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ynamic system of functionally connected regions. Graph theory has been
successfully used to describe the organization of such dynamic systems. Recent resting-state fMRI studies
have suggested that inter-regional functional connectivity shows a small-world topology, indicating an
organization of the brain in highly clustered sub-networks, combined with a high level of global con-
nectivity. In addition, a few studies have investigated a possible scale-free topology of the human brain, but
the results of these studies have been inconclusive. These studies have mainly focused on inter-regional
connectivity, representing the brain as a network of brain regions, requiring an arbitrary definition of such
regions. However, using a voxel-wise approach allows for the model-free examination of both inter-regional
as well as intra-regional connectivity and might reveal new information on network organization.
Especially, a voxel-based study could give information about a possible scale-free organization of functional
connectivity in the human brain. Resting-state 3 Tesla fMRI recordings of 28 healthy subjects were acquired
and individual connectivity graphs were formed out of all cortical and sub-cortical voxels with connections
reflecting inter-voxel functional connectivity. Graph characteristics from these connectivity networks were
computed. The clustering-coefficient of these networks turned out to be much higher than the clustering-
coefficient of comparable random graphs, together with a short average path length, indicating a small-
world organization. Furthermore, the connectivity distribution of the number of inter-voxel connections
followed a power-law scaling with an exponent close to 2, suggesting a scale-free network topology. Our
findings suggest a combined small-world and scale-free organization of the functionally connected human
brain. The results are interpreted as evidence for a highly efficient organization of the functionally
connected brain, in which voxels are mostly connected with their direct neighbors forming clustered sub-
networks, which are held together by a small number of highly connected hub-voxels that ensure a high
level of overall connectivity.

© 2008 Elsevier Inc. All rights reserved.
Introduction

The brain is a complex dynamic system in which information is
continuously processed and transferred to other interconnected
regions with correlated functional dynamics (Sporns et al., 2004,
2000). The temporal dependence of neuronal activity between
different brain regions is known as functional connectivity (Aertsen
et al., 1989; Friston et al., 1993) and is widely investigated by
measuring the coherence of resting-state BOLD fMRI time-series. Of
special interest are the low frequency oscillations (∼0.01–0.1 Hz) of
BOLD fMRI time-series recorded during rest, as they have been
observed to showcorrelated patterns between anatomically separated
brain regions (Biswal et al., 1995; Cordes et al., 2000; Lowe et al.,
.P. van den Heuvel).

rights reserved.
2000). There is an ongoing debate on whether these resting-state
BOLD signals predominantly result from physiological processes, like
respiratory and cardiac oscillations (Birn et al., 2006;Wise et al., 2004)
or whether these correlations originate from synchronization in the
underlying neuronal activation patterns of these regions observed
through a hemodynamic response function (Buckner and Vincent,
2007; Greicius et al., 2003; Gusnard et al., 2001). The latter view is
supported by the observation that most of these correlations occur
between cortical regions that are known to participate in the same
functional network, for example regions of the motor, visual and
auditory network (Biswal et al., 1997; Cordes et al., 2000; Fox and
Raichle, 2007; Greicius et al., 2003). In addition, within cortical
regions, these observed spontaneous BOLD patterns are mainly
dominated by lower frequencies (b0.1 Hz), with a minimal contribu-
tion of higher cardiac and respiratory oscillations (Cordes et al., 2001,
2000). Furthermore, recently spontaneous BOLD fluctuations have
been found to correlate with concurrent fluctuations in neuronal
spiking, suggesting a direct link between resting-state time-lag BOLD
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signals and intrinsic neuronal activity (Shmuel and Leopold, 2008). In
this context, it is believed that the resting-state BOLD fluctuations of
cortical and sub-cortical regions, at least in part, originate from
intrinsic neuronal activity (Biswal et al., 1995; Greicius et al., in press;
Gusnard et al., 2001; Shmuel and Leopold, 2008) and that the
observed temporal coherence between anatomically separated
regions is reflecting synchronization between the underlying neuro-
nal activation patterns of these regions. Regions that show such a
synchronized behavior are suggested to form functional resting-state
brain networks (Beckmann et al., 2005; Biswal et al., 1995, 1997;
Cordes et al., 2001; Damoiseaux et al., 2006; Fox et al., 2005; Greicius
et al., 2003; Gusnard et al., 2001; Horwitz et al., 2005; Kiviniemi et al.,
2003; Salvador et al., 2005b; Sun et al., 2004; Thirion et al., 2006; Van
den Heuvel et al., 2008; Xiong et al., 1999).

To further probe the complex structure of functional brain
networks a well-defined theoretical framework is needed. Biological
systems can be represented as complex networks and examined by
using ‘graph theory’. A graph G= (V,E) is a mathematical description
of a network, consisting of a collection of elements (nodes) V and
connections (edges) E interconnecting the nodes of the graph.
Within this approach, the functionally connected brain can be re-
presented as a network of regions with connections describing inter-
regional functional connectivity (Salvador et al., 2005b; Sporns et al.,
2000; Stam et al., 2003). Examining the connectivity architecture of
the human brain may provide important information about its
organization and function (Sporns et al., 2004), as the organization
of a network is directly linked to its level of robustness, capability to
integrate information and communication efficiency (Buzsaki and
Draguhn, 2004; Grigorov, 2005; Latora and Marchiori, 2001; Mathias
and Gopal, 2001). Two classes of networks are of special interest.
Small-world networks are characterized by a high level of clustering
and a short average node-to-node distance (Watts and Strogatz,
1998). In addition, scale-free networks are characterized by an
average low number of connections per node, but with the existence
of a small number of highly connected nodes that ensure a high level
of global connectivity (Barabasi and Albert, 1999; Barabasi and
Bonabeau, 2003). Small-world and scale-free organized networks are
known to show a robust network architecture in which information
can be transferred and integrated with a high level of efficiency
(Latora and Marchiori, 2001; Mathias and Gopal, 2001; Sporns et al.,
2004), forming an attractive model for the functionally connected
human brain (Achard et al., 2006; Liu et al., 2008; Sporns and Zwi,
2004).

