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Electromagne7c	radia7on	
•  Radia7on	in	Coulomb	gauge	

•  The	fields	are	

	
•  Poyn7ng	vector	is	
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Average	power	
•  Time	average	of	Poyn7ng	vector	is	

•  Then	energy	density	is	

•  Therefore:	
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Vector	poten7al	in	second	
quan7za7on	

•  The	above	is	consistent	with	

•  where	λ	indicates	polariza7on.	
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Electron	radia7on	interac7on	

•  We	saw	in	Lección	3:	
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One	photon	term	

•  But	

•  But	in	Coulomb	gauge		
	
	
•  so		
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Second	quan7za7on	form	of	HeR	

•  The	one-electron	hamiltonian	is	then	

•  and	therefore,	the	many	electron	electron	
radia7on	hamiltonian	becomes	(using	κ	for	
radia7on	wave	vectors).	
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Momentum	matrix	element	between	
Bloch	func7ons	(I)	

•  We	want	to	explore	the	matrix	element	
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Momentum	matrix	element	between	
Bloch	func7ons	(II)	

•  We	can	neglect	the	second	integral	due	to	the	
orthogonality	of	different	periodic	parts,	so	
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Back	to	eR	interac7on	(I)	

•  Inser7ng	in	e-R	interac7on	
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Back	to	eR	interac7on	(II)	
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Direct	transi7ons	
•  The	photon	wave	vector	is	

•  Therefore	I	can	set	it	to	zero	without	much	
error:	
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Ĥ

eR

+ =
4πc2

Vn
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 2
e

mc

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

!
2ω

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟λ

∑
1 2

a
ωλ
+ e

ωλ
⋅Pk ,k

′n ,n
c ′n k

†
c

nk
nk , ′n
∑

       
Ĥ
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Valence	and	conduc7on	bands	
•  We	are	interested	in	transi7ons	from	the	filled	
valence	band	to	the	empty	conduc7on	band	
by	absorp7on	of	one	photon.	It	is	convenient	
to	name	the	operators	in	the	valence	band	v+	
and	v,	instead	of		c+	and	c.	We	then	use	c	
instead	of	n’	and	v	instead	of	n.	Then	the	
relevant	operator	is	
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Polarized	light	
•  Assume	that	the	light	is	polarized	in	the	x-
direc7on.	Then	
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The	ground-electronic	state	

•  The	electronic	ground	state	at	zero	
temperature	is	
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Fermi’s	golden	rule	(I)	

•  Transi7on	rate	is	

•  Where	
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The	matrix	element	
•  One	matrix	element	is		
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Transi7on	rate	

•  Therefore,	the	transi7on	rate	is	

•  We	would	like	to	obtain	an	analy7cal	
expression.	Therefore,	we	need	further	
simplifica7on.	
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Near	band	gap	band	structure	



States	involved	

•  The	states	involved	
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Transi7on	rate	
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p-matrix	element	

•  We	want	to	take	the	matrix	element	of	p	out	
of	the	summa7on,	so	we	mayassume	

•  This	means	that	we	can	write	the	matrix	
element	in	terms	of	the	k.p	matrix	elements	
for		k=0		
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k.p	hamiltonian	
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Recipe	for	states	near	k	=0	(I)	

•  First	choose	the	z-axis	in	the	direc7on	of	k.	
•  Then	heavy	hole	bands	are	(approx)	given	by	
the	states	

•  The	light	hole	band	is	

•  The	split-off	band	is	
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Problem	with	matrix	elements	

•  We	would	like	to	use	
	
•  But	we	need	

•  The	heavy	and	light-hole	states	are	described	
with	x,y,z	chosen	with	z	along	k,	making	an	
angle	with	the	x	direc7on	of	the	cubic	crystal.	

•  The	solu7on	is	to	rotate	the	basis	and	then	
average	the	angles.	Cumbersome.	
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A	clever	solu7on	(only	for	cubic	
materials)	

•  Because	the	material	is	cubic	

•  and	

•  must	be	independent	of	the	choice	of	axis	
orienta7on.		

