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ABSTRACT

The concept of “emergence” has become commonplace in the modelling of complex systems, both natural and
man-made; a functional property” emerges” from a system when it cannot be readily explained by the properties
of the system’s sub-units. A bewildering array of adaptive and sophisticated behaviours can be observed from
large ensembles of elementary agents such as ant colonies, bird flocks or by the interactions of elementary
material units such as molecules or weather elements. Ultimately, emergence has been adopted as the ontolo-
gical support of a number of attempts to model brain function. This manuscript aims to clarify the ontology of
emergence and delve into its many facets, particularly into its “strong” and “weak” versions that underpin two
different approaches to the modelling of behaviour. The first group of models is here represented by the “free
energy” principle of brain function and the “integrated information theory” of consciousness. The second group
is instead represented by computational models such as oscillatory networks that use mathematical scalable
representations to generate emergent behaviours and are then able to bridge neurobiology with higher mental
functions. Drawing on the epistemological literature, we observe that due to their loose mechanistic links with
the underlying biology, models based on strong forms of emergence are at risk of metaphysical implausibility.
This, in practical terms, translates into the over determination that occurs when the proposed model becomes
only one of a large set of possible explanations for the observable phenomena. On the other hand, computational
models that start from biologically plausible elementary units, hence are weakly emergent, are not limited by
ontological faults and, if scalable and able to realistically simulate the hierarchies of brain output, represent a
powerful vehicle for future neuroscientific research programmes.

1. Prologue

2016; Mlot et al., 2011; Reid et al., 2015). Emergent phenomena in
nature can also be seen in weather systems, natural disasters (e.g. ty-

In scientific inference, complex phenomena arise through interac-
tions among simpler or elementary entities in a process termed
“emergence”. In such a process, the properties of the aggregation of the
elementary agents that generates the pattern of behaviour are not easily
reducible to a combination of the properties of the primitive elements.

Emergence has become a tantalizing topic because many examples
of emergent phenomena abound in (but are not limited to) the natural
sciences, for example the assembly of complex structures by ant co-
lonies such as bridges and rafts, the swarming behaviours of bees, the
flocking behaviour of birds and the murmurations of starlings [Video 1
at https://media.cognitron.co.uk/papers/Video_1.mov] (Burns et al.,

phoons and forest fires), as well as in human-created communities (e.g.
cities, the stock market); ultimately the concept of emergence has been
offered as a model for human behaviour (Dennett, 1923; Miller, 2015;
West, 2017).

When studying the brain, we often examine it in a manner that
highlights a hierarchy of scales that starts with the cellular milieu (e.g.
blood vessels, neurons and glia) with its diverse molecular constituents
[Fig. 1A]. These building blocks are the elementary components of
tissues, nuclei and cortical layers which ultimately are then further
arranged into cyto-architectonic regions, often associated in the modern
phrenological approach with functional networks [Fig. 1B]. Within this
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Fig. 1. Our overview of the brain reveals structure and function at multiple
spatial and temporal scales A- > B. Structural connectivity can be explored,
both at the macroscopic scale, i.e. regions to region, and at the microscopic
level by measuring interactions between cells within and between cortical
layers. A,B - > C. Each of these macroscopic and microscopic descriptions of
function, forms a hierarchy, which reveals different, yet complementary in-
formation about the function of the underlying tissue. For example, functional
MRI reveals a temporally ‘slow’ time-course of activity over a wide region of the
brain, whereas electrophysiological measures reveal highly detailed spiking
time-courses of spatially highly localised tissue. However, these two levels of
description are strongly interlinked.

hierarchy, each layer, or level of description, exhibits a function that
seems autonomous with respect to the activity found at the higher (or
perhaps more ‘macroscopic’) level, but that shows a clear dependency
on those layers functionally below [Fig. 1C]. It follows that the top level
of this hierarchy, human behaviour, emerges from interactions within
and between these different layers or spatial scales.

Alternatively one can adopt a top-down approach and capture the
varieties of perception and action into some general overarching prin-
ciple that can be assigned to brain tissue and scaled down to the in-
tricacies of receptor systems, metabolism etc.

