Nanofotónica relativista: creando plasmas en condiciones extremas y fotones energéticos con láseres de pulsos ultracortos

Maria Gabriela Capeluto

Laboratorio Óptica y Fotónica Departamento de Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Investigo materiales a través de su interacción con la luz

Materiales inteligentes

Dinámica AC en materiales magnéticos.

Plasmas con ultra alta densidad de energía

Nanomateriales para sensors y fuentes Fotónica electrodepositada

Nanofotónica relativista: creando plasmas en condiciones extremas y fotones energéticos con láseres de pulsos ultracortos

Maria Gabriela Capeluto ^{1,3}

R. Hollinger¹, V. N Shlyaptsev¹, A, Curtis¹, A. Moreau¹, C, Calvi¹, S. Kardorf¹, V. Kaymak², A. Pukhov², Y. Wang¹, S, Wang¹, A. Rockwood¹, C.S. Menoni¹, J.J. Rocca¹ ¹ CSU, Fort Collins, Colorado, ² Heinrich-Heine-Universität Düsseldorf 3 DF. UBA, Argentina^{1,3}

Colorado State University

NAR TO TO

High Power Laser and ultra-Intense Laser-Matter Interaction at CSU's Advanced Beam Laboratory

Soft x-ray lasers

Relativistic Laser-Matter Interactions

Condiciones de la materia UHED: naturaleza y experimentos

Updated from: Frontiers in High Energy Density Physics: The X-Games of Contemporary Science (2003)

THE WAW! FACTOR: POTENCIA X TAMAÑO

Z Pulsed Power Facility (Z machine)

Sandia National Lab

Discharge 27 MA in 95 s T=2 GK radiated power 350 TW X-ray energy output 2.7MJ

National ignition Facility

Lawrence Livermore National Lab

THE WAW! FACTOR: POTENCIA X TAMAÑO

Z Pulsed Power Facility (Z machine)

Sandia National Lab

National ignition Facility

Lawrence Livermore National Lab

Department of Energy's National Nuclear Security Administration (NNSA)

Inertial confinement fusion, stockpile stewardship

Discharge 27 MA in 95 s T=2 GK radiated power 350 TW X-ray energy output 2.7MJ

Un camino para obtener plasmas en condiciones extremas: irradiación de matrices de nanohilos alineados empleando laseres de intensidades relativistas

NIF Implosion >150 Gbar

Sun Core 240 Gbar

> Nanowire array plasma I = 1 x 10²² W cm⁻²

> 300 Gbar (estimación numérica)

UHED EN LABORATORIOS UNIVERSITARIOS

- Se podría llegar a condiciones de presión cercana a aquellas en el centro de las estrellas.
- Crear las condiciones para generar pulsos ultracortos rayos X con energías > 1 KeV con eficiencia record
- Crear fusión nuclear con gran eficiencia producción de neutrones
- Estudiar física atómica en condiciones de extrema temperatura y densidad (por ejemplo el transporte de radiación, opacidad, ecuaciones de estado)

INDICE

- Aleph: Advanced Laser for Extreme Photonics
- Interacción láseres de intensidad relativista y electrones
- Creación de plasmas altamente ionizados a partir de irradiación con láseres de intensidad relativista de blancos sólidos y blancos nanoestructurados.
- Experimentos con Intensidades "relativisticamente bajas"

Nanohilos metálicos: volumen del plasma, tiempo de formación del plasma, eficiencia en la emisión de rayos x)

Nanohilos polímero deuterado (experimentos de fusión nuclear de deuterio: energía de deuterones y neutrones, eficiencia de neutrones)

Experimentos con intensidades "relativisticamente altas"

Nanohilos de polímero deuterado: energía y eficiencia de emisión de electrones, flujo de rayos gamma, rayos x y neutrones

Nanohilos metálicos: record en grado de ionización

3.3 Hz, 0.85 PW- Ti:Sapphire Laser System

Check for updates

Optics Letters

0.85 PW laser operation at 3.3 Hz and high-contrast ultrahigh-intensity $\lambda = 400$ nm second-harmonic beamline

Yong Wang,^{1,†,*} Shoujun Wang,^{1,†} Alex Rockwood,^{2,†} Bradley M. Luther,³ Reed Hollinger,¹ Alden Curtis,¹ Chase Calvi,² Carmen S. Menoni,^{1,3} and Jorge J. Rocca^{1,2}

Electrical and Computer Engineering Department, Colorado State University, Fort Collins, Colorado 80523, LISA

3.3 Hz, 0.85 PW- Ti:Sapphire Laser System

~22m

Check for updates

...

