Física de Semiconductores

Lección 15

The K point hamiltonian I

$$
H_{0}=\varepsilon_{p}-3 V_{2} \cos \alpha
$$

- The whole hamiltonian is

$$
H_{K}=\left(\begin{array}{cc}
H_{0}+H_{z} & H_{x}-i H_{y} \\
H_{x}+i H_{y} & H_{0}-H_{z}
\end{array}\right)
$$

- or

$$
\begin{aligned}
& H_{x}=-\frac{\sqrt{3} V_{p p \pi} a}{2} q_{x} \\
& H_{y}=-\frac{\sqrt{3} V_{p p \pi} a}{2} q_{y} \\
& H_{z}=\Delta_{p}-3 \sqrt{3} V_{2} \sin \alpha
\end{aligned}
$$

$$
H_{K}=\left\{\begin{array}{c}
\varepsilon_{p}-3 V_{2} \cos \alpha+\Delta_{p}-3 \sqrt{3} V_{2} \sin \alpha \\
-\frac{\sqrt{3} V_{p p \pi} a}{2}\left(q_{x}+i q_{y}\right)
\end{array}\right.
$$

$$
-\frac{\sqrt{3} V_{p p \pi} a}{2}\left(q_{x}-i q_{y}\right)
$$

$$
\varepsilon_{p}-3 V_{2} \cos \alpha-\Delta_{p}+3 \sqrt{3} V_{2} \sin \alpha
$$

K- point hamiltonian II

- Or
$H_{K}=-\frac{\sqrt{3} V_{p m} a}{2} \times$
$\int-2 \frac{\varepsilon_{p}-3 V_{2} \cos \alpha+\Delta_{p}-3 \sqrt{3} V_{2} \sin \alpha}{\sqrt{3} V_{p p \pi} a}$

$$
\left(q_{x}-i q_{y}\right)
$$

$$
\left(q_{x}+i q_{y}\right)
$$

$$
-2 \frac{\varepsilon_{p}-3 V_{2} \cos \alpha-\Delta_{p}+3 \sqrt{3} V_{2} \sin \alpha}{\sqrt{3} V_{p p \pi} a}
$$

- We then change the zero of energy so that

$$
H_{K}=-\frac{\sqrt{3} V_{p p} a}{2} \left\lvert\, \begin{array}{cc}
-2 \frac{+\Delta_{p}-3 \sqrt{3} V_{2} \sin \alpha}{\sqrt{3} V_{p p \pi} a} & \left(q_{x}-i q_{y}\right) \\
\left(q_{x}+i q_{y}\right) & -2 \frac{-\Delta_{p}+3 \sqrt{3} V_{2} \sin \alpha}{\sqrt{3} V_{a} a}
\end{array}\right.
$$

K and K^{\prime} point hamiltonian

- We then define a "mass" so that

$$
H_{K}=-\frac{\sqrt{3} V_{p m} a}{2}\left(\begin{array}{cc}
m & q_{x}-i q_{y} \\
q_{x}+i q_{y} & -m
\end{array}\right)=\hbar v_{F}\left(\begin{array}{cc}
m & q_{x}-i q_{y} \\
q_{x}+i q_{y} & -m
\end{array}\right)
$$

- A similar analysis for the K^{\prime} point gives

$$
H_{K^{\prime}}=-\frac{\sqrt{3} V_{p p \pi} a}{2}\left(\begin{array}{cc}
m & q_{x}+i q_{y} \\
q_{x}-i q_{y} & -m
\end{array}\right)=\hbar v_{F}\left(\begin{array}{cc}
m & q_{x}+i q_{y} \\
q_{x}-i q_{y} & -m
\end{array}\right)
$$

Spherical coordinates

- We define

$$
\begin{gathered}
m=k \cos \theta \\
q_{x}=k \sin \theta \cos \varphi \\
q_{y}=k \sin \theta \sin \varphi
\end{gathered}
$$

- Then we get

$$
\begin{aligned}
& H_{K}=\hbar v_{F} k\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \varphi} \\
\sin \theta e^{i \varphi} & -\cos \theta
\end{array}\right) \\
& H_{K^{\prime}}=\hbar v_{F} k\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{i \varphi} \\
\sin \theta e^{-i \varphi} & -\cos \theta
\end{array}\right)
\end{aligned}
$$