The most important properties that describe the topology of
complex networks and characterize whether networks are small-
world and/or scale-free organized are the distribution of the number
of connections, the level of clustering and the average path length
between the nodes of the network (Grigorov, 2005). The connectivity
distribution P(k) provides information about the connectivity organi-
zation of a network and is defined as the probability that a node is
connected to k other nodes in the network. Furthermore, the
clustering-coefficient C of a graph describes the connectedness of
the direct neighbors of the nodes and gives information on the
formation of sub-graphs within the full network. The characteristic
path length L is defined as the average shortest path between each
two nodes in the graph and gives information on the global level of
connectedness of a network. Together, P(k), C and L provide important
information about the connectivity topology of a network. Scale-free
networks are characterized by a connectivity distribution that follows
a power-law scaling P(k)∼k−y, indicating that most of the nodes have
only a limited number of connections, but that a small number of so-
called hub-nodes have a large number of connections and are holding
the network together (Barabasi and Albert, 1999; Grigorov, 2005). This
in contrast to random connected networks, in which on average all
nodes have the same number of connections (Barabasi and Albert,
1999; Grigorov, 2005). Furthermore, random connected networks
have a low clustering-coefficient, suggesting a low formation of
connected sub-graphs and a short average path length L, indicating
that two nodes are never really far apart. Small-world organized
networks show highly connected sub-networks, resulting in a high
clustering-coefficient C, but still with a high level of global
connectivity, as indicated by a typical short average path length L
(Sporns et al., 2004;Watts and Strogatz, 1998). In general, small-world
networks are characterized by a much higher clustering-coefficient
than that of random organized networks, but still with an average
path length that is of the same length of that of a random network
(Watts and Strogatz, 1998). More formally, a small-world network is
characterized by a ratio gamma (γ) between the clustering-coefficient
Cnet and the clustering-coefficient Crandom of a random graph of N1
and a ratio lambda (λ) between the path length Lnet and the path
length Lrandom of a random graph of ≈1. The small-world-ness of a
graph can be expressed in a single parameter sigma, defined as the
ratio between gamma and lambda. Sigma is typically N1 for networks
with a small-world organization (Humphries et al., 2006).

A small number of studies have successfully investigated the small-
world organization of resting-state functional connectivity using EEG,
MEG and resting-state fMRI recordings, in both animal (Sporns and
Zwi, 2004) and human studies (Achard and Bullmore, 2007; Achard et
al., 2006; Breakspear et al., 2003; Eguiluz et al., 2005; Liu et al., 2008;
Micheloyannis et al., 2006; Salvador et al., 2005a; Stam, 2004).
Furthermore, functional networks have been suggested to overlap
with underlying structural networks (Honey et al., 2007), suggesting
that a small-world topology might be a general organization principle
of the human brain. However, fMRI imaging studies have been less
conclusive about a possible scale-free topology of the human brain.
Eguiluz et al. (2005) have reported a scale-free organization of the
functionally connected brain on a voxel scale during the performance
of a number of simple motor and auditory tasks, but a recent paper of
Achard et al. (2006) demonstrated a small-world organization of inter-
regional connectivity, but not a scale-free architecture. However, most
resting-state fMRI studies have focussed on inter-regional connectiv-
ity, examining the functional brain as a network of a fixed number of
around 90 regions (Achard and Bullmore, 2007; Achard et al., 2006;
Liu et al., 2008; Salvador et al., 2005a), reducing the data from a voxel
resolution to a regional resolution. These studies have not taken into
account intra-regional connectivity and functional interactions
between sub-parts of brain regions. Examining the organization of
the functionally connected resting brain on a voxel scale could provide
additional information on the characteristics of the functionally
connected brain. Especially, a voxel-wise approach could give more
insight in a possible scale-free organization of the human brain.

In this study, the organization of the functionally connected
human brain during a resting state was examined on a voxel scale.
This resulted in a fine-grained representation of the functionally
connected human brain in around 10000 voxels, rather than in the
often used template driven parcellated representation of around 90
regions (Achard and Bullmore, 2007; Achard et al., 2006; Liu et al.,
2008; Salvador et al., 2005a). Resting-state BOLD fMRI was acquired
in 28 healthy subjects on a 3 Tesla MR scanner. For each individual
dataset, a functional connectivity graph was formed out of all
cortical and sub-cortical voxels, with the pair-wise correlation
between the resting-state fMRI time-series as weighted connections
between all voxels. From these individual connectivity networks
a number of graph characteristics were computed, including the
clustering-coefficient C and characteristic path length L and com-
pared to the topology of random graphs with a similar connectivity
degree and distribution (Watts and Strogatz, 1998). The small-world
index was calculated as a marker of small-world organization
(Humphries et al., 2006). Furthermore, the connectivity degree
distribution P(k) was examined as an indication of a possible scale-
free organization of the functionally connected brain (Barabasi and
Albert, 1999; Grigorov, 2005).
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Materials and methods

Subjects

Data was acquired on a 3 Tesla Philips Achieva Medical scanner
(Philips Medical Systems, Best, The Netherlands) at the University
Medical Center Utrecht, The Netherlands. 28 healthy subjects with no
psychiatric history (age mean/std: 25.1/7.1; gender: 14 male, 14
female) participated in this study after providing written informed
consent as approved by the medial ethics committee for research in
humans (METC) of the University Medical Center Utrecht, The
Netherlands. During the resting-state fMRI, the scanner room was
darkened and subjects were instructed to relax with their eyes closed
and think of nothing in particular without falling asleep.

Directly after the resting-state experiment the subjects were asked
if they had not fallen asleep during the scanning session. Subjects who
reported to have fallen asleep or reported to be close to falling asleep
were excluded and a new subject was included as a replacement,
resulting in the described group of 28 subjects.

Acquisition

Resting-state blood oxygenation level dependent (BOLD) signals
were recorded during a period of 8 min using a fast fMRI sequence (3D
PRESTO (Golay et al., 2000; Neggers et al., 2008), acquisition
parameters: TR/TE 22 ms/32 ms using shifted echo, flipangle of 9°;
SENSE p/s reduction 2/2; a dynamic scantime of 0.5 s, 1000
timeframes, total duration 8 min; FOV 256×256 mm, isotropic
voxelsize 4 mm, 32 slices were acquired covering the whole brain).
The high temporal acquisition was used to minimize possible back-
folding effects (i.e. aliasing) of respiratory and cardiac oscillations
(∼0.3 Hz and ∼0.9–1.0 Hz, respectively) into the lower resting-state
frequencies of interest (0.01–0.1 Hz). Directly after the functional
time-series an additional PRESTO scan with a better anatomical
contrast was acquired (due to an increased flipangle of 25°, FA25) for
co-registration purposes. In addition, a T1 weighted image was
acquired for anatomical reference (3D FFE, acquisition parameters:
TR/TE 10 ms/4.6 ms, SENSE p/s reduction 1.7/1.4; FOV 256×256 mm,
voxelsize 0.75×0.75×0.8 mm, 200 slices).

Preprocessing

All fMRI preprocessing steps were done with the SPM2 software
package (http://www.fil.ion.ucl.ac.uk). First, the fMRI time-serieswere
realigned to the last functional scan to correct for possible head-
motion during the rest experiment. Registration to the last functional
scanwas used to maximize the spatial overlap of the fMRI time-series
with the FA25 scan. The realigned time-series were then coregistered
to the FA25 scan, using the last functional scan as a source and the
FA25 scan as a target. The T1 imagewas coregistered to the FA25 scan,
to provide spatial alignment between the functional time-series and
the anatomical image. Next, the T1 image and the fMRI time-series
were normalized to standard space, using the MNI 305 T1 brain
(Collins et al., 1994) as a template and the T1 image as a source. The T1
and fMRI time-series were normalized to correct for anatomical
variation between the subjects, as possible differences in anatomical
structure (e.g. the total number of (sub)-cortical voxels) could affect
the graph analysis. It should be noted that the spatial normalization of
fMRI time-series involves the interpolation of fMRI voxels and this
could introduce (local) artificial correlations between voxels that are
related to spatial smoothing and not to functional connectivity. To
minimize further interpolation, no spatial filtering was applied to the
fMRI time-series.

