell	is	too	big,	it	would	take	too	long	to	sample	the	phase	
space	
	
	

	The	Simula1on	cell		
	



Boundary	Condi1ons		

To	“mimic”	a	macroscopic	system	we	repeat	the	simula1on	cell	periodically	in	all	
direc1ons.	
	
The	simula1on	cell	is	a	primi1ve	cell	of	an	infinite	periodic	larce	of	iden1cal	cells	
	



In	some	cases	periodic	BC	can	not	be	used,	for	example	if	there	is	a	wall	
containing	the	system.	
	
	

In	this	case	we	use	“reflec1ve”	BC.	

The	choice	of	BC	is	important	and	has	to	represent	the	model.	
	
The	BC	can	affect	the	results.		
	
For	example,	an	ar1ficial	periodicity	is	introduced.	
	
	



The	actual	MC	is	done	on	the	primi1ve	cell,	but	the	atoms	interact	with	ALL	
the	atoms	in	all	cells	around	
	

Utot	=	Σ	U(rij+	n	L)	

where	n	is	a	vector	of	3	
integer	numbers		
deno1ng	the	cell	around	

L	

The	sum	has	infinite		
terms!	



Trunca1on	of	interac1ons	

Case	where	the	interac1ons	in	the	system	are	short-range	(like	Lennard	Jones)	
	
We		define	a	cut-off	distance	(rc)		and	neglect	the	interac1on	between	par1cles	
that	are	at	a	distance	r>rc	
	

L	



This	is	an	approxima1on	à	we	have	to	es1mate	the	error	introduced.	
	
We	can	always	choose	a	value	of	rc		that	makes	the	error	small	enough.	
	
The	trunca1on	of	interac1ons	results	in	a	SYSTEMATIC	error	in	the	energy	Utot	
	
Es1ma1on	of	error	as	the	“tail	contribu1on”:	

If	U	does	NOT	decay		faster	than	r	-3		the	tail	correc1on	is	infinite!	
For	dispersion	forces	U~r-6	OK	
For	Coulomb	and	dipolar	interac1on	is	not	OK		But	IT	IS	OK	in	2D	(Adsorbates)	

€ 

U total (r) = U(rij )
i< j
∑ +

Nρ
2

drU(r)4πr2
rc

∞

∫



Inter-atomic	poten1als	

The	poten1al	energy	of	a	system	of	many	atoms	can	be	wriqen	as:		

€ 

U =
i
∑ u1(ri) +

i< j
∑ u2(ri,rj )

i< j<k
∑ u3(ri,rj ,rk ) + ...

external	field	 pairs	 triplets	

u2	usually	depends	on	the	distance	rij	
	
u3		is	rarely	included	in	simula1ons,	however	can	be	important	for	liquids.	
	
	
Higher	order	terms,	four-body,	etc	are	expected	to	be	small.	
	



	
the	second	(nega1ve)		term	represents	the	aqrac1ve	dispersion	force,	or	van	der	
Waals	
	
The	first	term	
	
The	constants										are	parameters	for	each	atom,	with	values	selected	to	fit	
experimental	proper1es	

€ 

ε,σ

€ 

Ulj (r) = 4ε[(σ /r)12 − (σ /r)6]

Lennard-Jones:	simplest,	most	commonly	used					
	



	 	 	 	 	 	Let’s	assume	that:		
	
• 	we	have	an	atomic	or	molecular	model	system	in	a	suitable	star1ng	
configura1on		

• 	we	have	specified	all	intermolecular	interac1ons.		
	
We	must	now	set	up	the	underlying	Markov	chain,	that	is,	the	matrix	α.		
	
à 	we	must	decide	how	we	are	going	to	generate	trial	moves.	

	
	 	 	 	 	 	2	possible	moves:	

	
1.  moves	that	involve	only	the	molecular	centers	of	mass		
	
2.  moves	that	change	the	orienta1on	or	possibly	even	the	conforma1on	of	

a	molecule.		

		Trial	Moves		



Transla1onal	Moves	

x’I	=	xi	+	Δ	(rn	–	0.5)	
y’I	=	yi	+	Δ	(rn	–	0.5)	
z’I	=	zi	+	Δ	(rn	–	0.5)	
	

where	rn	are	random	numbers	[0,1]	

The	posi1on	of	the	CM	of	the	molecule	changes	as:	

the	reverse	trial	move	is	equally	probable	(hence,	α	is	symmetric)	


