Física de Semiconductores

José Menéndez

Introducción

• Enviar un mail a jose.menendez@asu.edu

Propuesta

- Se me ha propuesto concentrar la teórica un día y la práctica el otro día.
- Teórica: martes 10:00-11:30 12:00-13:00
- Práctica: viernes 10:00-11:30 12:00-13:00

Secuencia

- Martes semana n: teórica. Problemas subidos a la página web.
- Viernes semana n+1: entrega de tareas.
 Estudiantes presentan solución de los problemas en pizarra. Discusión abierta.
 Discusión de problemas numéricos.
- Viernes semana 1: introducción a Igor Pro. Si quieren licencia (gratis) enviar mail.

Evaluación

- Tarea semanal (60 %)
- Participación (viernes) (15%)
- Artículo en Wikipedia en español (15%)
- Estudiantes doctorado: escribir notas de clase a partir de las clases.

Review of Dirac notation

Para divertirse, leer

• R. C. Henry, Quantum mechanics made transparent, Am. J. Phys. **58** (11), 1087 (1990)

Funciones de onda I

 Una partícula cuántica se describe por una función de onda que requerimos que sea normalizable

$$\int_{0}^{\infty} \left| \psi(x) \right|^{2} dx < \infty$$

• $\left|\psi(x)\right|^2$ representa la densidad de probabilidad de que la partícula se encuentre entre x y x+dx

Funciones de onda II

 Matemáticamente, el conjunto de funciones complejas normalizables constituye un espacio vectorial complejo. Este es un ejemplo de un espacio de Hilbert de dimensión infinita.

Funciones de onda III

Definimos

$$\phi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} dx e^{-ipx/\hbar} \psi(x)$$

• $\left|\phi\left(p\right)\right|^2$ representa la densidad de probabilidad de que la partícula tenga un *momentum* entre p y p+dp.

Funciones de onda IV

Sabemos que (identidad de Parseval)

$$\int_{-\infty}^{\infty} \left| \psi(x) \right|^2 dx = \int_{-\infty}^{\infty} \left| \phi(p) \right|^2 dp$$

• de manera que si $\{\psi(x)\}$ forma un espacio de Hilbert de funciones normalizables, también lo hace $\{\phi(p)\}$.

Funciones de onda V

• Consideremos ahora el conjunto $\left\{u_n\left(x\right)\right\}$ de soluciones ortonormales de la ecuación

$$Hu_{n}\left(x\right) = E_{n}u_{n}\left(x\right)$$

Cualquier función arbitraria puede escribirse

$$\psi(x) = \sum_{n} c_n u_n(x)$$

con

$$c_{n} = \int_{-\infty}^{\infty} u_{n}^{*}(x)\psi(x)dx$$

Funciones de onda VI

• La secuencia $(c_1, c_2, ...)$ representa la función de onda en el "espacio de energía. Además, dado que ∞

 $\int \left|\psi(x)
ight|^2 dx = \sum_n \left|c_n
ight|^2$ de Onda está normalizad

Si la función de δ nda está normalizada a uno, el coeficiente $|c_n|^2$ representa la probabilidad de que la partícula tenga energía E_n .

que la partícula tenga energía E_n . De modo que las secuencias $\left(c_1,c_2,\ldots\right)$ también forman un espacio de Hilbert.

Dirac kets I

• Para representar los estados cuánticos de manera "neutral" con respecto a las distintas representaciones, introducimos un nuevo espacio de Hilbert $\mathcal E$ en el cual los vectores se indican por

$$|\psi\rangle$$

• El hecho de que usemos el símbolo ψ no significa que privilegiemos la representación espacial.

Dirac kets II

 Como los kets son vectores de un espacio de Hilbert, pueden multiplicarse por números complejos:

$$|\psi\rangle \equiv |\psi\rangle c$$

 El conjunto de kets que se obtiene al multiplicar un ket dado por todos los números complejos es un subespacio del espacio de Hilbert y se llama rayo. Estrictamente, un estado cuántico está representado por rayos.