Optics Letters

0.85 PW laser operation at 3.3 Hz and high-contrast ultrahigh-intensity $\lambda = 400$ nm second-harmonic beamline

Yong Wang,^{1,†,*} Shoujun Wang,^{1,†} Alex Rockwood,^{2,†} Bradley M. Luther,³ Reed Hollinger,¹ Alden Curtis,¹ Chase Calvi,² Carmen S. Menoni,^{1,3} and Jorge J. Rocca^{1,2}

Electrical and Computer Engineering Department, Colorado State University, Fort Collins, Colorado 80523, USA

Letter

ALEPH: Advanced Laser for Extreme Photonics

"vi una pequeña esfera tornasolada, de casi intolerable fulgor."

JLB

Concepto general de funcionamiento: Pulsed chirped amplification

Concepto general de funcionamiento: Pulsed chirped amplification

SLAB AMPLIFIER ON DOUBLE-PASS CONFIGURATION

Pump laser slab amplifiers for 36 J ti:sapphire amplifier operating at 3.3 hz repetition rate

3.3 Hz laser run, 36.3 J average energy before compressor

- Average pulse energy 36.3 J
- □ Shot-to-shot variation ~1.7% rms

Spatial beam profile

Laser spectra, 30 fs pulse duration

Autocorrelation trace of the compressed pulses obtained from a single shot real-time spectral phase measurement.

Ultra-high contrast pulses: > 1x10¹² Frequency Doubling and filtering of

INDICE

- Aleph: Advanced Laser for Extreme Photonics
- Interacción láseres de intensidad relativista y electrones
- Creación de plasmas altamente ionizados a partir de irradiación con láseres de intensidad relativista de blancos sólidos y blancos nanoestructurados.
- Experimentos con Intensidades "relativisticamente bajas"

Nanohilos metálicos: volumen del plasma, tiempo de formación del plasma, eficiencia en la emisión de rayos x)

Nanohilos polímero deuterado (experimentos de fusión nuclear de deuterio: energía de deuterones y neutrones, eficiencia de neutrones)

Experimentos con intensidades "relativisticamente altas"

Nanohilos de polímero deuterado: energía y eficiencia de emisión de electrones, flujo de rayos gamma, rayos x y neutrones

Nanohilos metálicos: record en grado de ionización

Fotónica lineal, no lineal y relativista

Mecanísmos de ionización en átomos y moléculas

Energy = P_W . τ

Átomo en ausencia de interacciones externas

Z: carga efectiva nuclear que ve el electrón

~ 0.3 J

~10 kJ

Mecanísmos de ionización en átomos y moléculas

 $E_o \sim 5 \times 10^{11} \text{ V/m}$ $I \sim 3 \times 10^{16} W cm^{-2}$

Mecanísmos de ionización en átomos y moléculas

 $E_o \sim 5 \times 10^{11} \text{ V/m}$ $I \sim 3 \times 10^{16} W cm^{-2}$

$$r_{c}^{2} = \frac{Z e}{4\pi\epsilon_{o}\mathcal{E}_{o}}$$
$$\mathcal{E}_{oc} = \frac{\pi\epsilon_{o}}{Ze^{3}}E_{ion}^{2} \qquad I_{app} = \frac{1}{2}\epsilon_{o}c\mathcal{E}_{oc}^{2} \qquad {}_{34}$$

Interacciones de electrones y campos ópticos

Fuerza del campo electromagnético: caso onda plana

Relativista $v \sim c$ $\gamma_e \gg 1$

No se puede despereciar $\vec{v}_e \times \vec{B}$ Ni la masa relativista $\gamma_e m_o$