Irrespective of the approach, emergence has often been used as a
conceptual framework to integrate seemingly distant phenomenologies.
However, when “emergence” is called into action one can easily fall
into logical fallacies that, while extensively debated in the epistemo-
logical literature, seem not to be fully recognized in the wealth of
current modelling work in the neurosciences and psychology, both in
terms of the formulation of traditional ‘box and arrow’ models of cog-
nition, or in the more recent trend towards the building of large-scale
computational simulations of neurobiological function.

Here we review the concept and use of emergence in the experi-
mental neurosciences focusing on two distinct “types” of phenomen-
ological emergence, “strong” and “weak”, and their relation to some
popular models of brain function: in particular the “free energy prin-
ciple” (Friston, 2009, 2010; Friston et al., 2006) and “integrated in-
formation theory” (Hoel et al., 2013b; Oizumi et al., 2014; Tononi,
2012) as examples of “strong” emergence, and computational oscilla-
tory models as representative of the “weak” emergence (Breakspear,
2017; Deco et al., 2011).

2. Emergence

Emergence is a contemporary concept with a long history in evo-
lutionary science (for a detailed narrative see Peter Corning ‘s essay
(Corning, 2002)). The concept of emergence was first introduced by the
physiologist George H. Lewes in his book Problems of Life and Mind
(Lewes, 1879, pp. 412) “

... The emergent is unlike its components in so far as these are in-
commensurable, and it cannot be reduced to their sum or their
difference...”.

Through this definition, it was possible to form a framework that is
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generally able to make sense of widely observed leaps in the complexity
of nature (Mill, 1874) — particularly in the formation of complex objects
from relatively simple elementary parts. For example, it can imagina-
tively relay how hydrogen and oxygen combined together make one
very different molecule of water, convey the punctuated acceleration in
taxonomic lineages or be extended to depict the almost unlimited
possibilities of a game of chess. However, the ‘seeds’ of the concept of
‘emergence’ can be traced much further back in time. Aristotle
(Aristotle, 1994) argued that quantitative, incremental changes to the
elementary parts of a system or construction may lead to qualitative
changes to the whole that are different from, and irreducible to, their
parts. The problem is that, by their very nature, such wholes are un-
predictable and ultimately their “emergence” is descriptive or richly
allusive but fails to explain much if anything about how they come to
be. Thus the concept of emergent phenomena rested for many decades
on the forgotten shelves of scientific theories in search of a metaphy-
sical foundation, until dynamical system theory produced nonlinear
mathematical tools, cellular automata and agent-based models which
breathed new life into the idea of modelling interactions within com-
plex systems that were deterministic at the level of interactions among
elementary components.

Modern Emergence can be divided into two epistemological types:
strong and weak. A system is said to exhibit strong emergence when its
behaviour, or the consequence of its behaviour, exceeds the limits of its
constituent parts. Thus the resulting behavioural properties of the
system are caused by the interaction of the different layers of that
system, but they cannot be derived simply by analysing the rules and
individual parts that make up the system. Weak emergence on the other
hand, differs in the sense that whilst the emergent behaviour of the
system is the product of interactions between its various layers, that
behaviour is entirely encapsulated by the confines of the system itself,
and as such, can be fully explained simply though an analysis of in-
teractions between its elemental units.

The kind of emergence that surfaced first in the neurosciences was
greatly shaped by the thinking of Roger W Sperry (1981 Nobel prize in
physiology) who proposed a view of the brain characterized by a strong
top-down organisational component (Sperry, 1980):

“...It is the idea, in brief, that conscious phenomena as emergent func-
tional properties of brain processing exert an active control role as causal
detents in shaping the flow patterns of cerebral excitation. Once gener-
ated from neural events, the higher order mental patterns and programs
have their own subjective qualities and progress, operate and interact by
their own causal laws and principles which are different from and cannot
be reduced to those of neurophysiology.”

Note that Sperry was adamant that his model did not imply any
form of mind brain dualism nor a parallel existence of neurobiological
and mental processes but that, after emergence, mental processes would
take over and exert control down to the cellular level (Sperry, 1980).

3. Strong emergence

The directional dominance of higher versus lower processes makes
Sperry’s model the paradigmatic exemplar of “Strong Emergence”; a
paradigm that comes with epistemological consequences (see collated
essays in (Clayton and Davies, 2006)). If the existence of a whole cannot
be equated with facts about the distribution and interactions of its
particles throughout space and time (along with the laws of physics),
then new fundamental laws of nature are needed to explain these
phenomena. Indeed in Sperry’s model, higher order mental patterns and
programs have their own subjective qualities and dynamics and operate
by their own laws and principles which are different from and cannot
be reduced to those of neurophysiology - they exist and operate in a
separate domain, that of psychology (Sperry, 1980).

