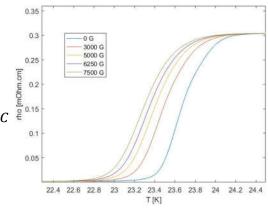
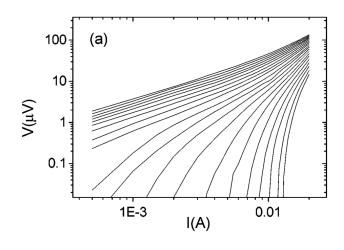
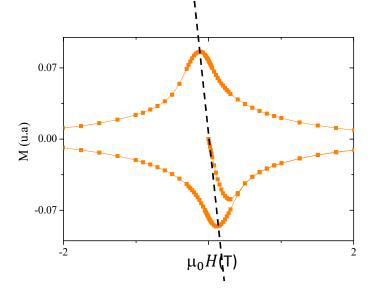

Experimentos magneticos y de transporte en superconductores

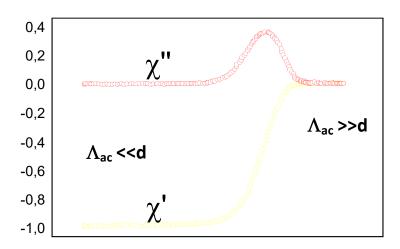
Propiedades magnéticas y de transporte globales:


- 1) Transporte DC o AC
- 2) Magnetización M
- 3) Susceptibilidad alterna χ_{AC}

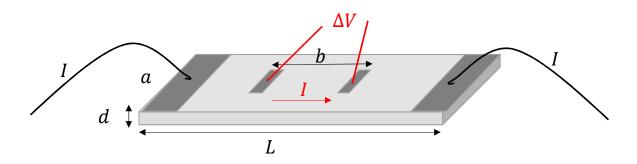

1) Transporte DC o AC

- 1.1) **Resistividad** ρ : Se mide la resistencia y se calcula la resistividad
- $\rho(T)$ y $\rho_{AC}(T)$ a H=0 permiten medir la T_c y ver el "ancho de transicion" asociado a la homogeneidad.
- $\rho(T)$ a H>0 o $\rho(H)$ a T fija permite medir $H_{c2}(T)$ en tipo II y $H_c(T)$ en tipo I. Idem ρ_{AC}
- $\rho_{AC}(T, H, \omega)$ Brinda ademas informacion muy parecida a la susceptibilidad AC en el regimen lineal.


- Permiten estudiar caracterisitcas del liquido de vortices
- Permiten encontrar la transicion liquido-vidrio o liquido-cristal de vortices.
- Permiten medir j_c muy bajas.
- Técnicas mas usuales:
 - Resistencia DC a 4 puntas (con nanovoltimetros)
 - Resistencia AC a 4 puntas (con lockin)

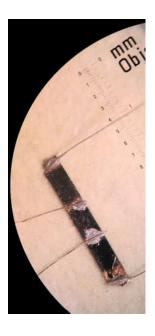

2) Magnetización M

- En general se mide la componente del momento magnético $m{m}$ en la dirección del campo aplicado.
- M(H) a T fija permite medir los campos críticos y estimar $J_c(B)$ en tipo II. En los tipo I tambien hay J_c para mover las regiones del estado intermedio, que se pueden medir con M(H).
- La relajacion con el tiempo M(t) se usa para estudiar la activacion termica .
- M(H,T,t) se usa para estudiar distintas fases de vortices.
- Técnicas mas usuales para medir *m* :
 - Vibrating Sample Magnetometer (VSM)
 - Sensores Hall
 - SQUID Magnetometer


3) Susceptibilidad alterna χ_{AC} :

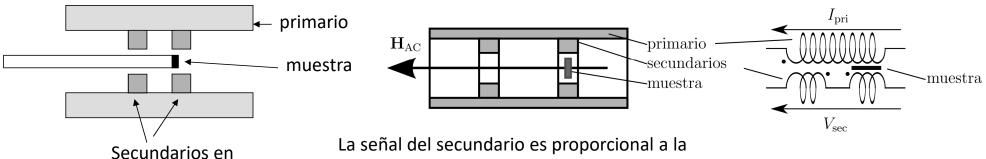
- En general se miden las componentes de la primer armónica χ' y χ'' asociadas con la magnetizacon M(t) en la dirección del campo alterno aplicado.
- $\chi(T)$ a H=0 permite medir la T_c y ver el "ancho de transicion superconductora" asociado a la homogeneidad.
- $\chi(T, H, h_{ac}, \omega)$ permiten ver cuan moviles son los vortices, estudiar regimenes dinamicos, estimar j_c chicas (en regimen no lineal), y cte de Labush α_L (en regimen lineal).
- Técnicas mas usuales:
 - Inductancia mutua
 - m(t) (bajas frecuencias)
 - Sensores Hall AC

