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4= (2w~} (mwg + ip)

8* = (o)t g ip)

so that the quantized field Hamiltonian can be written as

H = no@ata + %)

and the canonical commutation relation as

[a:a+] L

The operator 3 is called the annihilation, or destruction operator,
operator a* is called the creation operator.
lows that we can write the electric field opera

ﬁx(z,t) = E(a+a*) sinkz
where E given by

€= mume )t ,

is an amplitude which will turn out to be the "electric field per photon"
(Sargent, Scully and Lamb 1974). The time-

operator @ and the creation operator a*
equation of motion

A L O S
ot R

The commutator can be evaluated using eqs.(2.15) and (2.16)

+

[% 8] = [w(a's +

N

tw(d'a - 88M)4 = hod
So
d AL N
E? a = iwa
which has the solution
a(t) = 4(0)e-lut,
By the same method we find

2" (t) = a*(0)el¥t

At A~ Anta

), 8] = hw(d'aa 33’3

Using these operators it fol
tor for the mode of frequeng

dependence of the annihilation
can be determined using Heisenberg's
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By, such that
two(ata + %)|n> = En|n> (2.24)

norate a new eigenvalue equation by multiplying eq.(2.24) from
' to give

(2,18 ] it %&*)lm = En§*|n> (2.25)

utator (eq.(2.16)) this can be re-written as

"‘“ A A
wf (a*a - 1)a* + % a*) |n> = Ena*lrp

(2,16

The
(E'ae D) 3 = &, ) G £:20)

p eigenvalue equation for the eigenstate (§:|n>) with eigenenergy
The application of the creation operator a* has resulted in a new
taining one more quantum of excitation. We may denote this new
In+ 1>, but it needs to be normalised. In a similar fashion we
the operator a destroys one unit of excitation, generating a new

/ |n- 1> with energy (Ep-hw). This cannot be repeated indefinitely
0 system has a ground state |0> of energy Eg which must be positive.
&Y d

(@) = (B, - ) (3]n>)

L H(@]0») = (B -1 (E]0>) , (2.27)

(2.19) b
defines the ground state through

alo> = 0 (2.28)

e the eigenvalue equation for the ground state is

(2.20) i lo> = w(@'a + o> = Jnujo> (2.29)

t the ground state of the single mode electromagnetic i_"ield has a non-
ergy hw/2. This zero-point energy reflects our inab11ity.to confme
icle", which here is the mode "oscillator', at rest and still satisfy

(2.21) : :
senberg uncertainty relation. Since Ej,; = E; + hw,

E = hw(n+—;—), R T U S (2.30)
2.22)
fln> = a*ad|n> = n|n> 2.31)

(2.23) The "number states" |n> are normalised, with

R - 2.32
The product a*a has a special significance and is called the number ! <n 1n-1>=1= <n|n> = <n+1|n+1> (2.32)

operator n.

Let |n> be an energy eigenstate of the single-mode field with



e
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patial position z we see that the "electric field per photon" is indeed
The number states field can be visualized as having a definite amplitude
aln> = C [n-1> (2.33 @ phase randomly distributed over 27 (Loudon 1973). The field energy,

n mber of quanta n, and the field strength are complementary concepts

If we write

Fhen )* 1964), because the number operator n does not commute with the electric
| operator Ey(z,t). We see that
(<n]a") (@|n>) = <n - l[C;CnIn 1> =n R "
i [A.£,] =& sinkz(a® 2) = 2ip (2mVe )*sinkz (2.42)
so tha

excitation numbe? n is known exactly the fluctuations in Ex(z,t) are
order of Ex(z,t). Conversely if Ex(z,t) is known accurately the exci-
number n is correspondingly uncertain.