Dirac bras I

Definimos ahora un operador

$$\langle \alpha | : \mathcal{E} \to \mathbb{C}$$

• llamado bra, con la propiedad lineal

$$\left\langle \alpha \middle| \left(c_{_{\! 1}} \middle| \psi_{_{\! 1}} \right\rangle + c_{_{\! 2}} \middle| \psi_{_{\! 2}} \right\rangle \right) = c_{_{\! 1}} \left\langle \alpha \middle| \left(\middle| \psi_{_{\! 1}} \right\rangle \right) + c_{_{\! 2}} \left\langle \alpha \middle| \left(\middle| \psi_{_{\! 2}} \right\rangle \right)$$

 El número complejo que se obtiene aplicando un bra a un ket se indica como

$$\langle \alpha | (|\psi\rangle) \equiv \langle \alpha | \psi \rangle$$

Dirac bras II

Definimos las siguientes propiedades:

$$(c\langle\alpha|)(|\psi\rangle) = c\langle\alpha|(|\psi\rangle)$$

$$(\langle\alpha_1|+\langle\alpha_2|)(|\psi\rangle) = \langle\alpha_1|(|\psi\rangle) + \langle\alpha_2|(|\psi\rangle)$$

- De modo que el conjunto de bras también forma un espacio de Hilbert que llamamos el espacio **dual** \mathcal{E}^* .
- Notar que los bras como operadores son muy distintos a los operadores "convencionales" porque si bien actúan sobre kets, dan como resultado números, no otros kets.

Producto escalar

• Postulamos la existencia de un producto escalar $g: \mathcal{E} \times \mathcal{E} \to \mathbb{C}$ que cumple:

$$\begin{split} g\left(\left|\psi\right\rangle,c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle\right)&=c_{1}g\left(\left|\psi\right\rangle,\left|\phi_{1}\right\rangle\right)+c_{2}g\left(\left|\psi\right\rangle,\left|\phi_{2}\right\rangle\right)\\ g\left(c_{1}\left|\psi_{1}\right\rangle+c_{2}\left|\psi_{2}\right\rangle,\left|\phi\right\rangle\right)&=c_{1}^{*}g\left(\left|\psi_{1}\right\rangle,\left|\phi\right\rangle\right)+c_{2}^{*}g\left(\left|\psi_{2}\right\rangle,\left|\phi\right\rangle\right)\\ g\left(\left|\psi\right\rangle,\left|\phi\right\rangle\right)&=g\left(\left|\phi\right\rangle,\left|\psi\right\rangle\right)^{*}\\ g\left(\left|\psi\right\rangle,\left|\psi\right\rangle\right)&\geq0 \end{split}$$

Correspondencia dual I

• Definimos el bra $\left<\psi\right|$ correspondiente al ket $\left|\psi\right>$ como el bra que aplicado al ket $\left|\phi\right>$ da como resultado

$$\langle \psi | (|\phi\rangle) = g(|\psi\rangle, |\phi\rangle)$$

• Decimos que $|\psi|$ es el adjunto o conjugado hermítico de $|\psi\rangle$, y lo indicamos como

$$\left\langle \psi \right| = \left(\left| \psi \right\rangle \right)^{\dagger}$$

Correspondencia dual II

- Podemos conjeturar que todo bra es el adjunto de algún ket, de modo que \mathcal{E}^* tiene la misma dimensión que \mathcal{E} .
- Si lo anterior es cierto, podemos definir la operación inversa a la conjugación hermítica, la cual indicaremos con el mismo símbolo daga, de modo que

$$\left(\left|\psi\right\rangle\right)^{\dagger\dagger} = \left|\psi\right\rangle$$

Correspondencia dual III

También tenemos

$$\begin{aligned} \left(c_1 \middle| \psi_1 \right) + c_2 \middle| \psi_2 \right)^{\dagger} \left(\middle| \phi \right) &= g \left(c_1 \middle| \psi_1 \right) + c_2 \middle| \psi_2 \right), \middle| \phi \right) \\ &= c_1^* g \left(\middle| \psi_1 \right), \middle| \phi \right) + c_2^* g \left(\middle| \psi_2 \right), \middle| \phi \right) \end{aligned}$$

o sea que la correspondencia dual es antilineal:

$$\left(c_{_{1}}\middle|\psi_{_{1}}\right)+c_{_{2}}\middle|\psi_{_{2}}\right)^{\dagger}=c_{_{1}}^{*}\left(\middle|\psi_{_{1}}\right)^{\dagger}+c_{_{2}}^{*}\left(\middle|\psi_{_{2}}\right)^{\dagger}$$

Producto escalar: nueva notación

A partir de ahora utilizaremos la notación

$$g(|\psi\rangle,|\phi\rangle) = \langle\psi|(|\phi\rangle) = \langle\psi|\phi\rangle$$

 para el producto escalar, de modo que podemos escribir las propiedades de este producto como

$$\left\langle \psi \middle| \phi \right\rangle = \left\langle \phi \middle| \psi \right\rangle^*$$
$$\left\langle \psi \middle| \psi \right\rangle \ge 0$$

Operadores

Empezamos con operadores lineales

$$L:\mathcal{E}\to\mathcal{E}$$

que satisfacen

$$L\left(c_{_{1}}\middle|\psi_{_{1}}\right)+c_{_{2}}\middle|\psi_{_{2}}\right))=c_{_{1}}L\middle|\psi_{_{1}}\right\rangle+c_{_{2}}L\middle|\psi_{_{2}}\right\rangle$$

- Definimos la multiplicación de operadores como $AB\Big|\psi\Big>=A\Big(B\Big|\psi\Big>\Big)$
- Esta operación es obviamente asociativa pero no necesariamente conmutativa.

