
Simula'on	Techniques	

Joking	on	nano-ma5er	….	



Molecular	Simula-ons	
	

Introduc'on	



Computer	Simula'ons	allows	us	to:		
	
• study	proper'es	of	many	par'cle	systems.		

• calculate	most	of	the	proper'es	that	can	be	measured	in	an	
experiment	

We	will	study	to	types	of	simula'ons:	
	
Monte	Carlo 	(MC)	
Molecular	Dynamics	(MD)	



	Example	
	in	an	MD	simula'on	of	a	system	of	water	molecules,	we	can	
calculate	the	velocity	of	an	individual	molecule	at	a	given	'me.	
However,	that	quan'ty	can	not	be	measured	in	a	typical	
experiment.		

Experiments	measure	quan''es	averaged	over	the	'me	of	the	
experiment.			
	
Since	we	usually	aim	to	use	computer	simula'ons	as	the	numerical	
counterpart	of	the	experiment,	we	will	learn	how	to	compute	averages	
using	the	language	of	sta's'cal	mechanics.		
	
However	CS	allow	us	to	calculate	MORE	than	what	can	me	measured.		
	



In	MC	we	sample	the	phase	space	by	genera'ng	many	states	of	the	system	in	
a	stochas'c	(random)	manner.			

	MD	simula'ons	compute	the	mo'ons	of	individual	molecules.		
	
It’s	a	modern	realiza'on	of	an	old	idea:	the	behavior	of	a	system	can	be	
computed	if	we	have	a	set	of	ini'al	condi'ons	plus	the	forces	of	
interac'on.	It	is	a	determinis'c	mechanical	view	of	nature.		



		
Determinis'c	vs		Predictable.		

	
	
Determinis'c:	Output	is	causally	connected	to	the	input.	
	
Calculable:	are	determinis'c	situa'ons	in	which	an	algorithm	permits	
us	to	compute	the	output	if	the	inputs	are	known..	
	
Predictable:	calculable	situa'ons	where	the	algorithm	can	be	
numerically	implemented	to	actually	obtain	the	output.	
	
Calculable	situa'ons	may	be	unpredictable	because	of	the	large	
number	of	input	needed	or	extremely	high	precision	is	needed.	
	
Unpredictable:	We	can	iden'fy	many	systems	as	unpredictable:	stock	
markets,	weather.		When	the	components	of	the	system	interact	non-
linearly	the	behavior	may	be	unpredictable.	
	
	“Whether	it	is	going	to	rain	in	two	weeks”	is	determinis'c	but	
unpredictable.		
	



CS	are	performed	on	models,	not	real	things.		
	
The	art	of	simula'ons	is	bound	to	the	art	of	modeling.	In	computer	simula'ons	
we	use	a	machine	to	compute	the	behavior	of	a	many	body	“model”.		It’s	not	
guaranteed	that	the	computed	behavior	is	representa've	of	the	model,	or	that	
the	model	mimics	reality.	
	
Simulated	Model:	 		
	
	
	
	
Model	for	molecular	interac'ons:		 		
	
	
	
	
	
	
	
	
Model	for	system-environment	interac'ons:	

Include	boundary	condi'ons	force	
with	substrate.	

force	law	or	energy	func'on,	shape	
and	electron	clouds,	symmetry,		
rigid	or	flexible	or	spherically	
symmetric	(isotropic),		
pairwise	addi'vity:	U=Sum	uij..	

Model	of	molecular	interac'ons	
Model	for	system-environment	interac'ons	
	



Molecular-scale	simula'on:		
	
1-	Construc'on	of	a	model	
2-	Calcula'on	of	trajectories	
3-	Analysis	of	trajectories	to	obtain	property	values.	
		
	

In	MD,	the	trajectories	are	posi'ons	connected	in	'me,		
calculated	solving	the	equa'ons	of	mo'on.	
	
