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Práctica I

1.- Consider the partial sums

rn(x) =
a0
2

+
n∑
k=1

(ak cos kx+ bk sin kx) (1)

and

sn(x) =

n∑
k=−n

cke
ikx, (2)

with complex numbers ak, bk and ck. Establish that rn = sn if and only if

a0 = 2c0 ; ak = ck + c−k and bk = i(ck − c−k) for k ≥ 1.

[EASY!]

2.- Fourier series and the Gibbs phenomenon.

(a) Let f(x), −L ≤ x < L be a function whose periodic extension of period 2L, which will also be
denoted by f , is piecewise differentiable but discontinuous at a finite number of points in the
interval −L ≤ x < L (with consequent discontinuities in the periodic extension). Show that,
denoting by an, bn and cn the cosine, sine and exponential Fourier coefficients of f , we have
cn = O(1/n), an = O(1/n) and bn = O(1/n) as n→∞. Generalize: what can you say if the
k-th derivative f (k) is piecewise continuous while all the previous derivatives are continuous?

[Review Re. point (a): A function f : [a, b]→ R is said to be k times piecewise continuously
differentiable in an interval [a, b] if and only if f is k − 1 times continuously differentiable in
[a, b], and there exists a finite sequence of points x0 = a < x1 < · · · < xn−1 < xn = b such
that f is k times continuously differentiable within each closed interval [xi−1, xi], including
the endpoints (1 ≤ i ≤ n).]

(b) What do the results of item (a) imply about the rate of convergence of the corresponding
Fourier series at various points x in the interval [−L,L]? Obtain a simple estimate by means
of a direct application of the triangle inequality to the Fourier-series sum in conjunction with
point (a) above.

(c) With reference to point (b), obtain improved estimates of the rate of convergence via inte-
gration by parts in the integral expression for sN − f that was used in class as part of the
derivation of Dini’s test.

3.- Using the result established in class describing the convergence of the Fourier series of a cer-
tain step function, establish the convergence properties of an arbitrary piece-wise continuously
differentiable function around a point of discontinuity.

4.- Let {sn(x)} be the sequence of partial sums of the trigonometric Fourier series for f(x), and
define σn as the mean of the first n partial sums:

σn =
s0(x) + · · ·+ sn−1(x)

n
.



This is called the Cesáro sum of the Fourier series.

(i) Using the Dirichlet kernel

Dn(x) =
sin
(
n+ 1

2

)
x

2π sin(x/2)

which, as was shown in class, can be used to produce sn(x) via a certain integration process, obtain
a corresponding expression for σn(x) in terms of the Féjer kernel

1

2πn

sin2(nx/2)

sin2(x/2)
.

(ii) Show for any 2π-periodic continuous function f , σn(x) converges to f(x) for all x ∈ R.
(This is in contrast to the Fourier expansions sn themselves which do not converge to f for certain
continuous functions f .)

(iii) Plot the Fourier expansion and the Cesáro sum for one or more discontinuous functions
of your choice. Note that, in particular, the Cesáro sum does not suffer from the Gibbs overshoot
phenomenon. (Note: This can be explained by exploiting the expressions for sn and σn in terms of
the Dirichlet and Fejér kernels, respectively. Such explanatory analyses are not part of the present
assigment.)

5.- Trapezoidal rule; relation to fast convergence of Fourier series of smooth/analytic functions.

(a) Evaluate numerically the integral

1

2π

∫ π/4

0
exp

(
1√
2

sin(x)

)
dx

by means of the composite trapezoidal rule with mesh-sizes h = π/8, h = π/16 and a few other
uniform discretizations and establish that the integration error is a quantity of order O(h2). Give
a theoretical rationale explaining this fact.

(b) Repeat the numerical test for the integral

1

2π

∫ 2π

0
exp

(
1√
2

sin(x)

)
dx.

In this case the resulting error should be much smaller than the theoretical value O(h2).