More recent propositions have followed this path. Predictive pro-
cessing models (Bubic et al., 2010) argue that the existence of
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‘expectation states’ within a number of cognitive domains of the brain,
act in concert with the role of the brain to realise planned events —
comparing the subsequent action which as a result of external factors
that change expectation may violate the initial prediction of behaviour
on a purely feed-forward expectation of cognitive function in the brain.
The Bayesian computational model of brain function, also called the
“free energy principle” (FEP) (Friston, 2009, 2010; Friston et al., 2006)
is an example of such an approach and a paradigmatic exemplar of
strong emergence (Lestienne, 2014). In this model, brain-environment
interactions of an agent are represented as a loop in which the primary
sensory inputs are first processed with prior knowledge of the most
probable cause of these signals in a top-down fashion; the brain then
combines prior and sensory information and calculates the posterior
percept (this process is called Bayesian inversion) that is transmitted to
the executive areas of the brain. Within the “executive control system”
it is conceived that the feed-back percept is compared against the initial
prediction with a gain function (which itself is a realised form of the
prior belief set, i.e. learned) that gauges the return of various possible
actions onto the environment. This model assumes that in the brain,
signals directed from higher to lower levels of the neural hierarchy are
more abundant than those directed upwards — a necessary consequence
of the postulation that brain activity is dominated by the drive to
progressively improve the inferred internal model of cause and effect
(i.e. the activity - > behaviour coupling) though the modulation of
synaptic connections. From a modelling perspective, the FEP assumes
the existence of a number of brain states that parameterize the prior
probabilities of the model as well as providing the basis of the gain/loss
state function. This largely Bayesian hypothesis formulates perception
as a constructive process based on internal models. As FEP is operated
by a set of rules that are treated independently of underlying neuro-
biology and only loosely constrained (inspired) by metabolic anato-
mical/neural constraints, FEP can be considered strongly emergent.
Integrated Information Theory (IIT) is a theory of consciousness
(Hoel et al., 2013b; Oizumi et al., 2014; Tononi, 2012) that has also
been described as an example of ‘strong emergence’ (Hoel et al.,
2013a). The theory’s core precept is that a system is conscious if it
possesses high levels of a quantity called @ (phi), which is a measure of
the system’s capacity of integrating information. Tononi and Sporns
(Tononi and Sporns, 2003) argue that this capacity supersedes any
other micro-property of the system and is maximally irreducible to its
individual components (Hoel et al., 2013a). In other words, IIT
equates/conflates consciousness with the emergence of information in
the brain surpassing and overriding the information which the brain's
constituents already generate independently of one another. If one
models the brain as a network of nodes exchanging information with a
variety of directed connections, the system will exhibit specialization, if
it contains highly connected modules, and integration if modules are
highly connected. IIT argues that a high value of @ for a network can be
obtained if the connection patterns of its elements exhibit both high
integration and a specialization that leads to activity patterns of the
highest complexity from which conscious awareness emerges. Sup-
porting this view, network analyses of fMRI data acquired during deep
sleep (N3) indicate increased network modularity compared to con-
scious wakefulness, suggestive of diminished cortical integration
(Spoormaker et al., 2010; Tagliazucchi et al., 2012). Conversely, loss of
consciousness also occurs during epileptic seizures when large portions
of the cerebral cortex oscillate in synchrony, reflecting abnormally high
integration (Blumenfeld, 2012; Cavanna et al., 2017). Although IIT is
inspired by cognitive science, it is only weakly constrained by a set of
rules/principles that are invariant to the underlying neurobiology.
Proponents of IIT have explicitly claimed to go beyond the constituent
parts in terms of complexity/information exchange. For ITT, it is not
just our current description of the brain that is irreducible to its con-
stituent parts (e.g., because we lack measurement devices, empirical
evidence or theoretical tools). Instead, the emergent phenomena are
more accurate descriptions of underlying reality (e.g., by providing
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more accurate cause-effect description) (Marshall et al., 2018).
4. From strong to weak emergence