2.4 MULTIMODE FIELDS

and .
¥ we have studied only a single mode of a field confined to a cavity.

esults can be generalized to describe a multi-mode radiation field.

we do this, we stress that the quanta in the cavity of energy tw are
1otons of the system, and as such are not localized particles but are
iteristic excitations of the cavity mode and spread over the mode volume.
1 mechanics introduces not localized corpuscular photons as in the old
i theory, but rather mode-excitations of the system.

aln> = v |n-1>
a*|n> = /n+1 |n+1>

The spectrum of the radiation field is thus of a ladder of equally spaced
levels separated lla\y tw, which one ascends by the action of A* and descends
by the action of 8. The number states are generated by the repeated actio

of the creation operator a*: In free space, the electric and magnetic radiation fields can be descri-

n terms of the vector potential A which obeys the wave equation

ln> = (A" @ o (2.37) E .
VoA = 5= 0 (2.43)
The only non-vanishing matrix elements of the annihilation and creation c” ot
operators are
<n-1|d|n> = <n-1|va |n-1> = vh (2.38)
- B=VxA
<n+1la*|n> = <n+1|/n+1 |n+1> = yu+1T . (2.39) B
E = g A
2.3 QUANTUM FLUCTUATIONS OF A SINGLE-MODE FIELD = 3t=

The number states In> are energy eigenstates of the single mode field. But

ke running wave solutions to the wave equation of the plane-wave form
they do not describe a field with a well-defined electromagnetic field, as ¥

£ A= T e L A 3 2.44
<n|Ex(z,t)|n> = £ sinkz(<n|a(t)|n> + <n|a" (1) |n>) 3 zk: %Ak( 3 S i . :
=0 (2.40)

using eqs.(2.38) and (2.39). This does not, of course, mean that the field

is zero as, k. ==—mnm (2.45)

2 2.0ung At At Ant At
<n|B(z,t) [n> = € “sin“kz <n|(@*2* + 28* + 8%2 + 88) |n>
| x( »0) | € | C 3) | » the "box" volume V = L° and my, my, my = 0, *1, #2---, The mode den-
2 .2 1 ity, the number of modes of wavenumber between k and k +dk, is
= ZE sin"kz (n +?) (2.41)

p(K)dk = k2dk/r> (2.46)
The r.m.s. electric field in the cavity when only one photon is present ignoi
ing the ever present zero-point-energy is fz—Esinkz. When this is averagel
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Alternatively in frequency space the number of modes of frequency between w

eraged energy is written as
and w + dw is

g
p(wdw = wldw/m?c3 2.47) €r=3 @ + 9 q), (2.57)

In free space, the discrete sum in eq.(2.44) is replaced by a continuum inte-
gral
3> — -‘iz-J'kzdk (2.48)
X m

In quantum optics the Coulomb gauge, in which V.A = 0, is mainly used.
In this gauge, k. Ag(t) = O-L.ﬁ(t) and each Fourier component satisfies, from
eq.(2.43), the harmonic oscillator equation

gy of a unit mass simple harmonic oscillator. The complete free
miltonian is given by the sum of all single-mode terms given by eq.
The summation is over the wavevectors k and polarization directions

mode k, reires’énted as a unit mass harmonic oscillator, can be
ed in terms of number states as before. The state of the multimode
‘can be written as a product of the individual mode states,

[ d> = [nyy> I mep>---Iny - )
2
oA
2 AR e R S (2.58)
T e ot (2.49) k1’ "k2 kj
j represents the number of quanta in mode with wavevector .lﬁj . The

where w, = ck. From eq.(2.49) we find operator 8y; acts on the multimode state

-1 t At i
M(e) = A o7, (2.50) Bg oy s ==y > = g 2 D 41 ng e L% et

The cycle-averaged energy of mode k is (2.59)
e 1 . =2, . _z)dv e 81d amplitudes Ap of classical theory become
k 2 05( on ¥ AN 2 RICA
A = M/Zeowsk) 3 & (2.60)
where the bar denotes the cycle average. The electric field from eq.(2.43)
is,
A & i At A 2.61
-dmtsdkr L die- 1£.£l By = M/2eVu ) & & (2:63)
E, = i e e 2.52)
o ukzék é* : at the vector field operator can be written as
and the cavity magnetic field is P g
N 3 T R R
= 2 - 2.62
dageeikr  , det-ikr A Z (1/2e Vuy ) Ekiak e + 8 e { (2.62)
H = (i/u)kx lék e . A e (2.53) k
(2.62)

so that

— 2 *
= 2e Vu v 2.54
ak ok A o " 3 2 -lwet+ik.r | dwt-ik.r
E(r,t) = E imwk/ZeoV) £ ,ak(t)e -ak(t)e ‘
The vector potential can be written in terms of generalized canonical posi- k

tion qy and momentum py variables (2.63)