After registration, the functional time-series were bandpass
filtered with a finite impulse response (FIR) bandpass filter to select
the low resting-state frequencies of interest (0.01–0.1 Hz). The
relatively high sampling-rate of the used resting-state fMRI PRESTO
sequence enabled the proper sampling of cardiac and respiratory
signals. Band-pass filtering minimized the influence of low frequency
MR scanner noise (e.g. slow scanner drifts, typical b0.01 Hz) and
high frequency oscillations of cardiac or respiratory signals up to 1 Hz
(0.1–1Hz) (Cordes et al., 2001). Due to the nature of the PRESTO signal,
PRESTO fMRI images have a low anatomical contrast between white
matter and grey matter (Neggers et al., 2008; Ramsey et al., 1998).
Therefore, cortical and sub-cortical voxels were selected based on a
cortical segmentation of the T1 image. Cortical segmentation of the T1
was performed with the widely used and freely available Freesurfer
software package (http://surfer.nmr.mgh.harvard.edu/). The segmen-
tation maps were resliced to the 4×4×4 mm resolution of the resting-
state fMRI times-series. For each individual dataset, the cortical
segmentation was visually checked by overlapping the individual
cortical segmentation map on the individual T1 image to verify a
proper grey matter classification. No large misclassification of white
matter or cerebral spinal fluid (CSF) voxels as grey matter voxels was
found in any of the individual T1 images. Supplementary Fig. 1 shows
the cortical segmentation map of one of the subjects overlaid on the
individual T1 image (Supplementary Fig. 1a) and a 4×4×4 resliced
version overlapped on one of the PRESTO fMRI images of this subject
(Supplementary Fig. 1b). Finally, the resliced segmentation maps were
normalized to standard space, using the normalization parameters of
the T1 image, to overlap the filtered normalized fMRI time-series.

After preprocessing, the resting-state functional time-series were
analyzed using a graph-theoretical approach. For each individual
functional dataset, a graph Gnet was constructed out of all cortical and
sub-cortical voxels and graph characteristics of Gnet were calculated
(see below). In summary, from Gnet the clustering-coefficient Cnet,
the characteristic path length Lnet and the distribution degree P(k)
was calculated. Cnet and Lnet were compared to the clustering-
coefficient and path length (i.e. Crandom and Lrandom) of a number
of random graphs with a number of nodes k and a degree distribution
P(k) similar to that of Gnet. Furthermore, the ratios gamma and
lambda were computed as well as the small-world index (Humphries
et al., 2006) as an indication of a possible small-world organization.
The connectivity distribution of Gnet was computed as the occurrence
probability P(k) of nodes of degree k in Gnet and fitted a power-law
function as an indication of a possible scale-free organization of the
functionally connected brain at a voxel scale.

Graph analysis

Graph formation

For each individual functional dataset, a connectivity graph Gnet=
(V,E) was formed, with V the collection of N grey matter voxels and E
the collection of connections (edges) between the functionally
connected voxels. N varied around 10000 across the groups of
subjects. Fig. 1 illustrates the various steps of the applied graph
analysis. The first step (Fig. 1, panel a) consisted of the computation of
the zero-lag temporal correlations between the filtered resting-state
time-series of all voxel-pairs, believed to reflect the level of inter-voxel
functional connectivity. These inter-voxel correlations were repre-
sented as a correlation matrix M with cell M(i,j) holding the zero-lag
temporal correlation between the fMRI time-series of voxel i and
voxel j (Fig. 1, panel b). Next, M was thresholded by a threshold T,
setting all cells of M to 1 that exceeded the threshold and all cells to 0
that did not exceed this threshold, resulting in a binary valued matrix
B (Fig. 1, panel c). This procedure resulted in the conversion ofM in an
unweighted graph Gnet (Fig. 1, panel d). In this, Gnet= (V,E)
represented a network of all sub-cortical and cortical voxels of the
brain with connections E between all functionally connected voxels.

T varied between 0 and 0.7 (with steps of 0.05). With increasing T
more and more edges were removed from Gnet making the graph
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Fig. 1. Schematic illustration of the graph analysis. The first step (panel a) consisted of calculating the temporal zero-lag correlations between the filtered fMRI BOLD time-series of all
voxels, which was believed to reflect inter-voxel functional connectivity. The computed correlations were represented as a correlation matrix M, with cell M(i,j) holding the level of
functional connectivity between voxel i and voxel j (panel b). Mwas thresholded with a threshold T (panel c), resulting in a binary connectivity matrix B, representing an unweighted
graph Gnet (panel d). T varied between 0 and 0.7 (with steps of 0.05) and a range of fixed k between 4000 and 20. For each fixed k, M was thresholded with a computed T that
corresponded exactly to a connectivity degree of k for that particular individual dataset. Next, B was randomized (panel e) to create a random graph Grandom, with a similar
connectivity distribution P(k) as Gnet, but with a random organization of connections. h random graphs were formed per Gnet. From Grandom and Gnet the graph characteristics
Cnet, Lnet, Crandom, Lrandomwere computed (panel g). Crandom and Lrandomwere created by averaging the clustering-coefficient and path length of the h random graphs. Next,
γ and λwere computed, defined as Cnet/Crandom and Lnet/Lrandom (panel h), as well as the small-world index sigma as the ratio between γ and λ (SW index, panel i) expressing
the small-world-ness of Gnet. In addition, the connectivity distribution P(k) of Gnet was computed (panel j). Finally, the individual computed graph characteristics were averaged
over the group of subjects and the group averaged connectivity distribution P(k) was fitted a power-law function to examine a possible scale-free organization of the functionally
connected human brain.

531M.P. van den Heuvel et al. / NeuroImage 43 (2008) 528–539
more and more sparse. Increasing T would eventually lead to
disconnecting voxels from the total graph (i.e. removing all the
edges from a voxel). The maximum T was empirically set to 0.7 to
minimize the number of disconnected voxels to a maximum of 2% of
the total amount of voxels in Gnet over the group of subjects. In
addition, for each threshold T, the size of the largest connected
component was computed to verify whether setting threshold T
would lead to the formation of one large connected component, rather
than the formation of multiple relatively large but mutually
disconnected components. For all thresholds T the largest connected
cluster included more than 90% of all nodes in Gnet over the group of
subjects, indicating that thresholdingwith threshold T indeed resulted
in the formation of one large connected component with only a small
number of disconnected voxels for all used thresholds of T (data
shown in Supplementary Fig. 2a). For each individual dataset,
thresholding connectivity matrix M with increasing T resulted in 15
binary thresholded connectivity matrices (i.e. B) representations of
Gnet, thresholded with increasing T. In addition, to account for
possible varying effects of T on the individual connectivity graphs, the
connectivity matrices were also thresholded as a function of the
average connection degree k of Gnet. k was varied for 15 different
settings between 4000 and 20 and for each k the Gnet was
thresholded with the individual T that exactly corresponded to the
selected k. This resulted in an additional 15 unweighted graphs Gnet
for each individual dataset. For 4000≤k≤50 the largest connected
group of nodes consisted of more than 90% of the total group of nodes
(Supplementary Fig. 2b). For the lowest number of k=20, the largest
connected group of nodes consisted of 83% of all nodes in Gnet
(Supplementary Fig. 2b).
Network characteristics

Next, the organizational characteristics of Gnet were calculated,
including the clustering-coefficient Cnet, characteristic path length Lnet
and the connectivity distribution P(k).