The two examples considered above both highlight the two hall-
marks of strongly emergent phenomena: (1) emergent phenomena are
hypothetically generated from underlying processes and (2) they are
somehow autonomous from them. However, this is problematic. Under
these conditions, the paradigm of strong emergence seems not to have
moved far from the perennial philosophical puzzle of emergent phe-
nomena floating inconsistently over some unspecific physical substrate.
The whole of the emergent phenomena still cannot be reduced or ex-
plained by its parts; thus, it follows that no change in its components
can have a predictable effect on the whole. If this is the case, it seems
reasonable to argue that the science of complex organisms (mereology)
is still supported by largely illegitimate metaphysics.

To move the argument further it may be helpful to introduce some
more stringent definitions of what actually constitutes strong emer-
gence. The most commonly used are the four principles introduced by
O’Connor (O’Connor, 1994):

“A property M is an emergent property of a (mereologically-complex)
object O if and only if:

(1) M supervenes on properties of the parts of O; and

(2) M is not had by any of the object's parts; and

(3) M is distinct from any structural property of O, and

(4) M has direct ("downward") determinative influence on the pattern of
behaviour involving O's parts.”

The problem of the above paradigm is that, in order to fulfil all these
requirements, the analysis of emergence becomes rapidly unworkable.
In the now classic example by Kim (Kim, 2006), one considers two
emergent mental states (M and M=) that supervene on physical states (Q
and Q=) of object O, respectively. Now it is legitimate to assume that, in
the workings of object O, the mental state M is causal to M. According
to O’Connor’s definition, the emergent property M would suffice to
explain Mx and this would not be reducible to any physical state of O.
However if M emerges from Q then logically Q is also causal for Msx. If
M and Q both explain M« then either they are the same thing or the
whole paradigm is overdetermined hence implausible (Kim, 2006).
Note in fact how, in the example above, the downward determinative
influence fades away and physical properties Q and Q* become central
to the scientific paradigm.

Are we therefore left with the conclusion that emergence is a con-
cept that must be founded within illegitimate metaphysics and un-
workable physics? Not necessarily. Good theoretical formulations that
explain the underpinning of complexity and emergence have been
around for a long time; Herbert Simon already in 1962 was the first to
point out that, from an evolutionary perspective, efficient complex
systems need be modular, e.g. composed of sub-systems, and they have
to be hierarchically organized, e.g. systems are composed of subsystems
that, in turn, have their own subsystems, and so on (Simon, 1962).
What the complexities of these various natural or man-made systems
really are and what output they actually produce is an obviously more
complicated question that, at least in part, may be investigated via si-
mulation and generation of complex computational models. For ex-
ample, recent complex theory has provided an abundance of cellular
automata as demonstrable examples of artificial life mimicking the
natural order. A cellular automaton is a collection of coloured cells on a
grid that evolves through a number of discrete time steps according to a
set of rules based on the states of neighbouring cells (Wolfram, 2002).
The rules governing the behaviour of the cells are applied iteratively for
as many time steps as desired. Cellular automata have notably been
used to model the complex dynamics underlying sensory information
processing in the human central nervous system (Gobron et al., 2007;
Kozma and Puljic, 2013). In this context, the term “emergence” conveys
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that these automata are able to evolve into complex spatial and/or
temporal patterns that may well be unexpected but their formation is
straightforwardly deducible from the rules of interaction of the auto-
maton as well as from the initial conditions of the system and its en-
vironment. Importantly, the properties of these automata can be de-
termined by observing or simulating the system with a fair amount of
calculation but not by any (or at least any simple) process of a priori
analysis.

This alternative paradigm, which is significantly more computa-
tionally tractable and amenable to analysis, was introduced by Bedau as
“weak emergence” (Bedau, 2011, 1997). According to his definition:

“A macrostate M of physical system O with microdynamic D is weakly
emergent if and only if M can be derived from D and O’s external con-
ditions but only by simulation. “

In other words, a description is weakly emergent if it can be mod-
elled by a suitable computation and, conversely, computations are
metaphysically “weak emergent” only if they contain the simulation of
the emergent behaviour from its elementary constituents.