5 th tic field t
A = (4e°vmi) i(wqu + ip, g, (2.55) e magnetic field operator

-iw, t+ik.r iw, t-ik.r
H(r,t) =Z imCZ/ZuOVu)l‘)i_lgxgkzak(t)e s S.;(t)elmk _—i

*’ 2. -% {5
By = Ue Vi) "y - ipyg L X flvat)

where £ is the polarization unit vector. In terms of these variables the

Rae v\"w
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The quantum expression for a single-mode plane wave field from eq.(2.63)
is
i 3 gl -iwt Tiken it - ik.r
E(r,t) = 1(1'1m/2t-:ov) £ ) e ae (2.65)
In much of quantum optics the spatial variation of the electromagnetic field
mode over the dimensions of the atomic system may be neglected. In this case
the exponential factors e*iK.T may be set equal to unity. This single-mode
expression can be used either in the interaction representation in which the
operator d(t) and its conjugate 4*(t) have the time development shown in‘eq.
(2.65) or in the Schrodinger representation in which 4 and a* have no time
development. The expressions for the electric field operator in these two

pictures coincide at t =0.

2.5 ZERO-POINT ENERGY AND VACUUM FLUCTUATIONS

In Section (2.3) we saw that the quantized radiation field fluctuates. For
a single-mode field described by _a numbsr state |n>, the r.m.s. deviation in
electric field strength AE = (<E.2> - <E>4)%, using eq.(2.40) and (2.41) is

AE = ﬁE\’n-v% sinkz .

If the single-mode field is unoccupied, n=0, then the r.m.s. fluctuation in
the vacuum field strength is AE(vac) = € sinkz. Vacuum fluctuations and
zero-point energy have a common origin in the non-commutability of the field
annihilation and creation operators 4 and 4*. The occurrence of the zero-
point energy term and its associated vacuum fluctuation presents severe pro-
blems in quantum field theory. In practice there are an infinite number of
radiation field modes, each with a finite zero-point energy.
point energy therefore diverges unless the high frequency modes are excluded
€rom the sum. Yet the zero-point energy seems to lead to observable conse-
quences (Casimir 1948, Power 1964) and cannot be ignored. A stimulating
analysis of the role of vacuum fluctuations may be found in the article by
Jaynes (1978) in the proceedings of the 1977 Rochester Coherence and Quantum
Optics conference.

(2.66)

The major observable effect attributed to the existence of vacuum fluc-
tuations is the Lamb shift. In 1947, Lamb and Retherford (Reprinted Paper
4) used a microwave frequency method to examine the fine structure of the
n=2 level of atomic hydrogen. Earlier high resolution optical studies of
the Hy line seemed to indicate a discrepancy between experiment and the Dirac
relat%vistic theory of the hydrogen atom. The Dirac theory predicts that
the 298y /5 and 22P1 2 levels should be degenerate. The early optical work
suggested that these states were not in fact degenerate but separated by
about 0.033 cm~l. Lamb and Retherford used an eleéant combination of atomic
beam and microwave techniques and showed that the 245y {2 state is higher in
energ¥ than the 221’112 state by about 1000 MHz. The ifting of the 22P1 2
and 24S;/, degeneracies is explained by the interaction of the bound electron
with the vacuum fluctuations (Bethe 1947). In the paper bg Power (Reprinted
Paper 5), the Lamb shift, or radiative level shift of the 2457/ level, is
calculated directly from the change in zero-point energy due to the interac-
tion of the vacuum field with the hydrogen atom.

A simple intuitive interpretation of the Lamb shift was given by Welton
(1948). Each field mode contains hv/2 zero-point energy. The number of

The total zero-

d a5 is the Bohr radius.
‘does !:he energy shift.
: assuming that the important field frequencies greatly exceed the atomic Te-

ance frequencies; lower fr i
§ ; equencies ar i SRl s
nnot influence the motion of the electrznsmelded by the atomic binding and
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des in a cavit

5 of .
1/c3)v2avy. Y volume V with frequency between v and v + dv is

The zero-point field energy is

8T 2

1 1 B el

— VdwWizhy = — e 1 2

(c3 )2 anf (R =BV i= o5 Y (2.67)
v

re Ey is the amplitude of the electric fi
\ ic field compon
3 square of the vacuum electric field is thereforg TN A

N »

2
230
E\, = 23 hvsdv g
2 (2.68)

1:1:;::22120;12:1? aﬁgewlil)t'ﬁrglglencaulm minteracts with the fluctuating zero-

: e Coulomb potential of the proton -e2

perturbation of the electron from i ! 67 Yo dedinl &

B i its standard ''orbit" is described by
(2.69) /(

!

