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This paper presents a spectral numerical algorithm for the solution of elastodynamics 
problems in general three-dimensional domains. Based on a recently introduced “Fourier 
continuation” (FC) methodology for accurate Fourier expansion of non-periodic functions, 
the proposed approach possesses a number of appealing properties: it yields results 
that are essentially free of dispersion errors, it entails mild CFL constraints, it runs 
at a cost that scales linearly with the discretization sizes, and it lends itself easily to 
efficient parallelization in distributed-memory computing clusters. The proposed algorithm 
is demonstrated in this paper by means of a number of applications to problems of 
isotropic elastodynamics that arise in the fields of materials science and seismology. These 
examples suggest that the new approach can yield solutions within a prescribed error 
tolerance by means of significantly smaller discretizations and shorter computing times 
than those required by other methods.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This paper introduces a new spectral algorithm for the numerical solution of three-dimensional problems in elastody-
namics. Based on a recently introduced FFT-speed Fourier Continuation (FC) methodology for accurate Fourier expansion of 
non-periodic functions [2,12], the new approach, which entails mild CFL constraints (see e.g. Remark 6.1) and computing 
times that scale only linearly with the sizes of the underlying spatial discretizations, enables fast, high-order and essentially 
dispersionless solution of the time-dependent elastic wave equation. Explicit and implicit FC-based PDE solvers have previ-
ously been introduced for a range of PDE problems, including explicit and implicit solvers for the classical wave and diffusion 
equations with constant and variable coefficients [12,13,15,26], implicit solvers for the nonlinear Burgers system [11], and 
explicit solvers for the compressible Navier–Stokes equations [2,3] and the Euler equations [32,33]. The algorithm described 
in this paper, which extends the applicability of the FC method to the challenging Navier elastic wave equation, includes 
an FC operator for treatment of Neumann and traction boundary conditions, it allows for treatment of equations with 
variable coefficients, and it utilizes a block-partition strategy (based on use of overset curvilinear domain-decomposition 
method [9]) which allows for treatment of general three-dimensional geometries in distributed-memory parallel computing 
environments with perfect parallel efficiency.

The qualities of spectrally accurate numerical solvers for time-dependent PDEs are well established: spectral methods can 
produce accurate solutions by means of relatively coarse discretizations, and, crucially, they faithfully preserve the dispersion 
characteristics of the underlying continuous problems. Classical spectral solvers do present significant challenges, however, 
including taxing time-stepping CFL restrictions for stability in polynomial spectral methods, as well as geometric and period-
icity restrictions for classical Fourier-based methods. In view of its reliance on essentially equispaced Cartesian meshes and 
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its ability to effectively produce rapidly convergent Fourier series for discontinuous functions (thereby eliminating the well 
known Gibbs-ringing phenomenon), the spectral solver presented in this paper does not suffer from any of these difficul-
ties. The broad applicability and beneficial qualities of the proposed FC-based algorithm are demonstrated through a variety 
of examples, including convergence and scalability studies as well as applications to realistic problems concerning seismic 
wave motion on three-dimensional topographies and problems arising in the field of non-destructive evaluation—where, for 
the first time, high-frequency three-dimensional simulations of guided-wave scattering by through-thickness holes in thin 
plates are presented, including comparisons to experimental data.

This text is organized as follows: after the relevant equations and notations are presented in Section 2, Section 3 briefly 
describes the FC method and introduces certain extensions of the method that are necessary in the context of the elastic 
wave problem under consideration. Section 4 then presents a one-dimensional example (including both Dirichlet and Neu-
mann boundary conditions) which demonstrates the character of the proposed solvers in a simple context. Our methods for 
treatment of complex geometries and parallelization are then described in Section 5. A number of implementation details, 
such as the time-stepping methods and spectral filters used for the full three-dimensional elastic wave equation, as well 
as approaches utilized for treatment of associated traction boundary conditions, are presented in Section 6. A variety of 
performance studies and numerical examples concerning three-dimensional wave scattering problems are then presented 
in Section 7, including numerical demonstrations of accuracy and limited dispersion. Section 8 then presents illustrative 
applications, and conclusions, finally, are put forth in Section 9.

2. Governing equations

The problem of propagation of elastic waves in a linear, isotropic, possibly heterogeneous medium contained in a general 
three-dimensional domain � is governed by the Navier equation [19]

ρ(x)utt(x, t) = ∇ ·
[
μ(x)

(
∇u(x, t) + ∇uT (x, t)

)
+ λ(x) (∇ · u(x, t)) I

]
+ f(x, t), x ∈ �, (1)

with initial conditions prescribed at some initial time t = t0,

u(x, t0) = a(x), ut(x, t0) = b(x), (2)

and with conditions on displacements or tractions prescribed along the boundary of �. Here, using the superscript T to 
indicate matrix transposition, we have let x = (x1, x2, x3)T and u = (u1, u2, u3)T denote the position and displacement 
vectors, I denote the identity matrix, and f = (

f 1(x, t), f 2(x, t), f 3(x, t)
)T

denote a given vector of body forces. The material 
properties are specified by the Lamé parameters μ(x), λ(x) and the density ρ = ρ(x); the respective longitudinal and 
transverse (shear) wave speeds are given by the relations

cL = √
(λ + 2μ)/ρ and cT = √

μ/ρ. (3)

On the boundary ∂� various types of boundary conditions may be imposed: typically the domain boundary is partitioned 
as a union ∂� = �D ∪ �T of two surfaces �D and �T upon which boundary displacements

u = c(x, t) on �D (4)

and boundary tractions

σ · n = d(x, t) on �T (5)

are prescribed. In these expressions n = (n1, n2, n3)T and σ denote the inward unit normal to the surface and the (symmet-
ric) stress tensor

σi j = ci jk�

∂uk

∂x�
, (6)

respectively, where ci jk� is the fourth-order stiffness tensor. As is well known, for an isotropic medium we have

σi j = λεkkδi j + 2μεi j, εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, i, j = 1,2,3, (7)

where δi j is the Kronecker delta and ε is the infinitesimal strain tensor.

3. Fast and stable Fourier Continuation: FC(Gram)

A goal to extend the applicability of the classical Fourier-based PDE solvers (together with their inherent excellent qual-
ities, most notably, limited dispersion, high-order accuracy and mild CFL conditions) to problems involving general domains 
and boundary conditions has led to the development of the Fourier Continuation (FC) method [2,12,13,15,26]. The FC method 
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Fig. 1. Fourier continuation of the non-periodic function f (x) = esin(5.4πx−2.7π)−cos(2πx) . Red triangles/squares and blue circles represent d� = dr = 5 match-
ing points and C = 25 continuation points, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

enables high-order convergence of Fourier series approximations of non-periodic functions by resolving the well-known 
Gibbs “ringing” effect. Given point values f (xi) of a given function f : [0, 1] → R on the uniform discretization xi = ih, 
i = 0, . . . , N − 1, h = 1/(N − 1), the FC method produces a rapidly-convergent interpolating Fourier series representation 
f c : [0, b] →R on a region [0, b] larger than the given physical domain [0, 1]:

f c(x) =
M∑

k=−M

ake
2π ikx

b s.t. f c(xi) = f (xi), i = 0, . . . , N − 1 (8)

for suitably chosen FC-parameters M (bandwidth) and b > 1 (interval length). The continuation function f c is an approxi-
mate periodic extension of the given function f : f c closely approximates f in the original domain [0, 1] and it is periodic 
on [0, b], b > 1. Numerical derivatives necessary in a PDE solver can be produced from the FC series (8) with high-order 
accuracy by straightforward term-wise series differentiation.

Our method of construction of a continuation series (8) is based on use of a certain “biased-order” FC technique intro-
duced in [2] which is useful in the context of domain decomposition. The biased-order FC method relies on use of numbers 
d = d� and d = dr of function values near the left and right endpoints 0 and 1, respectively, together with projections of the 
corresponding vectors of function values onto a Gram polynomial basis—whose continuations are precomputed by means 
of high-precision linear algebra methods. An extension of this “FC(Gram)” method to a form suitable for use as part of the 
elasticity solver proposed in this text is described in what follows.

3.1. Accelerated Fourier continuation: FC(Gram)

Given a column vector f = ( f0, . . . , f N−1)
T containing point-values of a given function f on the equispaced grid 0 = x0 <

x1 < · · · < xN−1 = 1, f i = f (xi), the accelerated FC(Gram) method [2,12,26] uses a subset of the given function values on 
small numbers d� and dr of matching points {x0, . . . , xd�−1} and {xN−dr , . . . , xN−1} contained in small subintervals on the 
left and right ends of the interval [0, 1] (of lengths δ� = (d� − 1)h and δr = (dr − 1)h) to produce, at first, a discrete periodic 
extension. Indeed, using such subinterval data points the FC(Gram) algorithm appends a number C of continuation function 
values in the interval [1, b] to the existing function data, so that the extension transitions smoothly from f N−1 back to f0, 
as depicted in Fig. 1. The resulting vector fc can be viewed as a discrete set of values of a smooth and periodic function 
which is suitable for high-order approximation by means of the FFT algorithm in an interval of length (N + C)�x.

In order to produce the C necessary extension values the FC(Gram) method uses the discrete function defined by the 
vector f together with a translation of it by a distance b. In detail, defining the sets D� = {b + x0, b + x1, . . . , b + xd�−1 }
and Dr = {xN−dr , xN−(dr−1), . . . , xN−1}, the additional C needed values in the interval [1, b] are obtained as point values of 
an auxiliary trigonometric polynomial of periodicity interval [1 − δr, 2b − (1 − δr)] (with appropriately selected bandwidth) 
which closely approximate the function values on Dr ∪D� . This approximating trigonometric polynomial is obtained as the 
result of a two-step process, namely 1) Projection onto bases of orthogonal polynomials (Gram bases), and 2) Continuation 
through use of a precomputed set of continuations-to-zero of each Gram polynomial, as explained in what follows.