Eigenvectors and eigenvalues

- The eigenvalues of our hamiltonians are

$$
\varepsilon_{ \pm}= \pm \hbar k v_{F}
$$

- and the eigenvector for the filled band:

$$
u_{-}=\binom{-\sin \frac{\theta}{2}}{e^{i \varphi} \cos \frac{\theta}{2}}
$$

Singularity

- The eigenvector $u_{-}=\left(-\sin \frac{\theta}{2}, e^{i \varphi} \cos \frac{\theta}{2}\right)$ is singular for $\theta=0$.
- The equivalent eigenvector $u_{-}=\left(-e^{-i \varphi} \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right)$ is singular for $\theta=\pi$. We then choose

$$
u_{-}^{S}=\binom{-\sin \frac{\theta}{2}}{e^{i \varphi} \cos \frac{\theta}{2}} ; \quad u_{-}^{N}=\binom{-e^{-i \varphi} \sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}
$$

Berry connection I

- We now calculate the Berry connection in spherical coordinates for the south pole eigenvectors.

$$
\begin{aligned}
& \mathcal{A}_{H}^{S}=i\left\langle u_{-}^{S}\right| \frac{\partial}{\partial k}\left|u_{-}^{s}\right\rangle=0 \\
& \mathcal{A}_{\theta}^{S}=i\left\langle u_{-}^{S}\right| \frac{1}{k} \frac{\partial}{\partial \theta}\left|u_{-}^{S}\right\rangle=\left(-\sin \frac{\theta}{2}, e^{-i \varphi} \cos \frac{\theta}{2}\right) \frac{1}{k} \frac{\partial}{\partial \theta}\binom{-\sin \frac{\theta}{2}}{e^{i \varphi} \cos \frac{\theta}{2}} \\
& =\frac{i}{k}\left(-\sin \frac{\theta}{2}, e^{-i \varphi} \cos \frac{\theta}{2}\right)\binom{-\frac{1}{2} \cos \frac{\theta}{2}}{-\frac{1}{2} e^{i \varphi} \sin \frac{\theta}{2}}=0
\end{aligned}
$$

Berry connection II

$$
\begin{aligned}
& \mathcal{A}_{\varphi}^{S}=i\left\langle u_{-}^{S}\right| \frac{1}{k \sin \theta} \frac{\partial}{\partial \varphi}\left|u_{-}^{s}\right\rangle=i\left(-\sin \frac{\theta}{2}, e^{-i \varphi} \cos \frac{\theta}{2}\right) \frac{1}{k \sin \theta} \frac{\partial}{\partial \varphi}\binom{-\sin \frac{\theta}{2}}{e^{i \varphi} \cos \frac{\theta}{2}} \\
& =\frac{i}{k \sin \theta}\left(-\sin \frac{\theta}{2}, e^{-i \varphi} \cos \frac{\theta}{2}\right)\binom{0}{i e^{i \varphi} \cos \frac{\theta}{2}}=-\frac{\cos ^{2}\left(\frac{\theta}{2}\right)}{k \sin \theta}
\end{aligned}
$$

Berry curvature for K point

- For the Berry curvature we use the curl in spherical coordinates, knowing that the connection only has a ϕ component. Then $\boldsymbol{\Omega}_{K}=\nabla \times \mathcal{A}=\frac{1}{k \sin \theta} \frac{\partial}{\partial \theta}\left(\mathcal{A}_{\varphi} \sin \theta\right) \hat{e}_{k}-\frac{1}{k} \frac{\partial}{\partial k}\left(k \mathcal{A}_{\varphi}\right) \hat{\boldsymbol{e}}_{\theta}$
$=\frac{1}{k \sin \theta} \frac{\partial}{\partial \theta}\left(-\frac{1}{k} \cos ^{2}\left(\frac{\theta}{2}\right)\right) \hat{e}_{k}-\frac{1}{k} \frac{\partial}{\partial k}\left(\frac{\cos ^{2}\left(\frac{\theta}{2}\right)}{\sin \theta}\right) \hat{e}_{\theta}$

$$
-\frac{1}{k^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\cos ^{2}\left(\frac{\theta}{2}\right)\right) \hat{\boldsymbol{e}}_{k}=-\frac{1}{k^{2} \sin \theta} \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)=-\frac{\hat{\boldsymbol{e}}_{k}}{2 k^{2}}
$$