Interacciones de electrones y campos ópticos

Fuerza del campo electromagnético: caso onda plana

$$\frac{d\vec{p}}{dt} = \frac{d}{dt}(\gamma_e m_o \vec{v}_e) = -e\left[\vec{\mathcal{E}} + \frac{\vec{v}_e}{c} \times \vec{\mathcal{B}}\right] \qquad \gamma_e = \frac{1}{\sqrt{1 - v_e^2/c^2}} = \sqrt{1 + p^2/m_o^2 c^2}$$

$$\vec{a}(z,t) = \frac{e\vec{A}}{m_o c^2} = a_o \sin[k \ z - \omega \ t] \ \hat{x}, \qquad \vec{\varepsilon} = -\frac{d\vec{A}}{dt} \qquad \vec{\mathcal{B}} = \vec{\nabla} \times \vec{A}$$

$$a_{o} = \frac{eA_{o}}{m_{o}c^{2}} = \frac{eE_{o}/\omega}{m_{o}c} \qquad I_{o} = \frac{1}{2}\epsilon_{o}cE_{o}^{2} \qquad a_{o}^{2} = \frac{e^{2}I_{o}\lambda_{o}^{2}}{2\pi^{2}\epsilon_{o}c^{5}m_{e}^{2}} = \frac{(I_{o}/Wcm^{-2})(\lambda_{o}/\mu m)^{2}}{1.37 \times 10^{18}}$$

$$\omega = ck$$

$$\gamma_e = 1 + \frac{p_x (quiver)}{m_o c} = 1 + \frac{a^2}{2} \qquad K = m_o c^2 (\gamma_e - 1) = m_o c^2 \frac{a^2}{2} \quad \begin{bmatrix} K(max) \sim m_o c^2 \\ a_o \sim 1 \end{bmatrix}$$
 Limite relativista

 \vec{v}_e , γ_e , a crecen con I_o

 $I_R \lambda_o^2 \sim 1.37 \times 10^{18}$

 $I_R \sim 10^{19} W cm^{-2} \ @400 nm$
Interacciones de electrones y campos ópticos

No hay transferencia neta de energía cinética El electron se mueve en "ochos" en el plano $\vec{\epsilon} \vec{k}$

Que le pasa a los fotones? Generación de armónicos (8-type osc) Corrimiento en frecuencia

Interacciones de electrones y campos ópticos

$$\vec{A} = \frac{e\vec{A}}{m_o c} = a_o \exp[-(t/\tau)] \sin[\omega t] \hat{x},$$

Optica relativista $v \sim c$ $a_o \gg 1, a_o \ll a_o^2$

No hay ganancia neta de energía cinética (solo en caso de electrón en vacío) (pérdida de energía por radiación)

Interacciones de electrones y campos ópticos

Fuerza del campo electromagnético: pulso inhomogéneo $\vec{\epsilon}(z,t) = \vec{\epsilon}_s(z)\cos(\omega_o t)$

$$F_p = -\sqrt{\Phi_p}$$

$$\Phi_p(z) = \frac{e^2}{4m_o \langle \gamma_e \rangle \, \omega_o^2} \vec{\mathcal{E}}_s^2(z)$$

$$\langle \gamma_e \rangle^2 = 1 + a_o^2 = 1 + \frac{e^2 \, \lambda_o^2 I_o}{2\pi^2 m_o^2 \epsilon_o c^5}$$

- \vec{F}_p en la dirección que disminuye la intensidad
- $\vec{F}_p \propto \mathcal{E}_s^2$ (proporcional a la intensidad)
- La dirección no depende del signo de la carga

Velocidad máxima

ř

 $\nabla \Delta$

$$\Phi_p^{max} = \langle K \rangle = m_e c^2 (\langle \gamma_e \rangle - 1)$$

En plasmas produce plasma wake (oscilaciones)

CUANDO SE FORMA EL PLASMA, LOS MECANISMOS ABSORCIÓN DE CALOR CAMBIAN SUSTANCIALMENTE

El laser se absorbe primero en una capa de espesor del skin depth (ej Cu 2nm @ λ = 1µm)

Procesos que transfieren calor a la región supercrítica Ordenados por importancia

Cu (I = 1x10¹⁷ W/cm²)

- Difusión térmica
- Electrones calientes/corriente de retorno
- Difusión de fotones de baja energía
- Absorción de fotones de alta energía
- Ondas de presión y shock

CUANDO SE FORMA EL PLASMA, LOS MECANISMOS ABSORCIÓN DE CALOR CAMBIAN SUSTANCIALMENTE

El laser se absorbe primero en una capa de espesor del skin depth (ej Cu 2nm @ λ = 1µm)

