Dinámica de vórtices II

Gabriela Pasquini

DF, FCEyN, UBA

Recordemos

Ecuacion de movimiento de un vortice por unidad de longitud:

$$\eta \bar{\nu}_i = \sum_j \bar{f}^{\nu \nu} (\bar{r}_i - \bar{r}_j) + \sum_k \bar{f}^{\nu p} (\bar{r}_i - \bar{r}_k) + \bar{J}_{ext} \times \bar{\phi}_0 + \mathcal{F}^T$$

En campo medio, por unidad de longitud de un vortice:

$$\eta \bar{v}_i = \bar{f}^p(\bar{r}_i) + \bar{j}(\bar{r}_i) \times \bar{\phi}_0 + \mathcal{F}^T$$

Determindada por la interaccion con los defectos y los segmentos de vortices vecinos

Densidad de corriente macroscopica neta

En campo medio, por unidad de volumen:

$$\eta \bar{v}(\bar{r}) = \bar{F}^p(\bar{r}) + \bar{J}(\bar{r}) \times \bar{B} + \mathcal{F}^T$$

Por ahora no consideremos la fuerza termica

$$\eta \bar{v}_i = \bar{f}^p(\bar{r}_i) + \bar{j}(\bar{r}_i) \times \bar{\phi}_0 + \mathcal{F}^T$$

Caso 1) El pinning es despreciable: $\bar{f}^p \ll \bar{j} \times \bar{\phi}_0 \Longrightarrow j \gg j_c \implies$ Los vortices se van a mover (en regimen de FF).

$$\eta \bar{v}_i = \bar{J}(\bar{r}_i) \times \bar{\phi}_0$$
 Se van a mover con $v = \frac{1}{\eta} J \phi_0$ perpendicular a la corriente, con $\eta = \frac{\mu_0 \phi_0 H_{c2}}{\rho}$
Esto implica una disipacion con $E = \rho_{FF} J$ **Regimen Lineal Ohmico** $\rho_{FF} = \frac{B}{\mu_0 H_{c2}} \rho$

Gabriela Pasquini Superconductividad DF, FCEyN, UBA

 $\bar{f}^p \ll \bar{j} \times \bar{\phi}_0 \Longrightarrow j \gg j_c$ Caso particular: $j_c \sim 0$ Esto es lo que ocurre en una muestra MUY limpia

A medida que aumenta (disminuye) el campo *H* los vortices se mueven en regimen de FF hasta alcanzar la nueva configuracion de equilibrio: RV triangular con $a_0^2 \sim \frac{\phi_0}{B_{eq}}$. Cuando alcanzan esa configuracion $\bar{j}(\bar{r}_i) = 0$ y $\bar{v}_i = 0$. La curva $M_{eq}(H)$ de equilibrio es **reversible**.

Esto ocurre solo si $j_c \sim 0$.

DF, FCEyN, UBA

Ecuacion de movimiento de 1 vortice por unidad de longitud en campo medio:

Por ahora no consideremos la fuerza termica

$$\eta \bar{v}_i = \bar{f}^p(\bar{r}_i) + \bar{j}(\bar{r}_i) \times \bar{\phi}_0 + \mathcal{F}^T$$

Determindada por la interaccion con los defectos y los segmentos de vortices vecinos

Densidad de corriente macroscopica neta

Caso 2) Domina la fuerza de anclaje: $\bar{f}^p > \bar{j} \times \bar{\phi}_0 \Longrightarrow j < j_c \implies v = 0$ Los vortices no se mueven

Aunque la RV no este en la configuracion de equilibrio, si las corrientes locales $j(\bar{r}_i) < j_c$, la RV se va a quedar en esa configuracion metaestable. $B \sim \phi_0 a_0^2 \neq B_{eq}$ y $M \neq M_{eq}$.

La magnetizacion M y el campo interno B van a depender de la historia.

Curva M(H) irreversible, con histeresis

DF, FCEyN, UBA

Caso 2) Domina la fuerza de anclaje: $\bar{f}^p > \bar{j} \times \bar{\phi}_0 \Longrightarrow j < j_c \implies v = 0$ Los vortices no se mueven

Aunque la RV no este en la configuracion de equilibrio, si las corrientes locales $j(\bar{r}_i) < j_c$, la RV se va a quedar en esa configuracion metaestable. $B \sim \phi_0 a_0^2 \neq B_{eq}$ y $M \neq M_{eq}$.

La magnetizacion M y el campo interno B van a depender de la historia.

Curva M(H) irreversible, con histeresis

Pero: Como hacemos para cambiar el campo interno si los vortices no se pueden mover?? IMPOSIBLE

Para mover los vortices en distancias $u > \xi$ los tenemos que sacar de los centros de anclaje.

Para cambiar B (o M) significativamente (acercar o alejar los vortices entre si) tenemos que superar (al menos en un instante) j_c .

 $j > j_c \implies$ lo vortices se mueven hasta alcanzar una nueva configuracion metaestable. Cuando se frenan?

Cuando
$$|\bar{J}_S(\bar{r})| = \frac{1}{\mu_0} |\bar{\nabla} \times \bar{B}(\bar{r})| \le j_c$$
 para todo \bar{r}

Se forman entonces perfiles de B en la muestra tal que, en todas las regiones ocupadas por vortices, $\overline{\nabla} \times \overline{B} \leq \mu_0 j_c$.

