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a b s t r a c t 

Event-related potentials (ERPs) are noninvasive measures of human brain activity that index a range of sensory, 

cognitive, affective, and motor processes. Despite their broad application across basic and clinical research, there 

is little standardization of ERP paradigms and analysis protocols across studies. To address this, we created ERP 

CORE (Compendium of Open Resources and Experiments), a set of optimized paradigms, experiment control 

scripts, data processing pipelines, and sample data (N = 40 neurotypical young adults) for seven widely used ERP 

components: N170, mismatch negativity (MMN), N2pc, N400, P3, lateralized readiness potential (LRP), and error- 

related negativity (ERN). This resource makes it possible for researchers to 1) employ standardized ERP paradigms 

in their research, 2) apply carefully designed analysis pipelines and use a priori selected parameters for data 

processing, 3) rigorously assess the quality of their data, and 4) test new analytic techniques with standardized 

data from a wide range of paradigms. 
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. Introduction 

The event-related potential (ERP) technique is a widely used tool

n human neuroscience. ERPs are primarily generated in cortical pyra-

idal cells, where extracellular voltages produced by thousands of

eurons sum together and are conducted instantaneously to the scalp

 Buzsáki et al., 2012 ; Jackson and Bolger, 2014 ). ERPs therefore pro-

ide a direct measure of neural activity with the millisecond-level tem-

oral resolution necessary to isolate the neurocognitive operations that

apidly unfold following a stimulus, response, or other event. Indeed,

any ERP components have been identified and validated as measures of

ensory, cognitive, affective, and motor processes (for an overview, see

uck and Kappenman, 2012 ). In recent years, the ERP technique has be-

ome accessible to a broad range of researchers due to the development

f relatively inexpensive EEG recording systems and both commercial

nd open source software packages for processing ERP data. 

Although some aspects of EEG recording and processing have be-

ome relatively standardized ( Keil et al., 2014 ; Pernet et al., 2018 ),

any others vary widely across laboratories and even across studies

ithin a laboratory. For example, the P3 component has been mea-

ured in thousands of studies using the oddball paradigm ( Ritter and

aughan, 1969 ), but the task parameters, recording settings, and data

rocessing methods vary widely across studies. In many cases, the pro-

ocols are based on decades-old traditions that include confounds in the
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xperimental design (such as a lack of counterbalancing) and analysis

rocedures that are now known to be flawed or suboptimal ( Luck, 2014 ).

hen improved protocols are developed, there are no widely accepted

ethods for demonstrating their superiority or for disseminating them

o they become broadly adopted. In addition, many important method-

logical details are often absent from published journal articles. As a

esult, a researcher who wishes to start using a given ERP paradigm has

o standardized protocol to use and no standardized method for assess-

ng whether the quality of the EEG data falls within normative values

nd whether the ERP components have been properly quantified. 

We addressed these issues by creating the ERP CORE (Compendium

f Open Resources and Experiments), a freely available online resource

onsisting of optimized paradigms, experiment control scripts, data from

0 neurotypical young adults, data processing pipelines and analysis

cripts, and a broad set of results ( https://doi.org/10.18115/D5JW4R ).

ollowing extensive piloting and consultations with experts in the field,

e developed six 10-minute optimized paradigms that together iso-

ate seven ERP components spanning a range of neurocognitive pro-

esses (see Fig. 1 ): 1) a visual discrimination paradigm for isolat-

ng the face-specific N170 response (for reviews, see Eimer, 2011 ;

euerriegel et al., 2015 ; Rossion and Jacques, 2012 ); 2) a passive au-

itory oddball paradigm for isolating the mismatch negativity (MMN;

or reviews, see Garrido et al., 2009 ; Näätänen and Kreegipuu, 2012 );

) a visual search paradigm for isolating the N2pc component (for

 review, see Luck, 2012 ); 4) a word-pair association paradigm for
er 2020 
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Fig. 1. Examples of a subset of the trials in each of the 

six tasks. The stimuli are not drawn to scale; see Sup- 

plementary Materials and Methods for actual sizes. (A) 

Face perception task used to elicit the N170. On each 

trial, an image of a face, car, scrambled face, or scram- 

bled car was presented in the center of the screen, and 

participants indicated whether a given stimulus was an 

“object ” (face or car) or a “texture ” (scrambled face 

or scrambled car). (B) Passive auditory oddball task 

used to elicit the mismatch negativity (MMN). Stan- 

dard tones (80 dB, p = .8) and deviant tones (70 dB, 

p = .2) were presented over speakers while partici- 

pants watched a silent video and ignored the tones. 

(C) Simple visual search task used to elicit the N2pc. 

Either pink or blue was designated the target color at 

the beginning of a trial block, and participants indi- 

cated whether the gap in the target color square was 

on the top or bottom. (D) Word pair judgment task used 

to elicit the N400. Each trial consisted of a red prime 

word followed by a green target word, and participants 

indicated whether the target word was semantically re- 

lated or unrelated to the prime word. (E) Active visual 

oddball task used to elicit the P3. The letters A, B, C, 

D, and E were presented in random order ( p = .2 for 

each letter). One of the letters was designated the tar- 

get for a given block of trials, and participants indi- 

cated whether each stimulus was the target or a non- 

target for that block. Thus, the probability of the tar- 

get category was .2, but the same physical stimulus 

served as a target in some blocks and a nontarget in 

others. (F) Flankers task used to elicit the lateralized 

readiness potential (LRP) and the error-related nega- 

tivity (ERN). The central arrowhead was the target, 

and it was flanked on both sides by arrowheads that 

pointed in the same direction (congruent trials) or the 

opposite direction (incongruent trials). Participants in- 

dicated the direction of the target arrowhead on each 

trial with a left- or right-hand buttonpress. 
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solating the N400 component (for reviews, see Kutas and Feder-

eier, 2011 ; Lau et al., 2008 ; Swaab et al., 2012 ); 5) an active vi-

ual oddball paradigm for isolating the P3 component (for reviews, see

interen et al., 2014 ; Polich, 2007 ; Polich, 2012 ); and 6) a flankers

aradigm for isolating the lateralized readiness potential (LRP; for re-

iews, see Eimer and Coles, 2003 ; Smulders and Miller, 2012 ); and the

rror-related negativity (ERN; for reviews, see Gehring et al., 2012 ;

lvet and Hajcak, 2008 ). Each of these ERP components can be iso-

ated from overlapping brain activity using the difference wave proce-

ure ( Kappenman and Luck, 2012 ; Luck, 2014 ). 