The polynomial projection mentioned in step 1) above for the function values on Dr and D� (cf. [12]) relies on use 
of a basis Br (resp. B�) of the space of polynomials of degree < dr (resp. d�) on the interval [1 − δr, 1] (resp. [b, b + δ�]) 
which is orthonormal with respect to the discrete scalar product (·,·)r (resp. (·,·)�) defined by the discretization points Dr
(resp. D�):

(g,h)r =
∑

xi∈Dr

g(xi)h(xi), (9)

with a similar definition for (g, h)� . The algorithm also utilizes precomputed extensions, one for each polynomial pr ∈ Br , 
into a smooth function defined for x ≥ 1 − δr which approximates pr closely in the matching interval [1 − δr, 1], and 
which blends smoothly to zero for x ≥ b. Such rightward extensions are constructed as appropriately oversampled least 
squares approximations by Fourier series of periodicity interval [1 − δr, 2b − (1 − δr)]—which are obtained by means of 
high-precision linear algebra methods, as described in [12,26] (see also Remark 3.1 below). Similarly, the scheme obtains, 
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for each polynomial p� ∈ B� , a smooth blending function that agrees with p� in the matching interval [b, b + δ�] and which 
vanishes for x ≤ 1.

In presence of such smooth blending functions the algorithm proceeds to step 2): evaluation of an extension from the 
function values at the set of points Dr ∪D� . This can be achieved easily since the Gram polynomials of degrees ≤ dr − 1 on 
Dr and ≤ d� − 1 on D� that interpolate the given data can be expressed as linear combinations of the polynomials in the 
bases B� and Br —with coefficients that can be obtained rapidly by means of scalar products. With the extension in hand, 
an application of the discrete Fourier transform on the interval [0, b] to the vector of function values f augmented by the C
“continuation” values yields the desired trigonometric polynomial (8). An example of the blending procedure is depicted in 
Fig. 1. For efficiency, the discrete Fourier transform is implemented by means of the Fast Fourier Transform (FFT).

The resulting continuation operation can be expressed in a block matrix form as

fc =
[

I
A

]
f =

[
f

Af

]
, (10)

where fc is a vector of the N + C continued function values, I is the N × N identity matrix and A is the matrix containing 
the blend-to-zero continuation information. Defining the vector of matching points for the left and right as

f� = (
f0, f1, . . . , fd�−1

)T
, fr = (

f N−dr , f N−dr+1, . . . , f N−1
)T

, (11)

the matrix A can be expressed in the form

Af = A� Q T
� f� + Ar Q T

r fr, (12)

where the columns of Q � and Q r contain the d�, dr point values of each element of the corresponding Gram polynomial 
basis, and where the columns of A� and Ar contain the corresponding C values that blend the polynomials in the left and 
the right Gram bases to zero. For d� = dr the matrices A� and Ar (resp. Q � and Q r ) differ only by row-ordering (resp. only 
by column ordering). The matrices Q = Q � and Q = Q r for given numbers d = d� and d = dr of matching points may be 
obtained by orthogonalizing the columns of the d × d Vandermonde matrix

P =

⎛⎜⎜⎜⎝
1 x0 (x0)

2 ... (x0)
d−1

1 x1 (x1)
2 ... (x1)

d−1

...
...

...
...

...

1 xd−1 (xd−1)
2 ... (xd−1)

d−1

⎞⎟⎟⎟⎠ (13)

of point values of the monomials x j ( j = 1, . . . , d − 1) at the discrete points x0, x1, . . . , xd−1. (A substitution of x by (x − 1)

must be used for the right matching problem.) The necessary orthonormalization is performed by applying the stabilized 
Gram–Schmidt orthogonalization process to produce the Q R decomposition

P = Q R; (14)

note that the jth column of Q in (14) contains the d point values of the jth polynomial in the Gram basis. To ensure a 
good agreement with the constraints described by the least squares problem introduced in what follows, we additionally 
oversample the monomial basis by a factor of nover (we have used the value nover = 20 throughout this paper), which leads 
to a Vandermonde matrix P over similar to (13) but of size (nover(d − 1) + 1) × d. The corresponding matrix whose columns 
are the Gram basis polynomials evaluated on a fine grid of size d × nover can be produced by means of the expression

Q over = P over R−1, (15)

where R is the upper triangular matrix in the orthogonalization of the coarse P in (14).

Remark 3.1. The conditioning characteristics of the full Fourier continuation procedure described above derive exclusively 
from the corresponding conditioning characteristics associated with the orthogonalization of the Vandermonde matrix (13)
(such a decomposition is well known to give rise to severe numerical loss of orthogonality) and the subsequent computation 
of the extensions to zero (which relies on use of Singular Value Decompositions). If accurate Q R factorizations and SVDs 
are somehow obtained and used, then the losses of accuracy arising from ill-conditioning are eliminated. The conditioning 
difficulties are therefore successfully addressed in our context by relying on high-precision arithmetic (256 digits in Matlab’s 
VPA for the computations used in this paper) throughout the process of orthogonalization and evaluation of precomputed 
continuations for the polynomial basis elements. This is a computation that needs to be performed only once and stored in 
file for use each time the Fourier continuation method is invoked. Technical details concerning the implementation of this 
high-precision precomputation procedure can be found in [4,12].

We provide some details for the rightward blending-to-zero procedure; the corresponding leftward methodology is en-
tirely analogous. Letting Z be the number of zero-blending points and letting E be a certain number of extra points that 
are used to allow for continuation regions of user-prescribed lengths (cf. Section 5.3.3), we define the intervals
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Imatch = [0, (d − 1)h],
Iblend = [dh, (d + C − 1)h],
Izero = [(d + C)h, (d + C + Z − 1)h],

Iextra = [(d + C + Z)h, (d + C + Z + E − 1)h] (16)

which contain d, C, Z and E discretization points, respectively. The function that blends the discrete values of a given Gram 
polynomial on Imatch to the zero function values in Izero is obtained as a band-limited trigonometric polynomial

f (x) =
M∑

k=−M

ake
2π ikx

(d+C+Z+E−1)h (17)

that matches closely (in a least-squares sense on the oversampled grid) both, the Gram polynomials as well as an interval 
of vanishing function values, where M = (d + C + Z + E)/2. The coefficients a = (a−M , . . . , aM)T are found by solving the 
minimization problem (posed on the oversampled Gram basis Q over with columns qover

k in (15)) given by

min
a=(a−M ,...,aM )T

∥∥∥∥Bovera −
(

qover
j
0

)∥∥∥∥
2
, (18)

where Bover is a matrix formed from values of the function (17) at discretizations of Imatch and Izero of meshsize h/nover , and 
where 0 is the zero vector of dimension (Z − 1)nover + 1. The minimizing Fourier coefficients a = (a−M , . . . , aM)T in (18) are 
then found via a Singular Value Decomposition and, once determined, the corresponding columns of A�, Ar are constructed 
by evaluating (17) on the coarse �x discretization of the full continuation interval [0, (d + C + Z + E − 1)h].

Remark 3.2. For all computations in this paper the parameters C = 25, Z = 12, E = 25 and nover = 20 were used to construct 
continuations for various integer values of d = d�, dr . These selections were made in accordance with those used in previous 
FC-based algorithms [2,15], and they were otherwise determined empirically to provide an appropriate trade-off between 
overall computational cost and stability in PDE solvers arising from the FC operator described above.

3.2. A modified accelerated FC operator for Neumann boundary conditions

In order to treat Neumann boundary conditions (and, ultimately, traction boundary conditions) it is necessary for the FC 
series to match given derivative values in addition to given function values. For example, it may be necessary to produce an 
FC expansion for a function f whose derivative is known at the end point xd−1 together with the values of f at x0, . . . , xd−2. 
This is easily achieved: following the ideas introduced in Section 3.1, the modified method uses, instead of the polynomial 
interpolants considered in the previous section, a polynomial interpolant that matches the derivative value f ′(xd−1) at the 
endpoint xd−1 as well as the function values at x0, . . . , xd−2. Such an interpolant can be obtained by orthonormalizing the 
columns of the modified Vandermonde matrix

Pder =

⎛⎜⎜⎜⎝
1 x0 (x0)

2 ... (x0)
d−1

...
...

...
...

...

1 xd−2 (xd−2)
2 ... (xd−2)

d−1

0 1 2xd−1 ... (d − 1)(xd−1)
d−2

⎞⎟⎟⎟⎠ (19)

(instead of the one for the matrix (13)) by means of a high-precision QR-decomposition for the matrix Pder:

Pder = Q der Rder. (20)

The modified Fourier continuation blend-to-zero information can be obtained by means of two different procedures 
(which in practice have been found to yield essentially indistinguishable results): 1) by proceeding to form a new contin-
uation basis in a manner analogous to Section 3.1, replacing Q with Q der and the appropriate Bover with a corresponding 
Bover

der in the least squares formulation; or, 2) by reconstructing the coefficients in the original Gram polynomial basis and 
simply replacing the operator Q (= Q �, Q r ) in (12) with a new operator Q̃ (= Q̃ �, Q̃ r ) for which the same pre-constructed 
blend-to-zero Dirichlet operators A�, Ar obtained in the previous section can be employed. The latter method—which is used 
in this work and introduced in what follows—carries the advantage that the Dirichlet-boundary-conditions blending-to-zero 
Gram polynomials described in the previous section may be re-used for treatment of Neumann and traction boundary 
conditions as well.

