Práctica Nº 8: Calorimetría

- 1. ¿Qué cantidad de calor tendrá que dar un radiador para elevar en 10° C la temperatura de una habitación de 80 m^3 . (Usar que la capacidad calorífica específica del aire es $0.24^{\text{ cal}}/\text{g}^{\circ}$ C y que la densidad del aire es $0.001293^{\text{ g}}/\text{cm}^3$).
- **2. a)** Hallar la cantidad de calor que es necesario entregar a 1000 g de una sustancia para elevar su temperatura de 50 °C hasta 100 °C , sabiendo que el calor específico de la sustancia varía linealmente según la ecuación (resultado experimental):

$$C_p = C_o + a.t$$

donde $C_o = 0.19^{cal}/g.K$ y $a = 4x10^{-4} cal/g.K^2$.

- **b)** ¿Qué error se comete si se toma $C_p = C_o$?
- c) Si las constantes fueran $C_o = 0.19^{\text{ cal}}/\text{g}$ c y a = $4x10^{\text{-4 cal}}/\text{g}$ c² , ¿cambiarían las respuestas anteriores? Si la sustancia es la misma, ¿es esto correcto? Justifique.
- **3.** Calcule la cantidad de calor necesario para pasar 2kg. de hielo a -20°C, a vapor a 120°C.

 C_p (hielo) = 0,5 ^{cal}/_{g°C}

 C_p (agua) = 1,0 $^{cal}/_{g^{\circ}C}$

 C_p (vapor) = $0.5^{cal}/_{g^{\circ}C}$

Calor latente de fusión: $L_f = 80^{cal}/g$

Calor latente de vaporización: $L_v = 540^{\text{ cal}}/g$

- **4.** Se ponen 10g. de agua (vapor) a 150°C, 50g. de agua (hielo) a -30°C, 100g. de agua (líquida) a 50°C y 200g. de aluminio a 110°C, en contacto térmico dentro de un recipiente adiabático de 200g. de peso y capacidad calorífica específica 0,2 ^{cal}/_{g°C}., el cual se halla inicialmente a una temperatura de 20°C.
- **a)** Halle la temperatura final del sistema (tome como dato de los problemas anteriores, las capacidades caloríficas específicas y los calores latentes necesarios).
- **b)** ¿Qué cantidad de calor ha absorbido cada uno de los cuerpos? ¿Y el sistema como un todo?
- **5.** ¿Cuál es la mínima cantidad de agua a 20°C necesaria para convertir 1kg. de plomo fundido a 327°C (temperatura de fusión normal) a plomo sólido a la misma temperatura? Tener en cuenta que el agua se vaporiza totalmente durante el proceso y al hacerlo abandona el sistema.

<u>Datos:</u> Calor de fusión del plomo: $1,80.10^4$ Joule/ $_{\rm kg}$. Calor de vaporización del agua: $2,26.10^6$ Joule/ $_{\rm kg}$.

Calor específico del agua: $1,00 \, ^{\text{kcal}}/_{\text{kg}^{\circ}\text{C}}.$

6. Dentro de un calorímetro perfecto que contiene 1000g. de agua a 20°C, se introduce 500g. de hielo a -16°C. El vaso calorimétrico es de aluminio ($C_{al} = 0.22^{cal}/_{g^{\circ}C}$) y tiene una masa de 300g.

Calcule la temperatura final del sistema e indique el calor que ha absorbido o cedido el sistema como un todo y cada una de sus componentes.

$$^{\circ}$$
H_{FUS} = 80 cal / $_{g}$; C $_{p}$ (hielo) = 0,5 cal / $_{g^{\circ}$ C; C $_{p}$ (agua) = 1,0 cal / $_{g^{\circ}$ C

- 7. 1kg de un material que se encontraba a 34°C es sumergido en 1000g. de agua contenidos en un calorímetro cuyo π está dado por la función $\pi = \pi_0 + \alpha$.t. La temperatura inicial del agua y del calorímetro era de 18°C, y la final de 22°C.
- a) ¿Cuál es el calor específico a presión contante del material?
- **b)** ¿Qué cantidad de hielo a 0°C se debe agregar para que la temperatura vuelva a ser 18°C?

Datos: $\pi_0 = 19 \text{ cal/}^0\text{K}$ $\alpha = 0.05 \text{ cal/}(^0\text{C})^2$