What makes weak emergence especially interesting is its ubiquity.
Starting with simple games, such as John Conway’s The Game of Life'
(Gardner, 1970) and slime mould dynamics (Reid et al., 2012), the field
of complexity science has been studying and developing a great variety
of computational as well living and observable models that are by de-
finition “weakly emergent” and are allowing an increased under-
standing of complex phenomena (Dennett, 1923; Miller, 2015; West,
2017). The output of these models is extraordinary in the sense that
they are unexpected, yet allow empirical investigations and compre-
hensive definitions of their emergent properties, generally in terms of
stochastic distributions over a certain defined output space [Fig. 2].

5. Computational simulation of brain function

Theoretically, simulation of weakly emergent systems though the
generation of computational models, may be able to encompass some of
the phenomena inherent within strong emergent models (Bedau, 2011).

Hence the main question in this context is what computational ap-
proaches adopted in the modelling of brain function are “weakly”
emergent. The literature contains a plethora of mathematical models
that have been successful in modelling selective brain functions, from
vision (Landy and Movshon, 1991) to working memory (Madl et al.,
2015). However, in order to fulfil the weak emergence tenets outlined
above, such models should be able to encompass the whole breadth of
scales. Strictly speaking, these models should not resort to intermediate
pseudo-representations or rely on meta-scale states and dynamics; they
should rather be able to link across scales, e.g., from cellular events (i.e.
metabolic processes, neurotransmission) to systems-level dynamics to
cognition and, ultimately, behaviour. The task is clearly difficult but
some whole-brain computational model classes have demonstrated the
potential to support this ambitious scientific programme.

One such class of models is coupled oscillators. A remarkable
characteristic of this class of models, despite the inherent reductive
simplicity, is its ability to explain a large variety of phenomena which,
regardless of their specific nature and constituents, seem to share
common underlying principles that contribute to characteristic biolo-
gical phenomena such as synchronization (Kuramoto, 1984; Winfree,
1980). In the brain, an oscillator represents the basic cellular compu-
tational unit that, at least in the cortex, is composed by the interaction
of a pyramidal neuron and a GABA interneuron underpinning basic

1see (https://media.cognitron.co.uk/papers/game-of-life/index.html) for an
example of the Game of Life. Note, even from this simple cellular automata
model, differences in the initial state and connectivity of the model (See
Patterns in the demo for static, dynamic and mechanistically useful examples),
result in widely different emergent behavioural dynamics.
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Fig. 2. An illustrative approach to Strong Emergence (Authorized reproduction
— S. Harris - Science Cartoon Plus).

brain oscillations in gamma frequency ("80 Hz) (Borgers and Kopell,
2003, 2005; Tiesinga and Sejnowski, 2009; Whittington et al., 2000).
The tuning of oscillatory activity by glutamate and GABA activity as
well as plastic adaptations can be easily parameterized into oscillatory
models (Hellyer et al., 2016; Womelsdorf et al., 2014). The effects of
other neurotransmitters, such as dopamine and serotonin, can be also
incorporated as the differential tuning of the local excitation/inhibition
(E/D) ratio (Ciranna, 2006; SSmiatowski and Bijak, 1987). This basic
oscillatory motif seems to replicate at various scales and evidence has
been coalescing around the idea that brain activity self-organizes from
local neuronal assemblies to cortical structures and lobes (Cabral et al.,
2011, 2014). Models of Kuramoto oscillators with spatial and temporal
characteristics of the structural human white matter connectome
(Cabral et al., 2014) and analogous variants of Wilson-Cowan mean-
field neuronal models (Deco et al., 2009) or of the Greenberg-Hastings
(Haimovici et al., 2013) have been effectively utilized to generate
macroscopic brain signals [For an overview of this approach, see Fig. 3
A- > B]. These are reminiscent of the time-averaged properties of EEG
or fMRI data and replicate the dynamical functional connectivity pat-
terns observed empirically (Bhowmik and Shanahan, 2013; Cabral
et al., 2014; Deco et al., 2009, 2013; Deco et al., 2017; Ghosh et al.,
2008; Hansen et al., 2015). These models could properly incorporate
accurate metabolic constrains such as energetic expenditure (Hillary
and Grafman, 2017; Lord et al., 2013) or plasticity measures (Hellyer
et al., 2016). Similarly, the mappings of brain cellular components
available either from mRNA (Sunkin et al., 2013) or PET (Rizzo et al.,
2016) and noise elements collected from EEG data (Schirner et al.,
2018) could be used to improve their biological validity.

