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Práctica IV

1.- This problem demonstrates that slow convergence and the Gibbs phenomemon may occur in
orthogonal function expansions other than Chebyshev expansions—and, specifically, for Fourier-
Bessel series (see pp. 97 ff. in the class notes). [The calculations indicated in point 1(a) are not
required as part of this HW set.]

(a) It is easy to check, on the basis of the series mentioned in class for the Bessel function Jm
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,

that
d
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= −t−mJm+1(t) (1)

and
d
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[tmJm(t)] = tmJm−1(t). (2)

(b) Using (1) and (2) verify that
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[
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}]
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[Hint: Write
[
t2
{
Jm(t)2 − Jm+1(t)Jm−1(t)

}]
= t2(tmJm)(t−mJm)− (tm+1Jm+1)(t

−(m−1)Jm−1).]

(c) Here we consider, for a fixed non-negative integer m, the expansion of functions y = f(x)
(0 ≤ x ≤ 1) in Fourier-Bessel series in terms of the m-th Bessel function Jm:

f(x) =

∞∑
n=1

anJm(jm,n x),

where jm,n ∈ R (n ∈ N) denote the positive zeroes of the function Jm(x). The evaluation of

the expansion coefficients an requires, in particular, knowledge of the quantities
∫ 1
0 xJ

2
m (jm,kx) dx.

Using (3) show that ∫ 1

0
xJ2

m (jm,kx) dx =
1

2
J2
m+1(jm,k). (4)

[Hint: use (3) to reduce the integral to boundary terms. Then, use (1) and (2) to see that
Jm−1(jm,k) = J ′m(jm,k) = −Jm+1(jm,k).]

(d) Let fγ (0 ≤ γ ≤ 1) be the function defined in the interval [0, 1] by

fγ(x) =

{
1 for 0 < x < γ

0 for γ < x ≤ 1.

Using (2) and (4) obtain a closed form expression for the Jm Fourier-Bessel expansion of fγ with
m = 0. Plot the approximations obtained from truncated expansions containing N terms, for γ < 1
and for γ = 1, and for N = 50 and other values of N you deem useful. [Suggestion: Use a matlab



function for evaluation of zeroes of Bessel functions, such as, e.g., either
https://www.mathworks.com/matlabcentral/fileexchange/48403-bessel-zero-solver or
https://www.mathworks.com/matlabcentral/fileexchange/6794-bessel-function-zeros.]
Do you observe a Gibbs phenomenon at x = γ (in either or both of the cases γ < 1 pr γ = 1), with
overshoots of approximately 8.95% of the jump (as shown in class to be the for the trigonometric
Fourier series)? Do you observe a Gibbs phenomenon at x = 0? Perform a (numerical) convergence
analysis to see whether actual Gibbs-like oscillations take place around that point. Note that, in
particular, uniform convergence does not take place for functions not vanishing at x = 1.

[Note: The Bessel Gibbs phenomenon can be related to the trigonometric Gibbs phenomenon via
consideration of the asymptotic relation

J0(x) ∼
(

2

πx

) 1
2

cos(x− π/4)

which is valid as x → ∞. This relationship can be used to explain the similarities between the
Bessel-Gibbs and trigonometric-Gibbs phenomena, including the aforementioned 8.95% overshoot.]

2.- We consider once again Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
,

(see STW p. 179).

(i) Verify that Burgers’ equation admits the soliton solution

u(x, t) = κ

[
1− tanh

(
κ(x− κt− xc)

2ε

)]
, (5)

where κ > 0, and where the “center” xc is an arbitrary real number xc ∈ R. [The details of this
calculation need not be included in the solution set.]

(ii) Consider the parameter values ε = 0.1, κ = 0.5, xc = −3, x ∈ [−5, 5], and impose initial
values u(x, 0) and boundary conditions u(±5, t) which coincide with those associated with the exact
solution (5). Use the Crank-Nicolson leap-frog scheme described in pbm. 2 in Práctica 3, and the
Chebyshev collocation method in space to solve the equation. [HINT: Since boundary conditions
need to be specified at both boundary points x = ±5, it is necessary to use the Gauss-Lobatto
Chebyshev rule; the associated differentiation matrix is given e.g. in equation (3.228), p. 110, in
STW]. Note that rather significant reductions in time-step are necessary to maintain stability as
the spatial discretizations are refined—a difficulty that reflects the spatial mesh-refinement near
the boundary points that is induced by the Chebyshev method. Evaluate the discrete maximum
errors for temporal step-sizes ∆t = 10−k with k = 2, 3, 4 and with a number N = 32, 64, 128 of
spatial discretization points at t = 12.

(iii) Consider the Burgers’ equation in the interval (−1, 1) with data u(±1, t) = 0, u(x, 0) =
− sin(πx), x ∈ [−1, 1]. Solve this problem by the methods above with ε = 0.02, ∆t = 10−4 and
N = 128, and plot the numerical solution at t = 1. Refer to1 for some details concerning the
numerical solution (obtained by other means).

