Física de Semiconductores

Lección 11

Electromagnetic radiation

- Radiation in Coulomb gauge

$$
\boldsymbol{A}=\frac{1}{2} \boldsymbol{A}_{0}\left[e^{i\left(k r-\omega_{k} t\right)}+e^{-i\left(k r-\omega_{k} t\right)}\right]
$$

- The fields are

$$
\begin{aligned}
& \boldsymbol{E}=-\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}=\frac{i \omega_{k}}{2 c} \boldsymbol{A}_{0}\left[e^{i\left(\boldsymbol{k} \cdot \boldsymbol{-} \omega_{k} t\right)}-e^{-i\left(k \cdot r-\omega_{k} t\right)}\right] \\
& \boldsymbol{B}=\nabla \times \boldsymbol{A}=i \frac{\boldsymbol{k} \times \boldsymbol{A}_{0}}{2}\left[e^{i\left(k \cdot r-\omega_{k} t\right)}-e^{-i\left(k \boldsymbol{k}-\omega_{k} t\right)}\right]
\end{aligned}
$$

- Poynting vector is

$$
\begin{aligned}
\boldsymbol{S} & =\frac{c}{4 \pi}(\boldsymbol{E} \times \boldsymbol{B})=\frac{c}{4 \pi} \frac{i \omega_{k}}{2 c} \frac{i}{2}\left(\boldsymbol{A}_{0} \times \boldsymbol{k} \times \boldsymbol{A}_{0}\right)\left[e^{2 i\left(\boldsymbol{k} \cdot \boldsymbol{r}-\omega_{k} t\right)}-e^{-2 i\left(k \cdot r-\omega_{k} t\right)}-2\right] \\
& =\frac{\omega_{k}}{16 \pi}\left(\boldsymbol{A}_{0} \times \boldsymbol{k} \times \boldsymbol{A}_{0}\right)\left[2+e^{-2 i\left(\boldsymbol{k} \cdot \boldsymbol{r}-\omega_{k} t\right)}-e^{2 i\left(\boldsymbol{k} \cdot \boldsymbol{r}-\omega_{k} t\right)}\right]
\end{aligned}
$$

Average power

- Time average of Poynting vector is

$$
\boldsymbol{S}_{\mathrm{av}}=\frac{\omega}{8 \pi}\left(\boldsymbol{A}_{0} \times \boldsymbol{k} \times \boldsymbol{A}_{0}\right)
$$

- Then energy density is

$$
\frac{\left|\boldsymbol{S}_{\mathrm{av}}\right| n}{c}=\frac{n \omega_{k} k A_{0}^{2}}{8 \pi c}=\frac{n^{2} \omega_{k}^{2} A_{0}^{2}}{8 \pi c^{2}}=\frac{\hbar \omega_{k} n_{\omega}}{V}
$$

- Therefore:

$$
A_{0}^{2}=\frac{8 \pi c^{2}}{n^{2} \omega_{k}^{2}} \frac{\hbar \omega_{q} n_{\omega}}{V}=4\left(\frac{4 \pi c^{2}}{n^{2} V}\right)\left(\frac{\hbar}{2 \omega_{k}}\right) n_{\omega}
$$

Vector potential in second quantization

- The above is consistent with

$$
\boldsymbol{A}=\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2} \sum_{k \lambda}\left(\frac{\hbar}{2 \omega_{k}}\right)^{1 / 2} \mathbf{e}_{\boldsymbol{k} \lambda}\left[a_{\boldsymbol{k} \lambda} e^{i \boldsymbol{k} \cdot \boldsymbol{r}}+a_{\boldsymbol{k} \lambda}^{+} e^{-i \boldsymbol{k} \cdot \boldsymbol{r}}\right]
$$

- where λ indicates polarization.

Electron radiation interaction

- We saw in Lección 3:

$$
\begin{aligned}
& H=\frac{1}{2 m}\left[\boldsymbol{p}+\frac{e}{c} \boldsymbol{A}\right]^{2}-e \varphi(\boldsymbol{r}) \\
& H=\frac{1}{2 m}\left[p^{2}+\frac{e}{c}(\boldsymbol{p} \cdot \boldsymbol{A}+\boldsymbol{A} \cdot \boldsymbol{p})+\left(\frac{e}{c}\right)^{2} A^{2}\right]
\end{aligned}
$$

One photon term

$$
H_{e R}=\frac{e}{2 m c}(\boldsymbol{p} \cdot \boldsymbol{A}+\boldsymbol{A} \cdot \boldsymbol{p})
$$

- But

$$
(\boldsymbol{p} \cdot \boldsymbol{A}+\boldsymbol{A} \cdot \boldsymbol{p}) \psi=(2 \boldsymbol{A} \cdot \boldsymbol{p} \psi-i \hbar \psi \nabla \cdot \boldsymbol{A})
$$