In	MC,	the	posi'ons	are	NOT	connected	in	'me,	
	are	generated	stochas'cally,	and	depend	only	on	the	previous	configura'on	
(Markov	chain).	
	



	MC:	
	
Typically	a	fixed	number	of	molecules	in	a	fixed	volume	at	a	fixed	
temperature.	
	
The	goal	is	to	performed	sta's'cal-mechanical	ensemble	averages.		
	
Ensemble	averages	are	calculated	by	accumula'ng	the	integrand	at	
randomly	generated	values	of	the	atomic	posi'ons.	
	

< A >= 1
Z

exp[−βU(rN )∫ A(rN )drN



		

MD:	
	
For	systems	in	equilibrium,	typically	in	NVE	ensemble	(isolated	system,	
constant	energy)		
	
The	posi'ons	are	changing	following	Newton’s	law	for	several	thousand	'mes.		
		
	
	
	
	
	

Ergodic	hypothesis:	
		
	

< A >= lim
t→∞

1
t ∫ A(t)dt

	'me	average	=	ensemble	average	

MC	approach	=	MD	approach	



			

		
Monte	Carlo	vs	Molecular	Dynamics.	

	
MC	easier	to	program.		
	
MC	can	be	used	in	cases	where	the	force	is	difficult	to	derive	from	the	poten'al	
energy,	for	example	for	hard	sphere	poten'al,	or	ab-ini'o	calculated	poten'als.		
	
For	computa'on	of	simple	equilibrium	proper'es	MC	and	MD	are	equally	
effec've,	both	require	~	same	compu'ng	'me.	
	
MD	is	be5er	to	evaluate	heat	capaci'es,	compressibili'es,	transport	coefficients.	
	
MD	is	used	in	NVE,	for	adsorp'on	problems	where	the	ensemble	is	Grand	
Canonical	we	must	use	MC.	
	
MD	usually	done	for	system	containing	100-1000	par'cles	interac'ng	with	
rela'vely	short	range	forces:	interac'on	should	be	small	when	the	par'cles	are	
separated	by	half	the	size	of	the	box.		
Also,	the	characteris'c	relaxa'on	'me	must	be	small	enough	so	we	can	generate	
several	relaxa'on	'mes	in	one	simula'on.	
	
	



Basic	idea:	
		
MC: 	 	essence	of	technique	involves	use	of	probability	
MD:		 	determinis'c	
	
Many	intermediate	methods:	

	Force	biased	Monte	Carlo	(Mostly	stochas'c…	)	
	Simula'on	of	proteins	in	water:	

A	combina'on	of	Molecular	Mechanics	(determinis'c),	Monte	Carlo	and	
Molecular	Dynamics	are	used	to	simulate	different	aspects	of	the	system.	
		
Picture:	atoms/molecules	are	classical	par'cles	moving	in	a	field	created	by	
other	molecules,	surfaces,	solvents,	etc.		
		
Goal:	to	learn	about	the	behavior	of	molecules	on	the	atomic	(microscopic)	level	
and	relate	this	behavior	to	the	experimentally	measurable	proper'es	
(macroscopic	level).	
		
	



Results:		
Configura-on:	posi'ons	(and	veloci'es)	of	a	collec'on	of	molecules.	
		
If	I	know	the	posi-ons	of	a	collec'on	of	molecules	as	a	func'on	of	'me,	I	
know	EVERYTHING	about	the	sta-c	(or	thermodynamic)	proper'es	of	the	
system:	(P,	S,	E,	phase	equilibria,	etc.)		
		
If	I	know	the	posi-ons	and	veloci-es	of	a	collec'on	of	molecules	as	a	
func'on	of	'me,	I	know	EVERYTHING	about	the	dynamic	proper'es	of	the	
system	as	well.	(mean	square	displacements,	T,	diffusion,	spectroscopy,	
response	'me.		
		
Important	Underlying	Assump-on:	that	I	know	how	the	par'cles	interact	
with	themselves	and	their	surroundings:	Assume	I	know	Upot.		