Scalability and biological plausibility are important but the key
aspect of oscillatory models is that they not only replicate empirical
signals but they also seem able to model effectively the emergence of
functional properties of the system. For example, network oscillations
can tune input selection, temporally aggregate neurons into assemblies,
induce synaptic plasticity to create cooperative support of temporal
representations and long-term consolidation of information (Beggs,
2008; Buzsaki and Draguhn, 2004; de Arcangelis and Herrmann, 2010;
Kinouchi and Copelli, 2006; Moretti and Munoz, 2013; Shanahan,
2010; Shew et al., 2011; Urban et al., 2012). These models have now
reached a level of maturity that enables predictions in the clinical realm
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A) Macroscopic Connectivity and Simulation
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B) Microscopic Connections and Dynamics
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Fig. 3. The use of coupled oscillators to explore emergent properties of neural connectivity at the macroscopic scale. A) The generalised overview of experiments
which aims to simulate from structural connectivity of the macroscopic brain, the overall functional activity of a putative neural network — such approaches often
generate simulations of fMRI or MEG signals which are then correlated with empirical measures. B) The underlying dynamics at each node, can be simulated using a
range of different underlying equations, here we show the simple Kuramoto oscillator system (left), which considers each node as a single reduced phase oscillator, or
the more complex (right) Wilson-Cowan model, which exposes for each node, 4 separate interconnections which represent localised (microscopic) connectivity. C)
The dynamics of the brain however, do not live in isolation of interactions with the external world, but are a weakly emergent property of this interaction. In our
previous work (Hellyer et al., 2017), we demonstrated one approach for extending exploration of emergent dynamics into the behavioural space — inextricably linking
the internal dynamics of the model to their emergent behavioural consequences (Portions of Fig. 3, adapted with permission from (Hellyer et al., 2016; Hellyer et al.,

2017)).
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(Deco and Kringelbach, 2014; Lord et al., 2017; Proix et al., 2017;
Zimmermann et al., 2018) from allowing the evaluation of systemic
effects of local injuries (Fagerholm et al., 2015) to linking primary
sensory and cognitive dysfunctions in schizophrenia (Turkheimer et al.,
2015)

The majority of the simulation work so far has investigated spon-
taneous neural dynamics, in the absence of tasks, sensory input or
motor output; the recent literature however has demonstrated the
ability of these models to encompass task related activity such as
learning and pattern recognition (Capano et al., 2015; van Kessenich
et al., 2019). To further inform cognitive sciences, these models have
also been constructed to project behaviour. We have recently embodied
a computational model of spontaneous neural dynamics into a simu-
lated agent, an avatar, with sensory input from and motor output to a
simulated environment (Hellyer et al., 2017) and demonstrated in be-
havioural terms the results of plastic adaptation of the system. The
modelling of interactions between a simulated brain and a simulated
environment is still in its infancy but has demonstrated the potential to
explore the emergence of behaviour directly from neurobiologically
plausible oscillatory models [Fig. 3B- > C].

6. Conclusion

This manuscript is primarily concerned with the epistemological
bases of emergence in models of higher cognitive function; this is re-
levant because the Neurosciences seem to be at an interesting yet fa-
miliar junction, reminiscent of the alchemy/chemistry paradigm shift.
Despite the remarkable advances brought forward by the labour of
healers, artists, clothiers and metal workers for more than 2000 years, it
was the introduction of accurate quantitative experiments, explicit
analytic thought and experimental verification, combined with an in-
creasing understand of matter that transformed chemistry into a science
(Cobb and Goldwhite, 2001).

With the above in mind, we have focused this manuscript on the
ontological foundations of wholistic analytical approaches to cognition
on the one hand, such as but not limited to FEP and IIT, and, on the
other, computational approaches that explore the emergence of higher
mental function from the neurobiological micro-scale via simulation, as
exemplified by systems of coupled oscillators in silico.

