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Negative dispersion using pairs of prisms
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We show that pairs of prisms can have negative group-velocity dispersion in the absence of any negative material
dispersion. A prism arrangement is described that limits losses to Brewster-surface reflections, avoids transverse
displacement of the temporally dispersed rays, permits continuous adjustment of the dispersion through zero, and
yields a transmitted beam collinear with the incident beam.

Negative group-velocity dispersion is important in ul-
trashort-pulse generation.1 The use of diffraction
gratings to generate negative dispersion, 2 however, in-
troduces relatively large losses and does not provide a
dispersion easily adjusted through zero value. We de-
scribe the use of prism pairs to provide negative
group-velocity dispersion that is both low loss and easily
adjusted from negative through positive values. Ad-
ditional advantages are an absence of transverse dis-
placement of the temporally dispersed rays (such dis-
placement can broaden ultrashort pulses) and a trans-
mitted beam collinear with the incident beam. The
latter feature is useful, for example, in introducing
negative group-velocity dispersion in existing optical
devices, such as a colliding-pulse laser.3 Recent related
papers are those of Gordon and Fork,4 which describes
a resonator with net negative group-velocity dispersion,
Martinez et al.,5 which describes the advantages of
tunable group-velocity dispersion in a passively
mode-locked laser, and Martinez et al.,6 which discusses
the general relationship between angular dispersion and
negative group-velocity' dispersion.

Although. a number of prism arrangements can be
devised,8 one arrangement is especially advantageous
(Fig. 1). We give principal attention to that case of four
identical prisms used at minimum deviation and
Brewster's angle incidence at each surface. The en-
trance face of prism II is parallel to the exit face of prism
I, the exit face of prism II is parallel to the entrance of
prism I, etc., and the prisms have been cut so that the
angle of minimum deviation is also Brewster's angle.
The plane MM' normal to the rays between prisms II
and III and midway between the two prisms is a plane
of symmetry.

We calculate the dispersion constant

D= -L-1 dT ( X) d2P
dX \cLJ dX2

after the manner of Gordon and Fork.4 Here L is the
physical length of the light path, P is the optical path
length, A is the optical wavelength in air, and T is the
time for the light pulse to transverse L. To obtain
d2P/dX2, consider the rays that propagate near the
apices of the prisms. Let the extreme ray that passes
from apex to apex be a reference ray, and define its slant

length between prisms I and II (and by symmetry also
between prisms III and IV) as 1.

The optical path length of a ray that propagates at an
angle : with respect to the reference ray is calculated
by using an optical construction similar to that em-
ployed by Gordon and Fork.4 Consider Fig. 2(a), where
CB is the reference ray from the apex of prism I to the
apex of prism II. We seek the optical path length of the
ray indicated by the path CDE. The path AB equals
CDE because AC and BE are both possible wave fronts.
The path CJ in Fig. 2(b) is equal and parallel to AB by
construction and hence also equal to CDE. It follows
that the optical path of the ray CDE is

P = I COS . (2)

The optical path lengths EFG and BH are equal be-
cause BE and GH are both possible wave fronts and FG
and BH are parallel. (The rays FG and BH are parallel
to the incident ray and hence to each other because the
initial prism pair is equivalent in its effect on the ray
direction to a slab having plane-parallel faces.) The
section of path indicated by rays EFG and RH therefore
makes no contribution to d2P/dX2. By symmetry, the

M

Fig. 1. Four-prism sequence having negative dispersion.
The prisms are used at minimum deviation and oriented so
that the rays enter and leave at Brewster's angle. The ar-
rangement is symmetric about the plane MM'.
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Fig. 2. Construction for calculating the paths CDE, EFG,
and BH. (a) Path CDE and path AB are equal because AC
and BE are both possible wave fronts. (b) Path CJ is both
parallel and equal to AB by construction. It follows that the
optical path length of CDE is equal to I cos j.

second pair of prisms introduces the same amount of
dispersion as the first pair but reverses the transverse
displacement of the rays. The final rays are therefore
collinear with each other and collinear with the path of
the incident rays. The total optical path that contrib-
utes to the dispersion is then