The ERP CORE paradigms were implemented in a widely used ex-

eriment control package ( Presentation ; Neurobehavioral Systems) and

ave been extensively tested. They can be run with a free trial license,

nd many of the parameters can be adjusted from the user interface so

hat researchers can create variations on the basic paradigms without

diting the code (thus minimizing the potential for programming er-
ors). We expect that data from hundreds of additional participants will

e added to our current database of 40 participants by other laborato-

ies. We also anticipate the creation of experiment control scripts that

an be run with open source software (e.g., Peirce, 2019 ). 

We also developed optimized signal processing and data anal-

sis pipelines for each component using the open source EEGLAB

 Delorme and Makeig, 2004 ) and ERPLAB ( Lopez-Calderon and

uck, 2014 ) MATLAB toolboxes. Archival copies of the analysis scripts,

aw and processed data for all 40 participants (including BIDS-

ompatible data), and a broad set of results are available online on

he Open Science Framework ( https://doi.org/10.18115/D5JW4R ). The

nalysis scripts are also hosted on GitHub ( https://github.com/lucklab/

RP _ CORE ), where updated code can be provided and bugs can be re-

orted. 

We anticipate that the ERP CORE will be used in at least eight ways.

irst, researchers who are setting up a new ERP lab can use the stan-

https://doi.org/10.18115/D5JW4R
https://github.com/lucklab/ERP_CORE
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ardized CORE paradigms to test their laboratory set-up and data qual-

ty. Second, researchers who are new to the ERP technique may use

he CORE paradigms and analysis scripts to enhance their understand-

ng of ERP experimental design and analysis methods, which will serve

s a starting point for the development of new paradigms. Third, re-

earchers who would like to add a standardized ERP measure to a multi-

ethod study can take our experiment control scripts and data process-

ng pipelines and “plug them in ” to their study with relative ease and

onfidence. Moreover, they could use the a priori analysis parameters

hat we provide (e.g., time windows for amplitude and latency quantifi-

ation), reducing researcher degrees of freedom ( Simmons et al., 2011 ).

ourth, we have provided a participant-by-participant quantification of

he noise levels in the data, which both new and experienced researchers

an use as a comparison against the noise levels in their data. ERP pa-

ers rarely provide information about noise levels, making it difficult to

now which data collection protocols yield the cleanest data, and the

RP CORE provides a first step toward standardized reporting of noise

evels. 

Fifth, researchers who would like to create a new variant of a stan-

ard ERP paradigm could use our experiment control scripts and data

rocessing pipelines as a starting point, saving substantial time and re-

ucing uncertainty and error. Sixth, researchers could test new hypothe-

es by reanalyzing the existing data in novel ways. For example, because

e have data from seven different ERP components in each participant,

t would be possible to ask how the timing and amplitude of one com-

onent is correlated with the timing and amplitude of other compo-

ents. Seventh, newly developed data processing procedures could be

pplied to the ERP CORE data to test the effectiveness of these proce-

ures across a broad range of paradigms. Finally, educators could use

hese resources to teach students about the design, implementation, and

nalysis of ERP experiments. For example, the ERP CORE is already be-

ng integrated into a formal curriculum for teaching human electrophys-

ology ( Bukach et al., 2019 ). 

. Materials and methods 

This study was approved by the Institutional Review Board

t the University of California, Davis, and all participants pro-

ided informed consent. All materials are freely available at

ttps://doi.org/10.18115/D5JW4R . 

.1. Participants 

We tested 40 participants (25 female, 15 male; Mean years of

ge = 21.5, SD = 2.87, Range 18–30; 38 right handed) from the Uni-

ersity of California, Davis community. Each participant had native En-

lish competence and normal color perception, normal or corrected-to-

ormal vision, and no history of neurological injury or disease (as indi-

ated by self-report). Participants received monetary compensation at a

ate of $10/hour. 

In our research with typical young adults, we always exclude par-

icipants who exhibit artifacts on more than 25% of trials ( Luck, 2014 ).

o maximize the amount of data we were able to retain in each ex-

eriment, this criterion was applied separately for each task. We also

xcluded participants from a task if their accuracy was below 75%, or if

ewer than 50% of trials remained in any single experimental condition.

o ensure an adequate number of error trials for the ERN, participants

ere excluded from the error-related negativity (ERN) analysis if fewer

han 6 error trials remained after artifact rejection ( Boudewyn et al.,

018 ). These criteria resulted in the exclusion of 1–6 participants per

omponent. The final sample size for each component is listed in Table 1 .

