Monte Carlo

the algorithm



in conventional Monte Carlo simulation—=> canonical (NVT)
ensemble.

The choice of ensembles for Monte Carlo simulations is wider:
isobaric-isothermal, constant-stress-isothermal, grand
canonical (i.e., constant ), and even microcanonical

Simulation in different ensembles = observable differences in
the statistical averages.

Most of these differences disappear in the thermodynamic
limit and are already relatively small for systems of a few
hundred particles.

However, the choice of ensemble does make a difference when
fluctuations in thermodynamic quantities.



Application to the NVT MC simulation of a system of N particles

we wish to know the ratio of two integrals. What Metropolis showed is that it is
possible to devise an efficient Monte Carlo scheme to sample such a ratio.
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Application to the NVT MC simulation of a system of N particles

we wish to know the ratio of two integrals. What Metropolis showed is that it is
possible to devise an efficient Monte Carlo scheme to sample such a ratio.
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“Brute” MC = sampling ALL configuration space (mostly with zero n,)

Metropolis MC = “important” sampling (non-zero n,)



The principal idea of importance sampling is to use a Monte
Carlo procedure to generate a random walk in those regions of
phase space that have an important contribution to the
ensemble averages. (high n. = high exp{-BU}/Z )



The principal idea of importance sampling is to use a Monte
Carlo procedure to generate a random walk in those regions of
phase space that have an important contribution to the
ensemble averages.

The steps in the random walk are accepted or rejected with a
given probability (acceptance rules)

The acceptance rules have to be chosen such that these
configurations occur with a frequency prescribed by the
desired probability distribution.

if detailed balance is obeyed we are guaranteed to have a
correct sampling scheme. (although DB is not necessary)



1. Decide which distribution we want to sample, in which
ensemble.

2. Impose the condition of detailed balance (DB)
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1. Decide which distribution we want to sample, in which
ensemble.

2. Impose the condition of detailed balance (DB)
K(o=>n) = K(n—=>0)
N(o) a(o=>n) acc(o=>n)=N(n) a(n—=>0) acc(h—>0)

N(o) acc(o=>n)=N(n) acc(n—=0) (for symmetric a)

3. Define probability acc(o—=2>n)=min{1, N(n)/N (o)}

Proof that complies DB:

suppose N(n)<N (o0)=> acc(o=>n)= N(n)/N (o)
and acc(n—=20)=1

then acc(o—=>n)/acc(n—=>0)=N(n)/N (o) ¢



for example in the canonical ensemble, the partition function is:
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the probability of a configuration is:
N = exp{-pU}

MC move: r.—=2r
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Heart of MC: Basic Metropolis Scheme

Application to the NVT MC simulation of a system of N particles
*Select randomly a particle

*Give a random displacement to the particle selected
*Accept the move with probability :

acc(o->n) = Min[1, exp{-B [Un-Uo]}

If the new energy is lower 2 Un < Uo =2 Un-Uo<0 - exp{-B [Un-Uo]}>1
acc=1
i.e. a move that lowers the total energy is accepted right away.

If the new energy is higher we don’t accept it nor reject it right away.
Those moves will be accepted “sometimes”

Sometimes means with probability p = acc = exp{-B [Un-Uo] <1




How to accept something with probability p?
We choose randomly a number (rn) between [0,1]

if the rn <p we accept, otherwise reject

The probability that a random number is less than p is p

For example
p=1, probability is 1 (all rnin [0,1] are less than 1!

p=0, probability is 0

p= 0.4, probability is 0.4 (40% are less than 0.4)




We use the RNG many times!
RNG is an important component of a MC simulation.

If RNG is not good: ®
we may not sample the phase space as in a “Markov chain”
*Ergodicity is lost

*we may have a bias toward over (under) acceptance

Today there are good RNG in the market

In the old times, the RN came in tables !!!




Initial set up

*The goal of the simulations is (not always but most of the times) to study a
“macroscopic” system. However we can simulate only 1000s of particles, not 1023

III

*At the start the particles are set in positions in a “simulation cel

*Never start from a random distribution since particles may “overlap” and result in
infinitely large energy or force.

*Although ideally the results do not depend on the initial configuration, a bad choice
can result in computing instabilities.

* The MC algorithm is applied millions of times before we start doing the ensemble
averages. The first millions of runs are discarded, in that way we know the system
has:

reached equilibrium

forgotten the initial condition

*The initial positions are usually a lattice or a previous run.



The Simulation cell

* The simulation cell is usually a cube or rectangular, but not
necessarily.

* The size of the simulation cell can not be too small or too large.
* If it is too small, the simulation will have “size effects” , i.e. the

results will depend on the size of the cell. Always check that the
results are not size dependent. If they are, the cell is too small.

* If the cell is too big, it would take too long to sample the phase
space



Boundary Conditions

To “mimic” a macroscopic system we repeat the simulation cell periodically in all
directions.

The simulation cell is a primitive cell of an infinite periodic lattice of identical cells
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In some cases periodic BC can not be used, for example if there is a wall
containing the system.
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In this case we use “reflective” BC.

The choice of BC is important and has to represent the model.
The BC can affect the results.

For example, an artificial periodicity is introduced.



The actual MC is done on the primitive cell, but the atoms interact with ALL
the atoms in all cells around

Utot = 2 U(r+n L)

where n is a vector of 3
integer numbers

® o /ﬁ ® denoting the cell around
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Truncation of interactions

Case where the interactions in the system are short-range (like Lennard Jones)

We define a cut-off distance (rc) and neglect the interaction between particles
that are at a distance r>rc
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This is an approximation = we have to estimate the error introduced.
We can always choose a value of rc that makes the error small enough.

The truncation of interactions results in a SYSTEMATIC error in the energy Utot

Estimation of error as the “tail contribution”:

U« (r)= EU(}’U) + %fdrU(rMm"2

i<j

If U does NOT decay faster than r 3 the tail correction is infinite!
For dispersion forces U~r® OK

For Coulomb and dipolar interaction is not OK But IT IS OK in 2D (Adsorbates)



Inter-atomic potentials

The potential energy of a system of many atoms can be written as:

U=E ”1(”1')"‘2 U,(7;,7;) z us (7,750 ) + ...

i<j i< j<k

external field pairs triplets

u, usually depends on the distance r;

uy is rarely included in simulations, however can be important for liquids.

Higher order terms, four-body, etc are expected to be small.



Lennard-Jones: simplest, most commonly used

U'(ry=4¢l(o/r)? -(o/r)°]

the second (negative) term represents the attractive dispersion force, or van der
Waals

The first term £,0

The constants are parameters for each atom, with values selected to fit
experimental properties



Trial Moves

Let’s assume that:

e we have an atomic or molecular model system in a suitable starting
configuration

* we have specified all intermolecular interactions.
We must now set up the underlying Markov chain, that is, the matrix a.

- we must decide how we are going to generate trial moves.

2 possible moves:
1. moves that involve only the molecular centers of mass

2. moves that change the orientation or possibly even the conformation of
a molecule.



Translational Moves

The position of the CM of the molecule changes as:

X', =x+A(rn—0.5)
Yy =y;+4(rn-0.5)
Z\=z.+A(rn—0.5)

where rn are random numbers [0,1]

the reverse trial move is equally probable (hence, a is symmetric)