Overview	of	Computer	Simula-on	
		
Select	a	model	
Ini'alize	system	
Generate	configura'ons	(posi'ons	and	momenta	(MD))	
Calculate	proper'es	of	interest	
		
		
Start	by	discussing	how	proper'es	are	determined	from	configura'ons.	
		
Then	we	are	able	to	explain	the	features	that	must	be	present	in	the	model.		
	

Determining	proper-es	
		
Mechanical	State:	(microscopic	state)	
posi'ons	(and	momenta)	of	par'cles	at	an	instant	in	'me.	
This	is	the	informa'on	obtained	in	a	simula'on.	
	



Thermodynamic	State:	(equa'on	of	state)	macroscopic	state	
	

	Characterized	by	a	few	variables,	depends	on	ensemble	
		
	 	Canonical	(NVT)	
	 	Microcanonical	(EVT)	
	 	Grand	canonical	(mu	VT)	
	 	Isobaric,	isothermal	(NPT)	

		
	

	Once	these	variables	are	defined,	state	func'ons	are	determined:	
	

	density	
	chemical	poten'al	
	shear	viscosity	
	heat	capacity	
	diffusion	coefficient		

	 	structure	factor		
	



State	func-ons	are	characterized	by	thermodynamic	variables,	NOT	by	the	
posi-ons	and	momenta	that	describe	the	instantaneous	mechanical	state.	
		
Sta's'cal	Mechanics:	provides	connec'on	between	the	thermodynamic	state	
and	the	mechanical	state.	
	

Aobs = A time = A(Γ(t) = lim
tobs →∞

1
tobs

A(Γ(t))dt
0

tobs

∫

Assump'on:	
	

Aobs		=	observed	value	of	a	property	
	
<A>stat	=	ensemble	average	of	the	property	(MC)	
	
<A>-me 	=	'me	averaged	value	of	the	property		(MD)	

		
							=	generalized	coordinates	(posi'ons	and	momenta)	as	a	func'on	of	'me	

	
Γ(t)

1
Z

exp[−βU(rN )∫ A(rN )drN=	<A>stat	=		



Can	this	method	be	prac-cal?	
		
Can	enough	phase	space	be	explored	to	give	adequate	'me	averages?	
Can	the	behavior	of	~1023	molecules	be	simulated	by	100-1000	par'cles?	
		
Can	thermodynamic	consistency	be	achieved?	
	
Do	you	get	the	same	results	if	different	ini'al	condi'ons	(posi'ons/momenta)	are	used?	
		

REAL	QUESTION:	
		
IF	I	know	the	coordinates	(posi'ons/momenta)	of	~200	par'cles,	can	I	calculate	the	
thermodynamic	(and	dynamic)	proper'es	of	the	system?	
			
YES!	Using	MD	and/or	MC	simula'on	techniques	
	
#	of	par'cles	is	not	much,	but	#	of	CONFIGURATIONS	is	huge	
	
	
		
		
	



Fundamentals	of	Theory	of	
Probability	

	



		
DEFINITION	of	PROBABILITY	

	
Let’s	consider	RANDOM	event	with	a	countable	set	of	possible	outcomes:	
A1,A2…Aq		(e.g.	rolling	a	die)		
	
We	repeat	the	test	N>>1		'mes,		genng	the	outcome	Ak	Nk	'mes.	
	