1Shen J, Wang L (2007b) Fourierization of the Legendre-Galerkin method and a new space-time spectral method.
Appl Numer Math 57(5-7):710-720



3.-

(a) Consider the text and code (Program 27) concerning the KdV equation in pp. 108–111 of
the book “Spectral Methods in Matlab”, by N. Trefethen. (The code can be downloaded from the
author’s website.) As indicated in the text, use of the Runge-Kutta method would give rise to
convergent numerical solutions even if the “integrating-factor” trick described in the text were not
used. Modify Program 27 in such a way that use of the integrating factor method is eliminated.
By experimenting with the resulting code show that the algorithm is still stable and convergent
provided sufficiently smaller time-steps are used. Explain why the modified code requires smaller
time-steps for stability. (For an alternative related reference see pp. 38–40 of the “Spectral Meth-
ods” text by Shen, Tang and Wang.)

(b) Provide a qualitative explanation of the enlarged stability domain that results from use of
an integrating factor.

4.- Fourier Continuation: FC(SVD).

(i) Produce a Matlab-based FC(SVD) code, as described in class2, for accurate FC expansion
of a given (generally non-periodic) smooth function f defined in the interval [0, 1]. [Notes: As
discussed in class, FC(SVD) is an expensive and ill-conditioned algorithm (although it works well
for certain applications which require up to several thousand representation points). Additionally,
the FC(SVD) approach should lend useful intuition concerning the character of the continuation
process. And, finally, the FC(SVD) strategy does provide one essential element in the fast and
well-conditioned FC(Gram) algorithm described in class.]

As an addition to the class description and the aforementioned article, the following “quick-access”
notes may prove useful. Given a smooth function f defined in the interval [0, 1], and using the
column vectors x = (x1, . . . , xN )T and y = (y1, . . . , yN )T (xj = (j − 1)/(N − 1) and yj = f(xj) for
j = 1, . . . , N), the algorithm should produce a b-periodic Fourier expansion (b > 1; think b = 2) of
the form3

SM (x) =
∑

k∈t(M)

ake
2πi
b
kx (6)

which approximates f(x) closely throughout the interval [0, 1]. (Note that in the overdetermined
case M < N , the Fourier series S may not be (generally will not be) interpolatory. This means
that we may have SM (xj) 6= yj for some or all j.)

The coefficients ak are obtained as the least-squares solution, based on use of an SVD decomposi-
tion4, of the matrix of the (possibly over-determined) system of linear equations

yj =
∑

k∈t(M)

ake
2πi
b
kxj , j = 1, . . . , N. (7)

In practice it is useful to arrange the Fourier coefficients in the column vectors

2“Accurate, high-order representation of complex three-dimensional surfaces via Fourier-Continuation analysis”,
O. P. Bruno, Y. Han and M. Pohlman; Journal of Computational Physics 227, 1094–1125 (2007).

3In what follows we let t(M) = {j ∈ N : −(M − 1)/2 ≤ j ≤ (M − 1)/2} for M odd and t(M) = {j ∈ N : −M/2 ≤
j ≤M/2− 1} for M even.

4It is also possible to solve the least squares problem using a QR factorization. The SVD method has been found
more accurate and robust in this context, although somewhat more expensive. For an introduction to least squares
via the SVD see e.g. Golub and van Loan’s “Matrix Computations” monograph, Section 5.5.3.



a = (a−M/2, . . . , a0, . . . , aM/2−1)
T for M even and a = (a−(M−1)/2, . . . , a0, . . . , a(M−1)/2)

T for M
odd.

(ii) Use the code produced per point (i) to approximate the functions f(x) = ecos
2(x) in the interval

[0, π/4], f(x) = sin(x) in the interval [0, 5π/2], and any other function which you think may provide
an interesting test case.

5.- Fourier Continuation: FC(Gram) code and tests.

(i) Using Matlab open and run the provided file “advection eqn explicit.m”. This will produce a
numerical solution to the equation ut + ux = 0 with initial and boundary conditions such that the
exact solution is u(x, t) = sin(κ(x − t)). Then multiply (resp. divide) n and κ (resp. ∆t) by the
amount f (with e.g. f = 2, 4, 8). Note that the error is essentially unchanged in spite of the
increasing size, in terms of wavelengths, of the domain of the PDE. Additionally, examine the error
decreases that take place as the spatial and temporal discretizations are refined. Substituting the
FC code by a finite-difference method repeat all of these experiments. Compare the resulting errors
for large values of κ when using the same values of n and ∆t in the FC and finite-difference codes.

(ii) Using the provided code fcont test.m explore the convergence properties of the FC algorithm
for the functions provided and/or other functions of your choice.