•  Therefore,	I	can	calculate	the	matrix	element	in	
the	basis	that	diagonalizes	the	k.p	interac7on.	
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The	matrix	element	of	P	

•  It	can	be	shown	that	
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Final	form	

•  Therefore	
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Transi7on	rate	(I)	

•  Therefore	
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Transi7on	rate	(II)	

•  Conver7ng	into	an	integral	
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Transi7on	rate	(III)	
•  Conver7ng	into	an	integral	
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Reduced	mass	
•  We	define	the	reduced	masses	
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Transi7on	rate	(IV)	
•  Conver7ng	into	an	integral	
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Doing	the	integrals	
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Final	expression	for	R	(I)	
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Absorp7on	coefficient	I	

•  The	absorp7on	coefficient	is	defined	as	
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Absorp7on	coefficient	II	
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Absorp7on	coefficient	II	
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Absorp7on	coefficient	III	
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Theore7cal	absorp7on	coefficient	
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No7ce	that	α2	is	approximately	linear	in	frequency.	
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Figure 3. The absorption coefficient of a Ge0.98Sn0.02 alloy
computed from the real and imaginary parts of the dielectric function
shown in figure 2. The inset compares the absorption coefficient of
the alloy with bulk Ge near the lowest direct band gap E0.

Figure 4. Responsivity of a Ge0.98Sn0.02 photoconductor device at
wavelengths within the telecom range.

by dividing the photocurrent by the power incident on the
device.

5. Discussion

5.1. Near band gap absorption and photocurrent

The inset in figure 3 compares the absorption coefficient
of the alloy with bulk Ge around E0. We note that the
alloy absorption is one order of magnitude larger in the
spectral region corresponding to the C–L telecom bands [14]:
whereas αGe (1620 nm) = 206 cm−1 and αGe (1550 nm) =
625 cm−1, αGeSn (1620 nm) = 4630 cm−1 and αGeSn

(1550 nm) = 6040 cm−1, suggesting a superior performance
for a GeSn-based detector. Moreover, while in
Ge α(1550 nm)/α(1620 nm) = 3, this ratio is reduced to 1.3
in the case of the GeSn alloy, so that the responsivity should
be more uniform over the spectral range of interest. This is
in very good agreement with the corresponding responsivity
ratio R(1550 nm)/R(1620 nm) = 1.4 obtained from figure 4.
The good correlation between photocurrent and ellipsometric
measurements suggests that localization effects in the near
band gap states are not significant at room temperature.

Figure 5. Experimental imaginary part of the dielectric function for
a bulk Ge sample (squares) and a GeSn film on Si (circles). The
doted lines represent best fits with εf , which ignores excitonic
effects. The solid lines are fits with the full expression in equation
(1), including the excitonic contribution. In both cases, the only
adjustable parameters are the direct band gap E0, a Lorentzian
lifetime broadening parameter, and—in the case of the alloy—an
additional Gaussian broadening to simulate alloy effects. For the Ge
reference, we obtain E0 = 0.807 eV and a Lorentzian broadening
(FWHM) of 8 meV. For the GeSn, we keep the Lorentzian
broadening fixed at 8 meV and find E0 = 0.725 eV and a Gaussian
broadening (FWHM) of 70 meV.

The absorption coefficient of the alloy in figure 3 is not
simply given by a rigid shift of the Ge absorption coefficient
but appears to be enhanced relative to Ge. To understand
this enhancement, we must re-examine the theory of near
band gap absorption in these materials. The absorption
coefficient of GeSn alloys has been described by some authors
[3, 15] as the sum of two terms, corresponding to the
direct and indirect energy gaps, modulated by an exponential
Urbach tail. The Urbach tail is associated by localized states
(presumably caused by dislocations) whose energy is also
considered an adjustable parameter. This model does not
lend itself to a theoretical comparison of relative absorption
strengths because it contains amplitude factors for the direct
and indirect absorption that are adjusted to the experimental
data. Moreover, since these amplitude factors can be predicted
theoretically, their use as adjustable parameters can lead to
unphysical values. In fact, as we will show below, the use of
theoretically predicted amplitudes allows us to conclude that
excitonic effects, not included in the models of [3] and [15],
play an important role in the near band gap absorption of GeSn
alloys.