dditional details of participant exclusions are available in the online

esource. All analyses were performed using the final sample for each

ask, except where noted. The individual-participant data files for ex-

luded participants are provided in the online resource. 
.2. Stimuli and Tasks 

Fig. 1 shows example trials in each of the six tasks. Here we provide

 brief overview of each task; details are provided in the Supplemen-

ary Materials and Methods. The N170 was elicited in a face perception

ask modified from Rossion & Caharel (2011) using their stimuli (which

re available in the online resource; see Fig. 1 A). In this task, an image

f a face, car, scrambled face, or scrambled car was presented on each

rial in the center of the screen, and participants responded whether the

timulus was an “object ” (face or car) or a “texture ” (scrambled face or

crambled car). The MMN was elicited using a passive auditory oddball

ask modeled on Näätänen et al. ( 2004 ; see Fig. 1 B). Standard tones (pre-

ented at 80 dB, with p = .8) and deviant tones (presented at 70 dB, with

 = .2) were presented over speakers while participants watched a silent

ideo and ignored the tones. The N2pc was elicited using a simple visual

earch task based on Luck et al. (2006 ; see Fig. 1 C). Participants were

iven a target color of pink or blue at the beginning of a trial block, and

esponded on each trial whether the gap in the target color square was

n the top or bottom. The N400 was elicited using a word pair judgment

ask adapted from Holcomb & Kutas ( 1990 ; see Fig. 1 D). On each trial,

 red prime word was followed by a green target word. Participants re-

ponded whether the target word was semantically related or unrelated

o the prime word. The P3 was elicited in an active visual oddball task

dapted from Luck et al. (2009 ; see Fig. 1 E). The letters A, B, C, D, and

 were presented in random order ( p = .2 for each letter). One letter was

esignated the target for a given block of trials, and the other 4 letters

ere non-targets. Thus, the probability of the target category was .2, but

he same physical stimulus served as a target in some blocks and a non-

arget in others. Participants responded whether the letter presented on

ach trial was the target or a non-target for that block. The lateralized

eadiness potential (LRP) and the error-related negativity (ERN) were

licited using a variant of the Eriksen flanker task ( Eriksen and Erik-

en, 1974 ; see Fig. 1 F). A central arrowhead pointing to the left or right

as flanked on both sides by arrowheads that pointed in the same di-

ection (congruent trials) or the opposite direction (incongruent trials).

articipants indicated the direction of the central arrowhead on each

rial with a left- or right-hand buttonpress. 

.3. EEG Recording 

The continuous EEG was recorded using a Biosemi ActiveTwo record-

ng system with active electrodes (Biosemi B.V., Amsterdam, the Nether-

ands). We recorded from 30 scalp electrodes, mounted in an elastic cap

nd placed according to the International 10/20 System (FP1, F3, F7,

C3, C3, C5, P3, P7, P9, PO7, PO3, O1, Oz, Pz, CPz, FP2, Fz, F4, F8, FC4,

Cz, Cz, C4, C6, P4, P8, P10, PO8, PO4, O2; see Supplementary Fig. S1).

he common mode sense (CMS) electrode was located at PO1, and the

riven right leg (DRL) electrode was located at PO2. The horizontal elec-

rooculogram (HEOG) was recorded from electrodes placed lateral to the

xternal canthus of each eye. The vertical electrooculogram (VEOG) was

ecorded from an electrode placed below the right eye. Signals were in-

identally also recorded from 37 other sites, but these sites were not

onitored during the recording and are not included in the ERP CORE

ata set. All signals were low-pass filtered using a fifth order sinc filter

ith a half-power cutoff at 204.8 Hz and then digitized at 1024 Hz with

4 bits of resolution. The signals were recorded in single-ended mode

i.e., measuring the voltage between the active and ground electrodes

ithout the use of a reference), and referencing was performed offline,

s described below. 

.4. Signal Processing and Averaging 

Signal processing and analysis were performed in MATLAB using

EGLAB toolbox (version 13_4_4b; Delorme and Makeig, 2004 ) and ER-

LAB toolbox (version 8.001; Lopez-Calderon and Luck, 2014 ). Here we

rovide a detailed conceptual description of the analysis procedures;

https://doi.org/10.18115/D5JW4R
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Table 1 

Sample size (after excluding subjects with too many artifacts), electrode site, time-locking event, epoch window, 

and baseline period for each component 

ERP 

Component 

Sample 

Size (N) 

Electrode 

Site 

Time-Locking 

Event 

Epoch Window 

(ms) 

Baseline Period 

(ms) 

N170 37 PO8 Stimulus-locked -200 to 800 -200 to 0 

MMN 39 FCz Stimulus-locked -200 to 800 -200 to 0 

N2pc 35 PO7/PO8 Stimulus-locked -200 to 800 -200 to 0 

N400 39 CPz Stimulus-locked -200 to 800 -200 to 0 

P3 34 Pz Stimulus-locked -200 to 800 -200 to 0 

LRP 37 C3/C4 Response-locked -800 to 200 -800 to -600 

ERN 36 FCz Response-locked -600 to 400 -400 to -200 
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urther details of each data processing step are provided in comments

ithin the online MATLAB scripts, which can be used to exactly repli-

ate our analyses. 

The event codes were shifted to account for the LCD monitor delay,

nd the EEG and EOG signals were downsampled to 256 Hz to increase

ata processing speeds (this decreased sampling rate is well within nor-

ative values for these paradigms). For analysis of the MMN, N2pc,

400, P3, LRP, and ERN, the EEG signals were referenced offline to the

verage of P9 and P10 (located adjacent to the mastoids); we find that

9 and P10 provide cleaner signals than the traditional mastoid sites,

ut the resulting waveforms are otherwise nearly identical to mastoid-

eferenced data. For analysis of the N170, the EEG signals were refer-

nced to the average of all 33 sites (because the average reference is

tandard in the N170 literature). A bipolar HEOG signal was computed

s left HEOG minus right HEOG. A bipolar VEOG signal was computed

s lower VEOG minus FP2. 

The DC offsets were removed, and the signals were high-pass filtered

non-causal Butterworth impulse response function, half-amplitude cut-

ff at 0.1 Hz, 12 dB/oct roll-off). In preparation for artifact correc-

ion, portions of EEG containing large muscle artifacts, extreme volt-

ge offsets, or break periods longer than two seconds were identified by

 semi-automatic ERPLAB algorithm and removed. Independent com-

onent analysis (ICA) was then performed, and components that were

learly associated with eyeblinks or horizontal eye movements —as as-

essed by visual inspection of the waveforms and the scalp distributions

f the components —were removed ( Jung, et al., 2000 ). Corrected bipo-

ar HEOG and VEOG signals were computed from the ICA-corrected

ata. The original (pre-correction) bipolar HEOG and VEOG signals were

lso retained to provide a record of the ocular artifacts that were present

n the original data. 