Transporte DC y AC


Resistencia a 4 terminales:

Si suponemos *I* homogenea: $\Delta V = RI$ siendo $R = \rho \frac{b}{ad}$

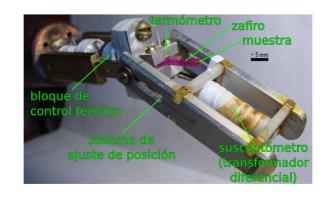
Ventaja: No mide la resistencia de los contactos y los cables (mayores que la de la muestra).

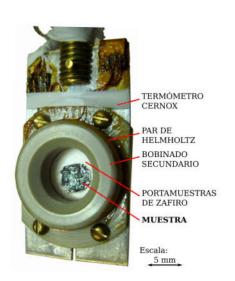

Transporte DC: es mas dificil filtrar el ruido, influyen los potenciales de contacto.

Monocristal de BaFeCoAs con 4 contactos.

Transporte AC: se pueden medir señales menores con un lockin, se mide señal en fase y contrafase

Susceptibilidad alterna χ_{AC} por inductancia mutua


muestra


Bobinas

1cm

contrafase

La señal del secundario es proporcional a la susceptibilidad, desfazada en $\pi/2$ respecto de la corriente en el primario: $V' \propto v' \sim v'$ Es mas sensible a mayores frecuencias

Magnetización M

Primeras tecnicas:

Figure 9.1.1. Schematic diagram of a susceptibility balance. After Zijlstra (1967).

Balanza magnetica basica

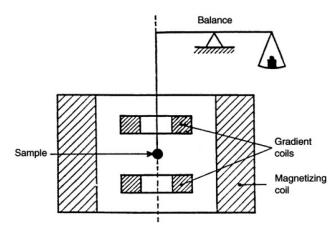
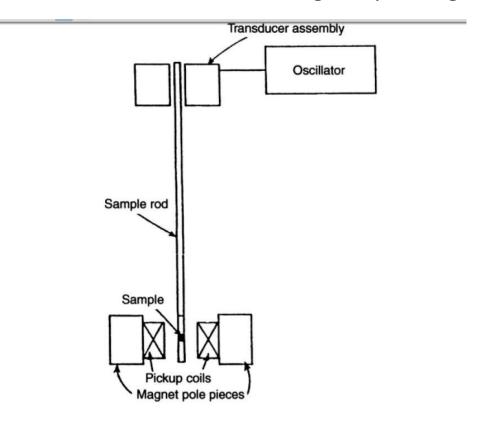
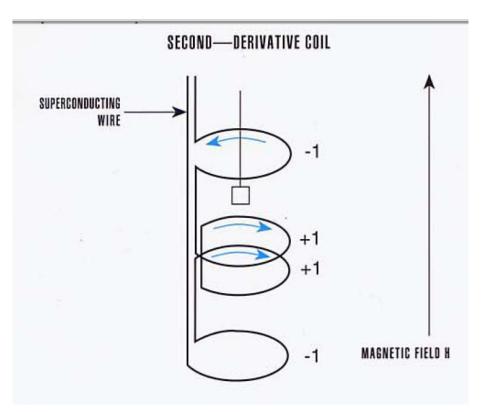
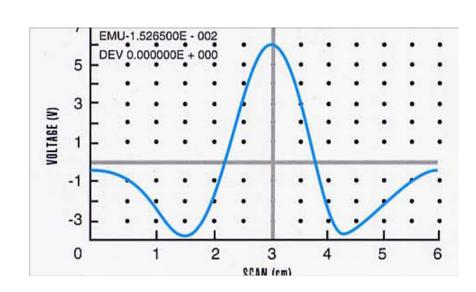
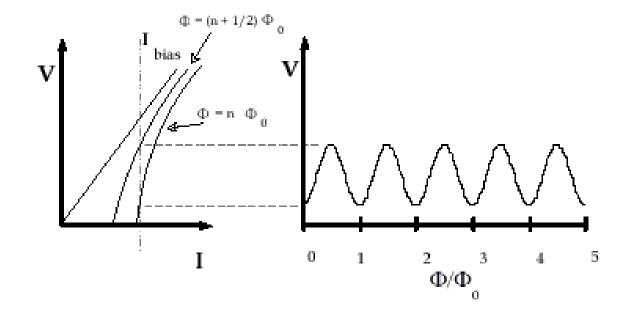



Figure 9.2.1. Schematic representation of an apparatus for measuring the magnetic moment of a small sample as a function of the applied field. After Zijlstra (1967).