The clustering-coefficient Ci of node i expresses the level of
connectedness of the direct neighbors of node i and gives information
onwhether they form a connected subgroup in the total network. The
clustering-coefficient Ci of voxel i is defined as the ratio of the number
of edges between the neighbors of voxel i and the total number of
possible edges between its neighbors. Cnet is defined as the average
clustering-coefficient over all voxels in the graph (Sporns et al., 2004;
Watts and Strogatz, 1998):

Cnet ¼ 1
N

X
i∈G

Ci ð1Þ

with

Ci ¼
edges inGi

1
2ki ki−1ð Þ

ð2Þ

and Gi the sub-graph of neighbors of voxel i and ki the number of
edges of voxel i.

The characteristic path length Lnet of a graph is defined as the
averaged minimal distance between each two voxels in the graph
and expresses how well the graph is connected globally. Taken
distance d(i,j) the minimum distance between voxel i and j as the
minimal number of edges that have to be crossed to travel from
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voxel i to voxel j, Lnet is defined as the average distance over all
voxel-pairs. Formally,

Lnet ¼ 1
N N−1ð Þ

X
i≠j;i;j∈G

d i; jð Þ ð3Þ

for all i and j in Gnet with N the number of voxels in Gnet.
With increasing Tmore and more paths are removed from Gnet and

this could result in disconnecting voxel i from the graph, giving an
infinite distance d(i,j) between voxel i and all other voxels in Gnet.
Therefore, disconnected voxels could have an effect on the computation
of Lnet and Cnet. In this study, this effect was believed to beminimal, as
the maximum T was selected to result in a maximum of only ≈200 (2%
of the size of Gnet) disconnected voxels. To verify this believed minor
effect, two solutions for handling with disconnected voxels were
explored for the computation of Lnet. First, all disconnected voxelswere
removed from the graph, which would probably lead to a small
underestimation of Lnet, as the maximum distances d(i,j) are removed.
Second, all disconnected voxels were given a distance of the maximum
distance in Gnet+1, which would result in a small overestimation of
Lnet. As expected, due to the fact that at maximum only 2% of the
voxels in Gnet were disconnected, the two different solutions did not
change the nature of the Lnet results, indicating that the disconnected
voxels had only a minimal effect on the computation of Lnet. For the
computation of Cnet two solutions were explored. First, disconnected
voxels were removed from the computation of Cnet, which would lead
to an overestimation of Cnet as low connected nodes are ignored.
Second, the disconnected voxels were given the absolute minimum of
clustering-coefficient, i.e. a Ci of 0, which would lead to a small
underestimation of Cnet. Similar to the computation of Lnet, these two
methods of handling with disconnected voxels did not change the
nature of the results of Cnet. This was believed to result from the fact
that at maximum only 2% of the voxels in Gnet were disconnected.

Cnet and Lnet express key characteristics of a graph, indicating
whether the nodes of the graph are connected in a random or small-
world order (Watts and Strogatz, 1998). Random networks are
characterized by a low clustering-coefficient Crandom, indicating a
limited formation of clustered sub-networks. Random networks have
a more global connected character, indicated by a typical short path
length Lrandom. In contrast, small-world networks show a high level
of local ordering, indicating the formation of sub-graphs, but still with
an average short path length of around the same length as the path
length of random organized networks, ensuring an optimal level of
global connectivity (Latora and Marchiori, 2001). Networks are called
small-world if Cnet≫Crandom and Lnet≈Lrandom, with Crandom
defined as the clustering-coefficient of a random network Grandom of
similar size of Gnet (Sporns, 2006; Sporns et al., 2004) and with a
similar average connection degree k and connectivity distribution P(k)
as Gnet (Sporns and Zwi, 2004; Stam and Reijneveld, 2007). Similar,
Lrandom is defined as the characteristic path length of Grandom
(Watts and Strogatz, 1998). Small-world networks typically show a
ratio gamma (γ) between Cnet and Crandom of N1, and a ratio lambda
λ between Lnet and Lrandom of ≈1. γ and λ are formally given by:

γ ¼ Cnet
p

Crandom
p

ð4Þ

λ ¼ Lnetp

Lrandomp
: ð5Þ

The small-world-ness of a graph can be expressed in the small-
world index sigma, expressing the level of small-world-ness of a graph
as the ratio between γ and λ (Humphries et al., 2006). Sigma is
typically N1 for networks with a small-world organization (Humph-
ries et al., 2006).

The connectivity distribution P(k) of Gnet describes the probability
that voxel i is connected to k other voxels in the graph and gives
insight in the overall connectivity distribution of the graph. Scale-free
networks were originally defined as networks that show a degree
distribution that follows a power law of the form P(k)∼k−y with an
exponent y of 3 (Barabasi and Albert, 1999; Grigorov, 2005). Recent
studies have also concluded scale-free properties for networks of
exponents 2b y b3 (Goh et al., 2001, 2002; Grigorov, 2005) and real-
world biological networks were classified with exponents around 2
(Goh et al., 2001). Most importantly, a scale-free architecture is
characterized by a power-law scaled connectivity distribution, in
contrast to random networks that show a Poisson shaped connectivity
distribution (Barabasi and Bonabeau, 2003).

Computed network characteristics

For each of the individual functional connectivity graphs Gnet the
graph characteristics Cnet and Lnet were computed for varying T
ranging from 0 to 0.7, with steps of 0.05 (Fig. 1, panel g). For each
thresholded Gnet, h random graphs Ghrandom were formed with
similar k and P(k) as Gnet (Fig. 1, panel e). Sporns and Zwi (2004) have
suggested that statistical comparisons should be performed between
networks of similar degree distributions. However, theoretical ran-
dom networks have a Poisson shaped degree distribution and this
might differ from the degree distribution of Gnet. Therefore, for the
creation of each random graph Ghrandom, Gnet was used as the
original starting point and then for each node i the paths of node i
were randomly distributed to random selected nodes in the graph,
keeping the total number of connections of node i fixed (Fig. 1,
panel e). This procedure was repeated for all nodes in Gnet until the
connection topology of the original matrix (i.e. Gnet) was randomized,
resulting in a random graph Ghrandom with a degree distribution
similar to that of Gnet (Fig. 1, panel f).