The data were segmented and baseline-corrected for each trial using

he time windows shown in Table 1 . Channels with excessive levels of

oise as determined by visual inspection of the data were interpolated

sing EEGLAB’s spherical interpolation algorithm. Note that interpola-

ion was not performed on any channels that were subsequently used to

uantify the ERP components and only impacted the topographic maps

hown in Supplementary Fig. S2. 

Segments of data containing artifacts that survived the correction

rocedure were flagged and excluded from analysis using automated

RPLAB procedures with individualized thresholds set on the basis of

isual inspection of each participant’s data (see justification for individ-

alized thresholds in Luck, 2014 ). This included excluding trials with

arge voltage excursions in any channel. Because ICA does not always

orrect eye movements perfectly, especially in participants who rarely

ake eye movements, we also discarded any trials with evidence of large

ye movements (greater than 4° of visual angle) in the corrected HEOG.

ecause horizontal eye movements are more likely to occur in tasks that

resent stimuli away from fixation, as in the visual search task we used

o elicit the N2pc component, we also removed trials that contained hor-

zontal eye movements larger than 0.2° of visual angle that could have

mpacted the N2pc (i.e., that occurred between -50 and 350 ms relative

o stimulus onset). To ensure that blinks and horizontal eye movements

id not interfere with perception of the visual stimuli, an additional
rocedure was performed for the tasks examining stimulus-locked re-

ponses to visual stimuli (i.e., N170, N2pc, N400, and P3). Specifically,

e excluded trials on which an eyeblink or horizontal eye movement

as present in the original (uncorrected) HEOG or VEOG signal during

he presentation of the stimulus. 

Trials with incorrect behavioral responses were excluded from all

nalyses, except for the ERN. Trials with excessively fast or slow reaction

imes (RTs) were also excluded from all analyses, with the acceptable

T range determined by visual inspection of RT probability histograms

veraged across participants for each task. This resulted in an accept-

ble response window of 200 to 1000 ms after the onset of the stimulus

n the N170, N2pc, P3, LRP, and ERN analyses, and an acceptable re-

ponse window of 200 to 1500 ms after the onset of the target word in

he N400 analysis; the MMN task required no responses and therefore

o exclusions were made on the basis of RT. Accuracy was defined as

he proportion of correct trials within the acceptable RT range prior to

rtifact rejection. Note that future studies with these tasks can use these

ime ranges as a priori windows (assuming that a similar population is

eing tested). 

.5. Component Isolation with Difference Waves 

The tasks were designed so that each ERP component could be iso-

ated from overlapping brain activity by means of a difference wave-

orm. Although difference waves have limitations in some contexts

 Meyer et al., 2017 ), they are often valuable because they eliminate any

rain activity that is in common to the two conditions, allowing precise

ssessment of the time course and magnitude of the small set of pro-

esses that differ between conditions (see Kappenman and Luck, 2012 ;

uck, 2014 ). A difference waveform was created for each component us-

ng the procedures specified in the Supplementary Materials and Meth-

ds. All amplitude and latency measurements were then performed on

he difference waves using measurement procedures described later. 

.6. Quantification of Signals and Noise 

.6.1. Electrode site determination 

For each component, we determined the electrode site at which that

omponent was largest in the difference wave, and we used that site

or all analyses. Data from the other electrode sites are provided in the

nline resource. Table 1 shows the electrode site chosen to quantify each

omponent. The P3 showed similar amplitudes at CPz and Pz, and we

hose to quantify the P3 at Pz because this is the site most widely used

n the literature. We recommend the electrode sites in Table 1 as a priori

easurement sites for future research using these tasks. 

Ordinarily, it would be inappropriate to choose the site at which the

ffect is largest, because this “cherry picking ” would bias the data in fa-

or of the presence of an effect, inflating the Type I error rate ( Luck and

aspelin, 2017 ). However, the effects examined in the present study are

lready known to exist, and our goal was to characterize these effects

ather than to test for their existence. Researchers often avoid cherry

icking by averaging across a cluster of sites rather than choosing a sin-

le site. This may also improve data quality ( Luck, 2014 ). However, the
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Table 2 

Time windows of statistically significant differences (based on the mass univariate approach) and rec- 

ommended measurement windows, relative to stimulus onset (for N170, MMN, N2pc, N400, and P3) or 

response onset (for LRP and ERN). 

ERP Component Statistically Significant Time Windows (ms) Recommended Measurement Windows (ms) 

N170 105.47 to 148.44 110 to 150 

MMN 113.28 to 230.47 125 to 225 

N2pc 191.41 to 292.97 200 to 275 

N400 183.59 to 750.00 300 to 500 

P3 253.91 to 664.06 300 to 600 

LRP -125.00 to 15.63 -100 to 0 

ERN -27.34 to 109.38 0 to 100 
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luster approach may decrease the size of the effect, and we know of no

ormal analyses demonstrating which approach leads to the greatest sta-

istical power. The ERP CORE data would provide an excellent test bed

or assessing which approach is best across a range of components, but

uch an analysis is beyond the scope of the present paper. For the sake

f simplicity, and to avoid arbitrary decisions about cluster sizes, the

resent analyses are based on the single electrode site with the largest

mplitude; data from the other sites (see Supplementary Fig. S1) are

vailable in the online resource. 

.6.2. Time window determination 

The present study also provided an opportunity to determine opti-

al time periods for each component that can be used as a priori mea-

urement windows in future studies. To accomplish this, we used the

ass Univariate Toolbox ( Groppe et al., 2011 ) to find a cluster of sta-

istically significant time points at the electrode site shown in Table 1 .

ur procedure began by comparing the mean voltage from the relevant

ifference wave to zero using a separate one-sample t test at each time

oint. The algorithm then found the largest cluster of consecutive time

oints that were individually significant and computed the mass of this

luster (the sum of the single-point t values for the cluster). A permu-

ation test with 2,500 iterations was then used to verify that each of

hese cluster masses was larger than the 95 th percentile of values that

ould be expected by chance. The cluster obtained for each component

reatly exceeded this 95 th percentile (the lowest value was greater than

he 99.99 th percentile). The time ranges of these clusters are provided

n Table 2 . 