- But in Coulomb gauge

$$
\nabla \cdot \boldsymbol{A}=0
$$

- so

$$
H_{e R}=\frac{e}{m c} \boldsymbol{A} \cdot \boldsymbol{p}
$$

Second quantization form of H_{eR}

- The one-electron hamiltonian is then

$$
H_{e R}=\frac{e}{m c} \boldsymbol{A} \cdot \boldsymbol{p}=\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{k \lambda}\left(\frac{\hbar}{2 \omega_{k}}\right)^{1 / 2} \mathbf{e}_{k \lambda} \cdot \boldsymbol{p}\left[a_{k \lambda} e^{i k r}+a_{k \lambda}^{+} e^{-i k r}\right]
$$

- and therefore, the many electron electron radiation hamiltonian becomes (using к for radiation wave vectors).
$\hat{H}_{e R}=\sum_{n k, n^{\prime} k^{\prime}}\langle\boldsymbol{k}| H_{e R}\left|n^{\prime} \boldsymbol{k}^{\prime}\right\rangle c_{n k}^{\dagger} c_{n k^{\prime} k^{\prime}}$
$=\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{n k, n^{\prime} k^{\prime}}\langle n \boldsymbol{k}| \sum_{k \lambda}\left(\frac{\hbar}{2 \omega_{\kappa}}\right)^{1 / 2}\left[a_{\kappa \lambda} \lambda^{i k \cdot r}+a_{\kappa \lambda \lambda}^{+} e^{-i k \cdot r}\right] \mathbf{e}_{\kappa \lambda} \cdot \boldsymbol{p}\left|n^{\prime} \boldsymbol{k}^{\prime}\right\rangle c_{n k}^{\dagger} c_{\left.n^{\prime}\right\rangle}$

Momentum matrix element between Bloch functions (I)

- We want to explore the matrix element

$$
\begin{aligned}
& \langle n \boldsymbol{k}| e^{i \boldsymbol{k} \cdot \boldsymbol{r}} \boldsymbol{p}\left|n^{\prime} \boldsymbol{k}^{\prime}\right\rangle=\int d \boldsymbol{r} \psi_{n k}^{*}(\boldsymbol{r}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}} \boldsymbol{p} \psi_{n^{\prime} k^{\prime}}(\boldsymbol{r})= \\
& =\int d \boldsymbol{r} e^{-i \boldsymbol{k} \cdot \boldsymbol{r}} u_{n k}^{*}(\boldsymbol{r}) e^{i k \cdot r} \boldsymbol{p} e^{i k^{\prime} \cdot \boldsymbol{r}} u_{n^{\prime} \boldsymbol{k}^{\prime}}(\boldsymbol{r}) \\
& =\int d \boldsymbol{r} e^{i\left(k^{\prime}-\boldsymbol{k}+\kappa\right) \cdot \boldsymbol{r}} u_{n k}^{*}(\boldsymbol{r}) \boldsymbol{p} u_{n^{\prime} k^{\prime}}(\boldsymbol{r})+\hbar \boldsymbol{k}^{\prime} \int d \boldsymbol{r} e^{i\left(k^{\prime}-k+\kappa\right) \cdot \boldsymbol{r}} u_{n k}^{*}(\boldsymbol{r}) u_{n^{\prime} k^{\prime}}(\boldsymbol{r}) \\
& =\sum_{\boldsymbol{R}} e^{i\left(k^{\prime}-k+\kappa\right) \cdot \boldsymbol{R}} \int_{\text {cell }} d \boldsymbol{r} e^{i\left(k^{\prime}-\boldsymbol{k}+\kappa\right) \cdot \boldsymbol{r}} u_{n k}^{*}(\boldsymbol{r}+\boldsymbol{R}) \boldsymbol{p} u_{n^{\prime} \boldsymbol{k}^{\prime}}(\boldsymbol{r}+\boldsymbol{R}) \\
& +\hbar \boldsymbol{k}^{\prime} \sum_{\boldsymbol{R}} e^{i\left(k^{\prime}-\boldsymbol{k}+\kappa\right) \cdot \boldsymbol{R}} \int_{\text {cell }} d \boldsymbol{r} e^{i\left(k^{\prime}-\boldsymbol{k}+\boldsymbol{\kappa}\right) \cdot \boldsymbol{r}} u_{n k}^{*}(\boldsymbol{r}+\boldsymbol{R}) u_{n^{\prime} \boldsymbol{k}^{\prime}}(\boldsymbol{r}+\boldsymbol{R}) \\
& =N \delta_{\boldsymbol{k}, \boldsymbol{k}^{\prime}+\kappa} \int_{\text {cell }} d \boldsymbol{r} u_{n k^{\prime}+\kappa}^{*}(\boldsymbol{r}) \boldsymbol{p} u_{n^{\prime} k^{\prime}}(\boldsymbol{r})+\hbar \boldsymbol{k}^{\prime} N \delta_{\boldsymbol{k}, \boldsymbol{k}^{\prime}+\kappa} \int_{\text {cell }} d \boldsymbol{r} u_{n \boldsymbol{k}^{\prime}+\kappa}^{*}(\boldsymbol{r}) u_{n^{\prime} k^{\prime}}(\boldsymbol{r})
\end{aligned}
$$