Berry curvature for K^{\prime} point

- For the K^{\prime} point, the only change is $\varphi \rightarrow-\varphi$, an this changes the sign of the connection and the curvature, so

$$
\boldsymbol{\Omega}_{K^{\prime}}=\frac{\hat{e}_{k}}{2 k^{2}}
$$

Chern number

- The Chern number is defined as the surface integral of the Berry curvature over the BZ. - is for K point, + for K' point:
$\mathcal{C}=\frac{1}{2 \pi} \oiint_{B Z} d q_{x} d q_{y} \Omega_{z}=\frac{1}{2 \pi} \oiint_{B Z} d q_{x} d q_{y} \frac{ \pm\left(\hat{\boldsymbol{e}}_{k}\right)_{z}}{2 k^{2}}$
$= \pm \frac{1}{4 \pi} \oiint_{B Z} d q_{x} d q_{y} \frac{\cos \theta}{\left(q^{2}+m^{2}\right)}= \pm \frac{1}{4 \pi} \oiint_{B Z} d q_{x} d q_{y} \frac{m}{\left(q^{2}+m^{2}\right)^{3 / 2}}$
$= \pm \frac{2 \pi}{4 \pi} m \int_{0}^{\infty} \frac{q d q}{\left(q^{2}+m^{2}\right)^{3 / 2}}= \pm \frac{1}{4} m \int_{m^{2}}^{\infty} \frac{d u}{u^{3 / 2}}=\left.\frac{1}{4} m\left(-2 u^{-1 / 2}\right)\right|_{m^{2}} ^{\infty}$
$= \pm \frac{1}{2} \frac{m}{|m|}= \pm \frac{1}{2} \operatorname{sgn}(m)$

Phase diagram

- For
- For

$$
\begin{gathered}
m_{K}>0, m_{K^{\prime}}>0 \\
\mathcal{C}_{K}+\mathcal{C}_{K^{\prime}}=-\frac{1}{2}+\frac{1}{2}=0 \\
m_{K}<0, m_{K^{\prime}}>0
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{C}_{K}+\mathcal{C}_{K^{\prime}}=+\frac{1}{2}+\frac{1}{2}=1 \\
& m_{K}>0, m_{K^{\prime}}<\theta^{2}
\end{aligned}
$$

$$
\mathcal{C}_{K}+\mathcal{C}_{K^{\prime}}=-\frac{1}{2}-\frac{1}{2}=-1
$$

- For

$$
\begin{gathered}
m_{K}<0, m_{K^{\prime}}<0 \\
\mathcal{C}_{K}+\mathcal{C}_{K^{\prime}}=\frac{1}{2}-\frac{1}{2}=0
\end{gathered}
$$

Phase diagram

$$
\Delta_{p} / V_{2}
$$

Periodicity of energy function

- The energy function is periodic in k -space:

$$
E_{n}(\boldsymbol{k})=E_{n}(\boldsymbol{k}+\boldsymbol{K})
$$

- Therefore

$$
E_{n}(\boldsymbol{k})=\sum_{R} E_{n}(\boldsymbol{R}) e^{i \boldsymbol{R} k}
$$