Operadores sobre bras I

• Hemos definido operadores que actúan sobre kets, pero podemos extender la definición para que los operadores actúen sobre bras. Escribimos el bra que se obtiene de aplicar el operador A al bra $\left\langle \psi \right|$ como

$$\langle \psi | A$$

Operadores sobre bras II

 Definimos este bra por su acción sobre un ket arbitrario como

$$\left(\left\langle \psi \middle| A \right) \middle| \phi \right\rangle = \left\langle \psi \middle| \left(A \middle| \phi \right) \right)$$

 Como esta definición hace irrelevante el orden de los paréntesis, podemos escribir

$$\left(\left\langle \psi \middle| A \right) \middle| \phi \right\rangle = \left\langle \psi \middle| \left(A \middle| \phi \right) \right\rangle = \left\langle \psi \middle| A \middle| \phi \right\rangle$$

Producto exterior

• Si $|\alpha\rangle$ y $|\beta\rangle$ son kets, podemos definir un operador, representado por el símbolo $|\alpha\rangle\langle\beta|$, que satisface

$$\left(\left| \alpha \right\rangle \left\langle \beta \right| \right) \left| \psi \right\rangle = \left| \alpha \right\rangle \left\langle \beta \right| \psi \right\rangle$$

$$\left\langle \psi \right| \left(\left| \alpha \right\rangle \left\langle \beta \right| \right) = \left\langle \psi \right| \alpha \right\rangle \left\langle \beta \right|$$

Bases

Supongamos una base ortonormal discreta:

$$\langle n | m \rangle = \delta_{mn}$$

• Cualquier ket puede éscribirse

$$|\psi\rangle = \sum_{n} c_{n} |n\rangle = \sum_{n} |n\rangle c_{n}$$

• con $c_n=\left\langle n\Big|\psi\right\rangle$, so that $\Big|\psi\Big\rangle=\sum_n\Big|n\Big\rangle\Big\langle n\Big|\psi\Big\rangle=\Big(\sum_n\Big|n\Big\rangle\Big\langle n\Big|\Big|\psi\Big\rangle$

Resolución de la identidad

 De modo que el operador identidad puede escribirse

$$1 = \left(\sum_{n} |n\rangle \langle n| \right)$$

Operadores adjuntos

• Definimos $A^\dagger \Big| \psi \Big> = \Big(\Big\langle \psi \Big| A \Big)^{\!\intercal}$, de lo cual se deducen las siguientes propiedades:

$$\begin{split} A^{\dagger} \left(c_{_{1}} \middle| \psi_{_{1}} \right) + c_{_{2}} \middle| \psi_{_{2}} \right) &= c_{_{1}} A^{\dagger} \middle| \psi_{_{1}} \right) + c_{_{2}} A^{\dagger} \middle| \psi_{_{2}} \right) \\ \left\langle \phi \middle| A^{\dagger} \middle| \psi \right\rangle &= \left\langle \psi \middle| A \middle| \phi \right\rangle^{*} \\ A^{\dagger\dagger} &= A \\ \left(c_{_{1}} A_{_{1}} + c_{_{2}} A_{_{2}} \right)^{\dagger} \middle| \psi \right\rangle &= c_{_{1}}^{*} A_{_{1}}^{+} \middle| \psi \right\rangle + c_{_{2}}^{*} A_{_{2}}^{+} \middle| \psi \right\rangle \\ \left(A B \right)^{\dagger} &= B^{\dagger} A^{\dagger} \\ \left(\middle| \alpha \middle\rangle \middle\langle \beta \middle| \right)^{\dagger} &= \middle| \beta \middle\rangle \middle\langle \alpha \middle| \end{split}$$

Operadores hermíticos

 Un operador es hermítico o autoadjunto si satisface:

$$A = A^{\dagger}$$

lo cual implica

$$\langle \phi | A | \psi \rangle = \langle \psi | A | \phi \rangle^*$$

Operadores unitarios

• Un operador es unitario si satisface:

$$UU^{\dagger} = U^{\dagger}U = 1$$

lo cual implica

$$U^{-1} = U^{\dagger}$$

Autovalores y auto-kets

• Sea A un operador que actúa sobre ${\mathcal E}$. Si existe

un ket $|u\rangle$ que no sea zero tal que $A \Big|u\rangle = a \Big|u\rangle$ • decimos que $|u\rangle$ es un autoket de A y que a es un autovalor por derecha. De la misma manera, si existe un bra que no sea zero tal que

 $\left| \begin{array}{c} \langle u | A = b \langle u | \\ \end{array} \right|$ • decimos que $\langle u |$ es un autobra y b un autovalor por izquierda.