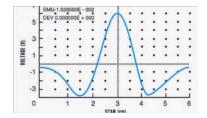
Metodo de Faraday


Magnetización M


Vibrating sample magnetometer (VSM)



Equipo comercial VSM, LBT


SQUID: muy sensible para medir variaciones de flujo magnetico

Magnetización y susceptibilidad: MPMS

Mueve la muestra alrededor de la posicion central de las bobinas (en el ejemplo ± 3 cm). Da el valor del momento magnetico ajustando la señal.

Tiene un accesorio que perimite agregar un pequeño campo alterno y medir m(t). Ajusta la señal como armonica, y obtiene las componentes en fase y contrafase m'(t) y m''(t). Hasta f=1kHz.

Magnetometro comercial MPMS: gradiometro + SQUID, B hasta 7 T, T hasta 2 K.

Montaje experimental mediciones de Magnetizacion: MPMS

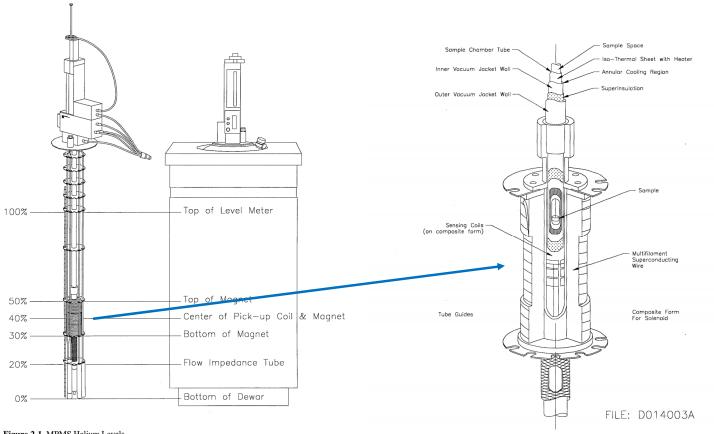
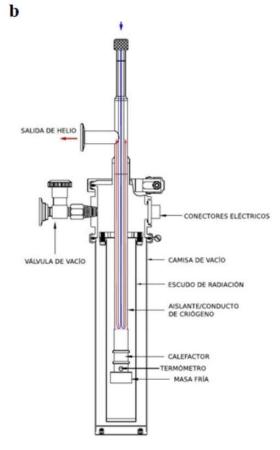


Figure 2-1 MPMS Helium Levels


Montaje experimental mediciones de transporte

Criostato a flujo continuo en electroiman rotante

B hasta 1 T, direccion variable.

T hasta 4.2 K

Propuestas de datos para analizar

- 1) Mediciones en monocristales de NbSe₂. $T_c \sim 7.2~K$. Tipo II con bajo pinning. Magnetizacion M(H) a distintas T y eventualmente curvas de susceptibilidad alterna a las mismas T. Todas medidas en MPMS.
- 2) Mediciones en muestras ceramicas de MgB_2 dopadas con carbono. $T_c \sim 40~K$. Tipo II con pinning fuerte. Magnetización M(H) a distintas T para muestras con distintas composiciones. Medidas en MPMS.
- 3) Mediciones en monocristales de la familia Ba(Fe_{1-x}Co_x)₂As₂ $T_c \sim 23~K$. Tipo II con pinning fuerte. Magnetizacion M(H) a distintas T. Medidas en MPMS.
- 4) Mediciones en monocristales de la familia $Ba(Fe_{1-x}Co_x)_2As_2$ $T_c\sim23$ K. Tipo II con pinning fuerte. Mediciones de transporte cerca de la transicion superconductora para distintas direcciones del campo magnetico aplicado. En criostato de flujo continuo para experimentos de elasto-resistividad.
- 5) Mediciones en muestra de Pb $T_c \sim 7~K$. Tipo I con pinning en el estado intermedio. Magnetizacion M(H) a distintas T y algunas curvas de susceptibilida. Medidas en MPMS.

Hay mas cosas!! Pregunten si hay algo que les interese en particular.