The construction of Q̃ is obtained by solving the system

Pderc = (
f0, f1, . . . , fd−2, f ′(xd−1)

)T (21)

for the coefficients c = (
c1, c2, . . . , cd−1

)T via the decomposition (20) as
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Fig. 2. Numerical solution to the one-dimensional wave equation (28) at times t = 0.5, 0.6, 0.7, 0.8, 0.9 s based on use of Fourier continuation (d� =
dr = 5, C = 25, �x = 1/100) and explicit time marching (�t = �x/32).

c = R−1
der Q T

der

(
f0, f1, . . . , fd−2, f ′(xd−1)

)T
. (22)

Recalling the Vandermonde matrix P and its QR-decomposition in (14), substitution of these coefficients into

P c = Q Rc = (
f0, f1, . . . , fd−2, fd−1

)T (23)

yields the expressions

Q R R−1
der Q T

der

(
f0, f1, . . . , fd−2, f ′(xd−1)

)T = (
f0, f1, . . . , fd−2, fd−1

)T
,

or, equivalently,

Q̃ T (
f0, f1, . . . , fd−2, f ′(xd−1)

)T = Q T (
f0, f1, . . . , fd−2, fd−1

)T (24)

for Q̃ = (R R−1
der Q T

der)
T . Hence the continuation procedure constructed in the previous section and embodied in the formula

Af = A� Q T
� f� + Ar Q T

r fr (25)

is modified by substitution of (24) into (25) to yield

Af = A� Q̃ T
� f̃� + Ar Q̃ T

r f̃r, (26)

where f̃� = ( f0, . . . , fd�−2, f ′(xd�−1))
T , ̃fr = ( f N−dr , . . . , f N−2, f ′(xN−1))

T and where A�, Ar are the same blend-to-zero oper-
ators. Note that if, for example, one requires the continuation to approximate the value f (x0) and the derivative f ′(xN−1)

(as is often necessary as a result of the domain decomposition strategy that we introduce later in this paper), one needs 
only to form the corresponding biased continuation using the appropriate projections on the left and the right as

Af = A� Q T
� f� + Ar Q̃ T

r f̃r; (27)

a similar procedure can be used to obtain approximations matching f ′(x0) and f (xN−1).

4. A simple one-dimensional example

As a simple example to demonstrate the character of the FC methodology for Dirichlet and Neumann problems we 
consider a 1D wave propagation problem with initial values given by the Gaussian profile

utt(x, t) = uxx(x, t), u(x,0) = e−300(x+.5)2
, ut(x,0) = 600(x + .5)e−300(x+.5)2

. (28)

In order to facilitate evaluation of errors in our Dirichlet (resp. Neumann) test cases, we set up Dirichlet (resp. Neumann) 
boundary conditions at x = 0 and x = 1 in such a way that the exact solution is given by the traveling wave function 
depicted in Fig. 2 and given by

u(x) = e−300(x−t+.5)2
, 0 ≤ x ≤ 1. (29)

Using the FC method for evaluation of spatial derivatives, and utilizing the explicit fourth-order Adams–Bashforth (AB4) 
method to evolve the resulting set of ODEs, we obtain a PDE solver for the wave equation (28); see also Remark 4.1. Using 
a small time-step enables us to easily demonstrate the accuracy of the FC based spatial discretization method for various 
spatial mesh sizes. Table 1 displays, for both the Dirichlet and Neumann problems, the maximum error over all spatial points 
x ∈ [0, 1] and for all times between 0 and T = 2, where T is taken to be large enough that the wave has passed through 
both interval endpoints. As expected, a 4th-order Gram polynomial basis (using 5 matching points) results in essentially 
5th-order convergence; since the derivatives of the continued function are spectrally accurate, the error is dominated by the 
polynomial approximation used to project the end function values onto a Fourier continuation basis.
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Table 1
Convergence results for the maximum error over all space and time of the solution to the 1D wave equation (28).

1/�x L∞ error (Dirichlet) O (L∞) L∞ error (Neumann) O (L∞)

50 3.60e−2 – 6.15e−2 –
100 1.05e−3 5.10 1.44e−3 5.41
200 3.69e−5 4.83 3.21e−5 5.49
300 4.93e−6 4.96 4.20e−6 5.02
400 1.16e−6 5.03 1.00e−6 4.99

Fig. 3. Curvilinear coordinates.

Remark 4.1. The necessary solution values at the three initial time-steps, which are required by the AB4 method, can 
be obtained in a variety of ways, including 1) Use of the explicit Runge–Kutta method of order 4, with intermediate-step 
boundary-conditions enforced as in [27], and 2) Use of a first order (e.g. forward Euler) method in conjunction with Richard-
son extrapolation of sufficiently high order [10]. In all of the examples considered in this paper the initial solution values 
used were directly obtained from the context—since for the cases considered the solution either ramps-up from zero, in 
which case the solution values at the three initial time-steps can be taken to equal zero, or is given by an explicit manufac-
tured solution which can be used even before the initial time t = 0.

Although the FC error is of the same order as the corresponding error resulting from, say, a finite-difference (FD) solver 
based on a six-point stencil, the FC methodology provides a significant advantage: it is essentially dispersionless. As is well 
known, wave propagation by means of FD schemes leads to an accumulation of errors that compound over the length of 
the domain. These accumulating “dispersion errors” demand a significant increase in the number of points per wavelength 
(PPW) to resolve the solution for a given accuracy. This behavior is also found in Finite Element Methods and usually called 
“pollution errors” in that context [6]. A detailed discussion in these regards, including numerical results and comparisons of 
the dispersion characteristics of the FC method with a Finite Difference scheme is put forth in Section 7.2.

5. Complex geometries

5.1. Curvilinear coordinate systems

One of the main advantages of the FC method lies in its use of uniform meshes—for which, as demonstrated in [2], the 
FC differentiation operator has optimal spectral radius, and for which, in particular, the CFL constraints scale linearly with 
the size of spatial discretizations (and not quadratically, as do certain other spectral algorithms such as those based on the 
use of Chebyshev polynomials). Cartesian meshes in physical space cannot capture the geometry of an object of interest 
with high-order accuracy, however, unless the object has particularly simple shapes: any curvature on an object boundary 
precludes the use of Cartesian meshes in physical space if high-order accuracy is required. In order to enable applicability 
to general domains � the proposed algorithm relies on use of a decomposition of � as a union � = ∪�i of separate but 
overset patches �i (see Section 5.3), each one of which is in turn mapped via a domain mapping

Mi : [0,1]3 → �i (30)

from the Cartesian domain [0, 1]3 into �i . (In order to maintain continuity of the solution and its derivatives across patches, 
an interpolation strategy is used, as detailed in Section 5.3.)

In explicit coordinates the mapping Mi is given by the position vector of three scalar functions xi = (x1
i , x

2
i , x

3
i )

T of three 
independent variables q = (q1, q2, q3)T :

Mi = xi : [0,1]3 → �i . (31)

A two dimensional example of such a mapping is presented in Fig. 3.
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The patches �i may be rectangular (e.g. for certain regions in � away from domain boundaries) or truly curvilinear 
(necessarily so for patches that must conform to curved domain boundaries). The curvilinear boundary-conforming patches 
can be constructed in a number of ways: either analytically (for simple geometries), algebraically (on the basis of transfi-
nite interpolation [16]), on the basis of PDE solvers (as is the case in elliptic mesh generation [17]), or via combinations 
thereof [34]. Such patches are endowed with Cartesian-like discretizations: the coordinate lines in a given patch are images 
of Cartesian coordinate lines in parameter space. Each map is required to be locally invertible with a positive, non-singular 
Jacobian of transformation that preserves the mathematical type of the PDE [23].

5.2. The governing equations in curvilinear coordinates

In order to obtain the curvilinear formulation of our algorithm we consider the chain rule expression

∇q = [ Jx(q)]T ∇x, (32)

where ( Jx(q))i j = ∂xi/∂q j is the Jacobian matrix of the given mapping x(q). Provided det (( Jx)(q)) does not vanish, inversion 
of this linear system gives the expression [23]

∇x =
[
( Jx(q))−1

]T ∇q = [
Jq(x)

]T ∇q, (33)

where the last equality results from the reverse chain rule formula ∇x = [
Jq(x)

]T ∇q . Thus “metric derivatives” ∂qi/∂x j can 
be produced in terms of the derivatives of the given mapping ∂xi/∂q j . The necessary derivatives, in turn, can be computed 
directly from analytical expressions for the functions xi in (31), if such expressions are available and their differentiation 
in closed form is not unduly cumbersome. Alternatively, the metric derivatives can obtained from a discrete set of values 
of the functions xi on a Cartesian mesh in parameter space, via a straightforward application of the FC method. In order 
to maintain the overall order of accuracy of the time-stepping algorithm under the differentiation operation required by 
the metric derivatives, the FC construction should be based on Gram polynomials of degrees higher, by at least one unit, 
than the corresponding Gram polynomials used in the FC representation of the solution—since the differentiation process 
inherent in the metric derivatives reduces the order of accuracy by one unit. For all of the examples considered in this 
paper analytical expressions of the metric derivatives were used.

