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A crisis in classical physics
Some of the milestones:

1900: Planck and the Blackbody Radiation problem
1905: Einstein and the Photoelectric Effect

1913: Bohr model of the Atomic system

1915: Rutherford model of the Atom

1915: Moseley experiment

Here is where our story starts. With the emergence of new concepts.

e 1932: Discovery of the Neutron (validation of the modern Atom model)
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The Bohr (Rutherford)
«planetary» model
of the atom

e Only some allowed orbits
¢ Angular momentum quantization

L=rp=nh

PROs

e |tis attractive
e Compatible with Rutherford Atom
¢ |t explains the spectral lines

CONs

¢ |tis against the laws of physics
¢ Not explaining fine structures
and other (relativistic) features




A «deduction» of the Schroedinger Equation
The introduction of wave-particle concepts

W= Aei(kr_a)t) A «wave function». A solution of a wave equation
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Particle-like quantities and Wave-like quantities. Crossing the boundary

Particles Waves

Energy E p_’ /1—52+m2’7/mc2 E=hv

Frequency, Wavelength A=— Av=c
v, A P

Einstein (1905) : waves behave like particles with a given energy ,
(confirmed by the Compton effect)

De Broglie (1924) : particles also have a wavelength like waves ,
(confirmed by the Davisson & Germer experiment)




Particles Waves
-2
Energy E ;;m/ 132+m2,7/m02 v=FE/h
m
h
Frequency, Wavelength A== Av=c
v, A ‘p ‘

Is it all consistent?
Forwaves: v=F/h , Av=c > c/A=E/h .
Using the relativistic dispersion law: E =‘]_5‘C — ‘f?‘ =h/A

We can consistently attribute Energy and Momentum to the photon.

Now, what about massive particles ?




Particles Waves
)
Energy E p—, ]_52-|—m2, Q/mC2 v=E/h
2m
r h
requency, Wavelength A= Av=c
v, A p

For a massive particle: A=h/p ) J=h/(mvy)

2
. , , E 7/mc Note: this attributes a
US|ng the Wavellke equatlon V — — frequency also to a
l’l h particle at rest !
2
h ymc c c
——> Ay = =c—=—=v,>cC

_mvy h v f

Phase velocity. A massive particle is not just a De Broglie wave: it is a wavepacket.

in this slide P=|DP)|




The particle velocity is the GROUP velocity

v=FE/h—>FE=how

Given a dispersion relation:

E=E(p)
w=w(k)

For a non-relativistic particle :

For a relativistic particle :

in this slide 2 =|P|

A=h/p— p=hk
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Bohr's Quantization Condition / standing waves

= Bohr's crucial assumptions conceming his hydrogen atom model was
that the angular momentum of the electron-nucleus systemin a
stationary state is an integral multiple of h/2m.
One can justify this by saying that the electron is a standing wave (in an
circular orbit) around the proton. This standing wave will have nodes and
be an integral number of wavelengths.

2::1"=1*1,1.=;l*.!E

P

" The angular momentum becomes:

L=rp=_—=nh
2# Figure 5.2 Sunding waves it
o a circubar Bobe acbit, In this
particular diagram, three wives

Which is identical to Buhfs lemgths are fin o the orbit, cor-

5 5 responding o the a = 3 energy
ﬂmﬂlﬂl Essumptlﬂn state of the Bohr theory,

Linear momentum is quantized as well, how come ? becayge total
energy is quantized in bound systems !!




Direct tests of wave-like nature of particles :

Electrons) C.J. Davisson, L.H. Germer, Proc. Natl. Acad. Sci. 14 (1928) 317.

Electrons) G.P. Thomson, A. Reid, Nature 119 (1927) 890.

Neutrons) A.V. Overhauser, R. Colella, Phys. Rev. Lett. 33 (1974) 1237.
- Single electrons) P.G. Merli, G.G. Missiroli, G. Pozzi, Am. J. Phys. 44 (1976) 306.
- Positrons) I.J. Rosberg, A.H. Weiss, K.F. Canter, Phys. Rev. Lett. 44 (1980) 1139.

- Single Neutrons) A. Zeilinger, R. Gaehler, C.G. Shull, W. Treimer, W. Mampe,
Rev. Mod. Phys. 60 (1988) 106.