Although the mass univariate approach does not provide strict con-

rol of the Type I error rate for individual time points ( Groppe et al.,

011 ; Sassenhagen and Draschkow, 2019 ) —and using it to define time

indows for subsequent analyses of the same data set would ordinarily

e considered “double dipping ” ( Kriegeskorte et al., 2009 ) —our goal

as simply to provide a set of empirically justified time windows for

se in subsequent studies. We used the resulting windows to measure

he amplitudes and latencies from the present study, which would gener-

lly be inappropriate. However, our goal in these analyses was not to de-

ermine whether real differences between conditions were present (be-

ause these differences have already been widely replicated). Instead,

he goal of these analyses was to provide amplitude and latency val-

es that can be used for comparison by future researchers. Note that,

ecause the data and analysis scripts are available online, researchers

an easily measure the amplitudes and latencies in the CORE data using

ther time windows. 

In many studies, multiple components may be present in the same

ifference wave, and a narrower time window may help isolate the com-

onent of interest. We therefore performed an extensive literature re-

iew to determine the time windows that are most commonly used in

nalysis of these components. For each component, we then chose a final

ime window that (a) was within the range of the statistically significant

luster obtained from the mass univariate approach, and (b) was also

ithin the range of commonly used values. The resulting time windows

re shown in Table 2 . As in the case of our procedure for determining

he channel for measurement, this procedure for choosing time windows
ould not be appropriate in most studies. However, the present effects

re known to exist, and our goal was to determine the best windows

or future research. We recommend these as a priori time windows for

uture studies using these specific tasks or other similar tasks (assuming

hat a similar population is tested). 

.6.3. EEG amplitude spectrum quantification 

We computed amplitude spectra from the EEG. Specifically, fast

ourier transforms were computed on zero-padded 5-s segments of the

ontinuous high-pass filtered EEG with 50% overlap. The data were an-

lyzed separately for each of the seven components using the data from

he relevant task at the measurement site for that component. Break

eriods and segments containing large artifacts were excluded, and the

mplitude spectra were averaged across segments and participants using

he full sample (N = 40). 

.6.4. Noise quantification 

Our first measure of noise focused on the baseline period (see

able 1 ) in the averaged ERP waveforms. To quantify the baseline noise,

e calculated the point-by-point SD of the voltage across the baseline

eriod in the averaged ERP waveform for each component, separately

or each participant. Low-pass filtering is often but not always applied

o ERPs prior to measuring components (see below), so we performed

hese calculations before and after applying a 20 Hz low-pass filter (non-

ausal Butterworth impulse response function, half-amplitude cut-off at

0 Hz, 48 dB/oct roll-off). We quantified the baseline noise in both the

arent waveforms and the difference waves. Note that some systematic

ctivity was present during the baseline periods of the parent wave-

orms (reflecting preparatory activity and/or overlapping activity from

he previous trial), and this systematic activity also contributes to this

easure of baseline noise. However, given our experimental designs,

ll systematic variation was eliminated during the baseline period in

he difference waves, so our baseline noise measure is a pure measure

f noise for the difference waves. 

Our second measure of noise was analogous to the baseline noise

easure, but applied during the measurement period for each compo-

ent. The point-by-point SD during the measurement window would

rdinarily reflect both the signal and the noise, so we used plus-minus

veraging ( Schimmel, 1967 ) to eliminate the signal but retain the noise.

his method eliminates the signal by inverting the polarity of half the

ingle-trial EEG epochs prior to averaging. Specifically, plus-minus av-

rages were computed by dividing the artifact-free EEG epochs for each

articipant into even-numbered trials and odd-numbered trials sepa-

ately for each condition, and then applying an algorithm that was math-

matically equivalent to inverting the polarity of the even-numbered

rials and then averaging the odd-numbered trials together with the in-

erted even-numbered trials. To quantify the noise in the plus-minus

verages, we calculated the standard deviation (SD) of the plus-minus

aveforms for each participant during the measurement window for

ach component. Note that this measure of noise includes trial-by-trial

ariability in the signal of interest, whereas the baseline noise measure

oes not. Thus, two these measures of noise provide complementary in-

ormation. 
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1 Onset latencies can be distorted by low-pass filters ( Luck, 2014 ; 

Rousselet, 2012 ), which spread the signal in time (symmetrically for noncausal 

filters and asymmetrically toward longer latencies for causal filters). However, 

the measure of onset latency used in the present study is only minimally affected 

by low-pass filtering (see Figure 12.8C in Luck, 2014 ). Extreme high-pass filters 

can also impact onset latencies, but the mild 0.1 Hz cutoff frequency used here 

has very little impact ( Rousselet, 2012 , Tanner et al., 2015 ). 
Our final measure of noise used the plus-minus averages to estimate

he amount of noise at each individual time point in the waveforms.

n the absence of noise, the plus-minus average for a given participant

ould be zero at all time points, and any deviation from zero reflects

ariability (noise) in the data. However, the polarity of this deviation

s random, so one cannot quantify the noise by simply taking the mean

cross participants (which would have an expected value of zero). In-

tead, we computed the SD across participants at each time point. This

ielded a waveform showing noise level at each time point for each of

he ERP components. 