PROPAGACIÓN DE ONDAS EN PLASMAS: NO ES POSIBLE GENERAR PLASMAS EN VOLUMEN, SIMULTÁNEAMENTE DENSOS Y CALIENTES, IRRADIANDO BLANCOS SÓLIDOS

La **densidad critica** (ne= $1.1 \times 10^{21} \text{ cm}^{-3}$ @ $\lambda = 1 \mu \text{m}$) es solo < 1% de la densidad del sólido

Relación de dispersión

$$\omega^2 = \omega_p^2 + c^2 k^2 \qquad \qquad \omega_p^2 = \frac{e^2 n_e}{m_e \epsilon_o}$$

Índice de refracción
$$\frac{ck}{\omega} = \eta = \left(1 - \frac{\omega_p^2}{\omega^2}\right)^{\frac{1}{2}} = \left(1 - \frac{n_e}{n_{crit}}\right)^{\frac{1}{2}}$$

$$n_{crit} = \frac{\pi c^2 m_e}{\lambda^2 e^2} = \frac{1.1 \times 10^{21}}{(\lambda [\mu m])^2}$$

haces propagantes

$$\omega > \omega_p \ o \ n_e < n_{crit}$$

En otro caso las ondas se reflejan

$$n_{crit}\,(\lambda=400 nm){\sim}7\times 10^{21} cm^{-3}$$

42

PROPAGACIÓN DE ONDAS EN PLASMAS: EFECTOS RELATIVISTAS

La **densidad critica** (ne= 1.1 x 10 21 cm⁻³ @ λ = 1µm) es solo < 1% de la densidad del sólido

Relación de dispersión

$$\omega^{2} = \widetilde{\omega}_{p}^{2} + c^{2}k^{2} \qquad \qquad \widetilde{\omega}_{p}^{2} = \frac{\omega_{p}^{2}}{\langle \gamma_{e} \rangle}$$
$$\langle \gamma_{e} \rangle^{2} = 1 + a_{o}^{2} = 1 + \frac{e^{2} I_{o} \lambda_{o}^{2}}{2\pi^{2} \epsilon_{o} c^{5} m_{e}^{2}}$$

Índice de refracción

$$\frac{ck}{\omega} = \eta = \left(1 - \frac{\tilde{\omega}_p^2}{\omega^2}\right)^{\frac{1}{2}} = \left(1 - \frac{\omega_p^2}{\omega^2 \langle \gamma_e \rangle}\right)^{\frac{1}{2}} = \left(1 - \frac{n_e}{\langle \gamma_e \rangle n_{crit}}\right)^{\frac{1}{2}}$$
$$\tilde{n}_{crit} = \langle \gamma_e \rangle n_{crit} > n_{crit}$$

Transparencia inducida relativisticamente

Haces propagantes hasta densidades electrónicas mayores

Efecto más importante cuando

 $I_o(Wcm^{-2})\lambda_o^2(\mu m^2) > 1.37 \times 10^{18}$

PROPAGACIÓN DE ONDAS EN PLASMAS: EFECTOS RELATIVISTAS

Ne)

-20

20

Radius (µm)

La **densidad critica** (ne= $1.1 \times 10^{21} \text{ cm}^{-3}$ @ $\lambda = 1 \mu \text{m}$) es solo < 1% de la densidad del sólido

Relación de dispersión
$$\omega^2 = \widetilde{\omega}_p^2 + c^2 k^2$$
 $\widetilde{\omega}_p^2 = \frac{\omega_p^2}{\langle \gamma_e \rangle}$

$$\langle \gamma_e \rangle^2 = 1 + a_o^2 = 1 + \frac{e^2 I_o \lambda_o^2}{2\pi^2 \epsilon_o c^5 m_e^2}$$

Índice de refracción

$$\frac{k}{\omega} = \eta = \left(1 - \frac{\tilde{\omega}_p^2}{\omega^2}\right)^{\frac{1}{2}} = \left(1 - \frac{\omega_p^2}{\omega^2 \langle \gamma_e \rangle}\right)^{\frac{1}{2}} = \left(1 - \frac{n_e}{\langle \gamma_e \rangle n_{crit}}\right)^{\frac{1}{2}}$$