- Potassium) J.F. Clauser, S. Li, Phys. Rev. A 49 (1994) R2213.

- Single C60) M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, A. Zeilinger
Nature 401 (1999) 680.

- Single Positrons) S. Sala, A. Ariga, A. Ereditato, R. Ferragut, M. Giammarchi, M. Leone,
C. Pistillo, P. Scampoli, Science Adv. 5 (2019) eaav7610.
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Another way to deduce the Schroedinger Equation: the operatorial formalism

Deriving the Schrodinger Equation
using operators

q 2

=

P v = ev=L_w,yy |Non-relativistic

The energy is: E=K+V =

2m 2m
Substituting operators: ;
E: ey = in2¥ E—in >
ot
p2 1 5, ) .5 0O
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2m ox”

Schroedinger non-relativistic
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Substituting: ih - .
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Postulates of Quantum Mechanics

1. Normalized ket vect0r| ‘P) contains all the information about the state of
a quantum mechanical system.

2. Operator A describes a physical observable and acts on kets.
3. One of the eigenvalues a, of 4 is the only possible result of a measurement.

2
4. The probability of obtaining the eigenvalue a, : P = Kan l//)‘

Bly)
{w|Plw)

5. State vector collapse : |y ') =

6. Schrodinger Equation : ;3 %hy(t)) =H (t)|t//(t)>

Time evolution of a quantum system




Uncertainty Principle(s) —

It all starts by the idea of representing particles with waves!
This makes an Uncertainty Principle unavoidable

Fourier Theorem

An ideal monochromatic wave U(z,t)

to represent a particle?

at ; = : O( ;)z [ o)o) \v/\v/\v[\v/\vf\v/\ /\vﬂvﬂvﬂvﬂvﬂv/\vﬂvﬁ\/{"l

To «localize» the particle, one

has to use many plane waves | )ﬁ & \
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Fourier Transform =




Adding several waves of different wavelength
together will produce an interference
pattern which begins to localize the wave,

|-H-| lm’g

‘--:—ﬂx >

But that process spreads the wave number k
values and makes it more uncertain. This

is an inherent and inescapable increase

in the um:ertaintrﬂ.k when Ax is

decreased. ﬂkﬂle
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Interference / diffraction experiments ?

Heisenberg’s uncertainty/indetermination principle

ArAp = 3 I
)
a‘- —
Werner Heisenberg SCHEET
(1901 - 1976) )
slit :
P a K
p q. s

ST

(p=tv: A=hip)

Explains the formation of diffraction pattern of particles (even single particles) !




Uncertainty Principle(s) —
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Uncertainty relations are often
depicted as (unavoidable)
perturbations upon measuring a
quantum system




Quantum Statistics: Particles are not Apples

Why are these two apples distinguishables ?

Because we can assign coordinates to them !

X X5

Classical Particles (like apples) can be distinguished = Boltzmann Statistics

Linear combination of 1s orbitals

But we cannot assign coordinates to
Quantum Particles ! They cannot be
distinguished

Quantum Particles cannot be
distinguished

Electron density

They obey a quantum statistics

Internuclear distance




For a single-valued many-particle wave function

The wave function must have the correct symmetry under interchange of
identical particles. If 1, 2 are identical particles :

2 _ 2 )| (probability must be conserved upon
‘W(xl > X2 )‘ - ‘I/I(XZ > X1 )‘ exchange of identical particles)

W — + W (1 VRN 2) |dentical Bosons

(symmetric) Spin-Statistics
\g

: : Theorem

|ldentical Fermions
— Y (1 < 2)J (antisymm.)

A consequence of the Spin/Statistics Theorem: for two identical Fermions 1,2 in

the same quantum state x:

W (x,x,) =W (x,,X)=—W(x,x,) = y(x,x,)=0

/ \ Pauli Exclusion Principle!

