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Matrix	elements	

•  Let	the	states								be	a		complete	basis	for	the	
quantum	states	of	a	par<cle.	Then	

•  Therefore,	we	can	write	

•  If	the	system	is	in	state								,	what															
does	is	move	the	par<cle	from	state	μ’	to	
state	μ.	

    
V = IVI = µ µ V ′µ ′µ

µ, ′µ
∑ = µ V ′µ µ ′µ

µ, ′µ
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 µ

   
I = µ µ

µ
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  µ
′µ

  
′µ



Crea<on	and	annihila<on	
•  We	can	say	that	the	par<cle	in	state	μ’	is	
annihilated	and	a	par<cle	in	state	μ	is	created.	

•  To	pursue	this	idea,	we	define	a	“vacuum”	
state							that	is	orthogonal	to	all	states	and	
normalized	so	that	

•  Then	
•  where	we	have	defined	the	crea<on	and	
annihila<on	operators																																								
so	that		

  
0 0 = 1

    µ
′µ = µ 0 0 ′µ = c

µ
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    cµ
= 0 µ ; c

µ
† = µ 0

    
V = µ V ′µ c

µ
†c ′µ

µ, ′n
∑



Cri<cism	
•  WTF?	
•  Answer:	really	overkill	so	far.	
•  Where	does	the	vacuum	state	come	from?	
Didn’t	we	say	that	the													set	was	
complete?	

•  Answer:	Operators	actually	act	on	a	different	
Hilbert	space:	

•  This	is	called	a	Fock	space.	

  
µ{ }

   
0 ⊕ µ{ }



States	in	Fock	space	

•  We	can	indicate	the	states	in	Fock	space	as	

•  But	how	do	we	interpret	states	of	the	form		
   

0 ≡ 0,0........0,0

µ ≡ 0,0....1
µ
,0
ν
..0,0

ν ≡ 0,0....0
µ
,1
ν
..0,0

   
µ,ν ≡ 0,0....1

µ
,1
ν
..0,0



Generaliza<on	to	2	par<cles	

•  We	interpret	states	of	the	form	

•  as	kets	in	a	extended	Fock	space	of	the	form	

•  These	will	be	useful	to	describe	two-par<cle	
states…		

   
0 ⊕ µ{ }⊕ µ{ }⊗ ν{ }

   
µ,ν ≡ 0,0....1

µ
,1
ν
..0,0



Generaliza<on	to	N	par<cles	

•  We	interpret	states	of	the	form	

•  as	represen<ng	states	for	l+m+n=N	par<cles	in	a	
generalized	Fock	space	of	the	form	

•  Note	that	states	with	different	number	of	
par<cles	belong	to	different	“terms”	in	the	direct	
sum	of	Hilbert	spaces,	and	therefore	are	
orthogonal	by	virtue	of	the	defini<on	of	inner	
product	in	a	direct	sum.			

   
0,l
λ
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µ
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ν
..0,0

   
0 ⊕ λ{ }⊕ λ{ }⊗ µ{ }⊕ λ{ }⊗ µ{ }⊗ ν{ }.....



Two-par<cle	hamiltonian	
•  Nota<on	

•  Propose	
•  Insert:	
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Two-par<cle	solu<on	

If	the	φ’s	are	eigenfunc<ons	of	their	respec<ve	
one-par<cle	hamiltonians	
	
	
which	means	the	the	product	wavefunc<on	is	an	
eigenstate	of	the	two-par<cle	hamiltonian	with	
energy:	
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Fermions	

•  The	wave	func<on	of	a	system	of		N	electrons	
must	have	the	symmetry	property	

•  For	2-par<cles,																																														lacks	
this	property,	but	the	following	is	OK:		
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Slater	determinants	
•  A	general	an<symmetric	func<on	can	be	wri^en	
as	a	Slater	determinant	

•  To	avoid	the	wave	func<on	being	zero,	all	states	
μ,ν	should	be	different.	