Autoenfoque relativista

 η es mayor en las regiones de mayor $I_o \lambda_o^2$

 $v_{ph} = \frac{c}{n}$

LA DENSIDAD Y EL TAMAÑO DEL PLASMA PUEDEN AUMENTARSE >100 VECES, IRRADIANDO NANOHILOS VERTICALMENTE ALINEADOS CON LASERES PULSADOS EN FS

El calentamiento con láseres de matrices de nanohilos alineados, permite crear plasmas con temperaturas de varios keV y densidades mayores a 100 X Nec

M. Purvis et al. *Nature Photonics*, **7**,796, (2013) ⁴⁶

Nanohilos verticalmente alineados electrodepositados (SEM)

INDICE

- Aleph: Advanced Laser for Extreme Photonics
- Interacción láseres de intensidad relativista y electrones
- Creación de plasmas altamente ionizados a partir de irradiación con láseres de intensidad relativista de blancos sólidos y blancos nanoestructurados.
- Experimentos con Intensidades "relativisticamente bajas"
 - Nanohilos metálicos: volumen del plasma, tiempo de formación del plasma, eficiencia en la emisión de rayos x)

Nanohilos polímero deuterado (experimentos de fusión nuclear de deuterio: energía de deuterones y neutrones, eficiencia de neutrones)

Experimentos con intensidades "relativisticamente altas"

Nanohilos de polímero deuterado: energía y eficiencia de emisión de electrones, flujo de rayos gamma, rayos x y neutrones

Nanohilos metálicos: record en grado de ionización

28 Nickel 58.6934(4)

Radiación continua

-bremsstrahlung
(free-free transitions)
-recombinación
(free-bound transitions)

bremsstrahlung

bremsen "to brake" *Strahlung* "radiation"; i.e. "radiación de frenado"

M. Purvis et al. Nature Photonics, 7, 796 (2013)

M. Purvis et al. Nature Photonics, 7, 796 (2013)

Radiación continua

-bremsstrahlung
(free-free transitions)
-recombinación
(free-bound transitions)

Transiciones internas o de línea (bound-bound transitions)

28 Nickel 58.6934(4)

M. Purvis et al. Nature Photonics, 7, 796 (2013)

Radiación continua

-bremsstrahlung
(free-free transitions)
-recombinación
(free-bound transitions)

Transiciones internas o de línea

(bound-bound transitions)

EN UN PLASMA EN EQUILIBRIO, A MAYOR TEMPERATURA ELECTRONICA (Te), LOS ATOMOS COEXISTEN CON GRADOS DE IONIZACION MAYORES.

53

EN UN PLASMA EN EQUILIBRIO, A MAYOR TEMPERATURA ELECTRONICA (Te), LOS ATOMOS COEXISTEN CON GRADOS DE IONIZACION MAYORES.

54

Mediciones del volumen del plasma

MEDICION DE LA LONGITUD DE PENETRACION DEL CALOR, MONITOREANDO A EMISION DE TRAZAS ENTERRADAS

Zr

44

Тс

16

Te

56

In

Science Advances **3** (1) (2017)

EL CALENTAMIENTO VOLUMETRICO PERMITE OBSERVAR IONES HE-LIKE CO HASTA PROFUNDIDADES DE $4\mu m$

Science Advances 3 (1) (2017)

LOS RESULTADOS ESTÁN DE ACUERDO CON LAS SIMULACIONES 3D RELATIVISTAS/ FÍSICA ATÓMICA

EL CALENTAMIENTO VOLUMETRICO DE NANOHILOS ALINEADOS PRODUCE DENSIDADES DE ENERGIA EXTREMAS EN EXPERIMENTOS COMPACTOS

Science Advances **3** (1) (2017)

Cuán rápido se cierran los gaps?

La formación de la superficie de densidad critica impide acoplar la energía del laser en un volumen de plasma con Te y Ne grandes.

Tiempo en aumento.

MEDICIÓN DEL ACOPLAMIENTO DE ENERGÍA USANDO DOS PULSOS QUE ARRIBAN EN DISTINTOS TIEMPOS

PLASMAS CON DENSIDAD ELECTRÓNICA (NE) Y TAMAÑO (L) SIMULTÁNEAMENTE GRANDES, EMITEN RAYOS X EFICIENTEMENTE

Modal et al (Phys. Rev.B, 2011)

EFICIENCIA DE CONVERSIÓN EN RAYOS X Y OTROS EXPERIMENTOS....

