Fisica de Semiconductores



Matrix elements

e Let the states‘ u> be a complete basis for the
guantum states of a particle. Then

I

 Therefore, we can write
V= VE= D) V] )| = 2wV ) (]

* |f the system is in state|u > , what ‘,LL> </L ‘
does is move the particle from state i’ to
state L.




Creation and annihilation

We can say that the particle in state u’ is
annihilated and a particle in state u is created.

To pursue this idea, we define a “vacuum”
state ‘O> that is orthogonal to all states and
normalized so that <O‘ O> =1

Then [ 0) (| =|1)(0]0) ('] = e,
where we have defined the creation and

=0

annihilation operators ¢, = ‘ O> <u

so that v Z<H‘ V‘ Iu/> CLCM'



Criticism
WTF?
Answer: really overkill so far.

Where does the vacuum state come from?
Didn’t we say that the {‘ ,u>} set was
complete?

Answer: Operators actually act on a different
Hilbert space: 0> D - ‘ u> >

This is called a Fock space.



States in Fock space

 We can indicate the states in Fock space as
0)=0,0........0,0)

) = ‘0,0....1M,0V..0,0>

v)=10,0....0 ,1,..0,0)
 But how do we interpret states of the form

1,0 z‘o,o....1u,1y..0,o>



Generalization to 2 particles
e We interpret states of the form
F,u,u>z 0,0....lu,ly..0,0>

e as kets in a extended Fock space of the form

DRSS I3 1)

* These will be useful to describe two-particle
states...




Generalization to N particles

 We interpret states of the form
\oz O,...,mM,O,...ny..O,O>

ASW
e as representing states for [+m+n=N particles in a
generalized Fock space of the form

oo e [l ) e ) ful)o o).

* Note that states with different number of
particles belong to different “terms” in the direct

sum of Hilbert spaces, and therefore are
orthogonal by virtue of the definition of inner

product in a direct sum.




Two- particle hamiltonian
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Two-particle solution

If the ¢’s are eigenfunctions of their respective
one-particle hamiltonians

0\7a)Ep, () + 0, (2) B, (2.) = o, (2,)0, (2,

which means the the product wavefunction is an
eigenstate of the two-particle hamiltonian with
energy:

E=E +E,



Fermions

 The wave function of a system of N electrons
must have the symmetry property

* For 2-particles, \IJ(ZEl,QIQ) =@ (xl)gpy (xz) lacks
this property, but the following is OK:

ou()e,(2.) =4, ()0, (x)

\11(5131,5132): 1
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Slater determinants

* A general antisymmetric function can be written
as a Slater determinant

| el el

W o) el

* To avoid the wave function being zero, all states
1,v should be different.

e |f there are interaction terms, this function is not
an eigenfunction of the entire hamiltonian, but
the true wavefunction is a linear combination of
all possible N-particle Slater determinants.

W =




Orthogonality of Slater determinants (l)

R
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Orthogonality of Slater determinants (lI)
* Then



Orthogonality of Slater determinants (ll)

 Two Slater determinants are orthogonal
unless they contain the same set of one-
electron wave functions.



Occupation number representation for
fermions

* Because of the antisymmetry requirement, we
only need to consider states of the form.

0,0...1 1 ..0,0>
w’ov
e which correspond to a wave function given by
a Slater determinant of the form

U EACYACACY

V2!] () o[z




Possible ambiguity

* There is an ambiguity because
11 ..0,0>
w’ v

AN
Yoo = \/ o . )
(

V(:La) A

1) - 1)
option 2 option 1
p \/2! P (x1> P (CC?) p
* This is just a phase factor exp(imt), which is

irrelevant as long as we apply it consistently.

e could mean

7;

T
—




Eliminate ambiguity
* To avoid errors associated with changing phase

convention in the middle of a calculation, we

eliminate the ambiguity by ordering the states
using an index v; so that

o, () ¢, (z,) ¢, (7)

2

1
01712703714705716707> i ﬁ 90V4 (:Ul) (70,/4 (xQ) SOV4 (:ES)
e, (@) ¢, (@) ¢, ()
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* Therefore, there is one and only one Slater
determinant associated with an occupation

number ket, and it is given by the above
convention.




