Práctica N°2: Dinámica

Todos los resultados se obtuvieron usando $g = 10 \frac{\text{m}}{\text{s}^2}$.

1) a)
$$\frac{d^2x(t)}{dt^2} = \frac{F}{m}$$

b)
$$\frac{dv(t)}{dt} = \frac{F}{m}$$
$$v(t) = \frac{F}{m}t + v_0$$

c)
$$x(t) = \frac{F}{2m}t^2 + v_0t + x_0$$

2)
$$F = 6 \times 10^6 \text{ N}$$

- 3) -
- 4) Llamo B al valor que indica la balanza.

a)
$$B = 55 \text{ kgf} = 550 \text{ N}$$

b)
$$B = 572 \text{ N}$$

c)
$$a = -10 \frac{m}{s^2}$$

5)
$$F = 20 \text{ N}$$

 $N = 182.67 \text{ N}$

b)
$$T = 1.49 \text{ N}$$

c)
$$T=1.64$$
 N para $a=1$ $\frac{\text{m}}{\text{s}^2}$ $T=1.34$ N para $a=-1$ $\frac{\text{m}}{\text{s}^2}$ $T=1.49$ N para $a=0$ $\frac{\text{m}}{\text{s}^2}$

7) -

8) Tomo
$$m_1 = 2 \text{ kg y } m_2 = 1 \text{ kg}$$

 $a_1 = a_2 = -0.45 \text{ } \frac{\text{m}}{\text{s}^2}$

Al ser la aceleración negativa, el sistema se mueve hacia la izquierda (por como se tomaron los ejes). $|T_1| = |T_2| = 9.11 \text{ N}.$

Soga con masa despreciable $\longrightarrow |T_1| = |T_2| \equiv T$.

Soga inextensible (condición de vínculo entre los cuerpos) $\longrightarrow a_1 = a_2 \equiv a$.

9)
$$F - \mu_{d} mg = m \frac{d^{2}x}{dx^{2}}$$
 ó $\frac{F}{m} - \mu_{d}g = \frac{d^{2}x}{dx^{2}}$

$$v(t) = \underbrace{\left(\frac{F}{m} - \mu_{d}g\right)}_{a} t + v_{0} \text{ donde } v_{0} = v(t = 0).$$

$$x(t) = \underbrace{\left(\frac{F}{m} - \mu_{d}g\right)}_{a} \frac{t^{2}}{2} + v_{0}t + x_{0} \text{ donde } x_{0} = x(t = 0).$$

- 10) a) No.
 - b) $a=-0.53 \frac{m}{s^2}$ donde, según los ejes elegidos, el signo de a implica que el cuerpo de 5 kg sube.
- 11) a) $F_{\text{max}} = 16 \text{ N}$
 - b) $a = 2 \frac{m}{s^2}$
 - c) $a_1 = 1 \frac{\text{m}}{\text{s}^2} \text{ y } a_2 = 5.8 \frac{\text{m}}{\text{s}^2}$
 - d) $F_{\text{max}} = 9.6 \text{ N}$ $F_{\text{roz}} = 3 \text{ N}$
- 12) $F_{\min} = 50 \text{ N}$
- 13) a) $\mu_{\rm d} = \frac{5}{9} = 0.\hat{5}$
 - b) $a\approx -2.17~\frac{\rm m}{\rm s^2}.$ Frena porque la aceleración está en sentido contrario al movimiento.
- 14) Tomamos el eje x paralelo al plano inclinado, y apuntando hacia la base del mismo:

$$\mathbf{F} = -58.9 \ \mathrm{N}\hat{x}$$

$$\mathbf{F}_{\text{roz}} = 149.2 \text{ N}\hat{x}$$