For each of the resulting random graphs Ghrandom the graph
characteristics Chrandom and Lhrandom were computed (Fig. 1, panel
g). From these h random graphs Gnet, Crandom and Lrandom were
computed as:

Crandom ¼ 1
h

X
Ch random ð6Þ

Lrandom ¼ 1
h

X
Lh random: ð7Þ

Next, γ, λ and the small-world index sigma were calculated for
varying T (Fig. 1, panel h and i). h was set to 20 for 0.40≤T≤0.7, to
10 for 0.2≤Tb0.40 and to 5 for Tb0.2 for computational reasons. In
total, this resulted in 215 different thresholded graphs (i.e. Gnet and
Ghrandom) of size N per individual dataset.

For each individual dataset, the frequency of occurrence of a voxel
in Gnet having k connections was computed (Fig. 1, panel j). This
resulted in an individual connectivity degree distribution P(k) for each
of the varying correlation thresholds T.

In addition, to account for the varying effects of T on the individual
connectivity graphs, Cnet, Lnet, Crandom, Lrandom, γ, λ, sigma and P(k)
were also computed for a number of fixed k. Keeping T fixed could have
varying effects on the connectivity graphs over the group of subjects, as
the individual datasets are likely to vary in overall connectivity.
Therefore, an additional analysis was performed, in which the average
connectivity degree k was kept fixed over the individual datasets. For
each fixed k, M was thresholded with a computed T that corresponded
exactly to a connectivity degree of k for that particular dataset and Cnet,
Lnet, Crandom, Lrandom, γ, λ, sigma and P(k) were computed. k varied
for 15 settings, being 4000, 2000,1500,1000–100 (with steps of 100), 50
and 20. The number of random graphs h per fixed k for the computation
of Crandom and Lrandom was set to 20 for 20≤k≤700, to 10 for
700bk≤1000 and to 5 for k≥1500 for computational reasons. This
resulted in 240 different graphs (including both Gnet and Ghrandom) of
size N per individual dataset.
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For each individual dataset, this procedure resulted in a set of
graph characteristics of the individual connectivity networks Gnet,
including the clustering-coefficient Cnet and Crandom, path length
Lnet and Lrandom, γ, λ and the small-world index sigma (Fig. 1).
These resulting graph characteristics were averaged over the group
of 28 subjects. In addition, the individual connectivity distributions
were averaged over the group of subjects and fitted a power-law
distribution

P kð Þ ¼ ck−y; ð8Þ
as an indication of a possible scale-free organization of the
functionally connected human brain.

Connectivity map

A scale-free network is characterized by the existence of a small
number of nodes that have many more connections than the other
nodes of the network. The nodes that have such a high connectivity
degree are referred to as hub-nodes and are suggested to play an
important role in the overall network organization (Barabasi and
Albert, 1999; Grigorov, 2005). An exploratory analysis was performed
to examine the spatial location of these hub-regions in the brain. A
group connectivity map (group kmap) was computed that reflected
the topology of functional connectivity in the brain. First, individual
connectivity maps (kmaps) were formed by flagging all sub-cortical
and cortical voxel with their connectivity degree. In this exploratory
analysis, the voxel-wise connectivity degrees were calculated for a Tof
0.4. Second, the individual kmaps were smoothed with an 8 mm
FWHM smoothing kernel (i.e. 2 fMRI voxels) to improve cross-subject
overlap. The individual kmaps were then scaled between 0 and 1, by
Fig. 2. Group averaged clustering-coefficient and characteristic path length for varying T an
representation Gnet of the functionally connected brain and its relation to the cut-off thre
connectivity degree k and distribution P(k) as Gnet. Cnet was found to be significant higher th
group averaged characteristic path length Lnet of Gnet as well as the characteristic path le
distribution P(k) and its dependence on T. Lnet was found not to be different from Lrandom fo
in grey, expressing a low level of inter-subject variability over the group of subjects. No ou
Lrandom and their relation to the average connectivity degree k. Cnet was significant high
was found not to be different from Lrandom for k≥1500 [pb0.01, Bonferroni corrected, indi
length values are plotted in grey.
dividing the connectivity degree values by the maximum value of the
individual kmap to normalize the connectivity values over the group
of subjects. Finally, a group kmap was formed by averaging the scaled
individual kmaps. Voxels that showed a connectivity degree that was
much higher than the average degree were marked as potential hub-
voxels. An exploratory threshold was defined as the top 2.5% of the
voxels that showed the highest connectivity degrees. This threshold
was defined by sorting all group-wise connectivity degree values and
selecting the first of the top 2.5% highest values. The voxels that
showed a connectivity degree above this 2.5% threshold were marked
as potential hub-regions.

Results

Clustering-coefficient and path length

The results for the group averaged clustering-coefficient Cnet and
Crandom and their dependence on T are shown in Fig. 2a. Cnet was
found to be significant higher than Crandom, for all values of T≥0.10
[pb0.01, Bonferroni corrected], indicating a higher level of ordering in
the resting-state functional graph in comparison to a random connected
graph. Crandomwas calculated as the average clustering-coefficient of a
set of random graphs (h=20 or h=10/5 for less sparse graphs, see
Materials and methods section) with a similar connectivity degree k
and distribution P(k) as Gnet. As expected, Cnet decreased with
increasing T, as more and more paths in graph G are removed. For the
computation of Cnet and Crandom disconnected voxels were removed
from the graph (see Materials and methods section). The results for the
group averaged characteristic path length Lnet and Lrandom and their
relation to T are shown in Fig. 2b. The path length Lnet of the functional
d varying k. Panel a shows the group averaged clustering-coefficient Cnet of the graph
shold T, as well as the clustering-coefficient Crandom of a random graph with similar
an Crandom for T≥0.10 [pb0.01, Bonferroni corrected, indicated by ⁎]. Panel b shows the
ngth Lrandom of a random graph with similar connectivity degree k and connectivity
r T≤0.35 [pb0.01, Bonferroni corrected, indicated by #]. Standard deviations are plotted
tliers were present in the group dataset. Panels c and d show Cnet, Crandom and Lnet,
er than Crandom for k≤4000 [pb0.01, Bonferroni corrected, indicated by ⁎] and Lnet
cated by #]. Standard deviations of the group averaged clustering-coefficient and path