.6.5. Amplitude and latency measures 

Using the electrodes shown in Table 1 and the time windows shown

n Table 2 , we measured the mean amplitude, peak amplitude, peak la-

ency, and 50% area latency (the time point that divides the area under

he curve into subregions of equal area) from each of the seven dif-

erence waves. We also quantified the onset latency of each difference

ave with the fractional peak latency measure (the time at which the

oltage reaches 50% of the peak amplitude; see Kiesel et al., 2008 );

he measurement windows were shifted 100 ms earlier for these onset

easurements. As secondary analyses, we also quantified the mean am-

litude of the individual parent waveforms that were used to create the

ifference waveforms. The other measurements are typically valid only

or difference waveforms (see Luck, 2014 ), so these measures were not

btained from the parent waveforms. For example, it would be difficult

o measure the peak latency of the MMN from the parent waveforms

iven that many other components are also present in the same time

indow. Because peak amplitude, peak latency, and fractional peak la-

ency are all sensitive to high-frequency noise, a low-pass filter (non-

ausal Butterworth impulse response function, half-amplitude cut-off at

0 Hz, 48 dB/oct roll-off) was applied to the waveforms prior to obtain-

ng these measures. 

. Results 

Fig. 2 shows the grand average “parent ” ERP waveforms from each

elevant condition and the ERP difference waveforms between condi-

ions (including the standard error of the mean across participants). Be-

avioral data are summarized in Supplementary Table S1 in the supple-

entary materials. The experiment control scripts, raw data, analysis

cripts, processed data, and a broad set of results are available in the

nline resource ( https://doi.org/10.18115/D5JW4R ). 

.1. Basic ERP Effects 

The ERP waveforms in Fig. 2 show that the expected experimental ef-

ects were observed for all seven components. The N170 component was

arger and earlier for faces than for cars, with a maximum effect over

ight inferotemporal cortex; the latency difference may seem surpris-

ng, but it is commonly observed ( Carmel, 2002 ; Itier, 2004 ; Sagiv and

entin, 2001 ). Auditory deviants in the MMN paradigm elicited a nega-

ivity peaking near 200 ms with a maximum over medial frontocentral

ortex. The N2pc paradigm yielded a more negative (less positive) volt-

ge from 200–300 ms over the hemisphere contralateral to the target

ompared to the ipsilateral hemisphere. In the N400 paradigm, the sec-

nd word in a pair elicited a larger negativity from approximately 200–

00 ms when it was semantically unrelated to the first word than when

t was related, with a maximum over medial centroparietal cortex. The

isual P3 paradigm yielded a larger positive voltage for the rare stimu-

us category than for the frequent stimulus category, with a maximum

ffect at the parietal midline electrode. In the flankers paradigm, both

he lateralized readiness potential (LRP) and the error-related negativ-

ty (ERN) were observed. The LRP was a more negative voltage over the

otor cortex contralateral to the response hand compared to the ipsilat-

ral side, and the ERN was a more negative voltage over midline fron-
ocentral cortex for incorrect responses compared to correct responses.

opographic maps of each effect are provided in Supplementary Fig. S2.

.2. ERP Quantification 

We quantified the magnitude and timing of each component in sev-

ral different ways. All measurements were performed on the difference

aveforms, which was necessary for components that are only well de-

ned in difference waves (e.g., the N2pc and LRP components). Mean

mplitude measures for the parent waveforms are provided in Supple-

entary Table S2. The time windows used for measuring each compo-

ent are listed in Table 2 , and the procedures used for determining the

ime windows are described in the Materials and Methods. The mean

alues for each component are provided in Table 3 , along with stan-

ard deviations (SDs) to quantify the variability across participants. His-

ograms of the single-participant values are provided in Supplementary

ig. S3 so that future studies can compare their single-participant values

o the range observed in our data. The range, first and third quartiles,

nd the interquartile range are provided in Supplementary Table S3. As

hown in Table 3 and Supplementary Fig. S3, the size and timing of the

RP effects varied widely across participants, even within this relatively

omogenous sample of neurotypical young adults. 

We quantified the magnitude of the components using mean ampli-

ude and peak amplitude. The effect sizes are provided in Table 3 (i.e.,

ohen’s d z for a one-sample comparison against zero) to aid future re-

earchers in performing a priori statistical power calculations. Both the

ean amplitude and peak amplitude measures showed very large effect

izes ( d z > 1) for all components, demonstrating the robustness of the

ORE paradigms. Although the observed effect sizes appear larger for

eak than mean amplitude, it should be noted that using 0 μV as the

hance value would be expected to overestimate the true effect size for

eak amplitude, because peaks are statistically biased away from zero

 Luck, 2014 ). Future research is needed to establish the ideal method

or quantifying effect sizes for peak amplitude measures. 

We quantified the midpoint latency of each effect using the peak la-

ency and the 50% area latency techniques. Peak latency is much more

idely used to quantify midpoint latency, but 50% area latency has sev-

ral advantages (although it is mainly useful when a component is mea-

ured from a difference wave; see Luck, 2014 ). For most components,

here was close agreement between the means of these two measures,

ut the standard deviations were substantially lower for the 50% area

atency measure. We also calculated the onset latency 1 of each effect,

sing the fractional peak latency technique (see Kiesel et al., 2008 ). Fu-

ure research could use the ERP CORE data to compare the effect sizes

ielded by different algorithms for quantifying ERP amplitudes and la-

encies. 

.3. EEG Spectral Quantification 

Researchers who use the ERP CORE paradigms may wish to com-

are the frequency-domain characteristics of their data with the CORE

ata (e.g., to compare alpha-band activity as an index of attentional en-

agement). We therefore computed the amplitude density of the EEG

ignal at each frequency ranging from 1 to 100 Hz (see Materials and

ethods for details). Fig. 3 (left panel) shows the amplitude spectra at

he electrode site of interest for each component, averaged across all

0 participants. As usual, the spectra exhibited a gradual falloff as the

https://doi.org/10.18115/D5JW4R
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Fig. 2. Grand average parent ERP waveforms (left) and difference waveforms (right). The shading surrounding the difference waveforms indicates the region that 

fell within ± 1 SEM at a given time point (which reflects both measurement error and true differences among participants). A digital low-pass filter was applied 

offline before plotting the ERP waveforms (Butterworth impulse response function, half-amplitude cutoff at 20 Hz, 48 dB/oct roll-off). 
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Fig. 3. Quantification of the EEG signal and the ERP noise. (Left) Amplitude density as a function of frequency (on a log scale) for each ERP component at the 

electrode site where that component was maximal, calculated from individual participants and then averaged. Note that, although LRP and ERN were isolated in the 

same task, the spectra were obtained at different electrode sites and therefore differ slightly. (Middle) Probability histograms of the noise levels during the baseline 

period for the averaged ERP parent waveforms and difference waveforms. Bins are 0.4 μV in width, and the x-axis indicates the midpoint value for each bin. (Right) 