LOS NANOHILOS PRODUCEN FOTONES CON $h\nu$ > 1 keV con una eficiencia entre 10 y 100 veces mayor que los blancos solidos

Optica **4** (11),1344-1349 (2017)

LOS NANOHILOS PRODUCEN FOTONES CON $h\nu$ > 1 keV con una eficiencia entre 10 y 100 veces mayor que los blancos solidos

CE (record)~ 20 %, (hasta 24% disparos individuales) en 4π

I=4 x 10¹⁹ W cm⁻² 55 fs pulses

RADIOGRAFIA PRODUCIDA POR UN UNICO DISPARO DE UN PULSO DE RAYOS X

Deuterium ion acceleration and neutron production in deuterated nanowires

Deuteron and Neutron Detection Setup

Deuteron energies up to 3 MeV measured

Intensity 8 x 10¹⁹ W cm⁻²

Neutron Time of Flight: D-D Fusion Neutrons

A. Curtis et al, Nature Comm., 1077 (2018)

Nanowire arrays display 500 X increased neutron yield as compared with CD₂ flat targets

Maximum measured neutrons/shot: (>2.5 x 10⁶ neutrons/Joule)

INDICE

- Aleph: Advanced Laser for Extreme Photonics
- Interacción láseres de intensidad relativista y electrones
- Creación de plasmas altamente ionizados a partir de irradiación con láseres de intensidad relativista de blancos sólidos y blancos nanoestructurados.

•	Experimento	
	Nanoh	
	rayos	SUBAINOS LA INTENSIDAD!
	Nanoh	
	neutro	EXPERIMENTOS Y SIMULACIONES QUE MUESTRAN FECTOS RELATIVISTAS EN INTERACCION DE LA LUZ CON LOS MATERIALES
•	Experimento	
	Nanoh	os de polímero dediciado. Energía y enciencia de emisión de electrones, indjo de rayos gamma,

rayos x y neutrones

Nanohilos metálicos: record en grado de ionización
El Nanopinch relativista inducido por la corriente de retorno comprime a los nanohilos en un plasma extremadamente caliente y denso

I~5 x 10²¹ W cm⁻²

73

The large return current generates a Giga-Gauss azimuthal magnetic field and nano-scale Z-pinch with > 1000 times ne_c

Carbon nanowires 300 nm diameter, I=5 x10²¹ Wcm⁻²

B Field in Giga-Gauss Electron density in units of critical density (ne_c) 2200.4- 40 fs 0.4 (a)- 40fs 0.2 $y \ (\mu m)$ 165 (un) 0.2 0 -0.2 110 B_z 55 n_{e} -0. -0.4 816 0.4 - 17fs *(b)* (mm)0.2 $(m_{\pi})^{0.2}$ $(m_{\pi})^{0.2$ 612 0 408 -0.2 B_y 25 n_e 204 -0.4-0.4 **3040** -9fs 0.410 0.4 $y \ (\mu m)$ 0.2(c)(un) 0.2 -0.2 a 2280 - 9fs 0 1520 -0.2 B_z 760 n_{e} -0.4 -0.4 460 0.4 0.4 (d)8fs (mm)0.2345 (und) 6.2 -0.2 0.2 0 230 -0.2 B_y 55 n_e 115 -0.4 -0.40 2 3 5 6 0 3 6 5 $x (\mu m)$ $x (\mu m)$

V. Kaymak et al, Phys. Rev. Letters **117**, 035004 (2016).

Self-generated quasi-static azimuthal magnetic field pinches nanowires into hot plasmas with $n_e > 9x10^{24} \text{ cm}^{-3}$, > 1000 times the critical density

Electron density maps 300 nm C nanowires, I= 5x10²¹W cm⁻²

V. Kaymak et al, Phys. Rev. Letters 117, 035004 (2016).

Relativistic Induced Transparency and Electron Acceleration in Dense CD₂ Nanowire

array

Irradiation intensity I = 2.7x10²¹ W cm⁻²

Magnetic electron spectrometer

Relativistically induced transparency allows for deep laser pulse propagation into overdense CD₂ plasma

Relativistically Transparent Nanowire array target generates MeV electrons with increased energy and total flux

CD₂ Nanowire Array Electron Spectra (forward direction)

- Best shot flux enhanced 24 Ex over solid target
- Best shot flux enhanced 24.5x over solid target