- Now consider operator $E_{n}(-i \boldsymbol{\nabla})$

$$
\begin{aligned}
& E_{n}(-i \boldsymbol{\nabla}) \psi_{n k}(\boldsymbol{r})=\sum_{\boldsymbol{R}} E_{n}(\boldsymbol{R}) e^{\boldsymbol{R} \boldsymbol{\nabla}} \psi_{n k}(\boldsymbol{r}) \\
& =\sum_{\boldsymbol{R}} E_{n}(\boldsymbol{R})\left[1+\boldsymbol{R} \cdot \boldsymbol{\nabla}+\frac{1}{2}(\boldsymbol{R} \cdot \boldsymbol{\nabla})^{2}+\ldots\right] \psi_{n k}(\boldsymbol{r}) \\
& =\sum_{\boldsymbol{R}} E_{n}(\boldsymbol{R}) \psi_{n k}(\boldsymbol{r}+\boldsymbol{R})=\sum_{\boldsymbol{R}} E_{n}(\boldsymbol{R}) e^{i k \boldsymbol{R}} \psi_{n k}(\boldsymbol{r})=E_{n k} \psi_{n k}(\boldsymbol{r})
\end{aligned}
$$

- so that the Bloch function is an eigenfunction of this operator with eigenvalue $E_{n}(k)$

Bloch hamiltonian plus perturbation

- Consider $\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+V(\boldsymbol{r})-e \phi(\boldsymbol{r})\right] \psi=i \hbar \frac{\partial \psi}{\partial t}$
- Ansatz

$$
\psi=\sum_{n k} c_{n k}(t) \psi_{n k}(\boldsymbol{r})
$$

- Then

$$
\begin{aligned}
& \sum_{n k} c_{n k}(t)\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+V(\boldsymbol{r})-e \phi(\boldsymbol{r})\right] \psi_{n k}(\boldsymbol{r}) \\
& \sum_{n k} c_{n k}(t)\left[E_{n k}-e \phi(\boldsymbol{r})\right] \psi_{n k}(\boldsymbol{r})=\sum_{n k} c_{n k}(t)\left[E_{n}(-i \boldsymbol{\nabla})-e \phi(\boldsymbol{r})\right] \psi_{n k}(\boldsymbol{r}) \\
& =i \hbar \frac{\partial \psi}{\partial t}
\end{aligned}
$$

Weak perturbation approx

- If the perturbation is weak enough not to mix different bands

$$
\psi \simeq \sum_{k} c_{n k}(t) \psi_{n k}(\boldsymbol{r})
$$

- then, since the square bracket is indep of k .

$$
\sum_{k} c_{n k}(t)\left[E_{n}(-i \boldsymbol{\nabla})-e \phi(\boldsymbol{r})\right] \psi_{n k}(\boldsymbol{r})=\left[E_{n}(-i \boldsymbol{\nabla})-e \phi(\boldsymbol{r})\right] \sum_{k} c_{n k}(t) \psi_{n k}(\boldsymbol{r})
$$

$$
=\left[E_{n}(-i \boldsymbol{\nabla})-e \phi(\boldsymbol{r})\right] \psi
$$

- So

$$
\left[E_{n}(-i \boldsymbol{\nabla})-e \phi(\boldsymbol{r})\right] \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

Effective mass theory I

- Let us assume

$$
E_{n}(k)=E_{0}+\frac{\hbar^{2} k^{2}}{2 m^{*}} ; \quad \psi_{n k}(\boldsymbol{r})=u_{n k}(\boldsymbol{r}) e^{i k \cdot r} \simeq u_{n 0}(\boldsymbol{r}) e^{i k r}=\psi_{n o}(\boldsymbol{r}) e^{i k \cdot}
$$

- Then

$$
\begin{aligned}
& \psi \simeq \sum_{k} c_{n k}(t) \psi_{n k}(\boldsymbol{r}) \simeq \sum_{k} c_{n k}(t) \psi_{n o}(\boldsymbol{r}) e^{i k r}= \\
& =\psi_{n o}(\boldsymbol{r}) \sum_{k} c_{n k}(t) e^{i k r}=F_{n}(\boldsymbol{r}, t) \psi_{n o}(\boldsymbol{r})
\end{aligned}
$$

- where F is called an envelope function.