(c) Show that the trapezoidal rule with h = 2π/(n + 1) in the interval [0, 2π] is exact for all
trigonometric polynomials of period 2π of the form

n∑
k=−n

cke
ikt.

(d) Show that if f(t) can be approximated by a trigonometric polynomial of degree n so that
the magnitude of the error is less than ε > 0 for all t ∈ [0, 2π], then the error resulting from use of
the trapezoidal rule with h = 2π/(n+ 1) to evaluate

1

2π

∫ 2π

0
f(t)dt



is less than 2ε.

(e) Let f be a real-analytic periodic function of period 2π. Show that the Fourier coefficients of
f converge to zero exponentially fast. [Hint: Consider the integral expression of the Fourier coeffi-
cients of f , and deform the integration path appropriately in the complex plane, taking advantage
of the fact that the integral of f on certain horizontal rectangles must vanish (as it follows from
Cauchy’s theorem). The integrals on vertical segments cancel each other out by periodicity.] What
can you conclude about the convergence of Fourier series of analytic functions? Demonstrate your

result by comparing plots of the function exp
(

1√
2

sin(x)
)

and its trigonometric Fourier expansions

of various orders over the period 0 ≤ x ≤ 2π.

(f) Use points (c) and (d) above to explain the sensationally good performance of the trapezoidal
rule that you (should have) observed in point (b) above.

6.-

(a) Let f(x) = x for x ∈ [0, π]. By extending f to the interval [−π, π] as an odd function, obtain
series expansions of f in terms of sine functions only. This is called the “sine expansion” of f in the
interval [0, π]. Similarly, extending f to the interval [−π, π] as an even function, obtain a “cosine
expansion” f in the interval [0, π]. Which of these two expansions provides a better approximation
of the function f in the interval [0, π]? To answer this question, estimate the maximum error in the
interval [0, π] as truncated versions of these expansions are used as approximations to the function
f . Provide both a theoretical analysis and numerical demonstrations supporting your conclusions.

(b) Show that the manipulations described in point (a) concerning extensions to a double-length
interval together with our previous knowledge that the trigonometric system T = {sin(nx) : n =
1, 2, . . . } ∪ {cos(nx) : n = 1, 2, . . . } is complete in L2[−π, π], can be used to establish that the set
S = {sin(nx) : n = 1, 2, . . . } is a complete set of orthogonal functions in L2[0, π]. Similarly, show
that the set C = {cos(nx) : n = 1, 2, . . . }) is a complete set of orthogonal functions in L2[0, π].

7.- For given h > 0 consider the finite-difference differentiation formulae

D+u(x) =
u(x+ h)− u(x)

h
, D−u(x) =

u(x)− u(x− h)

h
, D0u(x) =

u(x+ h)− u(x− h)

2h
and

D3u(x) =
1

6h
[2u(x+ h) + 3u(x)− 6u(x− h) + u(x− 2h)] .

Using relevant Taylor expansions, show that these expressions provide approximations to the first
derivative u′(x) with errors less than or equal to orders O(hp) with p = 1, 1, 2 and 3, respectively.
Using a log-log plot demonstrate in graphical form the convergence rate of the various approxima-
tions for e.g. the function u(x) = sin(x) at x = 1, and for h = 10−1, h = 5 · 10−2, h = 10−2, . . . ,
h = 10−3. (Remark: At the point x = 0, for the same example u(x) = sin(x), some of the approx-
imations mentioned are better than suggested by the estimates indicated above. Verify this, and
explain the observed behavior.)

Additionally, test numerically the approximations that result from the various finite-difference
formulae for much smaller values of h, say h = 10−6, h = 10−8, h = 10−10, h = 10−12, etc. Signifi-
cant deterioration should result. How con we account for the decreased approximation quality?



8.- The solution of the one-dimensional advection equation

ut(x, t)− aux(x, t) = 0

with initial conditions u(x, 0) = f(x) is given by

u(x, t) = f(x+ at).