The curvilinear form of the Cauchy–Navier equations follows from (33): letting

ũ(q, t) = u(x(q), t), ρ̃(q) = ρ(x(q)), λ̃(q) = λ(x(q)), μ̃(q) = μ(x(q)), J̃q(q) = Jq(x(q)), (34)

equation (1) can be re-expressed in the form (cf. [23])

√
g ρ̃ ũtt =

(
J̃ T

q ∇q

)
·
[
μ̃

(
J̃ T

q ∇qũ + (∇qũ
)T

J̃q

)
+ λ̃

((
J̃ T

q ∇q

)
· ũ

)
I
]
+ √

g f̃, (35)

where 
√

g̃ = det J̃q and ̃f(q, t) = f(x(q), t). The initial data, in turn, is given by

ũ(q, t0) = ã(q), ũt(q, t0) = b̃(q), (36)

where ̃a = a(x(q)) and ̃b = b(x(q)).
In the proposed method, the q1, q2, q3 derivatives required in this formulation are obtained on the basis of the Fourier 

continuation method (Section 5.2.1). Boundary conditions of the problem can be applied easily in the (q1, q2, q3) coordinates. 
For instance, a Dirichlet boundary condition (4) on the planar Cartesian square q1 = 0 is given by

ũ(0,q2,q3, t) = c̃(q2,q3, t), (37)

where ̃c(q2, q3, t) = c(x(0, q2, q3), t). Similarly, the traction boundary conditions (5) at q1 = 0, 1 are expressed in the form

σ̃ · n = d̃(q, t) on ∂�, (38)

where σ̃i j = ci jk�

∑3
m=1

∂qm

∂x j
∂ ũi

∂qm and where n(q) = (n1, n2, n3)T is the unit inner normal—which is given by ±∇xq1/‖∇xq1‖
on the surfaces at q1 = 0 and q1 = 1, respectively. The numerical treatment and application of boundary conditions of the 
form of (38) is detailed in Section 6.3.

5.2.1. The discrete curvilinear formulation
A discretization of each patch is obtained, simply, by using a Cartesian parameter-space mesh

qi
j = j�qi, 0 ≤ j ≤ Nqi − 1, i = 1,2,3, (39)

containing a total of Nq1 · Nq2 · Nq3 discretization points in [0, 1]3—so that the resulting uniform parameter-space mesh-sizes 
in each dimension equal to �qi = 1/(Nqi − 1), i = 1, 2, 3. The mapping defined by (31) carries curvilinear mesh points 
(q1, q2

m, q3
n) to physical space mesh points
�
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Fig. 4. Left: A portion of a physical domain covered by two patches where, for demonstration, the bold dots indicate two layers of interpolation points. (For 
all of the numerical examples presented in this paper four layers of interpolation points were used.) Right: One such curvilinear patch decomposed into 
four sub-patches.

x�mn = x(q1
�,q2

m,q3
n), 0 ≤ � ≤ Nq1 − 1, 0 ≤ m ≤ Nq2 − 1, 0 ≤ n ≤ Nq3 − 1, (40)

and displacement solutions in curvilinear coordinates ũ�mn = ũ(q1
�, q

2
m, q3

n) to physical space solutions

u�mn = u
(

x
(

q1
�,q2

m,q3
n

)
, t

)
= ũ�mn. (41)

The discrete Fourier continuation method detailed in Section 3 can be applied to compute the necessary spatial first and 
second derivatives for each component of ũ = (̃u1, ̃u2, ̃u3)T with respect to each component of the curvilinear coordinates 
q = (q1, q2, q3)T via Fast Fourier Transforms.

From (40) we see that the boundary discretization points at the left, right, bottom, top, backward, and forward faces of 
the parameter cube (where boundary conditions are enforced) are characterized by the indices (�, m, n) respectively as

(0,m,n), (Nq1−1,m,n), (�,0,n), (�, Nq2−1,n), (�,m,0), (�,m, Nq3−1), (42)

where 0 ≤ � ≤ Nq1−1, 0 ≤ m ≤ Nq2−1 and 0 ≤ n ≤ Nq3−1. As intended, in view of the boundary-conforming curvilinear 
transformation, boundary conditions are applied—with high-order accuracy and for an arbitrarily complex surface—at either 
the first or last index in each dimension in the corresponding data structure.

5.3. A parallel block decomposed, overlapping grid strategy

For a general physical domain the final discretization strategy adopted by our elasticity solver (see Fig. 4) consists of 
two key components [2,3,9,21]: 1) A decomposition of the domain � into a collection of overlapping curvilinear patches 
�1, �2, . . . , �M (introduced in Section 5.1) whose solutions are communicated across overlapping patch boundaries by 
means of a high-order polynomial interpolation (Section 5.3.1); and 2) A further decomposition of each curvilinear patch 
�k into mutually disjoint “sub-patches” that are then extended by shared “fringe regions” which are utilized to commu-
nicate information between subpatches in a distributed parallel computing environments (Section 5.3.2). To facilitate an 
efficient implementation of element 2), in Section 5.3.3 we additionally put forth a simple load-balancing algorithm which, 
as demonstrated in Section 7.3, gives rise to excellent parallel scaling. The two main components 1) and 2) of our overall 
discretization strategy are described in detail in Sections 5.3.1 and 5.3.2.

5.3.1. Overset meshes and artificial “inter-patch” boundaries
As mentioned in Section 5.1, the proposed algorithm treats general geometries via decomposition of the computational 

domain � as a union of a finite number of overlapping curvilinear patches, � = ⋃
j � j , within each one of which the 

PDE (35) is evolved; continuity and smoothness across patches is ensured by exchange of solution values between patches 
in regions near patch boundaries. Fig. 4 (left) shows an example of part of a computational domain that is covered by two 
curvilinear patches, with points that are recipient of interpolation data shown as bold dots. In this domain-decomposition 
method, commonly known as the overset grid method [9], a patch �k ⊂ � exchanges information with adjacent patches 
� j ⊂ � by means of a suitable interpolation scheme—as described in what follows.

By construction, subsets of a patch boundary ∂�k that do not coincide with a physical boundary of the computational 
domain � are necessarily contained within one or more of the other patches that make up the overall domain. Along these 
boundaries, solution values from neighboring patches are interpolated prior to a time-step by means of a tensor-product 
polynomial. In this paper we employ stencils of size 7 × 7 × 7 points (that is, 6th-order polynomial interpolation in each 
dimension) and interpolate to a four-point wide layer of points around the overlapping boundary (cf. Fig. 4 and its cap-
tion). It is assumed that the overlapping regions between patches are “sufficiently” large, so that interpolation stencils are 
contained sufficiently far away from the respective donor patch boundary (to minimize differentiation and approximation 
errors which are largest at patch boundaries). And, to maximize the benefits of the interpolation procedure, given a point 
x = (x1, x2, x3) ∈ �k , interpolation is performed from an adjacent donor patch � j for which x ∈ � j ∩ �k is farthest from 
the boundary � j amongst all patches � j ( j �= k) that contain the point x. Once such a patch has been obtained, a corre-
sponding seven-point stencil is located in patch � j for which x lies as close to its center as possible. Interpolation is then 
performed in the corresponding (q1, q2, q3) parameter space of the patch � j via a straightforward application of Neville’s 
algorithm [28]. Additional details in these regards are provided in [4].
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Fig. 5. One dimensional line segmentation analogous to the multidimensional parallel decomposition of a patch.

Fig. 6. Left: A two-dimensional example of a square patch decomposed into four disjoint sub-patches. Right: The four sub-patches augmented by fringe 
regions and an example of the transmission of data to corner patches.

5.3.2. Parallel decomposition and artificial “intra-patch” boundaries
A parallel implementation of the FC solver described in this paper can be produced by means of the overset mesh 

decomposition described in the previous section. In order to incorporate large numbers of processing computer cores, each 
curvilinear patch can be further decomposed into a union of disjoint sub-patches within each one of which the PDE (35)
is evolved. At each time-step, solution values in each one of the sub-patches are used in conjunction with solution values 
on a certain number of fringe discretization points of neighboring sub-patches. This concept is illustrated by a simple 
one-dimensional example in Fig. 5: in this simplified example the center sub-domain (sub-patch) has (only) two shared 
points (which, following [2] we call “fringe points”) on either side; the left and right boundary sub-domains contain fringe 
points on one side only. In our actual algorithm implementation a total of four fringe points in each dimension are used for 
each interior boundary.

Remark 5.1. In order to avoid undue degradation of the excellent dispersion characteristics of the FC differentiation scheme, 
the FC algorithm is set up to use d�, dr = 12 discretization points in the Gram polynomial projection interval at interior 
boundaries. (At such intra-patch boundaries polynomial interpolation of very high-order, which can be used while main-
taining stability, is utilized in our method to accurately communicate the solution across the artificial boundaries and thus 
preserve the overall global accuracy of the method.) In order to maintain stability, on the other hand, at all other (physi-
cal) boundaries the values d�, dr = 5 are used. Numerical experiments have suggested that use of higher orders at physical 
boundaries leads to instability (an observation which is consistent with [2]).

The multidimensional version of the shared (fringe) region strategy is demonstrated in Fig. 6: the Fourier continuations 
needed to apply the differentiation algorithm along a vertical or horizontal line in a sub-patch are obtained by applying FC to 
the combination of discrete values at the light-gray fringe points and the black sub-patch points. As additionally illustrated 
in the figure, the fringe discretization region associated with a sub-patch may extend not only into the six neighbors 
with which the sub-patch shares a face in three-dimensions but also into corner-adjacent neighboring sub-patches, for 
up to twenty-six neighbors. The potential additional communication required for all neighbors can be circumvented by 
communicating the fringe information in one coordinate direction at a time (as demonstrated for a two-dimensional case 
in the right-hand figure), so that information with corner-adjacent sub-patches is indirectly passed along, thus reducing the 
overall communication load: this allows the full exchange of information to be carried out by only six send-and-receive calls 
from a sub-patch with its (up to six) face-sharing neighbors.