Generic occupation states
We introduce the notation

0, 1) =[momym )

to represent the many-electron kets.

Remember: all n’s are either 0 or 1, states are
orthogonal if the sum of n’s is different, and
states are orthogonal if the n =1 appear for
different states pu

{nu }> =1

)= ({n)




Operators in Fock space

LY

* Since the‘{ M}> form a complete set in Fock
space:



Creation/annihilation operators

* Similarly to what we did in the one-particle
Fock space, we can define creation and
annihilation operators in the many-particle

Fock space using the Hnu }>states.

* The simplest such operators would change the
occupation number of just one state, for
example

My Myyenes N = 1,...><n1,n2,...,np = 0,...

My Thyyeey T = O,...><n1,n2,...,np =1,...



Creation operators (l)

* |f we want the operator to act on any state by
increasing the occupation of the state p, we
would have to write

c; = Z ‘...,np = 1,...><...,np = O,...‘
{n J{i=p)
 However, it is customary to use a different

convention. This convention greatly facilitates the
calculation of matrix elements, as we will see
later. It is based on assuming that the creation
operator adds the new state to the top row of
the corresponding Slater determinant.



e Therefore, the state ¢
the Slater determinant

* But the state ‘11»12713> cor

all) @(2) o3

£

s

Creation operators (ll)

1) @) o3

U @) a3

IPAPA

36261

O> corresponds to
o) @(2) 8)
AV REACEAC)

all) @(2) (3)

responds to

Therefore

c;[cchO> = —‘11,12,13>






Phase convention

* The phase convention can be written as
follows. Define N, =) ,n.and

=2 ()

j=1

N = 1,...><...,np = 0,...

p

* |[n our example, N, =n+n=1+0=1



Annihilation operator

* The adjoint of the creation operator is

N
c, = Z (—1) SRS (),...><...,np =1,...
{”z}(”‘p)
* Then it is apparent that such operators remove
states, so they are called annihilation operators.

* The definition implies that the annihilation
operator removes a state from the top row of the
Slater determinant, so the state has to be moved
to that position to be ready to be destroyed.




Therefore we define

€y

1,,0,,1,,1,) = (-1)(-1]

Example

1,,0,,1,,0,) =

7737 74

aln) alz)

(=) |= (1)) eul=) eul=)

1,,0,,1,,0,)



Properties of operators |

* |f we apply the creation operator p to a state
with p=1, we have terms of the form

N ,...><...,np :O,...H...,np :1,...>:O

D

e Therefore

* Similarly




Properties of operators |

* |f we apply the creation operator twice, we
have terms of the form

= 1,...><...,np = (),...H...,np = 1,...><...,np = 0,...
* Therefore
c'e! =0
p D
* Similarly
cc =0



Number operator |

* We now consider the operator

{n: }{i=r) {n}(i=p)
o If we apply it to a state |a)=|n.n,...
C;Cp E—




Number operator Il

My Ty T = O,...>

If we apply it to a state

f
p

Because c, acting on a p-empty state gives zero.

Therefore the operator C;Cp gives 1 if the state

is occupied and zero if the state is empty, and
therefore it is called the number operator.

c'le =0
p



Reverse number operator
* Similarly, we can also show that the operatoGCc;
gives 1 if the state p is empty and O if the state
is filled, so that

f
p

ccl=1—n =1—=¢c'c
p p Y
°* Or
{c*,c }ECTC +cc =1
D P p D p D

 where {}is the anticonmutator.



* Consider now |o)=

Creation/annihilation for p#qg

My My M= 0,..., n = 1>




One creation/one annihilation (I1)

e But since for p#qg either p<g or p > g, then the
above implies

C

{c;,cq}:()

* Or, for general p,q

{C;’Cq } — 6pq

"N ™S —+
S



Summary of conmutation relations

tel et =0
L p’ ¢

sc ,c t=20
P q

<c+,c}:(5
p q pq



One-electron operators |

 We now consider any operator that can be
written in coordinateAyepresentation
H=>) Hr)
e and express this in the occupation number

formalism. As indicated before, any operator
must be

® = Z Huu’
{ma o}

()]

; HW’ = <{nu}

Al{n, )



Matrix element # , = <{nu}

A|{n, )

* This is a matrix element between Slater
determinants. To get a sense of what we
should expect before we derive a general
expression, we will consider the simplest case
of 2x2 determinants and calculate the matrix
elements explicitly.