Operadores hermíticos I

• Supongamos que A es hermítico.

$$A|u\rangle = a|u\rangle$$

$$\langle u|A|u\rangle = a\langle u|u\rangle$$

$$\langle u|A|u\rangle^* = a^*\langle u|u\rangle$$

$$\langle u|A^{\dagger}|u\rangle = \langle u|A|u\rangle = a^*\langle u|u\rangle$$

Esto significa

$$(a-a^*)\langle u|u\rangle = 0 \Rightarrow a = a^*$$

Operadores hermíticos II

Tambien:

$$A^{\dagger} | \psi \rangle = (\langle \psi | A)^{\dagger}$$

$$A | \psi \rangle = (\langle \psi | A)^{\dagger}$$

$$a | \psi \rangle = (\langle \psi | A)^{\dagger}$$

$$a | \psi \rangle = (\langle \psi | A)^{\dagger}$$

$$a | \psi \rangle = \langle \psi | A$$

 $a \Big<\psi\Big| = \Big<\psi\Big| A$ • de modo que autovalores por derecha e izquierda son iguales.

Ortogonalidad de autovectores

• Sea
$$A|u\rangle = a|u\rangle$$
 y $A|u'\rangle = a'|u'\rangle$

Entonces

$$\begin{aligned} \left\langle u' \middle| A \middle| u \right\rangle &= a \left\langle u' \middle| u \right\rangle \\ \left\langle u \middle| A \middle| u' \right\rangle &= a' \left\langle u \middle| u' \right\rangle \\ \left\langle u \middle| A \middle| u' \right\rangle^* &= \left\langle u' \middle| A^{\dagger} \middle| u \right\rangle = \left\langle u' \middle| A \middle| u \right\rangle = a' \left\langle u' \middle| u \right\rangle \end{aligned}$$

• Esto implica $(a-a')\langle u'|u\rangle = 0$

Notación matricial

• Sea Hu=Eu y $\left\{\left|k\right>\right\}$ una base ortonormal. Entonces

$$\begin{split} &\sum_{\ell} H |\ell\rangle \langle \ell | u \rangle = E |u\rangle \\ &\sum_{\ell} \langle k |H| \ell\rangle \langle \ell |u \rangle = E \langle k |u \rangle \\ &\sum_{\ell} H_{kl} u_l = E u_k \end{split}$$

Operador de posición I

• Indicamos como \hat{x} el operador posición y como x sus autovalores. Si $f_{x_0}(x)$ es una autofunción de este operador con autovalor x_0 :

$$\hat{x}f_{x_0}(x) = xf_{x_0}(x) = x_0f_{x_0}(x)$$

$$(x - x_0)f_{x_0}(x) = 0$$

Podemos escribir entonces

$$f_{x_0}(x) = \delta(x - x_0)$$

Operador de posición II

• In ket language, we can write the state corresponding to $f_{x_0}\left(x\right)$ as

$$f_{x_0}\left(x\right) \longrightarrow \left|x_0\right>$$

 La ortogonalidad de los autoestados de posición sigue de las propiedades de la función delta:

$$\left\langle x_{0} \middle| x_{1} \right\rangle = \int dx \delta \left(x - x_{0} \right) \delta \left(x - x_{1} \right) = \delta \left(x_{0} - x_{1} \right)$$

Función de onda

Podemos escribir

$$\psi(x_0) = \int dx \psi(x) \delta(x - x_0) = \int dx f_{x_0}^* \psi(x) = \langle x_0 | \psi \rangle$$

- o sea que $\psi \left(x_{_0} \right) = \int dx \delta \left(x - x_{_0} \right) \psi \left(x \right)$ puede escribirse

$$\langle x_0 | \psi \rangle = \int dx \langle x | x_0 \rangle \langle x | \psi \rangle = \int dx \langle x_0 | x \rangle \langle x | \psi \rangle$$

$$\Rightarrow 1 = \int dx |x\rangle\langle x|$$

Momentum operator

• El operador de momentum \hat{p} satisface

$$\hat{p}u_{p} = -i\hbar \frac{du_{p}}{dx} = pu_{p}(x)$$

La solución de esta ecuación se puede escribir

$$u_{p}\left(x\right) = \frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}}$$