For a parallel implementation in which a processing core is responsible for advancing the solution of a single sub-patch, 
the solution values for the assigned sub-patch are stored together with the values in the fringe discretization regions. The 
fringe regions are subsequently updated at each time-step to allow for transmission of information across component sub-
patches to take place via neighbor-to-neighbor parallel communication. This procedure is akin to the one used in connection 
with the “artificial” interpolating inter-patch boundaries considered in Section 5.3.1, but here no interpolation is necessary—
since neighboring sub-patches share the same discretization grid of the underlying patch. For all simulations in this paper 
we have employed four points in the fringe intervals in each dimension.

Remark 5.2. Periodic boundary conditions on curvilinear patches such as annuli can be treated by means of the decomposi-
tion method described above. Indeed, it suffices to use fringe points on each end of a periodic interval and a communication 
strategy analogous to the one described above—as demonstrated in Fig. 7.
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Fig. 7. One dimensional line segmentation for periodic boundary conditions.

5.3.3. Load balancing
An efficient parallel decomposition strategy should give rise to minimal communication between computing cores, on 

one hand, and to a balanced overall workload, on the other. In our approach, one core is assigned to each sub-patch. In 
order to determine the number of sub-patches (cores) to be used along each dimension of a given patch the algorithm 
proceeds in two steps: the total number of available cores are distributed to the various patches in direct proportion to 
the size of the associated discretizations; each patch is then subdivided into a number sub-patches that are balanced in an 
effort to optimize the execution of FFTs—as indicated in what follows.

Given a number of patches �1, . . . , �M that cover the computational domain, and a number ptotal of cores assigned to 
the solver, then each patch �k is assigned at least

pk =
⌊

Nk
q1 Nk

q2 Nk
q3∑M

j=1 N j
q1 N j

q2 N j
q3

ptotal

⌋
(43)

cores (k = 1, 2, . . . , M), where �·� is the floor function and where Nk
q1 , Nk

q2 , Nk
q3 are the number of discretization points 

along each side of the computational domain �k . The remaining 
(

ptotal −
∑M

k=1 pk
)

cores either remain un-utilized or are 
redistributed over all sub-domains on the basis of some adequate ad-hoc criterion.

The number of cores now assigned to a curvilinear patch �k is then factored as pk = pk
q1 pk

q2 pk
q3 where pk

q1 , pk
q2 , pk

q3 ≥ 1

denote the number of cores assigned in the q1, q2, q3 directions, respectively. The sizes pk
q j of the blocks used in each 

dimension should be balanced so as to achieve good parallel scaling; this can be accomplished by selecting (pk
q1 , pk

q2 , pk
q3)

which minimize the quantity

min
pk

q1 pk
q2 pk

q3 =pk

∣∣∣Nk
q1/pk

q1 − Nk
q2/pk

q2

∣∣∣ +
∣∣∣Nk

q2/pk
q2 − Nk

q3/pk
q3

∣∣∣ +
∣∣∣Nk

q1/pk
q1 − Nk

q3/pk
q3

∣∣∣ . (44)

This procedure results in patches that contain approximately the same number of discretization points in each one of the 
directions qi : Nk

q1/pk
q1 ≈ Nk

q2/pk
q2 ≈ Nk

q3/pi
q3 . In addition to facilitating load balancing, this strategy results in meshes of 

approximately equal sizes. Thus, adding a small number E of extra points to each continuation region (see Section 3.1) the 
added advantage is obtained that FFTs of fixed adequately-selected sizes can be used across the computational domain, as 
discussed in [2,4].

6. Implementation details

This section completes the full description of the proposed FC-based linear elasticity solver for general domains, in-
cluding a description of the explicit time evolution (Section 6.1) and a spectral filter which, without unduly deteriorating 
the solver’s accuracy, eliminates growth of high-frequency errors (Section 6.2). Our methodology for treatment of traction 
boundary conditions, which is based on use of expressions for relevant out-of-plane directional derivatives in terms of 
in-plane derivatives, is discussed in Section 6.3, and a pseudo-code for the overall algorithm is presented Section 6.4.

6.1. Explicit treatment of temporal derivatives

Following [2], our solver utilizes the Adams–Bashforth scheme of order four (AB4) for time-stepping; see also Remark 4.1. 
A natural alternative, the explicit fourth-order Runge–Kutta (RK4) method, has also been considered in the context of FC 
solvers. Both methods provide adequate regions of absolute stability [7,20]. The RK4 method only requires initialization of 
the first step, but each subsequent time-step entails four evaluations of the right-hand-side. Proper enforcement of boundary 
conditions at intermediate RK steps, further, may be problematic—particularly so for time-dependent boundary conditions 
[1,14]. The AB4 method, in contrast, requires only one evaluation of the right-hand-side and straightforward application of 
boundary conditions, but it requires initialization of the first three steps. The latter task is trivially accomplished in most 
relevant contexts, in which sources ramp up from zero (carrying zero initial displacement)—thus enabling use of solution 
values identically equal to zero for the first three time-steps. In all, the AB4 approach seems advantageous in the present 
context, and it was thus used in all of the numerical examples presented in this paper.

Expressing the second-order-in-time elastic wave equation (1) in the form

ũtt = F̃
(̃
u,∇qũ,∇q · ũ,q, t

)
(45)
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Fig. 8. Depictions of the exponential filter with parameter values given by (p,α) = (3N/5,16 log(10)) (left) and (p,α) = (4,−cL�t/hmin ln(10−2)) (right).

(cf. Section 5.2) and letting

g̃(q, t) = ũt(q, t),

the PDE under consideration can be recast as the first-order system{
ũt(q, t) = g̃(q, t),

g̃t(q, t) = F̃
(̃
u,∇qũ,∇q · ũ,q, t

) (46)

for unknowns ũ = (u1, u2, u3)T and g̃ = (g1, g2, g3)T . Integration of this system in time on the basis of the fourth-order 
explicit Adams–Bashforth discretization with uniform time-step �t > 0 then yields the fully discrete equations we use. With 
an easy-to-understand notational license the corresponding time-step is given by

g̃(t + �t) = g̃(t) + �t

24

[
55̃F(t) − 59̃F(t − �t) + 37̃F(t − 2�t) − 9̃F(t − 3�t)

]
,

ũ(t + �t) = ũ(t) + �t

24
[55̃g(t) − 59̃g(t − �t) + 37̃g(t − 2�t) − 9̃g(t − 3�t)] . (47)

Dirichlet and traction boundary conditions (cf. Section 6.3) are injected after each time-step tn → tn+1; the resulting normal 
derivatives and function boundary values at time tn+1 are then used to produce the FC approximations needed to evaluate 
the right hand side ̃F at time tn+1 and the time-stepping iteration is thus complete.

6.2. Frequency space filters

Like other spectral and finite-difference solvers, our algorithm relies on use of a spatial filter to control error growth in 
unresolved modes; cf. [2] and references therein. In keeping with the character of the FC method the filter we utilize is 
applied in Fourier space: using the function

σ (2k/N) = exp
(
−α (2k/N)2p

)
, (48)

the filtering operation on a function u(x) with Fourier coefficients ûk is given by

N
2∑

k=− N
2

ûk exp(ikx) −→
N
2∑

k=− N
2

σ (2k/N)) ûk exp(ikx). (49)

The positive integer p controls the rate of decay of the filter coefficients, and the real parameter α determines the level of 
suppression: the highest-frequency modes are multiplied by e−α .

The filter σ with parameters (p, α) = (3N/5, 16 log(10)) (which were used in [2] as part of a Navier–Stokes FC solver) 
is displayed in the left portion of Fig. 8. We have found that, in absence of the viscous terms inherent in the Navier–Stokes 
equations, error discontinuities arising in neighboring patches and sub-patches can give rise to instability—as the Fourier se-
ries expansions in segments from different overlapping patches may be made overly inconsistent by the filtering procedure. 
The impact of such inconsistencies, which is also mentioned in [15], is demonstrated in the left portion of Fig. 9.

A “milder” choice of parameters (for which the highest frequency terms aren’t entirely eliminated) is used in this paper, 
namely

(p,α) = (4,−cmax�t/hmin ln(10−2)), (50)
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Fig. 9. Numerical errors along the x-axis for plane waves in a thin plate of dimensions 100 mm × 20 mm × 20 mm. Left: Errors after 10,000 time-steps for 
filter parameters values (p, α) = (3N/5, 16 ln(10)); by 15,000 time-steps, the magnitude of these errors is higher by several orders of magnitude. Middle: 
Errors after 10,000 time-steps for filter parameters values (p, α) = (4, −cL�t/hmin ln(10−2)). Right: Errors after 500,000 time-steps for the latter filter 
parameter values.

where cmax = max{cL, cT } is the maximum wave speed in the material, and where hmin is the finest spatial step size 
throughout the computational domain. In particular, this choice of parameters, inspired by a similar choice in [15], ensures 
that the filter approaches unity as �t → 0 for a fixed �x. As seen in the right graph of Fig. 8, this filter does not eliminate 
the highest modes completely but more smoothly forces the decay of the Fourier coefficients. This filter was used in all of 
the numerical examples presented in this paper. The usefulness of this filter is illustrated in Fig. 9, which results from a 
simulation of plane waves sin(25π(x1 − cLt)) in a plate of dimensions 100 mm × 20 mm × 20 mm with Dirichlet boundary 
conditions, and with material parameters ρ = 1, λ = 2.173 ×104 and μ = 9.630 ×103. The domain is constructed as a union 
of two overlapping patches of dimensions 50 mm × 20 mm × 20 mm (N = 48 × 16 × 16) and 70 mm × 20 mm × 20 mm
(N = 72 × 16 × 16) whose discretizations do not coincide on the overlap (so that interpolation is necessary) and which are 
distributed into six and ten parallel sub-patches, respectively. After 10,000 time-steps at �t = .1 μs, the left image shows 
some significant errors (that occur mainly at patch and subpatch boundaries). By 15,000 time-steps the magnitude of these 
errors is higher by several orders of magnitude. With the filter parameters used to produce the middle portion of the figure 
and at the same �t value, on the other hand, the errors remain as shown in the figure for 15,000 time-steps—and, indeed, 
at least up to 500,000 time-steps, as demonstrated in the rightmost portion of Fig. 9.