Effective mass theory II

- Let us now compute

$$
\begin{aligned}
& E_{n}(-i \boldsymbol{\nabla}) F_{n}(\boldsymbol{r}, t) \psi_{n 0}(\boldsymbol{r})=\sum_{\boldsymbol{R}} E_{n}(\boldsymbol{R}) F_{n}(\boldsymbol{r}+\boldsymbol{R}, t) \psi_{n 0}(\boldsymbol{r}+\boldsymbol{R}) \\
& =\psi_{n 0}(\boldsymbol{r}) \sum_{\boldsymbol{R}} E_{n}(\boldsymbol{R}) F_{n}(\boldsymbol{r}+\boldsymbol{R}, t)=\psi_{n 0}(\boldsymbol{r}) \sum_{\boldsymbol{R}} E_{n}(\boldsymbol{R}) e^{\boldsymbol{R} \boldsymbol{\nabla}} F_{n}(\boldsymbol{r}, t) \\
& =\psi_{n 0}(\boldsymbol{r}) E_{n}(-i \boldsymbol{\nabla}) F_{n}(\boldsymbol{r}, t)
\end{aligned}
$$

- Then

$$
\psi_{n o}(\boldsymbol{r}) E_{n}(-i \boldsymbol{\nabla}) F_{n}(\boldsymbol{r}, t)-e \phi(\boldsymbol{r}) \psi_{n o}(\boldsymbol{r}) F_{n}(\boldsymbol{r}, t)=i \hbar \psi_{n 0}(\boldsymbol{r}) \frac{\partial F_{n}(\boldsymbol{r}, t)}{\partial t}
$$

- which gives

$$
\left[-\frac{\hbar^{2} \nabla^{2}}{2 m^{*}}+E_{0}-e \phi(\boldsymbol{r})\right] F_{n}(\boldsymbol{r}, t)=i \hbar \frac{\partial F_{n}(\boldsymbol{r}, t)}{\partial t}
$$

Quantum wells

- The corresponding equation is

$$
\left[-\frac{\hbar^{2} \nabla^{2}}{2 m^{*}(x)}+E_{0}(x)\right] F_{n}(\boldsymbol{r}, t)=i \hbar \frac{\partial F_{n}(\boldsymbol{r}, t)}{\partial t}
$$

- The boundary conditions are complicated. A common choice

$$
\begin{aligned}
& F_{n}^{-}(x=0)=F_{n}^{+}(x=0) \\
& \left.\frac{1}{m^{*-}} \frac{\partial F_{n}^{-}}{\partial x}\right|_{x=0}=\left.\frac{1}{m^{*+}} \frac{\partial F_{n}^{+}}{\partial x}\right|_{x=0}
\end{aligned}
$$

Edge states IV

- We now apply EMT to our Haldane hamiltonian

$$
\hbar v_{F}\left(\begin{array}{cc}
m & q_{x}-i q_{y} \\
q_{x}+i q_{y} & -m
\end{array}\right) \Rightarrow \hbar v_{F}\left(\begin{array}{cc}
m(y) & -i \frac{\partial}{\partial x}-\frac{\partial}{\partial y} \\
-i \frac{\partial}{\partial x}+\frac{\partial}{\partial y} & -m(y)
\end{array}\right)
$$

- We propose a solution

$$
\Psi(x, y)\binom{1}{-1}=e^{i q_{2} x} \exp \left(-\int_{0}^{y} m\left(y^{\prime}\right) d y^{\prime}\right)\binom{1}{-1}
$$

- Then, using

$$
\frac{\partial \Psi(x, y)}{\partial x}=i q_{x} \Psi(x, y) ; \quad \frac{\partial \Psi(x, y)}{\partial y}=-m(y) \Psi(x, y)
$$

Edge states V

- $\operatorname{Then}_{m(y) \Psi(x, y)-\left(-i \frac{\partial \Psi(x, y)}{\partial x}-\frac{\partial \Psi(x, y)}{\partial y}\right)=E \Psi(x, y)}$

$$
\begin{aligned}
& m(y) \Psi(x, y)+i \frac{\partial \Psi(x, y)}{\partial x}+\frac{\partial \Psi(x, y)}{\partial y}=E \Psi(x, y) \\
& m(y) \Psi(x, y)+i\left(i q_{x}\right) \Psi(x, y)-m(y) \Psi(x, y)=E \Psi(x, y) \\
& -q_{x}=E \\
& H \propto\binom{m(y) \quad-i \frac{\partial}{\partial x}-\frac{\partial}{\partial y}}{-i \frac{\partial}{\partial x}+\frac{\partial}{\partial y}-m(y)} \\
& \quad-i \frac{\partial \Psi(x, y)}{\partial x}+\frac{\partial \Psi(x, y)}{\partial y}+m(y) \Psi(x, y)=-E \Psi(x, y) \\
& \quad-i\left(i q_{x}\right)-m(y)+m(y)=-E \\
& q_{x}=-E
\end{aligned}
$$