2x2 example

e Let us assume




Matrix elements ()
el
;f dr,dr, o' (), (r,) = 2. (1) 0} () |V (1)

(n)e, ("a)—%(%)%(ﬁ)l}

{fdw (r)V fdwﬁ o
—fdm JV(r fdwﬁ
—[drg) (n)V(n fdw
+fdrgoﬁ fdrgp }

S |



Matrix elements ()

(o] (]

|

l{fdr dr| e, (1), (r) = ¢, (1), (n )|V (r,)

), (”‘z)—%fﬁx(""z)%("l)]}
{fd”% ( fdrgp ( 90



Lesson 1 from matrix elements

* Due to the orthogonality of the one-electron
wave functions, the above matrix elements
are zero unless the two Slater determinants

share one state.

* For the NxN case, this can be generalized by
stating that the Slater determinants in matrix
elements of one-electron operators can differ
by at most one single-particle state.



Slgn of matrix elements
Case a A

(v (r Qfdrﬁa )%, )+
fdrgpﬁ fdrgpﬂ

Casea u

<\Ij‘ fdr% V 90 )
CaseB )\

(v (r ,fdr¢ JV(n)e.(n)
CaseB u

v Qfdrv (n)



General case, Slater-Condon rules

 The Slater-Condon rules state that if | have two
Slater determinants W and @ which differ in one
single state which is ¢ (x) for W andy, ( for @,
then for a single electron operator

(|| @) = (o] H]v)

* provided that the Slater determinants are
arranged for “maximum coincidence”, so that all
identical states occupy the same row in both
determinants. This is exactly what happens in the
cases a=A and B=u in our 2x2 example. But if the
states are not in maximum coincidence, the

matrix element can change sign, as in the cases
o= and B=A.




The matrix element#, = ({n }|#|{n })

* We are now ready to calculate the matrix
element H , For one-electron operators, all
matrix elements are zero except those of the
form

<....np = 1,...,nq = 0,... ] SRS O,...,nq = 1,...>

* However, the corresponding Slater determinants
are not necessarily arranged for maximum
coincidence. For example, | could have 2,5,7 and
2,7,8. The latter would have to be switched to
2,8,7 for maximum coincidence, introducing a
factor of -1.




General expression (I)

 To derive a general expression, we note that
for the above determinants we need to move
the row at position g to position p. The
number of permutations that we need is equal
to the number of occupied states between p

and q: Z” —Z’n

J=p+1

 where the second equallty results from n,=0
for the right-hand state. Notice that using the
earlier definition of N ;:
Np + Npq =N

q



General expression (Il)

* Using the above, we can then write

A

<....np = 1,...,nq =0,...H = 0,...,nq = 1,...>

= (1) (¢, | H]p,)
e 5o that
H= Y (-1 <g0p H‘gp >‘ n o=1..n :O,...><...np =1,...n, =0 |
[n,}=ra
) bUt c;cq: Z (—1)N‘..,np:1 >< np:() ‘
{n}(i=p)




General expression (ll1)

e Finally <np =1,..,n =0,..[H|..n =0,..,n = 1>

_ %q:(— l)Npq(— 1)Np+Nq <gpp H‘ gpq>c;cq

_ Z(_ 1)Np+Npq+Nq <90p
p,q

=3 (=" (e,
p,q

— Z<¢p SOQ>C;CQ

e This shows the utility of the phase factors we
introduced in the definition of the ¢’s. They exactly
compensate the phase factors from the Slater

determinants, making it very easy to compute matrix
elements between any two Slater determinants.

