Análisis de la señal del photogate con Origin

- 1. Importar los datos medidos con el SensorDAQ: File Import > Single ASCII
- 2. Graficar y determinar tensión mínima y máxima de la señal del photogate

3. Determinar los tiempos asociados a los flacos de bajada (ver apunte análisis de períodos)

Tiempo asociado a cada flanco de bajada:

- Seleccionar las columnas Tiempo y Tensión.
- Ir a Worksheet > Worsheet Query > para filtrar datos escribir la condición que deben cumplir los

datos filtrados. Como $V_{max} - V_{min} \approx 4 V$

Si se quiere los flancos de bajada (datos marcados con círculos rojos) entonces la condición es Col(B)[i] – Col(B)[i+1] > 3.8

2

¿Cómo estimo la incerteza en el tiempo?

- Se registra una medición cada T segundos.
- No hay información de lo que pasó entre 2 mediciones consecutivas ⇒ consideramos error en el tiempo = diferencia de tiempo entre 2 medidas consecutivas

Error en el tiempo $\rightarrow \epsilon = \frac{1}{f_m}$

recordemos que

$$f_m = \frac{1}{T}$$

 f_m (frecuencia de muestreo) \rightarrow indica cuantas muestras se registran dentro de 1 segundo (T se mide en segundos).

$$f_m = \frac{1}{T}$$

4

4. Determinar los períodos

El período del péndulo está definido por 3 obturaciones. Por lo tanto, para calcular el período tengo que considerar 3 picos (en este caso, los flancos de bajada).

Agrego una nueva columna y calculo el período usando Set Coumn Values: Col(A)[i+2]-Col(A)[i] (de la lista filtrada y suponiendo que en Col(A) están los tiempos).

Set Colum Values: seleccionar una columna vacía donde quiero poner la información (C), apretar botón derecho del mouse y elegir Set Column Values

	A(X)	B(Y)	C(Y)						\checkmark
Long Name	time	(V)					A(X)	B(Y)	C(Y) 🔍
Units				Lista filtrada con los flancos de bajada		Long Name	time	(V)	Período
Comments				, ,		Units			
Sparklines						Comments			
1	0,925	4,59331				Sparklines			
2	1,955	4,59835				1	0.925	4 59331	2.03
3	2,900	4,09331				2	1 955	4,50835	2 0 2 5
	4 985	4,59835				2	2,055	4,50033	2,020
6	6.01	4,59835				3	2,300	4,59551	2,03
7	7.02	4.60086		Set Values - [Book2]Sheet1!Col(C)		4	4.005	4,59655	2,03
8	8,035	4,59583		Formula weal(1) Col(A) E(v) Variables		с С	4,960	4,09630	2,035
9	9,05	4,59331				0	0,01	4,59835	2,025
10	10,07	4,59331		Row (i): From <auto> To <auto></auto></auto>		/	7,02	4,60086	2,03
11	11,075	4,59835				8	8,035	4,59583	2,035
12	12,1	4,59331				9	9,05	4,59331	2,025
13	13,105	4,59835		K< << >> >> Co(C) =		10	10,07	4,59331	2,03
14	14,135	4,59331				11	11,075	4,59835	2,03
15	15,135	4,59835		COI(A)[1+2]-COI(A)[1]		12	12,1	4,59331	2,035
10	10,105	4,00080				13	13,105	4,59835	2,03
17	12 10	4,00080				14	14,135	4,59331	2,03
10	10,15	4,59835		-	I I	15	15,135	4,59835	2.03
20	20.22	4,59835		۲		16	16,165	4,60086	2.025
21	21,23	4,59583				17	17,165	4,60086	2.03
22	22,25	4,59079		Recalculate Manual 🔻 Apply Cancel OK 😵		18	18 19	4 59835	2.03
23	23,26	4,60086				19	19 195	4 59835	2 035

Período

5. Calcular la media del período (en el ejemplo sería la media de los datos de la columna C)

6. Error de la media (tener en cuenta todas las contribuciones): Error en el tiempo (relacionado con la frecuencia de muestreo) y Error Estadístico

$$\Delta T = \sqrt{\varepsilon_{inst}^2 + \varepsilon_{est}^2} \qquad \qquad \varepsilon_{inst} = \frac{1}{f_m}$$

7. Armar una tabla con las longitudes del péndulo y el valor del período (y sus incertezas)

Nombre	L	Error L	T	Error T
Unidades	m	m	\mathbf{S}	S

8. Para la linealización podría calcular T²: En una columna vacía, botón derecho del mouse elegir Set Colum Values

Set Values - [Book3]Sheet1!Col(B)
Formula wcol(1) Col(A) F(x) Variables
Row (i): From <auto> To <auto></auto></auto>
K >> >> Col(B) =
col(l)~2
Recalculate Manual Apply Cancel OK

Aquí supongo que en la columna T están los períodos para las distintas longitudes

Si definimos una nueva variable: $\,\, v\,$ =

```
v = T^2
```

9. Incerteza de *v*: Propagar errores

 $\Delta v = 2T\Delta T$

¿Cómo calculo error de v usando Origin? Usar la opción Set Column Values

10. Quiero graficar T² vs. L (ó L vs. T²). ¿Qué variable elijo ubicar en el eje x?

Si aplico Cuadrados Mínimos Ponderados recordar que solo considera error en el eje y.

Entonces ubico en el **eje** *x* la **variable medida con mayor precisión**. Evalúo error relativo de *v* y *L*. Calcular error relativo usando Set Column values

11. Graficar T² vs. *L* (ó *L* vs. T²). Esperamos que la relación entre las nuevas variables sea lineal Aplicar regresión lineal por cuadrados minimos. $v = T^2$

Nombre	L	Error L	T	Error T	v	Error v	Error - rel % L	Error - rel % v
Unidades	m	m	S	S	s^2	s^2		