Defini-on	of	the	probability	of	event	Ak:	
	p(Ak)	=	pk	=	Nk/N		(N>>1)	
	
Proper'es:			
	
	
	
	
	
	
	
If	Ak	and	Aj	are	mutually	exclusive	events	then	
	
P(Ak	and	Aj)=0		and			P(Akor	Aj)=pk+pj.	
	

pk
k
∑ = 1

0 ≤ pk ≤ 1



	
Joint	probability	
	
Let’s	consider	two	events	A	and	B	with	set	of	outcomes	A1,A2…	and	
B1,B2…	
	
Defini'on:	Joint	probability		
	
pij=P(Ai	and	Bj)	
	
If	A	and	B	are	independent	then	pij=pi	x	pj	
	
If	A	and	B	are	not	independent,	we	define	the	condi'onal	probability	
that	Bj	occurs	given	that	Ai	occurs:	
	

p( j | i) =
pij
pik

k
∑

=
pij
p1i

p( j | i) = 1.
j
∑



< x >= pjx j
j
∑

< g(x) >= pjg(x j )   for any function g
j
∑

Expecta'on	Values	

Defini-on:	nth	momentum	
	

< xn >= pjx j
n

j
∑

cumulant: < (x− < x >)n >= pj  (x j− < x >)n . 
j
∑

case n=2 (variance):var(x) = (x− < x >)2 = < x2 > − < x >2  



If	x	and	y	are	independent	random	variables,	
	
<xy>	=	<x><y>.	
	
Measure	of	the	degree	of	independence:	
	
cov(x,y)	=	<xy>	-	<x><y>	
	



Theorem	of	the	central	limit.	
	
If	random	variables	x1,x2…xn	are	all	independent	from	
each	other	and	drawn	from	the	same	distribu'on,	the	
average	value		
	

Xn =
1
n

xi
i=1

n

∑  for n→∞

will	always	be	distributed	according	to	the	Gaussian	Distribu'on	
	

pG (x) =
1
2πσ 2

exp (x− < x >2 )
2σ 2

⎡

⎣
⎢

⎤

⎦
⎥



Suppose	the	quan'ty	A	is	distributed	according	to	a	Gaussian	with	mean	value	
<A>	and	width	σ.	An	es'mator	of	<A>	is		
			
	
	
	
	
	
	
	
and	the	standard	error	of	this	es'mate	is	
	

A = 1
n

Ai
i=1

n

∑

σ / n



Markov	Chain	
	
Consider	a	stochas'c	process	at	discrete	'mes	t1,t2…	for	a	system	
with	a	finite	set	of	possible	states	S1,	S2…		
	
We	denote	Xt	the	state	at	'me	t.	
	
The	condi'onal	probability	that	at	'me	tn	the	state	is	Si:		
		
	

Xtn
= Sin

Pc = P(Xtn
= Sin | Xtn−1

= Sin−1 ,Xtn−2
= Sin−2 ,....,Xt1

= Si1 ),

Defini'on:	
	
A	process	is	called	Markovian	if	this	condi'onal	probability	is	
independent	of	all	states	BUT	the	predecessor,	i.e.	
	
	Pc = P(Xtn

= Sin | Xtn−1
= Sin−1 )



For	a	Markov	process	the	knowledge	of	the	state	at	'me	t	determines	
completely	the	future,	independently	of	the	past.	
	
There	is	NO	memory.	
	
The	sequence	of	states	is	called	“Markov	chain”,	and	the	condi'onal	
probability	Pc	is	interpreted	as	a	transi'on	probability	to	move	from	state	i	
to	j	

Wij =W (Si → Sj ) = P(Xtn
= Sj | Xtn−1

= Si ).
Wij ≥ 0

Wij = 1
j
∑



We	define	the	total	probability	that	at	'me	t	the	system	is	in	state	Sj	:		

P(Sj ,t)

The	master	equa'on	considers	the	change	in	'me	of	this	probability	

WjiPeq (Sj ) =WijP(Si ).

dP(Sj ,t)
dt

= − Wji
i
∑ P(Sj ,t) + Wij

i
∑ P(Si ,t).

This	is	a	“con'nuity	equa'on”:	change=gain-loss,	and	total	probability	is	conserved		
	

∑ Peq (Sj ,t) = 1

In	equilibrium,	the	probability	doesn’t	change	in	'me:	

This	condi'on	is	called	“detailed	balance”.	