H‘ gpq>c;cq

H

g0q>CTC

H




Double check ()

* Now let’s double check. We have

1| e(n) en)

V2| o, (r

o

|
ol -
jS

* Therefore
<\IJ‘H <O C4C, < ‘H‘gpb>cccTcT O>
e Thisis zero if azA a#u,Bat)\ B#uU. Otherwise

\//\



Case a=A

<\IJ‘IEI‘CI>>:<O cﬁgb:@pa H gpb>cch c c >
- e, Sl -l 1o
PP 5 S LNERD
[ 18) = (O] el 1) = (e et o
=2 {e|H]e.)
o IfBzp "’
(v ]2} = (0fe, 3 (e [#]e,)clec) 0) = (0], 2o {e,  H]e, )ei|)
:<¢6‘H 90u>




Case a=[
(o] ) =~{ole, (| ] el

e,
=~ {0le, e )elect (1 o
.« IfB=A =—(0 %Z<% H|,)cle,c}|0)
<‘P\ﬁ\@>=—<0\§;<¢\HWC%%M 012 (e, H] el 0)

CTCCCC >

o) = (o, e e el o) = ~(ole, e i el

<¢6‘H‘¢A2\
* So we do get the correct sign!

(v




Change of basis
‘,u>:cl‘0> Choose another basis: /j>:c;‘0>
| 0)=m)=22(a|m)] A) = > (| n)e} 0)

which means

=
=

o= () ¢ =2 (nl
fi p

C,LL :Z<,LL ’[l>cﬂ; Cﬁ :Z<’u ’&>CM
fi p

Strictly speaking, we cannot conclude that the operators are the same because
they give the same result acting on the vacuum state (we should get the same
result when they act on any state). But we can easily see that the equality holds
give the structure of the Fock space. Alternatively, one can derive transformation
rules of Slater determinants and show that they are compatible.



One-electron operators |

 We can use a change of basis to rederive our
expression for the one-electron operator.

e Consider one-electron wave functions that
diagonalize H, so that

H(r)e,(r) = Ep,(r)
* Form a NxN Slater determinants with such
functions, then it is very easy to show that




One-electron operators |l
* Now let’s switch to the occ. number rep.

neony n. ... > ne nyn ..... >

* and consider the operator

N N

-’- L N

ZE)\Z.CAZ.C)\Z. o ZEAZ.nAZ.

i=1 1=1
* then

ZEn N nAQ,nA, ..... > Z n n n .....

e

<@\ZE i,

n. ’TLAQ,’I”L)\ ernns > = 5‘1’7‘1’ZE%



One electron operators (lll)
 Therefore

0= ZN:EAZ-CLC% = i<>‘@-‘v‘)‘z‘>clc%

Suppose now that we switch to another base

cT = §;<”j >‘i>clj; “ :Z<>\i 'uj>6“j
J
>\¢>CZ.Z<>‘z
J j/

ngmpW@mmZ@

=5, Sl ) )

But we have show ear ier, for a diagonal operator

H =2 QNN =2 N

;) C




One electron operators (V)

* So X
V=3[V )

C C
'u]>MM
b

* Notice that the equation < > ZE |
would also be valid for symmetric |
wavefunctions, so the derivation here
suggests that the one-electron operator
expression is valid for bosons and fermions.

v




Tight binding hamiltonian ()

The atomic wave functions are %,R (”‘)

Therefore, the hamiltonian in second
guantization is
H =3 (R | R )yt

Now define e

k- R—I—d

h Ze
The inverse is
—1k- R+d

=



Tight binding hamiltonian (ll)

. Therefore

anjk ok Z<a]R‘H‘ ! -/ /> k(R+dj)€ik’.(R’+dj,)

a]R
Dleﬁne R = R+ S . Then kd k(5+d) PR
H = 7 3l 3 (iR | R+ 8)e
Kk a]R

. Because of tFahslational symmetry

chk 2K <a]0‘]—[‘ > —ik-d, zk: S+d_,)zei(k,_k).R

]S

=Sl e5)e T = et (9

k ]
a''S



Tight binding hamiltonian (l1)
* |f we now diagonalize the matrix H ,, oy (k) we

will find eigenstates ‘nk>
* We then define
¢l = Z<nk‘ajk>cjzk; c. = Z<ajk‘nk>cnk

ajk agk
n

e and the hamiltonian becomes

H = Yyrcjk Jk a’y, J<k):

= xy:y:xcnkcnk <nk‘ ajk>H .(k)<a,’j’k‘ n’k>
E nn a dy

— ;;Cikcn/k <7’Lk‘ H‘ n/k> ZZC kc kg k(5 ! ;gnkcikcnk