Remark 6.1. The �t value used above in this section coincides with the value given by the expression �tstab = �xmin
32(cL+cT )

for 
the parameters of the problem under consideration. The solver presented in this paper has consistently demonstrated sta-
bility, over a wide range of material parameters and geometries, for all �t ≤ �tstab and for runs including several hundreds 
of thousands of time-steps. Naturally, smaller values of �t may be needed for accuracy under certain circumstances and, 
conversely, larger values of �t could be used to advantage for some configurations.

6.3. Treatment of traction boundaries in curvilinear coordinates

Traction boundary conditions can be enforced by solving for the relevant normal derivatives in terms of tangential deriva-
tives, upon which the Neumann FC operator introduced in Section 3.2 can be applied. For example, the traction boundary 
condition (38) on the face {(q1, q2, q3) : q1 = 0} ⊂ [0, 1]3 can be re-expressed as an identity between the out-of-plane 
derivatives ∂ ũ1/∂q1, ∂ ũ2/∂q1 and ∂ ũ3/∂q1 and the in-plane derivatives ∂ ũ1/∂q2, ∂ ũ1/∂q3, ∂ ũ2/∂q2, ∂ ũ2/∂q3, ∂ ũ3/∂q2 and 
∂ ũ3/∂q3 at (0, q2, q3). Once they have been determined, every invocation of the FC algorithm for the relevant first derivatives 
in the right hand side of (35) at each time-step, i.e. in the computation of ∂ ũ1/∂q1(q, t), ∂ ũ2/∂q1(q, t) and ∂ ũ3/∂q1(q, t)
throughout the domain, employs the Neumann operator of Section 3.2 using, for example, the d matching points given by(

ũ1(q1
d,q2,q3), ũ1(q1

d−1,q2,q3), . . . , ũ1(q1
1,q2,q3),

∂ ũ1

∂q1
(0,q2,q3)

)T

. (51)

This portion of the algorithm is placed in the context of the overall FC methodology in the algorithm pseudo-code presented 
in Section 6.4.

Remark 6.2. The use of the filtering procedure described in the previous section is restricted in our algorithm to the 
evaluation of the right hand side of the elastic wave equation (35), and it is not used in the computation of the in-plane 
derivatives in the treatment of traction boundary conditions. In fact, use of filtering for evaluation of the traction boundary 
conditions, which is not necessary for stability, decreases the consistency of the Neumann boundary values and the solution 
values in the interior of the computational domain, and thus gives rise to larger errors near the traction boundaries than 
can otherwise be obtained.
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6.4. Overall algorithm pseudo-code

The brief pseudo-code below (Algorithm 1) summarizes the proposed FC-based elasticity solver.

Algorithm 1 Summary of the full FC-based numerical PDE solver for the elastic wave equation.

1: for Each time-step n do
2: for All patches �i do
3: for All sub-patches ω j ∈ �i , each assigned to a core do
4: Evaluate the directional derivatives needed to enable enforcement of the traction boundary conditions as indicated in Section 6.3

(if they exist in a given problem) at time t = tn

5: Advance the solution throughout the domain ω j and its boundary ∂ω j to time tn+1 via Equations (47). (Traction conditions 
are enforced by using the directional derivatives with the FC Neumann operator in the computation of the right hand sides 
F 1, F 2, F 3.)

6: Update physical Dirichlet boundary values at tn+1 (enforced by direct injection of the given Dirichlet boundary values.)
7: if ω j has neighboring sub-patches {ωk} ∈ �m, m = i then
8: Exchange fringe points solution values with {ωk} via MPI
9: end if

10: if ω j has neighboring (sub)patches {ωk} ∈ �m, m �= i then
11: Interpolate and exchange values with {ωk} via MPI
12: end if
13: end for
14: end for
15: end for

7. Performance studies

This section presents a variety of numerical experiments that demonstrate the qualities of the elasticity solver presented 
above in this text, including the algorithm’s convergence and dispersion properties, its stability and its parallel performance.

7.1. Accuracy and convergence order

A verification of the correctness and numerical accuracy of the proposed numerical scheme for the full elasticity equa-
tions (35) and its C++ implementation was performed by the method of manufactured solutions (MMS); similar verification 
procedures have been used extensively in the literature, see e.g. [29,31,35]. In the MMS a smooth solution is postulated and 
a right-hand forcing term and boundary conditions are then determined that indeed make the postulated function an exact 
solution of the problem. For our example we consider the solution

ui(x1, x2, x3, t) = sin
[

2π fx1 · (x1 − ct)
]

sin
[

2π fx2 · (x2 − ct)
]

sin
[

2π fx3 · (x3 − ct)
]

(52)

for i = 1, 2, 3 and with parameters fx1 = fx2 = fx3 = 12 and c = √
5 m/s on a cylinder of radius r = 10 cm and length of 

30 cm filled with a solid of material constants ρ = 1, λ = 1 and μ = 2. For the numerical computations the cylindrical 
domain is viewed as the union of two overlapping patches �1 (a rectangular box) and �2 (an annular portion of the 
cylinder)—as depicted in Fig. 10, which also contains a snapshot of the displacement component in the vertical x2 direction 
of the solution u(x, t). Considering integer multiples of the coarsest spatial discretization used, which contains a total of 
N = 30 × 30 × 30 points in �1 and N = 30 × 30 × 80 points in �2, we advance the simulation on up to 512 cores for 
five thousand time-steps at a step size of �t = 0.1 μs, employing either Dirichlet and traction boundary conditions. The 
maximum absolute errors among all components of the vector solution (u1, u2, u3) for all time-steps are displayed in 
Table 2—where the fifth-order accuracy of the algorithm can easily be appreciated.

7.2. Dispersion and stability experiments

In order to demonstrate the dispersion and stability characteristics of the proposed solver by means of wave-propagation 
test problems for which waves propagate over long distances, we consider a 3D aluminum plate of dimensions 400 mm ×
10 mm × 100 mm and Poisson’s ratio ν = .35 (corresponding to ρ = 2700 kg/m3, and Lamé parameters λ = 6.049 ×
1010 N/m2 and μ = 2.593 × 1010 N/m2). The proposed FC algorithm is applied to advance the MMS elasticity solution 
given by

u(x, t) = (u1, u2, u3)T =
(

sin
[

2πn
(

x1 − cLt
)]

,0,0
)T

(53)
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Fig. 10. Numerical values of the vertical displacement produced by the right-hand-side source (52). The bold dots indicate the layers of interpolation points 
used.

Table 2
Maximum errors in the elastic displacement resulting from use of the proposed FC elasticity solver for the MMS problem considered in Section 7.1. 
Maximum errors over the full computational domain and over 5000 time-steps, which were calculated by comparison with the MMS exact solution, 
are displayed for elasticity problems under Dirichlet and Traction boundary conditions (L∞

err Dirichlet and L∞
err Traction, respectively). The corresponding 

convergence orders in the infinity norm are presented as well (O (L∞) Dirichlet and O (L∞) Traction). A fine temporal discretization was used so that the 
overall error is dominated by errors arising from the spatial discretization.

N (patch �1) N (patch �2) L∞
err Dirichlet O (L∞) Dirichlet L∞

err Traction O (L∞) Traction

30 × 30 × 30 30 × 30 × 80 2.34e−03 – 2.82e−03 –
60 × 60 × 60 60 × 60 × 160 7.89e−05 4.89 8.29e−05 5.09
90 × 90 × 90 90 × 90 × 240 9.41e−06 5.24 9.37e−06 5.38
120 × 120 × 120 120 × 120 × 320 2.00e−06 5.38 2.00e−06 5.37
150 × 150 × 150 150 × 150 × 400 6.51e−07 5.03 6.51e−07 5.03

Fig. 11. Numerical solution of equation (53) at time t = 0.62 μs for configurations involving W = 3, 12 and 48 wavelengths (from left to right) along a thin 
aluminum plate.

(where cL = √
(λ + 2μ)/ρ is the longitudinal wave speed in meters-per-second), under Dirichlet and traction boundary 

conditions, and for various wavenumbers n (or, equivalently, for various numbers W of wavelengths along the plate). Illus-
trations of the computational domain and corresponding solutions are presented in Fig. 11 for W = 3, 12 and 48. As shown 
in what follows, the FC numerical errors are virtually independent of frequency as long as the numbers PPW of points per 
wavelength in the spatial discretization are kept constant.