•  If	there	are	interac<on	terms,	this	func<on	is	not	
an	eigenfunc<on	of	the	en<re	hamiltonian,	but	
the	true	wavefunc<on	is	a	linear	combina<on	of	
all	possible	N-par<cle	Slater	determinants.		
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Orthogonality	of	Slater	determinants	(I)	

•  If	

	
•  and		
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Orthogonality	of	Slater	determinants	(II)	
•  Then	
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Orthogonality	of	Slater	determinants	(III)	

•  Two	Slater	determinants	are	orthogonal	
unless	they	contain	the	same	set	of	one-
electron	wave	func<ons.	



Occupa<on	number	representa<on	for	
fermions	

•  Because	of	the	an<symmetry	requirement,	we	
only	need	to	consider	states	of	the	form.	

	
•  which	correspond	to	a	wave	func<on	given	by		
a	Slater	determinant	of	the	form	

  
0,0....1

µ
,1
ν
..0,0

    

Ψ =
1

2!

ϕ
µ

x
1( ) ϕµ

x
2( )

ϕ
ν

x
1( ) ϕν x

2( )



Possible	ambiguity	
•  There	is	an	ambiguity	because		
	
•  could	mean	

•  or	

•  This	is	just	a	phase	factor	exp(iπ),	which	is	
irrelevant	as	long	as	we	apply	it	consistently.	
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Eliminate	ambiguity		
•  To	avoid	errors	associated	with	changing	phase	
conven<on	in	the	middle	of	a	calcula<on,	we	
eliminate	the	ambiguity	by	ordering	the	states	
using	an	index	νj		so	that	

•  Therefore,	there	is	one	and	only	one	Slater	
determinant	associated	with	an	occupa<on	
number	ket,	and	it	is	given	by	the	above	
conven<on.		
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Generic	occupa<on	states	
•  We	introduce	the	nota<on	

•  to	represent	the	many-electron	kets.	
•  Remember:	all	n’s	are	either	0	or	1,	states	are	
orthogonal	if	the	sum	of	n’s	is	different,	and	
states	are	orthogonal	if	the	n	=1	appear	for	
different	states	μ			

    
n

µ{ } ≡ n
1
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2
,n
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n
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µ{ } = 1



Operators	in	Fock	space	

•  Since	the															form	a	complete	set	in	Fock	
space:	

   
I = n
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∑
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Crea<on/annihila<on	operators	

•  Similarly	to	what	we	did	in	the	one-par<cle	
Fock	space,	we	can	define	crea<on	and	
annihila<on	operators	in	the	many-par<cle	
Fock	space	using	the													states.	

•  The	simplest	such	operators	would	change	the	
occupa<on	number	of	just	one	state,	for	
example			
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Crea<on	operators	(I)	
•  If	we	want	the	operator	to	act	on	any	state	by	
increasing	the	occupa<on	of	the	state	p,	we	
would	have	to	write	

•  However,	it	is	customary	to	use	a	different	
conven<on.	This	conven<on	greatly	facilitates	the	
calcula<on	of	matrix	elements,	as	we	will	see	
later.	It	is	based	on	assuming	that	the	crea<on	
operator	adds	the	new	state	to	the	top	row	of	
the	corresponding	Slater	determinant.	
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Crea<on	operators	(II)	
•  Therefore,	the	state																		corresponds	to	
the	Slater	determinant	

	
•  But	the	state																corresponds	to				
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Example	
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Phase	conven<on	

•  The	phase	conven<on	can	be	wri^en	as	
follows.	Define																					and	

•  In	our	example,		
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Annihila<on	operator	

•  The	adjoint	of	the	crea<on	operator	is	

•  Then	it	is	apparent	that	such	operators	remove	
states,	so	they	are	called	annihila<on	operators.	

•  The	defini<on	implies	that	the	annihila<on	
operator	removes	a	state	from	the	top	row	of	the	
Slater	determinant,	so	the	state	has	to	be	moved	
to	that	posi<on	to	be	ready	to	be	destroyed.			
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Example	
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Proper<es	of	operators	I	

•  If	we	apply	the	crea<on	operator	p	to	a	state	
with	p=1,	we	have	terms	of	the	form	

•  Therefore	

•  Similarly		
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Proper<es	of	operators	II	

•  If	we	apply	the	crea<on	operator	twice,	we	
have	terms	of	the	form	

•  Therefore	

•  Similarly		
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Number	operator	I	