Fig. 3. γ and λ. Panels a and b shows γ, defined as Cnet/Crandom and λ, defined as Lnet/Lrandom and their dependence on the threshold T. γwas found to be significant N1 for all values
of T [pb0.01, Bonferroni corrected, indicated by ⁎]. λwas found not to be different from 1 for Tb0.4 [pb0.01, Bonferroni corrected, indicated by ⁎]. Panels c and d shows γ and λ and their
dependence on k. γ was significant N1 for k≤4000 [pb0.01, Bonferroni corrected, indicated by ⁎] and λ was found not to be different from 1 for k≥800 [pb0.01, Bonferroni corrected,
indicated by #]. Error-bars show the standard deviations of the group averaged γ and λ and indicate a low level of inter-subject variability of γ and λ over the group of subjects.
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connected graph was found not to be significant different from the
average path length of a random network with similar k and P(k) for
T≤0.35 [pb0.01, Bonferroni corrected]. As shown in Fig. 2b, Lnet
increased with increasing T.With increasing T, more paths are removed
and an increasing number of paths have to be crossed to travel from
voxel i to voxel j, resulting in an overall increasing path length. The
results for Cnet, Crandom, Lnet and Lrandom and their relation to k are
given in Figs. 2c and d. Cnet was found to be significant higher
than Crandom for k≤2000 [pb0.01, Bonferroni corrected]. Lnet and
Lrandomwere found not to be different for k≥1500 [pb0.01, Bonferroni
corrected]. Error-bars in Fig. 2 show the standard deviations of the
group averaged Cnet, Crandom, Lnet, and Lrandom. The low standard
Fig. 4. Small-world index sigma. Panels a and b show the small-world index sigma (i.e. γ/λ)
k≤4000 (b) [pb0.01, Bonferroni corrected, indicated by ⁎], suggesting a small-world organiz
group of subjects are plotted in grey and suggest a low level of inter-subject variability.
deviations indicated a low level of inter-subject variability. The group
data did not show any outliers.

γ and λ

Figs. 3a and b show the group averaged γ and λ over the group
of subjects for varying T. γ was significantly higher than 1 for all T
[pb0.01, Bonferroni corrected], λ was found not to be different from
1 for T≤0.40 [pb0.01, Bonferroni corrected]. Figs. 3c and d show γ
and λ and their dependence on k. γ was significantly higher than 1
for all k [pb0.01, Bonferroni corrected] and λ was found not to be
different from 1 for k≥800 [pb0.01, Bonferroni corrected]. Error-
for varying T and varying k. Sigma was found to be significant N1 for all T (a) and for all
ation of the functionally connected brain at a voxel scale. Standard deviations over the



Fig. 5. Connectivity distribution. Panel a shows the connectivity distribution P(k) and fitted
power-law functions for T=0.55 (black cross), 0.60 (red circle) and 0.65 (blue square). Panel
b shows the connectivity distribution P(k) and the fitted power-law functions for k=200
(black cross), 100 (red circle) and 50 (blue square). The distributions followed a power-law
function P(k)∼k−y, with exponents y close to 2, suggesting a possible scale-free
organization of the functionally connected human brain at a voxel scale.

Fig. 6. Potential hub-regions of the functional brain. An additional analysis was performed to e
potential hub-regions. Individual connectivitymapswere computedbyflaggingeachvoxelwith
maps were smoothed (8mm FWHM, note that smoothingmay lead to an underestimation of th
between 0 and 1 (see for details Materials and method section). Next, a group connectivity m
threshold was set to the top 2.5% of the voxels that showed the highest scaled connectivity deg
maximumvalueof the group connectivitymapwas found to be0.82, indicating themaximumfo
the 2.5% threshold, indicating the regions with the highest connectivity degree of the functiona
temporal lobe and anterior and posterior cingulate cortex/(pre)cuneus. The high connectivity d
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bars in Fig. 3 show the standard deviations over the group of
subjects, indicating the level of inter-subject variability (no outliers
were found).

Small-world index sigma

The group averaged small-world index sigma for T varying
between 0 and 0.7 and k varying between 4000 and 20 are given in
Figs. 4a and b. Sigma was found to be significant higher than 1 for all
T≥0.1 and for all k, suggesting a small-world organization of Gnet.
Standard deviation error-bars in Fig. 4 express the level of inter-
subject variability (no outliers were found).

Connectivity distribution

The group averaged connectivity distribution P(k) is shown in Fig.
5a for a threshold T of 0.55, 0.60 and 0.65. The group averaged P(k)
suggested to follow a power-law scaling decaying as P(k)∼c k−y with
exponents close to 2 (T=0.55, y=1.8; T=0.60, y=2.2; T=0.65, y=2.5).
The average connectivity distribution P(k) for fixed k of 200, 100 and
50 are shown in Fig. 5b, together with a fitted power-law distributions
with exponents close to 2 (k=200, y=2.0; k=100, y=2.2; k=50,
y=2.7). No outliers were found in the group of subjects.

Connectivity map

Fig. 6 depicts the regions that showed the highest (scaled)
connectivity degree values of the group kmap for a T of 0.4. The top
2.5% of the highest connectivity degree values reflected a threshold of
0.61, the maximum found group averaged (scaled) connectivity value
was 0.82. Fig. 6 depicts the regions that showed a connectivity degree
above this 2.5% threshold, i.e. the voxels that showed the largest
number of connections in Gnet. These regions included the right and
left thalamus, bilateral superior temporal lobe (BA 22/40/42), bilateral
anterior cingulate cortex (BA 24) and bilateral posterior cingulate
cortex/(pre)cuneus (BA 30/31/18).

Discussion

The main findings of this study are a possible small-world and
scale-free organization of the functionally connected human brain
xamine the topology of functional connectivity in the brain and to look for the location of
its connectivity degree (i.e. thenumberof connections) for aTof 0.4. Individual connectivity
e connectivity degree of thin cortical regions) to improve cross-subject overlap and scaled
ap was computed by averaging the scaled individual connectivity maps. An exploratory
ree (i.e. the highest number of functional connections), reflecting a threshold of 0.61. The
und connectivitydegree. Figure shows the regions that showeda connectivity degree above
lly connected brain. These regions included the left and right thalamus, bilateral superior
egree of these voxels marks these regions as potential hub-regions.
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on a voxel level. Resting-state fMRI of 28 healthy subjects was
acquired on a 3 Tesla MR scanner. For each individual dataset, a
network was constructed out of all cortical and sub-cortical voxels
with connections between functionally linked voxels. From this
connectivity network a number of graph organization characteristics
were computed. The clustering-coefficient turned out to be much
higher than the clustering-coefficient of a comparable random
network, but still with an average short path length (Fig. 2). This
graph topology was reflected in a γ of N1 and a λ of ≈1 and a small-
world index N1 (Figs. 3 and 4), suggesting a small-world organization
(Humphries et al., 2006; Watts and Strogatz, 1998) of the functionally
connected brain during a resting-state. Furthermore, the connectivity
distribution P(k) suggested to follow a power-law distribution for a
range of fixed T and fixed average connectivity degree k. These results
suggest a possible scale-free topology of the functionally connected
brain (Fig. 5) (Barabasi and Bonabeau, 2003). As far as we know, this is
the first study that investigated a small-world and scale-free
organization of functional connectivity in the human brain on a
voxel scale during a resting-state.