De modo que

$$\left\langle p_{\scriptscriptstyle 0} \middle| p_{\scriptscriptstyle 1} \right\rangle = \int dx \, u_{\scriptscriptstyle p_{\scriptscriptstyle 0}}^* \left(x \right) u_{\scriptscriptstyle p_{\scriptscriptstyle 1}} \left(x \right) = \int \frac{dx}{2\pi\hbar} e^{i \left(p_{\scriptscriptstyle 1} - p_{\scriptscriptstyle 0} \right) x/\hbar} \ = \delta \left(p_{\scriptscriptstyle 0} - p_{\scriptscriptstyle 1} \right)$$

Función de onda en momentum space I

Podemos escribir cualquier función

$$\psi(x) = \int_{-\infty}^{\infty} dp \, \phi(p) u_p(x) = \int_{-\infty}^{\infty} \frac{dp}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \phi(p)$$

Esto es una trans. de Fourier, o sea

$$\phi(p) = \int \frac{dx}{\sqrt{2\pi\hbar}} e^{-ipx/\hbar} \psi(x) = \int dx \, u_p^*(x) \psi(x) = \langle p | \psi \rangle$$

Función de onda en momentum space I

- Podemos escribir también $u_p(x) = \langle x | p \rangle$
- Con lo cual $\psi(x) = \int dp \, \phi(p) u_p(x)$ puede escribirse \bar{z}^∞

$$\langle x | \psi \rangle = \int_{-\infty}^{\bar{\infty}} dp \langle p | \psi \rangle \langle x | p \rangle$$

Lo cual implica

$$\Rightarrow 1 = \int dp |p\rangle\langle p|$$

Operadores de proyeccion

- Un operador de proyección satisface
- Entonces $P|p\rangle = p|p\rangle$

$$P^2 \mid p \rangle = P \mid p \rangle = p^2 \mid p \rangle$$
 $p = 0$

 $P^2\Big|p\Big>=P\Big|p\Big>=p^2\Big|p\Big>$ • Lo cual implica $p^2=p$, o sea $\begin{cases} p=0\\ p=1 \end{cases}$

Direct sum

- Supongamos que \mathcal{E}_1 y \mathcal{E}_2 son subespacios de \mathcal{E}_3
- La suma directa de \mathcal{E}_1 y \mathcal{E}_2 se define como

$$\mathcal{E}_{\!\scriptscriptstyle 1} \oplus \mathcal{E}_{\!\scriptscriptstyle 2} = \left\{ \! \left| \psi_{\!\scriptscriptstyle 1} \right\rangle \! + \! \left| \psi_{\!\scriptscriptstyle 2} \right\rangle \text{ such that } \left| \psi_{\!\scriptscriptstyle 1} \right\rangle \! \in \mathcal{E}_{\!\scriptscriptstyle 1}, \! \left| \psi_{\!\scriptscriptstyle 2} \right\rangle \! \in \mathcal{E}_{\!\scriptscriptstyle 2} \right\}$$

Supongamos ahora

$$\mathcal{E} = \mathcal{E}_{1} \oplus \mathcal{E}_{2} \oplus ... \oplus \mathcal{E}_{N}$$

• y que $|nr\rangle$ es una base en el subespacio \mathcal{E}_{n}

Projection operator I

• Definimos el operador de proyección P_n como

$$P_{n} = \sum_{r} |nr\rangle \langle nr|$$

Entonces

$$\langle \psi | P = \sum_{r} \langle \psi | nr \rangle \langle nr | = \sum_{r} \langle nr | \psi \rangle^* \langle nr |$$

$$P | \psi \rangle = \sum_{r} |nr \rangle \langle nr | \psi \rangle = (\langle \psi | P)^{\dagger}$$

De modo que

$$P^{\dagger} = P$$

Projection operator II

• Calculemos P_n^2

$$P_n^2 = \sum_{rr'} |nr\rangle \langle nr| nr'\rangle \langle nr'|$$

$$= \sum_{rr'} \delta_{rr'} |nr\rangle \langle nr'|$$

$$= \sum_{r} |nr\rangle \langle nr| = P_n$$

Autovalores del operador de proyección

• Supongamos
$$P\Big|p\Big>=p\Big|p\Big>$$
• Entonces, como $P^2=P$, $p^2=p\Rightarrow \left\{\begin{array}{l} p=0\\ p=1 \end{array}\right.$