•  We	now	consider	the	operator	

•  If	we	apply	it	to	a	state		
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Number	operator	II	

If	we	apply	it	to	a	state	
	
Because	cp	ac<ng	on	a	p-empty	state	gives	zero.	
Therefore	the	operator													gives	1	if	the	state	
is	occupied	and	zero	if	the	state	is	empty,	and	
therefore	it	is	called	the	number	operator.			
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Reverse	number	operator	

•  Similarly,	we	can	also	show	that	the	operator											
gives	1	if	the	state	p	is	empty	and	0	if	the	state	
is	filled,	so	that	

•  or	

•  where	{	}	is	the	an<conmutator.	
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Crea<on/annihila<on	for	p≠q	
•  Consider	now	

	
•  But	we	have	
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One	crea<on/one	annihila<on	(II)	
•  But	since	for	p≠q	either		p<q	or	p	>	q,	then	the	
above	implies	

•  Or,	for	general	p,q	
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Summary	of	conmuta<on	rela<ons	

    

c
p
† ,c

q
†{ } = 0

c
p
,c

q{ } = 0

c
p
+,c

q{ } = δ
pq



One-electron	operators	I	
•  We	now	consider	any	operator	that	can	be	
wri^en	in	coordinate	representa<on	

	
•  and	express	this	in	the	occupa<on	number	
formalism.	As	indicated	before,	any	operator	
must	be	

•  		
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Matrix	element		

•  This	is	a	matrix	element	between	Slater	
determinants.	To	get	a	sense	of	what	we	
should	expect	before	we	derive	a	general	
expression,	we	will	consider	the	simplest	case	
of	2x2	determinants	and	calculate	the	matrix	
elements	explicitly.	
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2x2	example	
•  Let	us	assume		
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Matrix	elements	(I)	
•  Then	
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Matrix	elements	(I)	
•  And	
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Lesson	1	from	matrix	elements	

•  Due	to	the	orthogonality	of	the	one-electron	
wave	func<ons,	the	above	matrix	elements	
are	zero	unless	the	two	Slater	determinants	
share	one	state.	

•  For	the	NxN	case,	this	can	be	generalized	by	
sta<ng	that	the	Slater	determinants	in	matrix	
elements	of	one-electron	operators	can	differ	
by	at	most	one	single-par<cle	state.		



Sign	of	matrix	elements	
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Case	α=λ	

Case	α=μ	
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General	case,	Slater-Condon	rules	
•  The	Slater-Condon	rules	state	that	if	I	have	two	
Slater	determinants	Ψ	and	Φ	which	differ	in	one	
single	state	which	is											for	Ψ	and										for	Φ,	
then	for	a	single	electron	operator	

•  provided	that	the	Slater	determinants	are	
arranged	for	“maximum	coincidence”,	so	that	all	
iden<cal	states	occupy	the	same	row	in	both	
determinants.	This	is	exactly	what	happens	in	the	
cases	α=λ	and	β=μ	in	our	2x2	example.	But	if	the	
states	are	not	in	maximum	coincidence,	the	
matrix	element	can	change	sign,	as	in	the	cases	
α=μ	and	β=λ.		

   
ϕ
γ

x( )    
ϕ
ν

x( )

    
Ψ Ĥ Φ = γ H ν



The	matrix	element		

•  We	are	now	ready	to	calculate	the	matrix	
element								.	For	one-electron	operators,	all	
matrix	elements	are	zero	except	those	of	the	
form	

•  However,	the	corresponding	Slater	determinants	
are	not	necessarily	arranged	for	maximum	
coincidence.		For	example,	I	could	have	2,5,7	and	
2,7,8.	The	la^er	would	have	to	be	switched	to	
2,8,7	for	maximum	coincidence,	introducing	a	
factor	of	-1.	

   
....n

p
= 1,...,n

q
= 0,... Ĥ ....n

p
= 0,...,n

q
= 1,...