Momentum matrix element between Bloch functions (II)

- We can neglect the second integral due to the orthogonality of different periodic parts, so

$$
\begin{aligned}
\langle n \boldsymbol{k}| e^{i \boldsymbol{\kappa} \cdot \boldsymbol{r}} \boldsymbol{p}\left|n^{\prime} \boldsymbol{k}^{\prime}\right\rangle & =N \delta_{\boldsymbol{k}, \boldsymbol{k}^{\prime}+\boldsymbol{\kappa}} \int_{\text {cell }} d \boldsymbol{r} u_{n \boldsymbol{k}^{\prime}+\kappa}^{*}(\boldsymbol{r}) \boldsymbol{p} u_{n^{\prime} \boldsymbol{k}^{\prime}}(\boldsymbol{r}) \\
& =\delta_{\boldsymbol{k}, \boldsymbol{k}^{\prime}+\boldsymbol{\kappa}} \int_{\text {crystal }} d \boldsymbol{r} u_{n \boldsymbol{k}^{\prime}+\boldsymbol{\kappa}}^{*}(\boldsymbol{r}) \boldsymbol{p} u_{n^{\prime} \boldsymbol{k}^{\prime}}(\boldsymbol{r}) \\
& =\delta_{\boldsymbol{k}, \boldsymbol{k}^{\prime}+\boldsymbol{\kappa}} \boldsymbol{P}_{\boldsymbol{k}^{\prime}+\boldsymbol{\kappa}, \boldsymbol{k}^{\prime}}^{n, n^{\prime}}
\end{aligned}
$$

Back to eR interaction (I)

- Inserting in e-R interaction

$$
\begin{aligned}
& \hat{H}_{e R}=\hat{H}_{e R}^{+}+\hat{H}_{e R}^{-} \\
& \hat{H}_{e R}^{-}= \\
& =\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{n k, n, k^{\prime} k^{\prime}} \sum_{\kappa \lambda}\left(\frac{\hbar}{2 \omega_{\kappa}}\right)^{1 / 2} \delta_{k, k^{\prime}+\kappa} a_{\kappa \lambda} \mathbf{e}_{\kappa \lambda} \cdot \boldsymbol{P}_{k^{\prime}+\frac{1}{n}, k^{\prime}} c_{n k}^{\dagger} c_{n k^{\prime}} \\
& =\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right)_{n, n^{\prime} k^{\prime}} \sum_{k \lambda}\left(\frac{\hbar}{2 \omega_{\kappa}}\right)^{1 / 2} a_{k \lambda} \mathbf{e}_{\kappa \lambda} \cdot \boldsymbol{P}_{k^{\prime}+\kappa, k, k^{n}}^{n} c_{n k^{\prime}+\kappa^{\prime}}^{\dagger} c_{n k^{\prime}} \\
& =\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{n k, n^{\prime}} \sum_{\kappa \lambda}\left(\frac{\hbar}{2 \omega_{\kappa}}\right)^{1 / 2} a_{\kappa \lambda} \mathbf{e}_{\kappa \lambda} \cdot \boldsymbol{P}_{k+\kappa, k}^{n^{\prime}, n} k_{n k+\kappa}^{\epsilon^{\dagger}} c_{n k}
\end{aligned}
$$

Back to eR interaction (II)

$$
\begin{aligned}
& \hat{H}_{e R}^{+}= \\
& =\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{n k, n^{\prime} k^{\prime}} \sum_{\kappa \lambda}\left(\frac{\hbar}{2 \omega_{\kappa}}\right)^{1 / 2} \delta_{k, k^{\prime}-\kappa} a_{\kappa \lambda}^{+} \mathbf{e}_{\kappa \lambda} \cdot \boldsymbol{P}_{k^{\prime}+\kappa, k^{\prime}}^{n, n^{\prime}} c_{n k}^{\dagger} c_{n k^{\prime} k^{\prime}} \\
& =\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c} \sum_{n, n^{\prime} k^{\prime}} \sum_{\kappa \lambda}\left(\frac{\hbar}{2 \omega_{\kappa}}\right)^{1 / 2} a_{\kappa \lambda}^{+} \mathbf{e}_{\kappa \lambda} \cdot \boldsymbol{P}_{k^{\prime}-\kappa, k^{\prime}}^{n, n^{\prime}} c_{n k^{\prime}-\kappa}^{\dagger} c_{n^{\prime} k^{\prime}}\right. \\
& =\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right)_{n k, n^{\prime}} \sum_{\kappa \lambda}\left(\frac{\hbar}{2 \omega_{\kappa}}\right)^{1 / 2} a_{\kappa \lambda}^{+} \mathbf{e}_{\kappa \lambda} \cdot \boldsymbol{P}_{k-\kappa, k}^{n^{\prime}, n} c_{n^{\prime} k-\kappa}^{\dagger} c_{n k}
\end{aligned}
$$