We have reviewed the contemporary epistemological literature that
suggests that strong emergence e.g. the use of overarching principles to
model mental function can be helpful but, without an anchoring to the
biological system, provides a merely descriptive tool that for practical
(rather than epistemological) reasons is likely to be overdetermined,
e.g. too many parameters/explanatory variables will suffice for ex-
planations for the same phenomenon. For example, the Bayesian model
of FEP is based on a probabilistic prior that is parameterized by internal
states; if these states are not directly and uniquely discernible, so will be
the parameters of the priors and the model becomes overdetermined.
Overdetermination also undermines IIT when, for example, it postulates
the emergence of consciousness out of a particular information flow in
the neuronal circuitry inspired by thalamo-cortical circuits and their
difference from cerebellar neuronal patterns (Tononi, 2003); as these
two anatomical systems differ significantly in a number of other ways,
these could equally be postulated as causative to the same phenomenon
(Cerullo, 2015). Nevertheless these models would be anchored to a
more credible ontology if shown to be valid stochastic approximations
of the output of computational renditions anchored to brain biology; for
example a Bayesian prior could be modelled out of the computational
bottom-up modelling of anticipation (Stephen and Dixon, 2011). In the
case of IIT, setting aside the ultimate ontological barrier faced by any
model of consciousness (e.g. the “hard” problem of explaining the re-
lationship between physical phenomena, such as brain processes, and
personal experience (Chalmers, 1995)), its use of simple models of in-
formation flow could be helpful in furthering some intuitive under-
standing on the computational properties of variously interconnected
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brain systems (Marshall et al., 2018). Indeed very recent work points to
the amenability of IIT to its embedding in lower level computational
models as well as biologically motivated networks (Marinazzo et al.,
2014; Mediano et al., 2016; Tagliazucchi, 2017).

On the other hand, the use of neurobiologically plausible, data-
testable, generative renderings of higher mental states is ontologically
solid but obviously a very challenging proposition. These models re-
quire biological fidelity, hence the capacity to be indexed and/or
bounded by signalling and metabolic parameters, and they need to be
scalable to demonstrate fidelity to brain macro-signals (e.g. EEG, MEG
and fMRI) and ultimately to generate credible behaviour.

The incorporation of metabolic constraints, plasticity measures but
also the mapping of cellular components available from mRNA studies
are just a few of the methods used to introduce biological plausibility
into the models (Hillary and Grafman, 2017; Lord et al., 2013; Hellyer
et al., 2016; Rizzo et al., 2016). In order to do so, the basic element of
the computational model needs to be at a micro-level low enough to
enable the incorporation of the above-mentioned biological data. For
example, in our recent proposal (Turkheimer et al., 2015) the ele-
mentary unit was selected as the PING ensemble (pyramidal-inter-
neuron interaction) which is a key determinant of oscillatory activity in
the superficial cortical layers, capable of generating beta and gamma
oscillations. The modelling of large neural networks using this ele-
mentary unit may notably incorporate GABA and glutamate receptor
expression data to further tune the local excitability of local neuronal
populations into a biologically realistic range.

Importantly, in order to avoid epistemologically “strong” leaps of
faith in model construction, future descriptions of cognition should also
carefully subdivide behaviour/consciousness in terms of the levels and
hierarchies that may be hypothesised to produce a conscious experience
(Seth, 2010). Together with the aforementioned, the recent literature
provides a number of examples of successful attempts to combine the
brain micro and macro signals and brings realistic promise of a viable
path for theoretical and computational neuroscience in the coming
years.

Finally, what about consciousness itself? Emergence, in its strong
version, has been at the core of a number of proposals around con-
sciousness that did not necessarily involve computation per se (for ex-
ample see (Havlik, 2012) on John Searle theory). Although an in-
formative account of these approaches is outside the scope of this
report, it may be useful to report here some words of Bedau on the
subject: “Weak emergence is no universal metaphysical solvent. For ex-
ample, if (hypothetically, and perhaps per impossible) we were to acquire
good evidence that human consciousness is weakly emergent, this would not
immediately dissolve all of the philosophical puzzles about consciousness.
Still, we would learn the answers to some questions: first, a precise notion of
emergence is involved in consciousness; second, this notion of emergence is
metaphysically benign. Thus, free from special distractions from emergence,
we could focus on the remaining puzzles just about consciousness itself.”
(Bedau, 1997) Hence, while neuroscientists address the problem of
consciousness with novel hypotheses and experimental paradigms (see
(Seth, 2010) for a comprehensive account) it may transpire that
emergence is not the pivot of a grand theory of consciousness, but just a
distraction.
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