Small-world networks are characterized by a high representation
of strongly interconnected sub-networks, a property that follows
directly from the high clustering-coefficient (Sporns and Zwi, 2004;
Watts and Strogatz, 1998) and this suggests a high resilience to
random loss of connections (Kaiser et al., 2007). The overall short
characteristic path length demonstrates that nodes of the same sub-
network and that of different sub-networks are generally connected
by short paths (Watts and Strogatz, 1998), suggesting a high level of
global communication efficiency (Latora and Marchiori, 2001).
Furthermore, a possible a scale-free topology of the functionally
connected brain suggests that the overall short path length is
mediated by a small number of highly connected hub-regions. Scale-
free networks show a surprising robustness to random failure of
nodes, but are known to be vulnerable to target attack on the hubs
(Albert et al., 2000; Callaway et al., 2000). A scale-free topology
ensures an efficient and robust transport and flow processing in the
network by avoiding congestion of information flow (Grigorov, 2005;
Toroczkai and Bassler, 2004). The formation of scale-free networks has
been suggested to follow a ‘preferential attachment’ principle,
suggesting that new connections prefer to connect to nodes that
already have a high number of connections (Albert and Barabasi,
2000). This effect is believed to be the result of a self-organized
criticality principle (Levina et al., 2007). Taken together, a combined
small-world and scale-free architecture ensures an optimal form of
network organization, forming a balance between maximum com-
munication efficiency (Latora and Marchiori, 2001) and minimum
wiring (Barabasi and Bonabeau, 2003; Mathias and Gopal, 2001).

These results raise the question about the functional implication of
a possible small-world and scale-free organization of the human brain
(Sporns et al., 2004). One interpretation of our results is that it might
reflect an optimal minimized architecture (Mathias and Gopal, 2001)
of the brain in which information is processed by highly inter-
connected networks of regions and efficiently transferred between
networks for further processing (Achard and Bullmore, 2007; Liu et al.,
2008; Salvador et al., 2005a). Indeed, recent group resting-state
studies have suggested the consistent formation of a number of
resting-state networks of regions that show a high level of resting-
state functional connectivity (Beckmann et al., 2005; Damoiseaux et
al., 2006; Van den Heuvel et al., 2008). Such an architecture of strongly
connected networks is coherent with the observed high level of
clustering. The overall short path length suggests an efficient
communication transfer between regions that form such resting-
state networks as well as a streamlined information transfer between
regions of different networks. Furthermore, the observed power-law
scaling of the connectivity distribution suggests a possible scale-free
topology of the functional brain, which might indicate that most
voxels are only connected to voxels within a specific sub-network and
that inter-network communication is mediated by a small number, but
highly connected hub-regions. An exploratory analysis of the spatial
topology of functional connectivity in the brain revealed a number of
regions that showed a much higher connectivity degree than the rest
of the nodes of the brain network (Fig. 6). These regions included the
left and right thalamus and cortical regions overlapping the superior
temporal lobe and anterior and posterior cingulate cortex and (pre)
cuneus. The high connectivity degree marks these regions as potential
hub-regions of the functional brain. These regions show large overlap
with the hub-regions found by Achard et al. (2006). Future studies are
aimed to further investigate the key role of these hub-regions in the
overall architecture of the functionally connected brain. Taken
together, we believe that our results suggest a highly efficient
organization of the functional brain, with an optimal balance between
local and global connectivity (Watts and Strogatz, 1998), maximum
communication efficiency (Achard and Bullmore, 2007; Latora and
Marchiori, 2001) andminimum functional wiring between the regions
of the brain (Mathias and Gopal, 2001).

In this study, a voxel-wise approach was used to investigate the
organization of functional connectivity. Our results are coherent with
the results of a number of recent studies reporting on a small-world
organization of inter-regional functional connectivity in the human
brain (Achard and Bullmore, 2007; Achard et al., 2006; Liu et al., 2006,
2008; Salvador et al., 2005a; Sporns and Zwi, 2004). These studies have
mainly focused on the organization of functional connectivity between
brain regions, by using a predefined parcellation of the brain in around
90 regions. However, using a predefined regional template limits the
examination to inter-regional connectivity and requires a model-based
definition of such regions. In this study, both inter-regional as well as
intra-regional connectivity was considered, forming a network out of
voxels rather than 90 large regions. Using a voxel-based method, our
results support previous regional-based findings and contribute to the
idea of a small-world architecture of the human brain (Achard et al.,
2006; Eguiluz et al., 2005; He et al., 2007; Liu et al., 2006, 2008; Salvador
et al., 2005a; Sporns and Zwi, 2004). In addition, our results suggest a
possible scale-free organization of the functional brain network. The
results from two previous studies investigating such a scale-free
topology of the brain have been inconclusive. A recent study of Achard
et al. (2006) investigating inter-regional resting-state functional con-
nectivity reported a small-world, but not a scale-free organization of the
human brain. In contrast, a study of Eguiluz et al. (2005) showed a
combined small-world and scale-free topology. However, the results of
that study were based on voxel-based task-induced fMRI measure-
ments, rather than resting-state recordings. Task-induced fMRI record-
ings could have had an effect on the overall temporal activationpatterns
of the brain and as a result on the topology of functional connectivity.
Therefore, in our study correlations between resting-state time-series
were used as amore generalmeasure of functional connectivity (Achard
et al., 2006; Greicius et al., 2003; Salvador et al., 2005b). The observed
power-law scaling of the connectivity distribution in our study suggests
a possible scale-free organization of the functionally connected brain.
One explanation of the differentiating results of our study and the study
of Achard et al. (2006), concerning a possible scale-free organization,
might lie in the included intra-regional connectivity in this study. Achard
et al. focused on the organization of inter-regional functional con-
nectivity between 90 brain regions, whereas in our study resting-state
functional connectivitywas investigated on a voxel scale, including both
inter-regional as well as intra-regional connectivity. Interestingly, this
differentiation in network topology of the brain might suggest a
different organization of inter-regional connectivity and connectivity
between smaller regions (i.e. voxels). One possible interpretation of our
results might be that large brain regions are on average connected with
around the same number of other brain regions, while sub-regions
have on average a low number of connections, but still stay
globally connected through means of a small number of highly con-
nected hub-regions.
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The functional brain was represented as a network of small brain
regions (i.e. voxels), without incorporating any information about the
structural connections of the brain. An increasing body of evidence
suggests a direct relation between these two forms of connectivity. For
example, anatomical networks have been reported to show a similar
small-world organization (Hagmann et al., 2007; He et al., 2007). In
addition, networks of brain regions showing complex functional
dynamics have been suggested to share common structural organiza-
tion characteristics (Sporns et al., 2002, 2000). Furthermore, regions of
widespread functionally connected resting-state networks have been
found to be connected by cortico-cortical anatomical tracts (Greicius
et al., in press; Lowe et al., 2008). Taken together, these results suggest
a direct link between the functional and structural organization of the
brain and a combined analysis could provide valuable information
about the general architecture of the brain (Honey et al., 2007; Sporns
et al., 2004, 2000).

In this study we mainly focused on the overall connectivity
architecture of the functionally connected human brain. However, the
used voxel-wise approach allows for a much more specific examina-
tion of the functional brain network. It allows for the examination of
functional connections on a high spatial resolution, for example the
identification of inter-hemispheric and intra-hemispheric connections
and a classification of their role in the network. Future studies are
aimed to examine the specific role of different functional connections
in the overall architecture of the brain network.