P = 21 cos /3 (3)

and

dP/d/ = -21 sin /, (4)

d2 P/d/ 2 = -21 cos /3. (5)

Employing the chain rule for derivatives, we have

d2P [d2n do + (dnd 2 dP
dX2

-dX2dn kdXJ dn2j do

+ dQd2 d))2 dIP (6)

The evaluation of these derivatives differs from the
case treated by Gordon and Fork.4 In the present case
the angle of incidence of the beam at prism I, 4P1, is taken
as fixed, and the angle that the transmitted beam makes
with the normal to the prism face, 'P2, is allowed to vary.
Let the respective interior angles be 'p1' and 02' (i.e., n
sin A1' = sin Al and n sin 02' = sin 02; see Ref. 7 for a
typical figure using this notation). For prism index n
and apex angle a we use Snell's law and the relation a
= 1' + P2' to obtain

dO2 /dn = (cos 020-'[sin(02 1 ) + cos(02') tan(01')J,
(7)

d22 {22 ta2 al' Jd02)2 = tan 'P2 (d2 tan2 ' (dn ' (8)
dn 2 I~dn J n ~ d~n)

For minimum deviation and Brewster-angle inci-
dence, 01' = 02' and tan 02 = n. By inspection, do/dn
= -(d' 2 /dn) and d2//dn 2 = -(d2'02/dn 2 ), which
yields

d/3/dn = -2, (9)

d2 /3/dn2 = -4 + 2/n3.

Inserting these relations and Eqs. (4) and (5) into Eq.
(6) yields

d 2 P 41d 2n 1 dn\21 

d 2 41 [d 2 2n- 3d; ] sin

2tdn2 Cs- 2 kdx) cos /3J* (11)

In general, /3 is of the order of the angular deviation of
the ray bundle, so sin # << cos /3. This prism arrange-
ment therefore has negative dispersion for sufficiently
large values of 1, provided that d2n/dA2 is not excessively
large compared with (dn/dX2). We can evaluate Eq.
(11) for typical values for quartz at 0.620 Am, which are
n = 1.457, dn/dX = -0.03059 imn1, and d2 n/dX2 =
0.1267 Am-2.8 The term 1 sin fl need only be of the
order of twice the spot size, or -2 mm,9 and cos / can be
approximated by unity, so

d2 P/dA2 = 1.0354 - 1(7.48 X 10-3), (12)

where P and I are measured in millimeters and X in
micrometers. For 1 ; 138.4 mm, for example, four
quartz prisms oriented as shown in Fig. 1 have negative
dispersion. The magnitude of this negative dispersion
can be compared with the positive dispersion of quartz,
e.g., by dividing by d2n/dX2 given above for quartz. For
example, for I = 250 mm Eq. (1) predicts a negative
dispersion adequate to compensate 6.6 mm of quartz.

An arrangement with a negative dispersion equiva-
lent to that for this four-prism case can be obtained by
using only two prisms and placing a flat mirror at the
symmetry plane MM'.6 The temporally dispersed
beam is then collinear with the incident beam but op-
positely directed. Beam separation can be achieved,
for example, by offsetting the return beam in the di-
rection normal to the plane of the figure before retro-
reflection. Multiple-pass arrangements could also be
devised to increase the net negative dispersion further.
When transverse displacement of the dispersed rays is
not a problem, negative dispersion can also be obtained
by using only two prisms in transmission, such as prisms
I and II in Fig. 1.

We have encountered a popular notion that prisms
(at least those having positive material dispersion)
cannot produce negative dispersion. It is important in

Fig. 3. Colliding-pulse laser with adjustable negative dis-
persion. Each prism can be translated along a line normal to
its base, as indicated, for example, for prism II.(10)
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this regard to recognize that it is the second derivative
of the path length with respect to wavelength that de-
termines the group-velocity dispersion; see Eq. (1)
above.4 The phase delay for the blue components is
larger than that for the red components since dP/dX is
negative. The group velocity, however, is determined
by d2P/dX2. Thus the blue components traverse the
prism sequence in a shorter time than do the red com-
ponents, despite the negative value of dP/dX.