T>7r + Ar

| change in potential i = i
: P al energy is AV=V(r+Ar) - V(r), which by Taylor's theo-

i v v v 2
I L v N 1?2
3x+Ay3y+AZ81+-2_()ag*

| =

.
B 3y? 3

luctuations are isotropic, so tha
! t <Ax> = <Ay> =
25> = <(Az)2> = <(Ar)5>/3. Then :

2
@y)? 2L+ Tag? oy
2
Z
<Az> = 0 and <(Ax)2> =

1 20D
<AV> = =
g <@r)™> Vv (2.70)

rturbation <AV> changes the ener i
; gy of an atomic
u t A, To first order the energy shift is g |n2nm,> b i

A= <n£m1|(<AV>)|n2mz>

(2.71)
i 2
= 2 <un® <n£m2|V2V|n£m2> (2.72)
V(r) = e%/r and V2(1/r) = 4né(z), we find
2 2
<nfm, |[V°V|n2m > = = E
£| |n > = 4me anmz(r =0) | (2.73)

=relativistic atomic wavefuncti j
i 10 : Y
0 ieie ns vanish at the origin except for s-states

b E 3
[¥poo@=0)]* = 1/m’a> 2.74)

For p-states the wavefunction vani
; anishes and hence
The mean square displacement <(Ar)2> is obtained

The electron-field interaction
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leads to an equation of motion for the displacement induced by the fluctua- ﬁ‘(An]2> - <AtERtE  <atpr? b6
ting field. The displacement induced with frequency between V and V + dV ik

is determined by
2 eE
g——-(Ar ) = —2 exp(2mivt) (2.75
dtz v m

t term on the right hand side of eq.(2.80) can be written in mormal
&t is with creation operators to the left, annihilation operators
t, using the commutator [8,4%]=1. We find

with the solution

+ 2
<8.@> + (<88 aa> <a 9

<n> + <(Am)?> 3 (2.81)
waves

ond term has the character of the fluctuations in intensity of a clas-
@ve. This is the only term present in a classical analysis where &

2 re taken to commute and the classical wave amplitude is proportional
2 ez Ev ezh v 2.77 ' The first or par}icle-like term in eq.(2.81) arises from the non-
<(Ar)"> = = ;;;Z“z e e PR BT (2.77) lity of @ and & (or f and §). The single-mode zero-point energy
m v T m ¢

ttributed to this noncommutability

using eq.(2.68). We obtain the energy shift for s-states from eqs. (2.72) -
(2.77) summed over all frequencies.

A2 (ﬁ)z (1)2 ne  (dv (2.78)
3 \hc mc TrZnSaZ Vv

b X = _;_ &2+w2a2) 2 Zbiw (a+a+§a+)

ata

=10 (8 a+%] (2.82)

as noticed first by Born, Heisenberg and Jordan (1926), the zero-point

2 b and the particle fluctuation term in <(An)2> are closely related.
where (e“/fic) = the fine structure constant, and (fi/mc) = A, the Compton wa 0

length of the electron. The divergent frequency integral is cut off at bot]
high and at low frequencies. At low frequencies the atom does not respond
to the fluctuating electric fiel% and a natural cut-off is the frequency of
the electron in its orbit, Vo= e /ﬁagn ; The analysis also breaks doyn
at high frequencies where relativistic effects affect the electron's motion,
The preceding analysis is limited to velocities v <<c (Power 1964),

2.6 MODE OCCUPATION AND PHOTONS

;tric field operator in an arbitrary enclosure can be written, genera-

| €q. (2.63) as

= (p/m) =-B§—=ll-(-<l

2 mc
2 mc

4 Ba,t) - izk:(mk)* [8, (OF, (2) - &} ()F, (@] (2.83)
c

which restrict wavenumber k to less than (mc/h) and angulag frequencie§ to
less than (mczlﬂ) in the integral in eq.(2.78). For the 2 51/2 state in
hydrogen using a, = ﬂzlmez, the energy shift is