Direct transitions

- The photon wave vector is

$$
|\kappa|=\frac{2 \pi}{\lambda} \simeq \frac{2 \pi}{500 \mathrm{~nm}} \ll|k|_{\max } \simeq \frac{2 \pi}{0.5 \mathrm{~nm}}
$$

- Therefore I can set it to zero without much error:

$$
\begin{gathered}
\hat{H}_{e R}^{+}=\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{n k, n^{\prime}} \sum_{\lambda}\left(\frac{\hbar}{2 \omega}\right)^{1 / 2} a_{\omega \lambda}^{+} \mathbf{e}_{\omega \lambda} \cdot \boldsymbol{P}_{k, k}^{n^{\prime}, n} c_{n^{\prime} k}^{\dagger} c_{n k} \\
\hat{H}_{e R}^{-}=\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{n k, n^{\prime}} \sum_{\lambda}\left(\frac{\hbar}{2 \omega}\right)^{1 / 2} a_{\omega \lambda} \mathbf{e}_{\omega \lambda} \cdot \boldsymbol{P}_{k, k}^{n^{\prime}, n} c_{n^{\prime} k}^{\dagger} c_{n k}
\end{gathered}
$$

Valence and conduction bands

- We are interested in transitions from the filled valence band to the empty conduction band by absorption of one photon. It is convenient to name the operators in the valence band v^{+} and v, instead of c^{+}and c. We then use c instead of n ' and v instead of n. Then the relevant operator is

$$
\hat{H}_{e R}^{-}=\left(\frac{4 \pi c^{1}}{V n^{2}}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{c c k} \sum_{\lambda}\left(\frac{\hbar}{2 \omega}\right)^{1 / 2} a_{\omega \lambda} \mathbf{e}_{\omega \lambda} \cdot \boldsymbol{P}_{k, k}^{c, v} c_{k}^{\dagger} v_{k}
$$

Polarized light

- Assume that the light is polarized in the x direction. Then

$$
\hat{H}_{e R}^{-}=\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{\hbar}{2 \omega}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{c v k} a_{\omega}\left(P_{k, k}^{c, v}\right)_{x} c_{k}^{\dagger} v_{k}
$$

The ground-electronic state

- The electronic ground state at zero temperature is

$$
|G\rangle=\left(\prod_{v, k} v_{k}^{\dagger}\right)|0\rangle
$$

Fermi's golden rule (I)

- Transition rate is

$$
R_{i \rightarrow f}=\frac{2 \pi}{\hbar} \sum_{f}\left|H_{\mathrm{int}}\right|^{2} \delta\left(E_{f}-E_{i}\right)
$$

- Where

$$
H_{\mathrm{int}}=H_{e R}^{-}
$$

$$
\begin{aligned}
& |i\rangle=|G\rangle\left|1_{\omega}\right\rangle ; \quad E_{i}=E_{G}+\hbar \omega \\
& |f\rangle=c_{k}^{\dagger} v_{k}|G\rangle\left|0_{\omega}\right\rangle ; \quad E_{f}=E_{G}+E_{c k}-E_{v k}
\end{aligned}
$$

The matrix element

- One matrix element is

$$
\begin{aligned}
& \langle f| H_{e R}^{-}|i\rangle= \\
& =\left\langle 0_{\omega}\right|\langle G| v_{k}^{\dagger} c_{k}\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{\hbar}{2 \omega}\right)^{1 / 2}\left(\frac{e}{m c}\right) \sum_{c^{\prime} k^{\prime}} a_{\omega}\left(P_{k^{\prime}, k^{\prime}}^{c, v}\right)_{x}^{\prime \dagger} c_{k^{\prime} v_{k^{\prime}}^{\prime}}|G\rangle\left|1_{\omega}\right\rangle \\
& =\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{\hbar}{2 \omega}\right)^{1 / 2}\left(\frac{e}{m c}\right)\left\langle 0_{\omega}\right|\langle G| v_{k}^{\dagger} c_{k} a_{\omega}\left(P_{k, k}^{c, v}\right)_{x} c_{k}^{\dagger} v_{k}|G\rangle\left|1_{\omega}\right\rangle \\
& =\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{\hbar}{2 \omega}\right)^{1 / 2}\left(\frac{e}{m c}\right)\left\langle 0_{\omega}\right|\langle G| a_{\omega}\left(P_{k, k}^{c, v}\right)_{x} c_{k} c_{k}^{\dagger} v_{k}^{\dagger} v_{k} v_{k}|G\rangle\left|1_{\omega}\right\rangle \\
& =\left(\frac{4 \pi c^{2}}{V n^{2}}\right)^{1 / 2}\left(\frac{\hbar}{2 \omega}\right)^{1 / 2}\left(\frac{e}{m c}\right)\left(P_{k, k}^{c, v}\right)_{x}
\end{aligned}
$$

Transition rate

- Therefore, the transition rate is

$$
R=\frac{2 \pi}{\hbar}\left(\frac{4 \pi c^{2}}{V n^{2}}\right)\left(\frac{\hbar}{2 \omega}\right)\left(\frac{e}{m c}\right)^{2} \sum_{c v k}\left|\left(P_{k, k}^{c, v}\right)_{x}\right|^{2} \delta\left(E_{c k}-E_{v k}-\hbar \omega\right)
$$

- We would like to obtain an analytical expression. Therefore, we need further simplification.

