Fisica de Semiconductores



k-p theory (I)

 The one-electron Schroedinger equation for a
solid is
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e We now insert the Bloch solution
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k-p theory (Il)
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k-p hamiltonian

The periodic part of the Block wave function
satisfies a Schrodinger equation of the form

B V> h (T) - (7“) _ h’k’
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subject to the boundary conditions.

U (r) = (r+R)
Notice that k appears as a parameter, and that

we expect discrete energy levels n, as in the
particle-in-a-box.




The k=0 reference

e We can write the hamiltonian as

H =g i HY
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e with HY =

+V(r) (L
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This suggests that we start from eigenstates of
k=0. Then we can diagonalize the entire

hamiltonian in this basis, or treat the k.p part
as a perturbation for small k.



Expansion in terms of the k=0 basis

e Let’s assume that we know the wave functions
and eigenvalues at k =0.

. 0 _
‘n0> = U (r), H' )‘n0> = Eng‘n0>
* Because these are a complete set, then it is
always true that | can expand
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 Thereforé,
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k.p matrix (I)
* Therefore, defining: ¢, = F  — h2k?/2m

Zcm, (k) E ‘ n/0> + Zcm, (k) H, ‘ n'0>
— gnkzcnn’ (k>‘ n/0>

 Multiplying on the left times <n0‘
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k.p matrix (Il)
* Therefore, defining: 1" (k) = <n0‘H(”‘n’0>
* | need to diagonalize the matrix
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Tight binding for k=0




What basis do we need?

 We would like to discuss the near-band gap
bands in semiconductors like Ge, in which
spin-orbit is significant.

* Therefore, it is convenient to use the J2,2,)

basis that diagonalizes the spin-orbit
interaction in the atom.

e We then start with the TB Hamiltonian in this
basis
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J2,L2,) basis for k=0 (1)
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J2,L2,), basis for k=0 (Il)
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J2,L2,), basis for k=0 (llI)
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J2,L2,), basis for k=0 (IV)

e We can calculate a few matrix elements to
prove the above, using
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J2,L2,), basis for k=0 (V)

* For example
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Diagonalization

* |n all cases, we have 2x2 hamiltonians with
identical diagonal elements, so that all
eigenstates are of the form

L), + (),
+(),-=%(),

2
* For the s-states, V<0, and therefore the (+)

combination gives the lowest energy (bonding).

* For the p-states, V, >0, and the (-) combination
gives the lowest energy. But this is also the
bonding combination, if one recalls the direction
of the positive and negative lobes of the p-
orbitals in the A and B atoms!



Redefined s p functions |

 The above suggests that we define
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Redefined s p functions Il
e so that
1 1 1 .
@(%@J@(%»%)B :g(Xb T+, 1)
1 1 1 ' 2
e LU S SN
e etc, etc.

* So that | can write the wave functions using
the same expression for the single-atom wave
functions, except that | add the subscript “a”

Or (lb”




Near band gap functions |

* |n the near-band gap we then have the
following wave functions and energies at k=0,
if we define the O of energy as the highest
occupied state.
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Near band gap functions Il
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k=0 Hamiltonian
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 Therefore, in the near band gap region | get

L
—| &




The matrix element of p (I)

* To go beyond k=0, we need matrix elements
of p between these states.

* |tis quite obvious from the symmetry of the
atomic wavefunctions, that

(]p,|X) = {8]p,|¥) = (5]r.| 2)

 and all other matrix elements should be zero.

p
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The matrix element of p (Il)

e We then have

1
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 The last two terms cancel each other, so

1
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* We then define
(5|2, X,) = {5,

* We will use this ex
k.p hamiltonian.
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Definition of P

* From the above, we only need to include the
matrix elements

(S.|p,|X,)=(S.|p,|¥;)=(5.|p.|7,

Y,)=(S,|p.|Z,)=iP

Y

* We can estimate the values of P from the
empty cell band structure, and we find

P:Z—Wh
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Matrix elements for k=k,

* For only k, different from zero, | only need
p,.-Then | get
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e so that the matrix becomes




k=k, Hamiltonian
* Therefore, in the near band gap region | get
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Perturbation theory
* |n perturbation tweory ‘<
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Electron effective mass

e |f we define the electron effective mass as

hk’
b, (k ) =Lyt —

e we obtain




Light-hole effective mass

* |f we define the light-hole effective mass as

Bk
E,, (k)= E,(k)=-—
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e we obtain
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Split-off hole effective mass

* |f we define the split-off light-hole effective
mass as

hk’
B, (k) =N (k) = A, -
* we obtain
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Heavy-hole effective mass

* |f we define the heavy-hole effective mass as

Bk
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e we obtain
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The bands
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Consequences

From the point of view of k.p theory, band curvature is
mainly due to k.p “repulsion”.

Bands are never perfectly parabolic, only at small k.

Heavy-hole effective mass comes out qualitatively
wrong because one cannot ignore p-antibonding bands
in this case.

Light-hole bands are also affected by p-antibonding
orbitals: band warping.

Because P is more or less constant, effective masses
depend mainly on band gaps: the smaller the gap, the
smaller the effective mass.

Drude model: v = uE, y=et/m, therefore, small band gap
favors high mobility.



Example: Ge

* The matrix element P is predicted to be

2

e
P _ _[_ﬂ —94eV; B, =089¢V; A =0.297 V
m mi\ a
i 1—1
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Adjusting P

* |f we adjust P to reproduce effective masses
2
P> Rr’(or)
DA 1261 eV; E =089eV; A =0.297 eV
m mi\| a )
_ 1-1
2
mo_| 22 1 = 0.037; 0.037 (exp)
m 3’)’)’], EO EO _|_ AO
~1
2
Mo | A 41— 0056 0.044 (exp)
m SmEO
Thn — 1. 0.38 (exp)
m
~1
2
m, _ 2P ~1| =0.16; 0.095 (exp)
m 3m<EO + AO)