Because identical Spin/Statistics Theorem




Towards the Dirac Equation

Back to the «demonstration» of the Schroedinger Equation

n’ o'y »’
+Vy = Fy ([ = +V

2m ox” 2m

A classical potential law

0
ih aw Ey o) | A relativistic dispersion relation

E* = p’c’ +m’c’

—"tyz\/p202+mzc4l//

\/]3262+m c'=ap.ta,p,+a;p +pmc

A linearization that can
work only if a; B are 4x4




Gamma Matrices

+a, a—w+ﬂ3 a—w]+ﬁm¢:2w
ox,

0x,

{r.y"} =281
Feymann slash notation: A = y‘”A# P = }"”P# i ZJ’“E"# =Y

(ihg —mc)w =0




The Dirac Equation —

Schroedinger Non Rel equation: first order in time, second order in space
Klein-Gordon equation: second order in space/time. It describes relativistic scalar
particles (in the modern interpretation of negative-energy solutions).

Dirac Equation : Relativistic equation first order in time and first order in space

0 0 Requiring consistency with the relativistic
i— = _izak —+fBm |y dispersio_n relation {iterate the Dirag.equation
Ot - Ox and require the Klein-Gordon condition)

k
implies that a’s and 3 are 4x4 matrices.

Setting: | »'=p3 v = Ba*
/ul 3\
One has the covariant form of the Dirac equation : 7
2
o o 1%
iy ay -m)y =0 A 4-component spinor : !




The discovery of the positron and the antiproton

1. From the Schroedinger Equation to the Dirac Equation
2. The discovery of the positron and the antiproton

3. C, P, T symmetries

4. The Standard Model

5. Modern Cosmology

6. Matter-Antimatter asymmetry in the Universe

2
Schroedinger non relativistic iha—lﬂz —h—V2+V 174
Ot 2m
.0 : 0
Dirac (relativistic) I—y =|-1) a —+0m
=V Zk: o pm |y

Let us know show that the Dirac equation contains some relevant Physics:

e Continuity equation (fermion propagation) (i 7#@ _ m)W =0
e Neutrino properties H




Charge Current Continuity Equation

Current | out of a volume is equal to rate of

Charge density p,
decrease of charge Q contained in that volume:

S encloses v

Figure 6-14: The total current flowing out of a volume V is equal
to the flux of the current density J through the surface S, which
in turn is equal to the rate of decrease of the charge enclosed
in V.

Used Divergence Theorem which is known as the charge-current continuity relation, or
simply the charge continuity equation.




Electron: p= e\ryf

WP =[IWE av=1  effjif ar-e




Dirac continuity equation — 7/07/0 = 7/k+ = 7/07/1;7/
(iy"0,—m)y =0 v =y'y J' =y 'ty
iy"0,y—my =0
[iy/”ﬁﬂwT —-my " =0
Dirac equation

—ilo |y —my” =0 i7"0, Y —my =0

. +_ 0 0 + 0 _
(—zﬁﬂw yyiy —my )7/ =0 iaﬂﬁy/“-kml?:o
—i@ﬂﬁyﬂ —mg7=0 Adjoint Dirac equation

Viy“ﬁﬂl/f—mw]ﬂ = iyy oy -—myy=0
[iéﬂlﬂ/”+mg7]w=0 —> i(ﬁﬂg?)y"ermg?w:O

0, GRAR



The two-component theory of the (massless) Neutrino

The spin-1/2 pointlike particle wave ( L ) .
function obeys the Dirac Equation : Ly ay —m)y =0

Four components : two spin states of particle U v vVoou 1%
two spin states of antiparticle vV rtyv = 2 Ji

» Massive particle: both spin states must be described by the same wavefunction
because the spin direction is not Lorentz-invariant.

» Massless particle: it always travel at the speed of light, so its spin direction can
be defined in a Lorentz-covariant way (parallel or antiparallel to the direction of
the momentum, i.e. positive or negative helicity).

In the Weyl representation of the Gamma Matrices:

VO:[-?1 Bl] yk:[mgk Jok]

27



Introducing the bispinors (upper and lower
components) :

u

W:
V

ou . _c
(iy“@ﬂ—m)wzo ———> —l—u—ZO'Vu=mv

Dirac Equation in the Weyl 5\/ 6

representation _ZE‘HG vV =mu

For a massles fermion, the upper and lower components are decoupled :

814 L= For a massles particle, E= p

=—ioVu N — —

Yo ) E= p foru = oOpr+p
ﬁv L= . S _
8t =+icVv E=—-ocp forv = op=—p

m—) = ()

Left-handed spinor

__ {0Y\ Right-handed
IpR - v spinor

28




A snapshot on Quantum Relativistic Equations

How to obtain a quantum mechanical wave equation? One simple way recipe:

=2
» Take a dispersion relation. For instance, a classical one: E = %
m
« Make the transition to operators. Energy and momentum become operators
acting on a state living in a suitable Hilbert space : _ =y
» Use the appropriate form for the operators 2m
. O - : ., O ‘<,
E—ih— p—>—ihvV ) j—y=-——Vy
ot ot 2m

The non-relativistic Schroedinger equation !