As a way of testing this calculation we introduced this
four-prism sequence in a colliding-pulse laser3 in the
manner indicated in Fig. 3. The resulting increase in
laser threshold typically amounts to less than 0.5-W
pump power. For 1 = 250 mm we can adjust the laser
through the minimum-pulse-width condition by
translating any one of the prisms along an axis normal
to its base. This motion introduces a positive disper-
sion of variable magnitudes without altering the ray
directions or the negative dispersion that is due to the
geometry of the ray paths. The amount of positive
material dispersion that must be introduced to obtain
the minimum pulse width, approximately a 1-cm path
in quartz, is consistent with negative dispersion that is
due to the geometric path through the prism sequence,
as predicted by Eq. (11).

In this preliminary investigation we have not ob-
served significant pulse shortening below that already
obtained by adjusting the mirror spectra in the reso-
nator (-65 fsec).' This observation agrees with the
earlier assumption that the intracavity dispersion has
already been adjusted close to zero dispersion simply
by selecting mirror spectra that yield the shortest pulse.'
We expect that future improvements, such as intro-
duction of appropriately adjusted amounts of self-phase
modulation and negative dispersion, would yield shorter
pulses. 5

The third derivative d3P/d\ 3 can be evaluated in a
manner similar to that used above. Although the re-
sulting expression is rather complex, it is well approxi-
mated for typical materials, such as quartz, by

d3 P _ d3n dn d2n3 _41 sin fl - 6 cos 13 . (13)

The variation in d2P/dX2 over the bandwidth of a pulse
is relatively small for typical cases of interest, for ex-
ample, 5% for a 60-fsec pulse and quartz prisms. For

significantly shorter pulses these third-derivative terms
could become important.

In summary, this prism arrangement provides nega-
tive group-velocity dispersion with low insertion loss,
no transverse displacement of the temporally dispersed
rays, a magnitude of dispersion easily adjusted through
zero, and a transmitted beam collinear with the incident
beam. The negative dispersion is also appropriate to
compensate for the amount of positive dispersion, for
example, in the 0-4 cm of quartz frequently encoun-
tered in work with femtosecond pulses. The possibility
of extending these techniques to smaller structures,
such as semiconductor devices,6 is suggested by the
quadratic dependence of the dispersion on dn/dX and
the order-of-magnitude increase in dn/dA for semi-
conductor materials compared with quartz.

Thanks are due F. A. Beisser for assistance with the
experimental apparatus.

0. E. Martinez is a fellow from the Consejo Nacional
de Investigaciones Cientificas y Tecnicas de la Repub-
lica Argentina. He is on leave from CEILAP, CI-
TEFA-CONICET, Zufriatequi y Varela, 1603 V. Mar-
telli, Argentina.

References

1. R. L. Fork, C. V. Shank, R. Yen, and C. A. Hirlimann,
IEEE J. Quantum Electron. QE-19, 500 (1983).

2. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454
(1969).

3. R. L. Fork, B. I. Greene, and C. V. Shank, Appl. Phys.
Lett. 38, 671 (1981).

4. J. P. Gordon and R. L. Fork, Opt. Lett. 9,153 (1984).
5. 0. E. Martinez, R. L. Fork, and J. P. Gordon, Opt. Lett.

(to be published).
6. 0. E. Martinez, J. P. Gordon, and R. L. Fork, J. Opt. Soc.

Am. B (to be published).
7. F. A. Jenkins and H. E. White, Fundamentals of Optics

(McGraw-Hill, New York, 1957), p. 21.
8. D. Marcuse, Appl. Opt. 19,1653 (1980).
9. For our idealized example, I sin if need only be of the order

of the beam diameter; however, actual systems require
that the incident beam also pass at least a beam diameter
inside the apex of the first prism. We account for this by
taking I sin ,3 as twice the beam diameter.

10. The use of a prism translation of this type to adjust the
amount of positive material dispersion in a laser was
previously reported. See, e.g., W. Dietel, J. J. Fontaine,
and J. C. Diels, Opt. Lett. 8, 4 (1983).