The two left graphs in Fig. 12 present maximum numerical errors resulting from applications of the FC solver to the 
problem described above in this section—under Dirichlet and traction boundary conditions, respectively, over the complete 
plate and for 0 < t < 62 μs (the time required for any one crest to travel the length of the plate)—as functions of the number 
W of wavelengths along the plate (cf. Fig. 11) and for PPW = 15 and PPW = 20. The time-step for these runs was chosen to 
be sufficiently small (�t = .45 ns) to guarantee that the overall numerical errors are dominated by those arising from the 
spatial discretization. (With reference to Remark 6.1 we have �stab = 0.436 ns for the finest discretization considered in this 
section.) The rightmost graph in Fig. 12, in turn, compares maximum errors that result as a single-patch FC-based solver 
and a second-order finite-difference (FD) solver are used to evolve the MMS solution u(x, t) = sin(2πn(x − t)) of the 1D 
wave equation utt = uxx in the domain 0 ≤ x ≤ 1 under Neumann boundary conditions. Clearly, for each fixed value of PPW
the accuracy resulting from the FC algorithms remains essentially constant as W grows. In contrast, the accuracy of the 
FD solution degrades as W grows, and, even for low W values, large numbers of PPW are required to achieve reasonable 
engineering accuracies. The 3D accuracies demonstrated in the two left figures, which result from simulations that use up 
to 512 cores (and, thus, 512 patches) for the highest values of W , were obtained by means of the domain decomposition 
and parallel implementation method described in Section 5.3.2. The use of patch decomposition represents a key difference 
between the 3D FC runs leading to the left and center graphs and those associated with the 1D example presented in the 
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Fig. 12. Maximum numerical errors over all space and over one full temporal cycle (defined as the time required for any one crest to travel the length 
of the plate) of a plane wave solution with increasing number of wavelengths for the 3D elastic wave equation with Dirichlet and traction boundary 
conditions (left and center, respectively), and the 1D wave equation (right) using the FC method and a second-order-accurate finite difference method. 
A single time-step size (under AB4 time-stepping) were used for all the experiments considered in this figure.

Fig. 13. Numerical errors for FC solutions considered in Section 7.2 over many temporal cycles (where one cycle spans 60,000 time-steps) for a plate 
ten-wavelengths in length, demonstrating long-time stability for Dirichlet and Traction boundary conditions (left and right images, respectively).

right graph: in view of the particular geometrical structure of the three-d problem under consideration (for which only one 
core is used on the full thickness and width of the plate) in the two former cases, for a number ptotal of computing cores, 
waves that travel along the length of the plate are subject to a total of 2ptotal Gram-polynomial projections—as opposed to 
the 2 projections in the 1D case. Consideration of Fig. 12 suggests that the use of large numbers of sub-domains and interior 
sub-patches does not give rise to significant dispersion. Additionally, errors over many temporal cycles of a ten-wavelength 
solution in Fig. 13 (which resulted from a run involving more than 600,000 time-steps at �t = 1 ns) demonstrates the 
long-term stability of the FC method even in presence of large numbers of sub-patches. (Here a cycle is defined as the time 
required for any one crest to travel the length of the plate; for example, a cycle is covered in 60,000 time steps for the test 
cases considered in Fig. 13.)

The aforementioned rightmost graph in Fig. 12 compares error curves that result from an FC scheme discretized by fixed 
numbers 10, 15 and 20 of PPW and a second-order-in-space FD scheme using 75 and 150 PPW. (It is important to note 
that even though the given solution is periodic, the FC algorithm does not exploit this property—since it still extends the 
domain and creates a new periodic extension.) Clearly the number of PPW required to provide fixed accuracies for longer 
and longer wave-trains remains essentially fixed for the FC approach (that is, the method is essentially dispersionless) but 
it does not for the FD method. In particular, for large two- and three-dimensional problems, low-order FD approximations 
tend to require prohibitively large discretizations. Similar comparisons of FC algorithms to fourth- and eighth-order FD 
schemes, to “spectral-like” high-order Padé schemes, to finite-volume methods of various orders, and to high- and low-order 
hybrids of Discontinuous Galerkin and Finite Volume methods can be found in [2,3,15,26]; corresponding comparisons 
for the present FC-based elasticity solver are presented in Section 8.1 below. In each of these studies the FC algorithms 
demonstrate significant advantages over the alternatives—either as a result of their favorable dispersion characteristics, or 
their benign CFL time-step restrictions, or both [2,3]. The ability of the FC representations to maintain accuracy over long 
distances by accurately approximating the dispersion characteristics of the underlying continuous problems—at FFT speeds 
and without severe CFL constraints—makes the FC solver methodology a highly competitive approach for solution of general 
Partial Differential Equations in the time domain.
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Table 3
CPU-seconds per million unknowns and errors for a domain consisting of a single curvilinear patch (no interpolation), indicating excellent scalability up 
to at least 480 cores. Left table: weak convergence test, for which both the number of discretization points and the numbers of cores are increased 
simultaneously. Right table: strong convergence test, wherein for a fixed number of grid points, the number of cores used is increased. Clearly, essentially 
perfect parallel efficiency is obtained under both weak and strong convergence tests.

# grid pts # cores L∞
err O (L∞) S

799,200 120 2.83e−3 – 1.20 s
2,589,408 360 3.00e−4 5.54 1.23 s
4,111,884 480 1.38e−4 5.04 1.30 s

# grid pts # cores L∞
err S

4,111,884 120 2.90e−4 1.34 s
– 360 3.00e−4 1.23 s
– 480 3.06e−4 1.28 s

7.3. Parallel performance and spatial cost asymptotics

The overset patch/sub-patch parallelization and load balancing methods introduced in Sections 5.3.2 and 5.3.3 give rise 
to an efficient and well-balanced parallel implementation of the FC solver. By augmenting each sub-patch with a fringe 
region and assigning it to a single core, the proposed methodology enables efficient computation of the needed Fourier 
transforms using fixed FFT sizes. To demonstrate the parallel scalability, we conducted tests on a computing cluster using 
16 cores per node for up to 480 processing cores. The elasticity solver was advanced for 1000 time-steps and each core 
recorded the maximum absolute error in the solution in the corresponding sub-patch as well as the time spent in local 
computation—including the time spent in interpolation and communication but excluding the (extremely small) start-up 
and initialization times.

To analyze the scalability of the solver we first consider a thin-plate test problem with traction boundary conditions, and 
we record the number S of CPU-seconds required for the solver to advance a million spatial unknowns for one time-step; 
it is easy to check that S is given by the expression

S = (# of cores) × (total computation time)

3 × [(# of spat. discret. pts.) + (# of traction bdry. pts.)]/106
, (54)

where the factor of 3 stems from the total number of unknowns at each point, i.e. the displacements u1, u2 and u3. Clearly, 
perfect scaling arises whenever S remains (essentially) constant as the discretization is refined and the number of assigned 
cores is increased. The S values for an experiment concerning the aforementioned thin plate containing a single patch are 
given in Table 3; these results illustrate the perfect scalability of the single-patch solver (while maintaining fixed accuracy) 
up to at least 480 cores/sub-patches.

Remark 7.1. For typical applications of the FC elasticity solver, the expected computational load on each core outweighs 
the communication load of the fringe regions, and hence this contribution to the overall cost may be safely neglected in a 
core-allocation analysis.

A second test was conducted to determine the scalability properties of our FC elasticity solver for configurations con-
taining multiple patches—for which an additional computational cost associated with inter-patch interpolation occurs. Use 
of an appropriate inter-patch interpolation strategy increases the computing cost per million unknowns per core by a fixed 
amount, that is, by an amount that is independent of the number of patches used. This useful property results from the 
fact that each donor and receiving sub-patch contains a number of interpolation points that does not grow with the over-
all discretization (as long as the sub-patch discretization sizes remain fixed, which is the recommended strategy for our 
solver), and, therefore, the total time spent by each core in interpolation procedures is independent of the number of cores 
used. Furthermore, to mitigate the possible imbalance that may arise from the additional load incurred by sub-patches that 
require interpolation versus those that don’t, all interpolation weights are precomputed on the donor patch during initial-
ization so that all interpolations can be performed locally. This additionally ensures that no stencils are communicated: 
each boundary sub-patch simply receives, at each time-step, the interpolated u1, u2, u3 values directly from each donor 
sub-patch and replaces those values in its solution. The corresponding results of an experiment conducted on a plate with 
a circular through-hole, whose geometry is composed of the six different curvilinear patches detailed in Section 8.2, is 
displayed in Table 4. Clearly, our methodology maintains the excellent parallel scaling and consistent accuracy previously 
observed in Table 3 for the single patch configuration, and only a small additional amount of computing time is required by 
the necessary inter-patch interpolation.

It is interesting to note that the data presented in Tables 3 and 4 also demonstrate the linear growth of the computational 
cost as a function of the size of the spatial discretization—in both single-patch and multi-patch contexts: consideration of 
equation (54) shows that a constant value of the parameter S , as demonstrated in these tables, implies, in particular, that 
the computational cost grows linearly with the size of the discretization mesh.
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Table 4
CPU-seconds per million unknowns and errors for a domain of a plate with a circular-through hole consisting of six different curvilinear meshes which 
interpolate from each other (see Section 8.2). Left table: weak convergence test, for which both the number of discretization points and the numbers of 
cores are increased simultaneously. Right table: strong convergence test, wherein for a fixed number of grid points, the number of cores used is increased. 
Clearly, essentially perfect parallel efficiency is obtained under both weak and strong convergence tests. The somewhat increased computational costs in 
the present table vis-a-vis those reported in Table 3 reflect costs arising from the inter-patch interpolation procedure.