Regimen de Estado Crítico

Gabriela Pasquini	DF, FCEyN, UBA	Superconductividad

Régimen de estado crítico

- Dominan las fuerzas de anclaje.
- Al mover los vortices, el sistema se reorganiza en configuraciones metaestables tales que la fuerza de anclaje alcanza "justo" para sostener a la fuerza ejercida por corriente

$$0 = f_c^p(\bar{r}_i) + \bar{J}_c(\bar{r}_i) \times \phi_0$$

La fuerza de Lorentz genera un potencial que "inclina" el paisaje de energia local

Régimen de estado crítico

Bajo estas suposiciones: cómo será el campo B interno al cambiar el campo H aplicado?

Modelo de Bean:

1) Los vórtices no pueden salir de los centros de anclaje si $j < j_c$ (desprecia las flutuaciones termicas). Las configuraciones metaestables tienen vida infinita.

2) Al superar j_c el movimiento hasta alanzar una nueva configuracion metaestable es "instantáneo" ; $t_{mov} \ll t$ medición.

3) j_c no depende de *B* en el rango de campos involucrados.

$$E(J) = \begin{cases} 0 & \text{si } J < J_c \text{ (los vórtices están anclados)} \\ \infty & \text{si } J > J_c \text{ (los vórtices se mueven)} \end{cases}$$

Magnetización en el modelo de Bean

Plancha superconductora infinita de ancho 2*d* sin FD $\lambda \ll d, \kappa >> 1; J_c \text{ indep. de } B$ $\mu_0 M = \frac{1}{2d} \int B(x) dx - \mu_0 H$ $\frac{dB}{dx} = \mu_0 J$

Magnetización en el modelo de Bean

Midiendo un lazo de magnetización y conociendo dimensiones de la muestra se puede medir J_c

Gabriela Pasquini	DF, FCEyN, UBA	Superconductividad

Imágenes de penetración de flujo por MO

MEISSNER STATE

BEAN-TYPE PENETRATION

LOW FIELDS

Imágenes tomadas por el grupo de I Johansen, Universidad de Oslo

Gabriela Pasquini

DF, FCEyN, UBA

Más allá del caballo esférico: Activación térmica (thermal flux creep)

 $\eta \bar{v}_i = \bar{f}^p(\bar{r}_i) + \bar{j}(\bar{r}_i) \times \bar{\phi}_0 + \mathcal{F}^T \qquad \eta \bar{v}(\bar{r}) = \bar{F}^p(\bar{r}) + \bar{j}(\bar{r}) \times \bar{B} + \mathcal{F}^T$

Caso 3) Domina la fuerza de anclaje pero no podemos despreciar las fluctuaciones termicas:

Aunque $J < J_c$ los vortices pueden moverse por activacion termica con probabilidad $P \propto e^{-\frac{D}{kT}}$. La *J* "inclina la cancha" favoreciendo la probabilidad hacia un lado.

Activación térmica: flux creep

DF, FCEyN, UBA

Activación térmica: flux creep

Si domina la fuerza de anclaje, se puede mostrar que el perfil critico relaja con el tiempo, con una $J(t) < J_c$ que sigue siendo uniforme.

Para cada t sigue valiendo el modelo de Bean con $M(t) \propto J(t)$

El perfil de campo relaja cada vez mas lento. En el modelo de A-K se predice logritmico

Magnetizacion en funcion del tiempo medida en una muestra de MgB₂ en estado crítico

Gabriela Pasquini

DF, FCEyN, UBA

Magnetización en superconductores de tipo II. Más allá del caballo esférico: factores geometricos

Incluso en ausencia de pinning, con J_c nula, la magnetización podria presentar histéresis por cuestiones geométricas (barreras de superficie)

Las lineas punteadas muestran magnetizacion reversible para varios elipsoides de revolucion con distintos FD (determinados por b/a).

Las curvas continuas son la M esperada para discos/cilindros con la misma relacion b/a. Se ve que los bordes y esquinas generan barreras geometricas que llevan a histeresis para campos chicos.

FIG. 3. Irreversible magnetization curves $-M(H_a)$ of pin-free circular disks and cylinders with aspect ratios b/a=0.08, 0.15, 0.25, 0.5, 1, 2, 5, and ∞ in axial field (solid lines). In these type-II superconductors the irreversibility is due to a purely geometric edge barrier for flux penetration. The dashed curves are the reversible magnetization curves of the corresponding ellipsoid defined by Eqs. (1), (4), and (5).

DF, FCEyN, UBA

Magnetización en superconductores de tipo II. Más allá del caballo esférico

 J_c depende de B. El modelo de Bean vale para cada campo, con una $J_c(B)$.

A campos bajos *M* es comparable con el campo aplicado *H*, por lo que $B \neq \mu_0 H$

Gabriela Pasquini	DF, FCEyN, UBA	Superconductividad

Magnetización en superconductores de tipo II. Más allá del caballo esférico

FIG. 4. Magnetization curves of a thick disk with aspect ratio b/a = 0.25 for various degrees of volume pinning, $J_c = 0$, 0.25, 0.5, 1, 1.5, 2, 3, 4 in units H_{c1}/a , and for various sweep amplitudes. The inner loop belongs to the pin-free disk ($J_c=0$), the outer loop to strongest pinning. Also shown is the reversible magnetization curve of the corresponding ellipsoid (dashed curve). All loops are symmetric, $M(-H_a) = -M(H_a)$.

Curvas de magnetización en un monocristal de NbSe₂

En superconductores con pocos J_c muy baja, la magnetización reversible es comparable o mayor que la irreversible y hay que tener en cuenta ambas.

Gabriela Pasquini

DF, FCEyN, UBA

Magnetización en superconductores de tipo II. Anomalías no tan anómalas