Near band gap band structure

States involved

- The states involved

$$
\begin{aligned}
& c:\left|S, \pm \frac{1}{2}\right\rangle \\
& h h:\left|\frac{3}{2}, \pm \frac{3}{2}\right\rangle \\
& \text { lh: }\left|\frac{3}{2}, \pm \frac{1}{2}\right\rangle \\
& \text { so }:\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle
\end{aligned}
$$

Transition rate

$$
\begin{aligned}
& R=\frac{2 \pi}{\hbar}\left(\frac{4 \pi c^{2}}{V n^{2}}\right)\left(\frac{\hbar}{2 \omega}\right)\left(\frac{e}{m c}\right)^{2} \times
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sum_{c, s o, k}\left|\left(P_{k, k}^{c, s o}\right)_{x}\right|^{2} \delta\left(E_{c k}-E_{s o k}-\hbar \omega\right)\right)
\end{aligned}
$$

p-matrix element $\left(P_{k, k}^{c, v}\right)_{x}$

- We want to take the matrix element of p out of the summation, so we mayassume

$$
\left(P_{k, k}^{c, v}\right)_{x} \simeq \lim _{|k| \rightarrow 0}\left(P_{k, k}^{c, v}\right)_{x}
$$

- This means that we can write the matrix element in terms of the k.p matrix elements for $\boldsymbol{k}=\mathbf{0}$

k.p hamiltonian

$$
\begin{array}{lcccccccc}
& \left|S_{a} \uparrow\right\rangle & \left|\frac{3}{2},-\frac{3}{2}\right\rangle_{b} & \left|\frac{3}{2}, \frac{1}{2}\right\rangle_{b} & \left|\frac{1}{2}, \frac{1}{2}\right\rangle_{b} & \left|S_{a} \downarrow\right\rangle & \left|\frac{3}{2}, \frac{3}{2}\right\rangle_{b} & \left|\frac{3}{2},-\frac{1}{2}\right\rangle_{b} & \left|\frac{1}{2},-\frac{1}{2}\right\rangle_{b} \\
\left|S_{a} \uparrow\right\rangle & E_{0} & 0 & \frac{i \hbar P k_{z}}{m} \sqrt{\frac{2}{3}} & \frac{i \hbar P k_{z}}{m} \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 \\
\left|\frac{3}{2},-\frac{3}{2}\right\rangle_{b} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\left|\frac{3}{2}, \frac{1}{2}\right\rangle_{b} & -\frac{i \hbar P k_{z}}{m} \sqrt{\frac{2}{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\left|\frac{1}{2}, \frac{1}{2}\right\rangle_{b} & \frac{i \hbar P k_{z}}{m} \frac{1}{\sqrt{3}} & 0 & 0 & -\Delta_{0} & 0 & 0 & 0 & 0 \\
\left|S_{a} \downarrow\right\rangle & 0 & 0 & 0 & 0 & E_{0} & 0 & \frac{i \hbar P k_{z}}{m} \sqrt{\frac{2}{3}} & \frac{i \hbar P k_{z}}{m} \frac{1}{\sqrt{3}} \\
\left|\frac{3}{2}, \frac{3}{2}\right\rangle_{b} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\left|\frac{3}{2},-\frac{1}{2}\right\rangle_{b} & 0 & 0 & 0 & 0 & -\frac{i \hbar P k_{z}}{m} \sqrt{\frac{2}{3}} & 0 & 0 & 0 \\
\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{b} & 0 & 0 & 0 & 0 & -\frac{i \hbar P k_{z}}{m} \frac{1}{\sqrt{3}} & 0 & 0 & -\Delta_{0}
\end{array}
$$

Recipe for states near $k=0$ (I)

- First choose the z-axis in the direction of \boldsymbol{k}.
- Then heavy hole bands are (approx) given by the states

$$
\left|\frac{3}{2}, \frac{3}{2}\right\rangle_{b}=\frac{1}{\sqrt{2}} X_{b} \uparrow+\frac{i}{\sqrt{2}} Y_{b} \uparrow ; \quad\left|\frac{3}{2},-\frac{3}{2}\right\rangle_{b}=\frac{1}{\sqrt{2}} X_{b} \downarrow-\frac{i}{\sqrt{2}} Y_{b} \downarrow
$$

- The light hole band is

$$
\left|\frac{3}{2},-\frac{1}{2}\right\rangle_{b}=\frac{1}{\sqrt{6}} X_{b} \uparrow-\frac{i}{\sqrt{6}} Y_{b} \uparrow+\sqrt{\frac{2}{3}} Z_{b} \downarrow ; \quad\left|\frac{3}{2}, \frac{1}{2}\right\rangle_{b}=\frac{1}{\sqrt{6}} X_{b} \downarrow+\frac{i}{\sqrt{6}} Y_{b} \downarrow+\sqrt{\frac{2}{3}} Z_{b} \uparrow
$$