# grid pts # cores L∞
err O (L∞) S

377,460 120 1.70e−1 – 1.61 s
3,033,360 360 7.98e−3 4.41 1.54 s

10,252,980 480 1.04e−3 5.03 1.65 s

# grid pts # cores L∞
err S

3,033,360 240 7.89e−3 1.51 s
– 360 7.98e−3 1.55 s
– 480 8.32e−3 1.45 s

Fig. 14. Time responses of various displacement components on the surface for receivers placed along the x3-axis (the minor axis of the mountain). The 
incident S-wave is polarized along the minor (x3-) axis of the 180 m mountain. Note the existence of reflections from the x3 equal to 0 and 2.08 km lateral 
faces, which result from the periodicity of the structure that is assumed in this classical problem.

8. Numerical examples and applications

8.1. Seismic response in 3D topographies

This section presents results of applications of the elastic wave equation solver introduced in this paper, including its 
overset grid methodology, to 3D geological structures impacted by incident S-waves (shear waves). The effects arising from 
three-dimensional topographies have been repeatedly studied via consideration of a Gaussian hill of height 180 m whose 
profile is parameterized by [5,8,22,24]

x2 = x2(x1, x3) = 1050 m + 180 · exp

[
− x1 − 1040

2 · 2502
− x3 − 1040

2 · 1252

]
m (55)

for (x1, x3) ∈ [0 km, 2.08 km], and whose computational domain extends to a depth of 1.05 km. (The bottom of the com-
putational patch lies on the plane x2 = 0.) For our treatment, this computational domain is a single patch containing 
N = 143,871 discretization points. A homogeneous ground medium is assumed, with a P -wave velocity of 3.2 km/s, an 
S-wave velocity of 1.8475 km/s and a density of 2200 kg/m3. A vertically incident S-wave of fundamental wavelength 
λ = 180 m polarized along the short axis of the hill is considered; the time-dependent source is a Ricker wavelet of fre-
quency f0 = 10.2 Hz centered at time t0 = .1 s that is described by the Dirichlet boundary condition

u(x1,0, x3, t) =
(

0,0, .5[2π2 f 2
0 (t − t0)

2 − 1]e−π2 f 2
0 (t−t0)2

)T
(56)

at the bottom surface of the computational domain (x2 = 0); cf. e.g. [8,24]. Traction-free boundary conditions were imposed 
on the top surface (equation (55)) and periodic conditions were assumed along the lateral edges corresponding to x1 and 
x3 equal to 0 and 2.08 km. The simulation was evolved up to time t = 1.24 s at a step size of �t = 8.0 × 10−4 s.

The time responses (seismograms) for the various displacements measured at receivers along the minor axis of the hill 
are given in Fig. 14, where the early-time incident S-wave trace is so labeled, as are the corresponding diffracted P - and 
Rayleigh-wave traces. Snapshots of the solution for the in-plane ground displacement u3(x, t) over the entire surface are ad-
ditionally presented in Fig. 15 where, following previous contributions, it can be observed that most of the waves diffracted 



F. Amlani, O.P. Bruno / Journal of Computational Physics 307 (2016) 333–354 351
Fig. 15. Horizontal displacement u3(x, t) at various snapshots in time, where the x3-coordinate direction contains the minor axis of the hill. An intense 
field concentration at the summit is clearly visible, as is the preferential propagation direction (in the direction of the short axis of the mountain) of the 
resulting diffracted waves. A time slider is given underneath each snapshot.

Fig. 16. (Left) Photograph of an experimental sample with a circular hole. (Right) A close up of the corresponding computational model composed of six 
overlapping patches.

away from the hill are generated at the summit. The results of this simulation are in excellent agreement with previous 
solutions, including those produced by means of 1) The high-order predictor–corrector spectral element method [24] using 
a total of N = 4,935,953 discretization points; 2) The stable FD method [5] using a total of N = 109,808,412 discretization 
points; and 3) The time-domain boundary element method [22] on the basis of a reduced 3721 point surface discretization 
and a relatively large time step �t = 4.0 · 10−3 (approximately five times larger than the time-step �t = 8.0 · 10−4 we 
used), but whose computing time remains high on account of the required large number of Green function evaluations. For 
comparison the diffracted P - and Rayleigh waves were accurately evaluated in our simulations using a total of N = 143,871
volumetric discretization points for a run-time of 58 seconds on 96 cores of an infiniband Poweredge cluster consisting of 
32 nodes each one of which contains two eight-core Intel Xeon 2.4 GHz processors and 64 GB of RAM.

8.2. Non-destructive evaluation: scattering of waveguides in plates with defects

The thin-plate scattering applications considered in this section are motivated by a collaboration with our co-authors 
in [25]; corresponding laboratory experiments were performed by these colleagues at the University of Vigo in Spain. The 
contribution [25] presents a quantitative characterization of defects in aluminum plates by comparison between experimen-
tal and simulated (numerical) scattering patterns of narrow-band guided waves with circular and rectangular holes—albeit 
with a simplified mathematical model based on use of scalar waves on a two-dimensional domain.

In the present section we revisit this problem, but we tackle the numerical simulation problem by means of our full 
three-dimensional elastic wave solver. The incident waves in these laboratory experiments were generated by means of the 
wedge method described in [25]: the longitudinal wave emitted by a piezoelectric transducer was coupled to the surface of 
a thin plate through a prismatic coupling block. In the experiments under consideration the piezoelectric source was excited 
in such a way that the guided wave trains had a frequency of f = 1 MHz and were quasi-monochromatic with wavelength 
λ = 2.96 mm, yielding a Rayleigh phase velocity c = λ f = 2960 m/s. The instantaneous out-of-plane displacement field 
u2(x, t) due to the propagation of the guided wave-train was obtained by means of a novel double-pulsed TV holography 
system—details can be found in [18,25,30]. For our numerical experiments we use analytical representations provided by our 
collaborators for the experimentally observed Dirichlet boundary condition on the left edge of the computational domain, 
representing small wave-trains incident on a circular hole of diameter 12 mm centered in a plate of thickness 10 mm. 
The corresponding computational geometries were constructed, to the physical specifications of the experimental regions of 
interest shown on the left portion of Fig. 16, by means of our overlapping grid strategy—the corresponding computational 
domains including an illustration of the overset patches are given in the right portion of this figure.
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Fig. 17. Experimental (left) and 3D simulated (right) snapshots of the real part of the out-of-plane displacement u2(x, t) on the top plate surface for a plate 
containing a 12 mm diameter circular hole. In the top figures, which correspond to a time before interactions with the hole take place, the field equals the 
driving incident field. The bottom figures demonstrate the wave scattering caused by the hole.

As indicated in Fig. 16, modeling the hole-edges requires particular care—edges must be smooth to avoid singularities in 
our high-order numerical method, but they must be sufficiently sharp so as to provide an adequate approximation of the 
experimental sample. To obtain such slightly rounded edges we utilize a portion of a superellipse given by the equation

(x/a)η + (y/a)η = 1, η ∈R (57)

together with three additional curves to make up a quadrilateral with curved sides, and we then construct, by means of 
transfinite interpolation, a two-dimensional slice of a domain around the hole boundary that is subsequently rotated to pro-
duce the corresponding three-dimensional hole geometry. We have found that use of the rounding parameter η = 24 in (57)
provides adequate approximations: this approximation yields three correct digits in the back-scattering coefficient [30] (as 
verified by means of a convergence study in the parameter η), and it leads to solutions that agree very well with the 
experimentally measured fields, as demonstrated in what follows.

The propagation domain was discretized by means of six patches and a total of N = 5,933,561 discretization points. 
Traction boundary conditions were enforced at the top and bottom of the plate as well as the hole boundaries (as befits 
the experimental configuration), and the solution was advanced at a time-step of �t = 0.5 ns for a total number of 50,000
steps. Simulations were carried out on a computing cluster using 464 cores and using a number of four fringe points in 
each dimension for all sub-patches for a total run-time of just under two hours per run.

A depiction of the solution values for the scattering by a 12 mm hole is given in Fig. 17 as snapshots of the out-of-plane 
displacement solution u2(x, t) for both the experiments and our numerical simulations. The images displayed demonstrate 
very good agreement between measured field values and the three-dimensional simulation—and they thus provide a mutual 
validation of our numerical methodology and the measurement techniques employed by the Vigo group. Fig. 18 presents 
profiles of the out-of-plane displacement u2 along the vertical and horizontal lines that overlay Fig. 17 to the left of the hole. 
Agreement between the experimental and numerical profiles is observed even at points very close to the hole edge—just 
short of the edge-rounding region. The oscillations in the experimental curves are attributed to experimental error: cf. the 
left images in Fig. 17 which indeed seem to suggest existence of experimental error of relatively high frequency.

9. Conclusions

This paper introduces a new high-order methodology, based on the Fourier continuation method for the resolution of 
the Gibbs phenomenon, for the numerical solution of elastodynamics problems in complex three-dimensional geometries. 
Through combination of several key elements, including a new modified FC operator for the treatment of elastic boundary 
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Fig. 18. Field cross-sections along the horizontal and vertical lines shown in Fig. 17.

conditions and an overset strategy for the treatment of general three-dimensional geometries, including possibly absorbing 
boundary conditions and unbounded media (cf. [4]), the solver developed in this work effectively resolves linear elastic 
wave propagation problems in physically-relevant three-dimensional computational domains. Our new solver provides fast, 
accurate solutions with essentially nil dispersion, it only requires mild CFL conditions for stability (Remark 6.1), and it 
has been implemented on distributed-memory computing clusters by means of a parallelization strategy that has excellent 
scalability properties. The versatility of the proposed algorithm was demonstrated by means of numerical tests as well 
as a variety of realistic applications in seismology and non-destructive evaluation of materials with defects—including, in 
particular, comparisons with experimental data.
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