Probability histograms of the noise levels during the measurement time window of the plus-minus average parent waveforms and difference waveforms. Bins are 

0.4 μV in width, and the x-axis indicates the midpoint value for each bin. 
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Table 3 

ERP difference waveform measures, averaged across participants (standard deviations in parentheses), along with effect size (Cohen’s d z ) of the difference in 

amplitude from 0 μV. 

ERP 

Component 

Mean Amplitude 

(μV) 

Peak Amplitude 

(μV) 

Peak Latency 

(ms) 

50% Area 

Latency (ms) 

Onset Latency 

(ms) 

N170 
-3.37 (2.71) -5.52 (3.32) 

131.44 (12.56) 131.84 (8.58) 95.76 (29.05) 
d z = 1.24 d z = 1.66 

MMN 

-1.86 (1.22) -3.46 (1.71) 
187.60 (19.13) 185.20 (14.44) 146.94 (30.33) 

d z = 1.52 d z = 2.02 

N2pc 
-1.14 (1.15) -1.86 (1.60) 

253.24 (18.51) 246.43 (8.81) 213.63 (30.85) 
d z = 1.00 d z = 1.16 

N400 
-7.61 (3.27) -11.04 (4.65) 

370.09 (49.43) 387.72 (17.85) 284.86 (44.92) 
d z = 2.33 d z = 2.38 

P3 
6.29 (3.39) 10.15 (4.53) 

408.89 (70.48) 436.47 (32.77) 327.44 (61.98) 
d z = 1.86 d z = 2.24 

LRP 
-2.40 (0.94) -3.41 (1.15) 

-49.94 (15.66) -49.09 (9.72) -96.50 (19.85) 
d z = 2.56 d z = 2.97 

ERN 

-9.26 (5.90) -13.86 (7.01) 
54.47 (12.63) 54.36 (9.99) 2.50 (27.53) 

d z = 1.57 d z = 1.98 
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requency increased (approximately 1/ f ) along with a peak in the al-

ha band at posterior scalp sites and a small spike at 60 Hz reflecting

lectrical noise. 

.4. Noise Quantification 

In addition to measuring the components (as is standard in ERP stud-

es), we also quantified the noise level of the data (which is not typically

rovided in ERP papers). The point-by-point standard errors shown in

ig. 2 do not provide a good measure of the noise level, because they re-

ect a combination of EEG noise and true individual differences among

articipants. We therefore used three other methods to quantify noise

a detailed justification and explanation of each method is provided in

he Materials and Methods). Note that noise is typically defined rela-

ive to the signal of interest, and here we define noise as any source of

ariability that impacts the averaged ERP waveforms, even if some of

hat variability reflects neural signals that might be the focus of study

n other contexts (e.g., phase-random alpha-band oscillations). 

First, we quantified the noise in the baseline of each averaged ERP

aveform by calculating the point-to-point variability (SD) of the volt-

ge across the baseline period listed in Table 1 (separately for each par-

icipant). This provides an overall measure of the amount of noise that

urvives averaging, without influence from the actual ERP signals. Be-

ause many researchers would apply a low-pass filter prior to measuring

omponent amplitudes or latencies, we performed this analysis both be-

ore and after applying a 20 Hz low-pass filter. Table 4 provides the

ean of the baseline noise values across participants, and Fig. 3 (mid-

le panel) provides probability histograms to show the range of single-

articipant noise levels in the baseline of the unfiltered averaged ERP

aveforms. The range, first and third quartiles, and the interquartile

ange in the unfiltered ERP waveforms are provided in Supplementary

able S4. Interestingly, the baseline noise levels varied markedly across

articipants for some of the components. The baseline noise was only

lightly reduced in the filtered waveforms, reflecting the fact that most

f the EEG energy was below 20 Hz (see Fig. 3 , left panel). As expected,

he noise level was inversely related to the number of trials being aver-

ged together (for the parent waveforms; e.g., higher for the rare than

or the frequent stimuli in the P3 paradigm) and was typically larger for

he difference waveforms than for the parent waveforms. 

Second, we quantified the noise during the measurement time win-

ow of each component. Because the SD across time points in the mea-

urement window would include the signal as well as the noise, we per-

ormed plus-minus averaging ( Schimmel, 1967 ) before measuring the

D. This procedure inverts the EEG for half of the trials prior to aver-
ging, which eliminates the signal while retaining the noise (including

ny variability in the signal itself). The plus-minus averages are shown

n Supplementary Fig. S4. Table 4 provides the mean noise level across

articipants during the measurement window for each component, and

ig. 3 (right panel) provides probability histograms to show the range of

ingle-participant noise levels in the measurement window. The range,

rst and third quartiles, and the interquartile range in the unfiltered

RP waveforms are provided in Supplementary Table S5. 

Finally, we estimated the noise level at each individual time point

n the waveform, quantified as the SD across participants at that time

oint in the plus-minus averages. These point-by-point estimates of noise

re shown in Fig. 4 . For several components (e.g., P3, N400, MMN),

he noise tended to increase over the course of the epoch. For the ERN

aveform, noise increased dramatically following the execution of the

esponse (see also the bottom row in Supplementary Fig. S4). 

Together, these three measures of noise will allow researchers to de-

ermine how their noise levels compare to the noise levels in our data.

esearchers who are developing new signal processing procedures can

lso apply these procedures to the ERP CORE data and assess their im-

act on the noise level. In addition, our data analysis scripts can be

sed as a starting point for computing these metrics of noise in other

aradigms. 