   
H

µ ′µ
≡ n

µ{ } H n ′µ{ }

   Hµ ′µ



General	expression	(I)	
•  To	derive	a	general	expression,	we	note	that	
for	the	above	determinants	we	need	to	move	
the	row	at	posi<on	q	to	posi<on	p.	The	
number	of	permuta<ons	that	we	need	is	equal	
to	the	number	of	occupied	states	between	p	
and	q:	

•  where	the	second	equality	results	from	np=0	
for	the	right-hand	state.	No<ce	that	using	the	
earlier	defini<on	of	Np:	

   
N

pq
= n

j
j=p+1

q−1

∑ = n
j

j=p

q−1

∑

  Np
+ N

pq
= N

q



General	expression	(II)	
•  Using	the	above,	we	can	then	write	

•  so	that	
	
•  but	
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∑
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p
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∑
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∑

= −1( )Np+Nq ...,n
p
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ni{ } i≠p,q( )
∑ ...,n

q
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General	expression	(III)	
•  Finally	

•  This	shows	the	u<lity	of	the	phase	factors	we	
introduced	in	the	defini<on	of	the	c’s.	They	exactly	
compensate	the	phase	factors	from	the	Slater	
determinants,	making	it	very	easy	to	compute	matrix	
elements	between	any	two	Slater	determinants.	
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Double	check	(I)	
•  Now	let’s	double	check.	We	have	

•  Therefore	

•  This	is	zero	if	α≠λ,α≠μ,β≠λ,β≠μ.	Otherwise	
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Case	α=λ		

	
•  If	β=	μ	

•  If	β≠	μ	
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Case	α=μ		

	
•  If	β=	λ	

•  If	β≠	λ	

•  So	we	do	get	the	correct	sign!	
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Change	of	basis	
    µ = c

µ
† 0 Choose	another	basis:	

     
!µ = c !µ

† 0
But	

     
c

µ
† 0 = µ = !µ µ !µ

!µ
∑ = !µ µ c !µ

† 0
!µ
∑

which	means	

     

c
µ
† = !µ µ c !µ

†

!µ
∑ ; c !µ

† = µ !µ
µ
∑ c

µ
† ;

c
µ

= µ !µ c !µ
!µ
∑ ; c !µ = µ !µ c

µ
µ
∑

Strictly	speaking,	we	cannot	conclude	that	the	operators	are	the	same	because	
they	give	the	same	result	ac<ng	on	the	vacuum	state	(we	should	get	the	same	
result	when	they	act	on	any	state).	But	we	can	easily	see	that	the	equality	holds	
give	the	structure	of	the	Fock	space.	Alterna<vely,	one	can	derive	transforma<on	
rules	of	Slater	determinants	and	show	that	they	are	compa<ble.	



One-electron	operators	I	
•  We	can	use	a	change	of	basis	to	rederive	our	
expression	for	the	one-electron	operator.	

•  Consider	one-electron	wave	func<ons	that	
diagonalize	H,	so	that	

•  Form	a	NxN	Slater	determinants	with	such	
func<ons,	then	it	is	very	easy	to	show	that				

    H r( )ϕλ r( ) = E
λ
ϕ
λ

r( )
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Ψ,Φ
E
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i

i=1

N

∑



One-electron	operators	II	
•  Now	let’s	switch	to	the	occ.	number	rep.	
	
•  and	consider	the	operator	

•  then	

•  so	
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One	electron	operators	(III)	
•  Therefore	
	
Suppose	now	that	we	switch	to	another	base	
	
	
	
	
But	we	have	show	earlier,	for	a	diagonal	operator	
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One	electron	operators	(IV)	
•  So	

•  No<ce	that	the	equa<on																														
would	also	be	valid	for	symmetric	
wavefunc<ons,	so	the	deriva<on	here	
suggests	that	the	one-electron	operator	
expression	is	valid	for	bosons	and	fermions.	
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Tight	binding	hamiltonian	(I)	

•  The	atomic	wave	func<ons	are	
•  Therefore,	the	hamiltonian	in	second	
quan<za<on	is	

•  Now	define	

•  The	inverse	is		

     φaj ,R r( )
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Tight	binding	hamiltonian	(II)	
•  Therefore	

•  Define																								.	Then	

•  Because	of	transla<onal	symmetry	
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Tight	binding	hamiltonian	(III)	
•  If	we	now	diagonalize	the	matrix																	we	
will	find	eigenstates			

•  We	then	define	
	
•  and	the	hamiltonian	becomes	
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