- The split-off band is

$$
\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{b}=-\frac{1}{\sqrt{3}} X_{b} \uparrow+\frac{i}{\sqrt{3}} Y_{b} \uparrow+\frac{1}{\sqrt{3}} Z_{b} \downarrow ; \quad\left|\frac{1}{2}, \frac{1}{2}\right\rangle_{b}=-\frac{1}{\sqrt{3}} X_{b} \downarrow-\frac{i}{\sqrt{3}} Y_{b} \downarrow+\frac{1}{\sqrt{3}} Z_{b} \uparrow
$$

Problem with matrix elements

- We would like to use

$$
\left\langle S_{a}\right| p_{x}\left|X_{b}\right\rangle=\left\langle S_{a}\right| p_{y}\left|Y_{b}\right\rangle=\left\langle S_{a}\right| p_{z}\left|Z_{b}\right\rangle=i P
$$

- But we need

$$
\left(P_{k, k}^{c, v}\right)_{x} \simeq \lim _{|k| \rightarrow 0}\left(P_{k, k}^{c, v}\right)_{x}
$$

- The heavy and light-hole states are described with x, y, z chosen with z along \boldsymbol{k}, making an angle with the x direction of the cubic crystal.
- The solution is to rotate the basis and then average the angles. Cumbersome.

A clever solution (only for cubic materials)

- Because the material is cubic
- and ${ }^{k}\left|\left(P_{k, k}^{c, v}\right)_{x}\right|^{2}=\sum_{k}\left|\left(P_{k, k}^{c, v}\right)_{y}\right|^{2}=\sum_{k}\left|\left(P_{k, k}^{c, v}\right)_{z}\right|^{2}$

$$
\sum_{k}\left(\left|\left(P_{k, k}^{c, v}\right)_{x}\right|^{2}+\left|\left(P_{k, k}^{c, v}\right)_{y}\right|^{2}+\left|\left(P_{k, k}^{c, v}\right)_{z}\right|^{2}\right)
$$

- must bê independent of the choice of axis orientation.
- Therefore, I can calculate the matrix element in the basis that diagonalizes the k.p interaction.

The matrix element of P

- It can be shown that

$$
\begin{aligned}
& \left.\left.\left.\left|\langle S \uparrow| p_{x}^{2}\right| J, J_{z}\right\rangle\left.\right|^{2}+\left|\langle S \uparrow| p_{y}^{2}\right| J, J_{z}\right\rangle\left.\right|^{2}+\left|\langle S \uparrow| p_{z}^{2}\right| J, J_{z}\right\rangle\left.\right|^{2} \\
& \left.\left.\left.+\left|\langle S \uparrow| p_{x}^{2}\right| J,-J_{z}\right\rangle\left.\right|^{2}+\left|\langle S \uparrow| p_{y}^{2}\right| J,-J_{z}\right\rangle\left.\right|^{2}+\left|\langle S \uparrow| p_{z}^{2}\right| J,-J_{z}\right\rangle\left.\right|^{2}=P^{2} \\
& \left.\left.\left.\left|\langle S \downarrow| p_{x}^{2}\right| J, J_{z}\right\rangle\left.\right|^{2}+\left|\langle S \downarrow| p_{y}^{2}\right| J, J_{z}\right\rangle\left.\right|^{2}+\left|\langle S \downarrow| p_{z}^{2}\right| J, J_{z}\right\rangle\left.\right|^{2} \\
& \left.\left.\left.+\left|\langle S \downarrow| p_{x}^{2}\right| J,-J_{z}\right\rangle\left.\right|^{2}+\left|\langle S \downarrow| p_{y}^{2}\right| J,-J_{z}\right\rangle\left.\right|^{2}+\left|\langle S \downarrow| p_{z}^{2}\right| J,-J_{z}\right\rangle\left.\right|^{2}=P^{2}
\end{aligned}
$$

Final form

- Therefore

$$
\begin{aligned}
& \sum_{c, v=h h} \lim _{|k| \rightarrow 0}\left(P_{k, k}^{c, h h}\right)_{x}=\frac{1}{3}\left(P^{2}+P^{2}\right)=\frac{2}{3} P^{2} \\
& \sum_{c, v=l h} \lim _{k \mid \rightarrow 0}\left(P_{k, k}^{c, l h}\right)_{x}=\frac{1}{3}\left(P^{2}+P^{2}\right)=\frac{2}{3} P^{2} \\
& \sum_{c, v=s o} \lim _{k \mid \rightarrow 0}\left(P_{k, k}^{c, l h}\right)_{x}=\frac{1}{3}\left(P^{2}+P^{2}\right)=\frac{2}{3} P^{2}
\end{aligned}
$$

Transition rate (I)

