Fisica de Semiconductores



Position operator

e Let's write U fdk\l!
* Then
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* where we have integrated by parts. Then the
position operator in momentum
representation is . z’ 0
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Bloch wave expansion

* Let’s suppose that we expand in terms of
Bloch waves instead of plane waves:
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* An operator is then
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* we would likéto find this for the position
operator



Position operator in Bloch wave basis (I)

Th|s means
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Position operator in Bloch wave basis (lIl)
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Berry connection

 We have defined the Berry connection as

— zfdrumk k u ('P)

 We will examine the meaning of this
expression later



Final expression for position opp
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Comparing with
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In many cases V (kz) =0 for m=n . Then we only need
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Explanation for the extra term |

e The Bloch wave function is a solution of

L V(e alr) = Bl
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e Let’s consider

* Then
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* Accordingly, observables cannot depend on
phase




Explanation for the extra term Il

e Suppose that | change the phase of the Bloch
function
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Explanation I

* Then suppose | ignore the A term
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Explanation Il
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This is a problem because all properties should be independent of phase. But



Explanation IV

But let’s see how the Berry connection transforms
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Explanation V
L f dr f dkw’ (k) (r )a¢< )qf (k) (r)
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so that the Berry connection exactly compensates for the phase, and the result for the
average position becomes independent of phase, as it should.



Analogia con el potencial vector

 Hamiltonian of a charge:
.
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The velocity and force operators

* The quantities we are interested in are
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 Hamiltonian of a charge:
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Semiclassical equations

h%:—eE—E(’UXH>

dt c

d’f‘n_lﬁEn(k) dkx-ixA(k)-
d¢ h 0k dt |0k "




* SO

Berry curvature

 We define the Berry curvature as

Q (k)= ;’k x A (k)
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Electric field

* |n the presence of an electric field only
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Current

e The electric current is

i~ o a8

(=) [ o] f (l.c)7 x Q) (k|



Filled band
 For afilled band
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Filled band

e Therefore
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* When is this mtegral zero?



Defining phase differences

* Suppose | have two complex numbers
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Parametric Hamiltonian

* The periodic part of the wave function
satisfies
R°V? R

H(k)unk (r) =€ U, (r)
* Then we can define
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Phase definition

e But since

. Ag" isreal. T

A¢, =—1Im
A¢. =—Im

<nk1 nk2>

nen

:ln <nk1

:ln <nk1

<nk1 nk2>

nk, >

nk, >

+ Im[ln‘<nk1‘nk2>

* This phase difference can be changed

arbitrarily.
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Closed path: Berry phase

* For aclosed path, we define
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Adp
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* This is independent of choice of phase.



Infinitesimal displacement in k
* Consider two states very close in k
<nk nk + dk>
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e Therefore
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Berry phase as an integral

e Therefore

v=¢do= ¢ A (k)dk



Alternative derivation

* Suppose that attime 0| am in a state

7k(0)
* |f | change k very slowly, then the adiabatic
theorem says that at time t | will be in
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e But there could be an additional phase, so
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Time evolution |
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Berry connection
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* But the two terms in the rhs are complex
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* is purely imaginary.




Berry phase |

* Then, since
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Berry phase Il

* Then
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Berry phase Il
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Berry phase IV

* This means
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Berry phase V

* |nserting back
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Berry phase VI

e Therefore
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