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Práctica III

1.- Let f denote a square-integrable 2π periodic function. Determine the values of α ∈ R for which
the problem

αu(x)− u′′(x) = f(x), x ∈ R

with periodic boundary conditions:
u(x+ 2π) = u(x)

admits a unique solution.

Let α = 1. Using the Fast Fourier Transform algorithm in Matlab to expand the function f in
a Fourier series, solve the periodic boundary-value problem described above in the cases f = f1

and f = f2, where f1 and f2 are the 2π-periodic functions which coincide with

f1(x) = 10 sin3 |x− π| − 6 sin |x− π|, and (1)

f2(x) = esin(x)(sin2(x) + sin(x)) (2)

for 0 ≤ x ≤ 2π. The solutions are 2π periodic functions given by the closed form expressions

u1(x) = sin3 |x− π|, and (3)

u2(x) = esin(x) (4)

for 0 ≤ x ≤ 2π.

Plot the maximum errors in the numerical solutions as functions of N . Use a log-log plot (resp,
a semi-log plot) for the solution corresponding to f = f1 (resp. f = f2). Both error curves should
be straight lines. Explain this, and relate the slope of the error curves to the degree of smoothness
of the function f (and u) in each case.

How large should N be, in each case, in order to produce the solution with an error of the order
of 10−4?

2.- Consider an equation of the form

∂tu(x, t)− L[u](x, t) = N [u](x, t), t > 0, x ∈ Ω, (5)

where Ω is a d-dimensional “spatial” domain (d = 1, 2, 3, . . . ), where L is the “leading” (linear)
spatial differentiation operator (that is, a linear operator that contains all derivatives of the highest
order in the equation), and where N is a linear or nonlinear operator containing only spatial deriva-
tives of lower order, and which does not contain any temporal derivatives. Naturally, boundary
conditions of some sort, which generally depend in type on the corresponding PDEs themselves,
are to be prescribed.

We propose the Crank-Nicolson leap-frog time semi-discretization scheme
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= N [un] , n ≥ 1 (6)

for equation (5). (A fully discrete numerical scheme for (5) can then be obtained by incorporating
an additional spatial discretization into (6).)



(a) What is the order of the truncation error for the time discretization (6)?

(b) Note that, in spite of the fact that only an initial condition for u is necessary at time t = 0
in (5), the semidiscrete scheme (6) requires initial conditions at times t0 and t1. How can this
difficulty be addressed?

(c) Note that the scheme (6) is implicit—that is, the solution at time tn+1 is utilized to approxi-
mate the spatial differential operator, and thus, a system of equations needs to be solved at
each time-step. As discussed in class, implicit methods tend to yield improved stability, and
are sometimes subject to less-strict restrictions on the usable values of the time-step ∆t for
stability.

[NOTE: The use of an implicit discretization for the linear operator (which is more easily invertible
than the nonlinear counterpart) and an explicit discretization for the nonlinear operator (which is
assumed to contain lower-order derivatives only) is intended to lessen the time-step restrictions for
stability, which often arise from the highest derivatives in the spatial operator. The situation is
illustrated in problem 3 below.]

3.- Differentiation in physical and frequency space.

(a) Following the discussion in Section 2.1.3 of STW construct the Fourier-spectral differen-
tiation matrices for differentiation of first and second order. Demonstrate the accuracy of these
differentiation methods by applying them to the (2π-periodic) function f(x) = ecos(x).

(b) Repeat the exercise but applying the FFT “frequency-space” procedure described in Sec-
tion 2.1.4 of STW.

(c) Compare the accuracy and speed provided by the approaches in points (a) and (b) by apply-
ing them to the function f(x) = ecos(kx) for selected values of k. In order to notice significant speed
differences you may need to use sufficiently large discretizations, which may only be meaningful (in
terms of the accuracy they provide) for sufficiently large values of k.

4.- Burgers’ equation
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is the natural one-dimensional-one-unknown Navier-Stokes analog.

(a) Use the Crank-Nicolson leap-frog scheme described in pbm. 1 above and the Fourier-spectral
method in space solve the Burgers equation up to time t = 1. Assume ε = 0.03 as well as the 2π-
periodic initial condition

u(x, 0) = e−10 sin
2(x/2)

and 2π-periodic boundary conditions. Plot the solution at several points of time.

[Hint: to debug your code you can use a “manufactured solution” U . In the present case a MS is
a function U = U(x, t) that is arbitrarily prescribed by you, and for which you add the necessary
right-hand term as well as well as the correct initial and boundary conditions, as applicable, so
that U is a solution of the equation. You can use this exact solution to check for correctness and
thus help you debug your code, if necessary.]



(b) Demonstrate how, on the basis of convergence studies, the accuracy of the solution produced
in any given run can be estimated. Obtain a sufficiently fine spatio-temporal dicretization to
guarantee an accuracy of 10−2 for all t ≤ 1 and all points in space. How expensive is it to obtain
an additional one or two correct digits?