(a) What is the domain of dependence of this PDE? More precisely, given a point (x0, t0) in
space time with t0 > 0, what are the values of x for which the given initial condition at (x, 0) may
influence the values of the exact solution at (x0, t0)?

(b) Assuming a > 0, construct a lowest-order explicit upwind (resp. downwind) finite-difference
approximation for this PDE. In detail, with reference to problem 1, an upwind (resp. downwind)
method could be designed by approximating the derivatives at a point (tn, xn) by using D+ in time
together with D+ (resp. D−) in space. Explain the upwind/downwind terminology, and note that
the usage of the terms upwind and downwing should be reversed for negative values of a.

(c) Find the numerical domain of dependence of the upwind and downwind methods, and
explain why, in view of the Lax-Richtmyer stability and convergence theory mentioned in class, the
downwind approach cannot be stable.

(d) For what values of ∆t/∆x can we be certain, on the sole basis of consideration of exact and
numerical domains of dependence, that even the upwind method is unstable?

9.- Notation: let ν = ak
h (where h = ∆x = 1

m+1 and k = ∆t). Also, consider grid functions (column

vectors) of the form V = (V0, V1, . . . , Vm)T ∈ Cm+1 endowed with the regular Euclidean scalar

product (V,W )2 =
∑m

j=0 VjWj and the associated 2-norm ‖V ‖2 =
(∑m

j=0 |Vj |2
)1/2

.

Using these notations, study the stability of the upwwind scheme for the one-dimensional ad-
vection equation (Problem 2) in the interval [0, 1] with periodic boundary conditions—by utilizing
the following procedure (known as “von Neumann stability analysis”).

(a) Let V = V (ξ) = (Vj(ξ))j denote the grid function given by Vj = eijhξ, j = 0, . . . ,m. Show
that the grid functions V (ξ) with ξ = 2π`, ` = 0, . . . ,m, are mutually orthogonal with respect
to the scalar product (·, ·)2.

(b) Show that any grid function U = (U0, U1, U2, . . . , Um)T can be expressed as a linear com-
bination of the finitely many grid functions V (ξ) with ξ = 2π`, ` = 0, . . . ,m. [Hint: use
point (a).]

(c) Letting Unj = Vj(ξ) evaluate the grid function Un+1 at time tn+1 that results from time
stepping according to the upwind scheme considered in the previous problem. Show that
Un+1 = g(ξ)Un = g(ξ)Vj(ξ) for a certain function g(ξ), and explicitly determine the function
g.

(d) Show that |g(ξ)| ≤ 1 for all relevant values of ξ if and only if the condition 0 ≤ ν ≤ 1 is
satisfied. (Note that, per Problem 2 above, 0 ≤ ν ≤ 1 if and only if the exact domain of
dependence is contained in the numerical domain of dependence.)



(e) Show that the condition |g(ξ)| ≤ 1 ensures that the scheme is stable. [Hint: use points (a)
and (b) to show that the discrete 2-norm ‖Un+1‖2 of the grid function Un+1 is less than or
equal to the 2-norm of Un—and, in particular, stability in the 2-norm holds (the norm of the
numerical solution is uniformly bounded for all n).]

(f) Explain why Point (e) only establishes the stability of the upwind scheme under periodic
boundary conditions.

(g) Is the downwind scheme similarly stable in the 2-norm?

[Note: The von Neumann stability analysis can only establish stablity under periodic boundary
conditions. Study of stability for more general boundary conditions require use of other methods,
including matrix eigenvalue analysis (as in the example considered in class); discrete energy conser-
vation methods; and method-of-lines analyis combined with ODE stability theory, among others.
Even though, strictly speaking, it only applies to the periodic case, the von Neumann analysis is
often a very important base-line indicator of the stability of a scheme. In particular, a failure to
satisfy von Neumann stablity is a clear indication that a scheme is not stable.]