- Therefore

$$
\begin{aligned}
& R=\frac{2 \pi}{\hbar}\left(\frac{4 \pi c^{2}}{V n^{2}}\right)\left(\frac{\hbar}{2 \omega}\right)\left(\frac{e}{m c}\right)^{2}\left(\frac{2 P^{2}}{3}\right) \times \\
& \left(\sum_{k} \delta\left(E_{c k}-E_{h h k}-\hbar \omega\right)\right. \\
& +\sum_{k} \delta\left(E_{c k}-E_{l h k}-\hbar \omega\right) \\
& \left.+\sum_{k} \delta\left(E_{c k}-E_{s o k}-\hbar \omega\right)\right)
\end{aligned}
$$

Transition rate (II)

- Converting into an integral

$$
\begin{aligned}
& R=\left(\frac{V}{8 \pi^{3}}\right) \frac{2 \pi}{\hbar}\left(\frac{4 \pi c^{2}}{V n^{2}}\right)\left(\frac{\hbar}{2 \omega}\right)\left(\frac{e}{m c}\right)^{2}\left(\frac{2 P^{2}}{3}\right) \times \\
& \left(\int d \boldsymbol{k} \delta\left(E_{c k}-E_{h h k}-\hbar \omega\right)\right. \\
& +\int d \boldsymbol{k} \delta\left(E_{c k}-E_{l h k}-\hbar \omega\right) \\
& \left.+\int d \boldsymbol{k} \delta\left(E_{c k}-E_{s o k}-\hbar \omega\right)\right)
\end{aligned}
$$

Transition rate (III)

- Converting into an integral

$$
\begin{aligned}
& R=\left(\frac{V}{8 \pi^{3}}\right) \frac{2 \pi}{\hbar}\left(\frac{4 \pi c^{2}}{V n^{2}}\right)\left(\frac{\hbar}{2 \omega}\right)\left(\frac{e}{m c}\right)^{2}\left(\frac{2 P^{2}}{3}\right) \times \\
& \left(\int d \boldsymbol{k} \delta\left(E_{0}+\frac{\hbar^{2} k^{2}}{2 m_{e}}-\left(0-\frac{\hbar^{2} k^{2}}{2 m_{h h}}\right)-\hbar \omega\right)\right. \\
& +\int d \boldsymbol{k} \delta\left(E_{0}+\frac{\hbar^{2} k^{2}}{2 m_{e}}-\left(0-\frac{\hbar^{2} k^{2}}{2 m_{l h}}\right)-\hbar \omega\right) \\
& \left.+\int d \boldsymbol{k} \delta\left(E_{0}+\frac{\hbar^{2} k^{2}}{2 m_{e}}-\left(-\Delta_{0}-\frac{\hbar^{2} k^{2}}{2 m_{\text {so }}}\right)-\hbar \omega\right)\right)
\end{aligned}
$$

Reduced mass

- We define the reduced masses

$$
\begin{aligned}
& \frac{1}{\mu_{h h}}=\frac{1}{m_{e}}+\frac{1}{m_{h h}} \\
& \frac{1}{\mu_{l h}}=\frac{1}{m_{e}}+\frac{1}{m_{l h}} \\
& \frac{1}{\mu_{s o}}=\frac{1}{m_{e}}+\frac{1}{m_{s o}}
\end{aligned}
$$

Transition rate (IV)

- Converting into an integral

$$
\begin{aligned}
& R=\left(\frac{V}{8 \pi^{3}}\right) \frac{2 \pi}{\hbar}\left(\frac{4 \pi c^{2}}{V n^{2}}\right)\left(\frac{\hbar}{2 \omega}\right)\left(\frac{e}{m c}\right)^{2}\left(\frac{2 P^{2}}{3}\right) \times \\
& \left(\int d \boldsymbol{k} \delta\left(E_{0}+\frac{\hbar^{2} k^{2}}{2 \mu_{h h}}-\hbar \omega\right)\right. \\
& +\int d \boldsymbol{k} \delta\left(E_{0}+\frac{\hbar^{2} k^{2}}{2 \mu_{l h}}-\hbar \omega\right) \\
& \left.+\int d \boldsymbol{k} \delta\left(E_{0}+\Delta_{0}+\frac{\hbar^{2} k^{2}}{2 \mu_{s o}}-\hbar \omega\right)\right)
\end{aligned}
$$