The Klein-Gordon Equation

By analogy, taking a relativistic dispersion relation for a free particle E*

and using the same recipe ( 0

7 V2+m2J¢ =0




The Spin-Statistics Theorem in Quantum Field Theory

The requirement of MICROCAUSALITY : the requirement that two field
operators A(x), B(y) be compatible if x-y is a spacelike interval.

A,B solutions of a relativistic ;:> [A(X),B(y)L _0 for (x _ y)z <0

equation (Klein-Gordon, Dirac) ﬁ

(anti)commutator

This prescription generates the right statistics for Bosons and Fermions

The Pauli Exclusion Principle is an ansatz (ad-hoc assumption) in Non-
Relativistic Quantum Mechanics.

It can be demonstrated based on Microcausality in Quantum Field Theory.




A snapshot about our description of the world of “simple” systems
(material points in classical physics, particles in quantum physics)

Observables Operators

States

Classical
Mechanics

Non Rel Quantum
Mechanics <W

X, D

, (), 9(x), A(x)

Quantum Field K AM B> spin 1/2,0,1 operators

Theory

x=(X,t) parameters

0

t parameter

v (t) in Hilbert space

t parameter

|n> Fock states

|a> Coherent states

ooooooo



For a scalar (Klein-Gordon) field

[6(x),6(»)]=0  for (x—y) <0 satisfying the Klein-Gordon equation
ﬂ (8?—V2+m2)¢:0

commutator

()= [di\a(k)e ™ va* ()™} la(k),af)]=0  |a*(®),a*(E)]=0
1 la(k).a” )]z 6. in

Annihilation/Creation operators

The number operator  N(k) = a*(k)a(k) has eigenvalues n(k)=0,1,2...

O> Symmetric under the

and satisfies Cl+(k')a+(k)‘0>:a+(k)a+(k') interchange of particle labels




For a spin 1/2 (Dirac) field

[gy(x),z?(y)L =0  for (x — y)2 <0 satisfying the (4x1) Dirac equation

anticommutator
v @)=Y, [dple.(Pru,(B)e ™ +d; (B)v, ()™ "
ﬁ ﬁ ﬁ \\V2

Sum over spins Annihilation/Creation operators

le. ().t (). =ld. (p)d: (p)], =5, 6,,in  The number N,(P) = ¢, (P)c,(P)
t A (T + /= —
all other anticommutators 0 OPEraiors - v (p)=d, (p)d.(p)

A number operator of the Dirac field has eigenvalues 7n.(p) = 0,1

O> Antiymmetric under the

and ¢, (k')c, (k)‘0>: —¢; (k) e, (k) interchange of particle labels




Particles and Antiparticles: the “birth” of Particle Physics

1928: Dirac Equation, merging Special Relativity and Quantum Mechanics.
A relativistic invariant Equation for spin 72 particles. E.g. the electron

(iy“0,—m)y =0 Rest frame solutions: 4 independent states:
y7]

° > =+
. E>8 :=_11//22 Upon reinterpretation of
.E <0’ 5= +1/2 negative-energy states as
. E<O, 5= -1/2 antiparticles of the electron:
Electron, s=+1/2 The positron, a particle identical to
Electron, s=-1/2 the electron e~ but with a positive
Positron, s=1/2 charge: e*. The first prediction of the
Positron, s=-1/2 relativistic quantum theory.
This interpretation holds for every spin-1/2 fundamental particle




A snapshot about our description of the world of “simple” systems
(material points in classical physics, particles in quantum physics)

Observables Operators

States

Classical
Mechanics

Non Rel Quantum
Mechanics <W

X, D

, (), 9(x), A(x)

Quantum Field K AM B> spin 1/2,0,1 operators

Theory

x=(X,t) parameters

0

t parameter

v (t) in Hilbert space

t parameter

|n> Fock states

|a> Coherent states

ooooooo
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