Increase of 3.6 X in > 1 MeV Gamma ray flux

NEUTRON PRODUCTION INCREASED TO > 2X10⁷ N/SHOT

TOF detector at 2m with 10 cm lead shielding

lon Trajectories CD₂ nanowires, I= 5x10²¹ W cm⁻²

Ion trajectories

CD₂ Nanowires, 400 nm diameter, 5 x 10²¹ W cm⁻³

ANGULAR ION DISTRIBUTION MEASUREMENT (> 13.3MEV D)

Au atoms ionized 69 times in an electron beam ion trap (EBIT)

magnitude below solid density

G.V. Brown et al Physical Review E 77, 066406 (2008)

High energy lasers lonizes gold to Au⁺⁵⁷

OMEGA LASER (U. Rochester)

M.J. May et al High Energy Density Physics 4, 78-87 (2008)

IRRADIANDO CON 5 X 10¹⁸ W cm⁻² NANOHILOS DE ORO SE PRODUCE UN PLASMA EN VOLUMEN CON IONES Au⁺⁴⁸⁻⁵²

5 x 10¹⁸ W cm⁻², 0.12 solid density target

M. Purvis et al. Nature Photonics, 7, 796 (2013)

Irradiation intensity of 1 x 10²² W cm⁻³ predicted to create extreme ionization states in Au (eg. F-like Au)

Incremento de la densidad electronica al aumentar la intensidad

Laser drives hot electrons at tip of wire into plasma

- Laser drives hot electrons at tip of wire into plasma
- Peak electron energy density of >1TJ/cc at tip of wire
- Electrons deposit energy through the volume ending with an energy density of ~100 GJ/cc
- Large current density causes J x B force to pinch the wire

Au L shell spectra from solid and near solid density plasmas show emission from ions up to N-like Au⁷²⁺

IRRADIANDO CON 5 X 10¹⁸ W cm⁻² NANOHILOS DE ORO SE PRODUCE UN PLASMA EN VOLUMEN CON IONES Au⁺⁴⁸⁻⁵²

5 x 10¹⁸ W cm⁻², 0.12 solid density target

M. Purvis et al. Nature Photonics, 7, 796 (2013)

En el estado de ionización de equilibrio, los iones Ne-like aparecen en temperaturas > 10 KeV

Buried Ni tracer reveals heat penetration in nanowire array exceeds 8 micrometers

R. Hollinger et al., Nature Photonics, 14,607, (2020)

He-Like Au⁺⁷⁷ solid density plasma predicted

 $4x10^{21}$ Wcm⁻² with a 5 μ m FWHM diameter focal spot

R. Hollinger et al., Nature Photonics, 14,607, (2020)

Aumentar la intensidad hasta 2×10^{22} W cm⁻² ($a_o = 34$) se obtendrían densidades de enrgía y presiones sin precedentes

Plasmas con UHED por irradiación con láseres de intensidad

Hercules 300TW laser

Aceleración de protons Au NW PPCF 61 (6), 065016 (2019)

Orion PW (10³ TW) laser

Ps Xrays, T~keV Ni NW arXiv:2007.10410

Jupiter (Titan) PW (10³ TW) laser

Ni, Au, Ag, incremento Rx y T En preparación PHELIX PW (500 TW)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Aceleración de iones (C⁶⁺) y protons (Co NW) PRE 102(2) 02⁹1201,(2020)

Conclusiones:

Interacción de pulsos laseres ultracortos altamente relativistas con nanoestructuras

- La interacción de láseres de pulsos ultracortos con intensidades relativistas con nanoestructuras permite obtener plasmas con ultra alta densidad de energia en condiciones extremas de presión y temperatura
- Se generaron plasmas de Au con grados de ionización extraordinarios, emisión N-like Au line.
- Se midió una eficiencia de conversión record de pulsos ópticos en pulsos de rayos x de picosegundos de hasta 20% para hv >1 keV
- Se midió un incremento de flujo y energía de electrones rápidos e iones
- Se generaron flashes de neutrons cuasi monoenergéticos a partir de reacciones de fusion D-D

Work supported by US DOE, AFOSR, ONR

Colorado State University Advanced Beam Laboratory

Ph.D Opportunities Available. Contract: Prof. Jorge Rocca; jorge. rocca@colostate.edu

Work supported by DOE ,AFOSR, and ONR