Doing the integrals

$$
\begin{aligned}
& \int d \boldsymbol{k} \delta\left(E_{0}+\frac{\hbar^{2} k^{2}}{2 \mu_{h h}}-\hbar \omega\right)=4 \pi \int d k k^{2} \delta\left(E_{0}+\frac{\hbar^{2} k^{2}}{2 \mu_{h h}}-\hbar \omega\right) \\
& \text { Let } u=\frac{\hbar^{2} k^{2}}{2 \mu_{h h}} \Rightarrow d u=\frac{\hbar^{2} k}{\mu_{h h}} d k \\
& \Rightarrow k^{2} d k=\left(\frac{2 \mu_{h h} u}{\hbar^{2}}\right)^{1 / 2} \frac{\mu_{h h}}{\hbar^{2}} d u=\frac{1}{2}\left(\frac{2 \mu_{h h}}{\hbar^{2}}\right)^{3 / 2} u^{1 / 2} d u \\
& 4 \pi \int d k k^{2} \delta\left(E_{0}+\frac{\hbar^{2} k^{2}}{2 \mu_{h h}}-\hbar \omega\right)=\frac{4 \pi}{2}\left(\frac{2 \mu_{h h}}{\hbar^{2}}\right)^{3 / 2} \int d u u^{1 / 2} \delta\left(E_{0}+u-\hbar \omega\right) \\
& =2 \pi\left(\frac{2 \mu_{h h}}{\hbar^{2}}\right)^{3 / 2}\left(\hbar \omega-E_{0}\right)^{1 / 2}
\end{aligned}
$$

Final expression for R (I)

$$
R=\left(\frac{V}{8 \pi^{3}}\right) \frac{2 \pi}{\hbar}\left(\frac{4 \pi c^{2}}{V n^{2}}\right)\left(\frac{\hbar}{2 \omega}\right)\left(\frac{e}{m c}\right)^{2}\left(\frac{2 P^{2}}{3}\right) \times 2 \pi\left(\frac{2 \mu_{h h}}{\hbar^{2}}\right)^{3 / 2}
$$

$$
\left[\left(\mu_{h h}\right)^{3 / 2}\left(\hbar \omega-E_{0}\right)^{1 / 2}+\left(\mu_{l h}\right)^{3 / 2}\left(\hbar \omega-E_{0}\right)^{1 / 2}+\left(\mu_{s o}\right)^{3 / 2}\left(\hbar \omega-E_{0}-\Delta_{0}\right)^{1 / 2}\right]
$$

$$
=\left(\frac{4 \sqrt{2}}{3}\right)\left(\frac{e^{2} P^{2}}{m^{2} n^{2} \hbar^{3} \omega}\right) \times
$$

$$
\left[\left(\mu_{h h}\right)^{3 / 2}\left(\hbar \omega-E_{0}\right)^{1 / 2}+\left(\mu_{l l}\right)^{3 / 2}\left(\hbar \omega-E_{0}\right)^{1 / 2}+\left(\mu_{s o}\right)^{3 / 2}\left(\hbar \omega-E_{0}-\Delta_{0}\right)^{1 / 2}\right]
$$

Absorption coefficient I

- The absorption coefficient is defined as

$\alpha=\frac{\text { Number of photons absorbed per unit volume per second }}{\text { Number of photons incident per unit area per second }}$

Absorption coefficient II

$\alpha=\frac{\text { Number of photons absorbed per unit volume per second }}{\text { Number of photons incident per unit area per second }}$
$\alpha=\frac{\frac{(-d I) A}{\hbar \omega} \frac{1}{A d x}}{\frac{I}{\hbar \omega}}=-\frac{d I}{I d x} \Rightarrow I=I_{0} \exp (-\alpha x)$

Absorption coefficient II

$\alpha=\frac{\text { Number of photons absorbed per unit volume per second }}{\text { Number of photons incident per unit area per second }}$
$=\frac{\frac{P_{\text {loss }}}{\hbar \omega} \frac{1}{A d x}}{\frac{I_{0}}{\hbar \omega}}=\frac{P_{\text {loss }}}{I_{0}} \frac{1}{A d x}$

Absorption coefficient III

If only one photon is incident

$$
\alpha=\frac{P_{\text {loss }}}{I_{0}} \frac{1}{A d x}=\frac{P_{\text {loss }}}{\frac{\hbar \omega}{A d t}} \frac{1}{A d x}=\frac{P_{\text {loss }}}{\hbar \omega v}=\frac{P_{\text {loss }} n}{\hbar \omega c}=\frac{R \hbar \omega n}{\hbar \omega c}=\frac{R n}{c}
$$

Theoretical absorption coefficient

$$
\begin{aligned}
& \alpha=\left(\frac{4 \sqrt{2}}{3}\right)\left(\frac{e^{2} P^{2}}{m^{2} n c \hbar^{3} \omega}\right) \times \\
& \left\{\left(\left(\mu_{h k}\right)^{3 / 2}+\left(\mu_{h k}\right)^{3 / 2}\right]\left(\hbar \omega-E_{0}\right)^{1 / 2}+\left(\mu_{s o}\right)^{3 / 2}\left(\hbar \omega-E_{0}-\Delta_{0}\right)^{1 / 2}\right\}
\end{aligned}
$$

Notice that α^{2} is approximately linear in frequency.

Comparison with experiment

V. R. D'Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, Semicond. Sci. Technol. 24 (11), 115006 (2009).

The linear plot

C. Xu, J. D. Gallagher, C. L. Senaratne, J. Menéndez, and J. Kouvetakis, Phys. Rev. B 93 (12), 125206 (2016).