. Discussion 

The ERP CORE —a Compendium of Open Resources and Experi-

ents for human ERP research —consists of optimized paradigms, ex-

eriment control scripts, EEG data, analysis pipelines, data processing

cripts, and a broad set of results. All materials are freely available at

ttps://doi.org/10.18115/D5JW4R . Despite the widespread use of ERPs

n the fields of psychology, psychiatry, and neuroscience, this resource

s the first of its kind. 

Each paradigm in the ERP CORE successfully elicited the compo-

ent of interest with a large effect size in a 10 min recording. More-

ver, we provided several measures of the magnitude and timing of the

RP components, noise levels in the data, and variability across partici-

ants. These results will serve as a guide to researchers in selecting task

nd analysis parameters in future studies, and they provide a standard

gainst which future data sets can be compared. We are not claiming

hat our data quality is optimal or that our effect sizes can be used as

ormal norms for the broader population. However, no other standard of

his nature currently exists, and the ERP CORE provides a starting point

or the development of new standards based on larger samples and other

ubject populations. 

https://doi.org/10.18115/D5JW4R
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Table 4 

Average standard deviation (SD) of the voltage in the baseline time window of the ERP waveform and in 

the measurement time window of the plus-minus averages 

Baseline Time Window Measurement Time Window 

ERP 

Component Trial Type 

Unfiltered SD 

Amplitude 

( 𝜇V) 

Filtered SD 

Amplitude 

( 𝜇V) 

Unfiltered SD 

Amplitude 

( 𝜇V) 

Filtered SD 

Amplitude 

( 𝜇V) 

N170 

Faces 0.937 0.824 0.595 0.411 

Cars 0.799 0.677 0.489 0.306 

Faces-Cars 1.214 1.044 0.833 0.590 

MMN 

Deviants 0.811 0.743 0.555 0.452 

Standards 0.664 0.639 0.315 0.254 

Deviants-Standards 0.684 0.577 0.616 0.496 

N2pc 

Contralateral 0.500 0.417 0.316 0.200 

Ipsilateral 0.542 0.449 0.304 0.191 

Contralateral-Ipsilateral 0.559 0.446 0.410 0.281 

N400 

Unrelated 1.505 1.394 0.945 0.811 

Related 1.423 1.311 1.051 0.912 

Unrelated-Related 1.662 1.468 1.414 1.221 

P3 

Rare 1.570 1.415 1.383 1.238 

Frequent 0.823 0.750 0.689 0.622 

Rare-Frequent 1.566 1.378 1.516 1.362 

LRP 

Contralateral 0.507 0.420 0.378 0.272 

Ipsilateral 0.524 0.439 0.387 0.279 

Contralateral-Ipsilateral 0.388 0.291 0.324 0.212 

ERN 

Incorrect 1.848 1.625 2.250 2.055 

Correct 0.918 0.884 0.375 0.290 

Incorrect-Correct 1.909 1.662 2.264 2.050 
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ERN Fig. 4. Noise level at each time point for 

each component at the electrode site where 

that component was maximal, measured as 

the standard deviation across participants 

of the plus-minus ERP difference wave- 

forms at a given time point. Time zero rep- 

resents the time-locking point for each ERP 

component (i.e., the onset of the stimulus 

for the N170, MMN, N2pc, N400, and P3, 

and the buttonpress for the LRP and ERN). 
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We have provided our experiment control and data processing scripts

o that other researchers can utilize our tasks and analysis pipelines in

heir research, saving time and increasing reproducibility. Researchers

an also perform quality control by comparing their noise levels with

hose presented here. ERP studies do not ordinarily present a detailed as-

essment of noise levels, and the noise quantifications provided here are

herefore a unique resource. By providing these data quality measures

n our own data and sharing our analysis scripts, we hope to encour-

ge other researchers to provide similar metrics in their publications so

hat the field can see which experimental procedures and data analy-

is methods yield the best data quality. Broad adoption of these noise

etrics in EEG/ERP publications would also over time allow for field

tandards regarding acceptable levels of noise to be established. 

We also provided several measures of variability across participants,

nd all of our single-participant data and measures are available online.

lthough we tested a relatively homogeneous sample of neurotypical

oung adults, substantial variability was observed (see Supplementary

ig. S3). Although the existence of individual differences in ERP wave-
orms is well known ( Kappenman and Luck, 2012 ), publications typi-

ally do not provide such a detailed characterization of the variability

n their samples. The present results therefore provide a useful compar-

son point for researchers who are evaluating variability in their own

ingle-participant ERP waveforms. 

The ERP CORE contains data from several ERP paradigms in the

ame participants, which is quite rare given that a full recording ses-

ion is typically required to yield a single component. However, the

ORE paradigms were designed to produce optimal results with mini-

al recording time. Consequently, the ERP CORE is the first published

ata set that includes such a comprehensive set of ERP components in

he same participants. This resource can therefore be used to examine a

road range of empirical and methodological questions, such as assess-

ng the effectiveness of a new signal processing method across multiple

omponents and paradigms. The ERP CORE tasks could also serve as an

lectrophysiological test battery. 

It is also worth noting that our data set contains many other compo-

ents beyond those analyzed here, including auditory and visual sensory
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esponses, the stimulus-locked LRP, the response-locked P3, and the an-

erior N2 component that is sensitive to response competition in the

ankers task ( Kopp et al., 1996 ; Purmann et al., 2011 ). 

In many cases, researchers will be able to apply our validated

aradigms and analysis pipelines directly to their own experiments,

hich will save time, reduce errors, and decrease researcher degrees

f freedom in statistical analyses ( Simmons et al., 2011 ). However, the

ask and analysis parameters provided in the present study were vali-

ated with neurotypical young adult participants and may need to be

djusted for other populations. Nonetheless, these parameters provide a

seful starting point for researchers interested in any of the neurocog-

itive processes encompassed by the ERP CORE. 
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