SUPERCONDUCTIVIDAD

Guía 3: termodinámica y estado intermedio

Propiedades termodinámicas

1. Demuestre que la diferencia de energía libre de Helmholtz por unidad de volumen entre las fases normal (n) y superconductora (s) es

$$f_{\rm n}(T,0) - f_{\rm s}(T,0) = \frac{\mu_0}{2} H_{\rm c}^2(T).$$

2. Calcule la diferencia de entropía entre las fases normal (n) y superconductora (s), $s_n(T,0) - s_s(T,0)$, y demuestre que la diferencia de calor específico entre dichas fases es

$$c_{\rm n}(T,0) - c_{\rm s}(T,0) = \frac{2\mu_0 H_{\rm c}^2(0)}{T_{\rm c}} (t - 3t^3),$$

donde $t = T/T_c$. Asuma la relación $H_c(T) = (1 - t^2)H_c(0)$.

- **3.** A partir de los resultados anteriores y los datos de calor específico provistos en la figura 1:
 - a. estime el campo crítico H_c del aluminio;
 - b. describa cómo cambian $C_{\rm n}^{\rm el}(T)$ y $C_{\rm s}^{\rm el}(T)$ en presencia de un campo H>0.
- 4. Para una placa de espesor $2d < \lambda_{\rm L}$, paralela al campo aplicado, cuyo campo crítico termodinámico en volumen es $H_{\rm c}$, determine el campo $H_{\rm c}^*$ a partir del cual el sistema sale del estado Meissner.

Estado intermedio

- 5. Se tiene una esfera superconductora de radio $a \gg \lambda_{\rm L}$ en un campo magnético uniforme de modulo H lejos de la esfera.
 - a. Identifique el campo a partir del cual se formarán regiones normales en el interior de la esfera.
 - **b.** Grafique la evolución de m(H) desde H=0 hasta $H=H_{\rm c}$
- 6. Halle la corriente I_c a partir de la cual se forman regiones normales en un alambre superconductor de radio $a \gg \lambda_L$ en los siguientes casos:
 - **a**. $\mathbf{H}_0 = 0$
 - **b**. $\mathbf{H}_0 \neq 0$ paralelo al alambre.

- 7. Se tiene una placa superconductora delgada, de espesor $d \gg \lambda_{\rm L}$, en presencia de un campo uniforme perpendicular. En esta geometría el flujo magnético perpendicular a la placa por unidad de area $B_0 = \mu_0 H_0$ se conserva a nivel macroscópico. Considere que la energía adicional por unidad de área en las interfaces normal-superconductor es $\gamma = \frac{1}{2}\delta\mu_0 H_{\rm c}^2$, con $d > \delta \gg \lambda_{\rm L}$ y haga las simplificaciones que considere necesarias.
 - a. Encuentre la distribución de campo magnético en el interior de la placa en función de H_0 .
 - \mathbf{b} . encuentre el valor de H_0 necesario para que toda la placa pase al estado normal.
- 8. Se tiene un alambre superconductor de radio $a \gg \lambda_{\rm L}$ por el cual circula una corriente $I > I_{\rm c}$. Proponiendo el modelo de estado intermedio de la figura 2:
 - **a**. demuestre que $\mathbf{H}(r,z)$ es uniforme para $r < r_0$;
 - **b**. determine r_0 y halle J(r) en las regiones normales;
 - c. halle la resistencia por unidad de longitud del alambre, en función de la corriente I y la resistividad de la fase normal ρ_n .

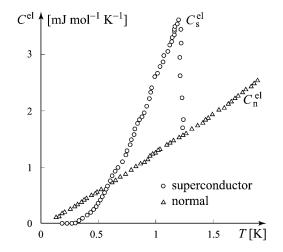


Figura 1: Calor específico electrónico de las fases superconductora ($C_{\rm s}^{\rm el}$, H=0) y normal ($C_{\rm n}^{\rm el}$, H=30 mT) del aluminio, en función de la temperatura. Fuente: N.E. Phillips, *Phys. Rev.* **114**, 676 (1959).

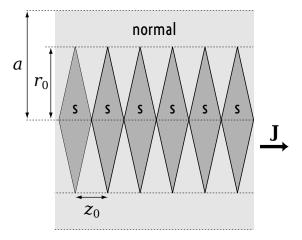


Figura 2: Un modelo para el estado intermedio de un alambre superconductor de radio a que transporta una corriente: la región exterior $(r > r_0)$ se vuelve normal, mientras que en el interior permanecen regiones superconductoras de forma cónica, con periodo z_0 .