) the mode function Fy (r) satisfies the wave-equation subject to the
boundary conditions used in the classical theory. Interference effects
termined by the spatial mode functions Fy(r) and are precisely those of

Bical theory. The size of the interference effects however depends on

4 2 Xpectation value of combinations of field mode annihilation and creation

1 3 me log(mc),

K as: R (2.79) itors.  For example, the intensity distribution depends on the probability
P hv
()

6m -m2 tecting a single photon at position r and time t. This involves terms

he form <8f (t)8 (t)>|F, (r)|2 and cross-terms between the different contri-
giving A ~ 1000 MHz. The 229%‘2 state is unaffscted to this order by the :
e

modes. The interterence pattern is built up from a superposition of
radiative corrections leaving Lamb shift A(2 51/2) -A(22Pl 2) x~ 1000 MHz

photon probability patterns (Taylor (Reprinted Paper 1)). Pfleegor and
A review of the current status of the Lamb shift theory and experiment is to 61 (Reprinted Paper 6) and Magyar and Mandel (Reprinted Paper 7) have
be found in the paper by Newton et al. (1979). As well as shifting the

pstrated that the fields from the independent lasers produce interference
atomic levels, the fluctuating vacuum field can be thought of an "inducing"

iges. This may be difficult to understand using a crude billiard ball
spontaneous decay from excited atomic states (Schiff 1955, Milonni 1976). pretation of the "photon'". Since however the photon is an occupation

one of the normal modes of the whole system including both lasers, the
_'tum explanation is straightforward. The detector measures the occupa-

of normal modes. In this experiment there is no way of telling from
lch laser the energy derived and fringes would be expected.

The fully-quantized approach outlined in this chapter can be used to
derive the wave and particle parts of the Einstein fluctuation formgla in a
very simple way. The mean square photon number fluctuation of a single-
mode field is



‘that on ly & single photon is present in the apparatus a
8, An attempt to divide the photon with a beam splitter can be
, on division is precluded by quantum theory but is allowed by

=cl cal radiation theory, or by any theory in which the photon is
viewed as a packet of electromagnetic emergy. This experiment was performe
by Clauser in 1974 (Reprinted Paper 8) who found no evidence that photons ca
be split, in clear contradiction with semi-classical theory. Such disagree
ments between semi-classical and quantum theories of coherence are rare: in
Chapter 6 we discuss them further.

CHAPTER 3

Absorption and Emission
~ of Radiation

X

3.1 INTERACTION OF AN ATOM WITH A RADIATION FIELD

| Chapter we review the application of quantum mechanical perturbation
to the absorption and emission of electromagnetic radiation by atoms.
ails, the reader should refer to a standard quantum mechanics text
zbacher 1961, Matthews 1974). We are concerned here with drawing

n important features which play a key role in quantum optics. Sup-
ime t < 0 that we have an unperturbed atomic system described by the
er equation

H°|k>='nwk|k>. (3.1)

assume that the eigenstates |k> and their energies Huwp are in some way
and that the atom is prepared in a particular state at t<0. For most
dons this will be the atomic ground state which we will label |i>. Then
e t, we imagine the interaction between the atom and a classical electro-
{ gield is switched on. For example a light pulse might be injected
vapour cell containing the atoms, or an atomic beam intersects a beam
al radiation. In this way the interaction can be switched on and off
trolled way. We will calculate in this section the probability of
ldent radiation exciting a transition to an excited state of the atonm.

coupling of an atom to an electromagnetic field can be described in a
of different ways. The radiation field can be described in terms of
tor potential A which couples to the atomic electron through the "mini-
titution" Hamiltonian (Power 1964)

K= oL (p-eAlr,t))2+0(r) (3.2)

e
8 V(r) is the Coulomb interaction which binds the electron to the atomic
us. The unperturbed part of the Hamiltonian is

A '\2
# =5 +0(r) (3.3)

the external perturbation due to the radiative interaction is
=% +i= S5.A o2 )2
Py R G RA) .y SLA (), (3.4)

re the external radiation is described in the Coulomb gauge by the wave-
ation

27