Analyzing the small-world properties of the functionally con-
nected brain can be of importance in future clinical studies. Recent
studies have suggested a disrupted small-world functional connectiv-
ity organization in schizophrenia in multiple EEG frequency bands
(Micheloyannis et al., 2006; Rubinov et al., in press). Furthermore, a
recent resting-state fMRI study has reported disrupted small-world
networks in schizophrenia (Liu et al., 2008). The use of a voxel-wise
resting-state fMRI method could contribute to this field. It allows for
the examination of disrupted functional connectivity in patients in
high detail, providing information on which regions are affected. In
general, examining the architecture of the brain on a voxel scale could
provide a more detailed insight in the suggested disrupted functional
organization in brain diseases, like schizophrenia (Liu et al., 2008) and
Alzheimer's disease (Stam et al., 2007).

Some limitations to this study have to be considered in interpret-
ing its results. First, the exact neuronal correlate of resting-state
functional connectivity is not fully understood. Although, it is believed
that the coherency between the rest-recorded BOLD-sensitive fMRI
time-series is related to a coherency in the underlying neuronal
activation patterns of these regions (Biswal et al., 1997; Buckner and
Vincent, 2007; Cordes et al., 2001; Greicius et al., 2003; Salvador et al.,
2005a), it has also been suggested that physiological temporal
patterns like respiratory and cardiac oscillations could confound the
BOLD signal (Cordes et al., 2001;Wise et al., 2004). In this study, a high
fMRI temporal acquisition was used to minimize the possible back-
folding of cardiac and respiratory patterns into the lower frequencies
of interest, enabling the proper filtering of these high frequency
temporal patterns (Cordes et al., 2001, 2000). However, cardiac related
frequencies of N1 Hz could still be aliased into the lower frequencies of
interest. In addition, there has been suggested that other non-
neuronal related low frequency oscillations, like possible variations
in heart rate or interactions between cardiac and respiratory signals
can be present in the low resting-state frequencies of interest (∼0.01–
0.1 Hz), making the resting-state correlations less specific (Birn et al.,
2008). Second, it should be noted that fMRI images show a certain
level of intrinsic spatial smoothness and this could introduce artificial
inter-voxel correlations that are not related to neuronal activity. Data
interpolation as a result of the normalization of the fMRI time-series
may further enhance this effect. Spatial smoothness could lead to an
overestimation of the local inter-voxel correlations in Gnet and
introduce a bias in the computation of the graph characteristics and
have an effect on the scale-free aspects of the data. In this study,
Grandom was formed by randomizing all connections of Gnet to
maintain a similar connectivity distribution (Sporns and Zwi, 2004).
However, when forming a comparable random graph Grandom,
potential intrinsic spatial smoothness present in the fMRI recordings
(and therefore present in Gnet) is destroyed. To examine the effect of
spatial smoothness on the graph characteristics a post-hoc analysis
was performed, in which the formation of Grandom was adjusted by
redistributing only those connections of Gnet that connected voxels
that were spatially separated by more than 10 mm (N2.5 voxels) (28
subjects, T varying between 0 and 0.7 with steps of 0.1, the number of
random graphs h set to 1). As such, Grandom was formed in a much
more conservative manner, maintaining all local connections that
were present in Gnet, and thus ensuring a similar intrinsic smoothness
profile as Gnet. Constructing Grandom in this alternative way did not
change the nature of our results. As expected, the only difference
found was that Crandom was slightly higher than the original Cran-
dom (and only for high T). This difference was likely to result from the
fact that Grandom was now more similar to Gnet. Taken together,
these additional results suggest that the intrinsic smoothness of fMRI
data has only a minor influence on the computation of the graph
characteristics and does not affect the main results of this study. In
addition, to test the influence of the normalization step on the final
results, a second post-hoc analysis was performed, in which Gnet was
based on the native (non-normalized) individual time-series, rather
than the normalized fMRI time-series. Analyzing the data in native
space (i.e. non-normalized) did not change the nature of the results,
which suggests that the normalization step had only aminor influence
on the computation of the graph characteristics. Third, as in all
resting-state fMRI studies using graph analysis, partial voluming
effects (due to the relatively large fMRI voxels of 3 to 4 mm) and the
inclusion of misclassified CSF or white matter voxels into Gnet could
potentially introduce artificial correlations that are not related to
neuronal synchronization. As a result, they could (in theory) explain
the found effects. To examine the effects of white matter and CSF
voxels on the computed graph statistics an additional post-hoc
analysis was performed, in which the connectivity graphs were
formed out of all classified white matter (Gwm) and CSF (Gcsf) voxels.
From these connectivity graphs the general graph characteristics were
computed, in a similar way as described in the main analysis (Fig. 1).
Both Gwm and Gcsf showed a high clustering-coefficient and a much
higher path length than Gnet, typical for networks with a so-called
‘regular’ organization, lacking the existence of long distance connec-
tions critical for a small-world organization. In addition, the degree
distribution of Gwm and Gcsf did not show the typical scale-free
organization as found for Gnet. This post-hoc analysis suggests that
white matter and CSF related correlations show a different organiza-
tion in comparison to correlations between grey matter voxels and
that they are likely to only minimally influence the computed graph
characteristics of Gnet. Fourth, as with all cross-correlation methods,
the association between points is based on linear effects. Other
measures like synchronization likelihood have been successfully
introduced as a measure of nonlinear coupling of EEG and MEG
signals (Stam et al., 2003) and could make a valuable contribution to
resting-state fMRI investigations. In addition, methods to calculate the
network characteristics of weighted graphs have been suggested, as
well as measures of global and local communication efficiency
(Achard and Bullmore, 2007; Latora and Marchiori, 2001; Reijneveld
et al., 2007; Stam and Reijneveld, 2007) and used as an effective
method to control for disconnected nodes that are likely to arise with
increasing cut-off thresholds (Ponten et al., 2007). In this study, the
traditional definition of the clustering-coefficient was used (Achard
and Bullmore, 2007; Stam and Reijneveld, 2007; Watts and Strogatz,
1998), but more advanced versions have been suggested. Soffer and
Vazquez (2005) showed that the traditional definition is biased to the
number of connections of a node and suggested a non-biased
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definition. Future studies are aimed to investigate the use of these
novel measures of network dynamics in a voxel-based approach.

In this study, the organization of functional connectivity in the
human brainwas examined on a voxel scale. Graph theorywas used to
investigate 3 T resting-state fMRI recordings of 28 healthy subjects by
forming individual networks out of all cortical and sub-cortical voxels,
with connections between functionally connected voxels. The use of a
voxel-wise approach allowed for the examination of inter-regional
connectivity as well as intra-regional connectivity. Our results suggest
a possible combined small-world and scale-free organization of the
functionally connected human brain.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2008.08.010.
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