We propose here an optical absorption model for GeSn
alloys that includes a single contribution from an excitonic-
enhanced direct edge, suitably broadened to mimic alloy
effects. In figure 5, we show the imaginary part of the
dielectric function in a linear scale. The solid lines are fits
with a theoretical expression given by

ε2(E) = εx(E) + εf (E)S(E) (1)

where εx is the below-band gap excitonic contribution given
by [16]

ε2(E) = 16πP 2e4µ2R

3E2h̄2m2ε0

∞∑
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1
n3

δ(E − En), (2)

where P is the momentum matrix element whose value
is given below in equation (A.2), e and m are the free
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FIG. 5. Calculated square of the imaginary part of the dielectric
function at 300 K near the E0 gap of Ge using experimental values for
the broadening parameter. The E0 value in the simulation is indicated
by the vertical dashed line. The dashed-dotted line corresponds to
the free-electron-hole pair expression in Eq. (1). It deviates from a
straight line due to the E2 factor in the denominator. The solid line
shows a calculation of ε2

2 that includes excitonic effects following
Eq. (2). This curve does show a region that can be approximated as
a straight line, but the usual extrapolation to ε2 = 0 gives a band-gap
value smaller than the actual E0.

experimental data without any additional amplitude parameter.
The high-energy deviations between the calculated and the
observed dielectric function are expected since the assumed
isotropic parabolic dispersion ceases to be a good approxi-
mation about 50 meV above the E0 gap. The values of E0
obtained by our method are shown as black squares in Fig. 6.

The most common approach for extracting band-gap ener-
gies from ellipsometric data, as indicated above, is to enhance
the critical point singularities by computing derivatives of the
dielectric function. To use this method, we fit the numerical
second derivatives of the real and imaginary parts of the
dielectric function with an expression of the form [13]

d2ε

dE2
= Aei"

(E − E0 + i#)3/2 . (3)

with A, ", #, and E0 as adjustable parameters. Equation (3)
corresponds to free-electron-hole pairs, except that the phase
angle " is taken as an adjustable parameter to mimic excitonic
effects. An additional, more subtle reason for the need of an
adjustable phase factor is the fact that the addition of −i# to
the energy gap is not a fully consistent way to treat broadening,
as pointed out by Kim et al. (Ref. [37]). The convolution of the
calculated dielectric function with a broadening function—as
applied to the analysis of the data in Fig. 3—is not fully
consistent either. However, whereas the precise form in which
broadening is introduced is relatively unimportant in fits of
ε2, it becomes critical for its second derivative d2ε/dE

2, and
therefore the parameter " corrects, in a phenomenological
way, for some of the line-shape deviations caused by an
approximate treatment of broadening. Theoretical expressions

FIG. 6. Compositional dependence of the E0 transition energy in
Ge1−xSix alloys (circles and squares). Panel (a) combines the data
with previous measurements of this transition by KPC (Ref. [12]).
The solid line is a fit of the data using ESi

0 = 4.093 eV, which yields
bGeSi

0 = 0.22(2) and EGe
0 = 0.803(2) eV. Panel (b) shows a detail of

the x ! 0.05 range. A fit restricted to this range gives bGeSi
0 = 0.08 eV

and is shown as a dashed line. Typical experimental error bars are
about 2 meV, roughly the marker size.

that treat broadening rigorously have been given by Kim et al.
(Ref. [37]), but the results do not lead to analytical forms that
can be easily used to fit experimental data.

Since our samples present some residual amounts of strain,
ranging from −0.07% (compressive) to 0.2% (tensile), fits
with the oscillator in Eq. (3) do not give the value of E0
corresponding to relaxed alloys. To correct for this deficiency,
the data should in principle be fit with two such oscillators,
one for the light-hole transition and one for the heavy-hole
transition, shifted from E0 following deformation potential
theory. An alternative approach, which we have utilized to
minimize the number of initial fit parameters, is to fit the data
with the single oscillator represented by Eq. (3) and then adjust
the resulting fit line shape with two oscillators, separated by
a fixed energy (ranging from −4 to 14 meV for the above
values of strain) given by deformation potential theory. In
this second fit, only E0 and the value of # are allowed to be
further adjusted. The phase angle is kept unchanged, and the
amplitudes Alh, Ahh for the light- and heavy-hole transitions

are simply taken – in the spirit of Eq. (1) – as Alh = A( µ
3/2
lh

µ
3/2
lh +µ

3/2
hh

)

and Ahh = A( µ
3/2
hh

µ
3/2
lh +µ

3/2
hh

), where A is the amplitude from the
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