Edge states VI

- Restoring units

$$
E=-\hbar v_{F} q_{x}
$$

Wavefunction:

The other side

- We propose

$$
\begin{gathered}
\Psi(x, y)\binom{1}{1}=e^{i i_{y} x} \exp \left(\int_{0}^{y} m\left(y^{\prime}\right) d y^{\prime}\right)\binom{1}{1} \\
\frac{\partial \Psi(x, y)}{\partial x}=i q_{x} \Psi(x, y) ; \quad \frac{\partial \Psi(x, y)}{\partial y}=m(y) \Psi(x, y)
\end{gathered}
$$

- Then

$$
\begin{aligned}
& m(y) \Psi(x, y)+\left(-i \frac{\partial \Psi(x, y)}{\partial x}-\frac{\partial \Psi(x, y)}{\partial y}\right)=E \Psi(x, y) \\
& m(y) \Psi(x, y)-i \frac{\partial \Psi(x, y)}{\partial x}-\frac{\partial \Psi(x, y)}{\partial y}=E \Psi(x, y) \\
& m(y) \Psi(x, y)-i\left(i q_{x}\right) \Psi(x, y)-m(y) \Psi(x, y)=E \Psi(x, y) \quad \Rightarrow E=\hbar v_{F} q_{x} \\
& q_{x}=E
\end{aligned}
$$

The k.p hamiltonian

- In a previous lecture we wrote down the k.p hamiltonian for $k=\left(0,0, k_{z}\right)$. Allowing for x - and y -components, it is easy to show that

	$\mid s_{\text {s, }}^{\text {, }}$,	\| $\left.\left\lvert\, \frac{2}{2}\right.,-\frac{5}{3}\right)$,		s, ,		
${ }^{\|s, 4\rangle}$	E_{0}	0	$\frac{i t P k, ~}{m} \sqrt{\frac{2}{3}}$	0	$\frac{i t p}{m} \frac{\left(k+1 k^{2}\right.}{} \frac{1}{2}$	
	0	0	0	$\frac{-i \not p p\left(\frac{k_{x}-i k_{k}}{}\right)}{m}$	0	0
	$-\frac{A p k_{k}}{m} \sqrt{\frac{2}{3}}$	0	0		0	0
b)	0			E_{0}	0	$\frac{i t p k}{m} \sqrt{\frac{2}{3}}$
\%	$\frac{-i t p}{m} \frac{(k-i k)}{\sqrt{2}-k_{2}}$	0	0	0	0	0
\| ${ }_{2}^{2}-\frac{1}{2}$				$-\frac{i \Delta P E_{k}}{m} \sqrt{\frac{2}{3}}$		

Heavy hole hamiltonian

- If we make a quantum well and apply effective mass theory, the light holes and heavy holes will approximately decouple, and we get for HH

$$
\begin{array}{ccccc}
& \left|S_{a} \uparrow\right\rangle & \left|\frac{3}{2},-\frac{3}{2}\right\rangle_{b} & \left|S_{a} \downarrow\right\rangle & \left|\frac{3}{2}, \frac{3}{2}\right\rangle_{b} \\
\left|S_{a} \uparrow\right\rangle & E_{0} & 0 & 0 & \frac{i \hbar P}{m} \frac{\left(k_{x}+i k_{y}\right)}{\sqrt{2}} \\
\left|\frac{3}{2},-\frac{3}{2}\right\rangle_{b} & 0 & 0 & \frac{-i \hbar P}{m} \frac{\left(k_{x}-i k_{y}\right)}{\sqrt{2}} & 0 \\
\left|S_{a} \downarrow\right\rangle & 0 & \frac{i \hbar P}{m} \frac{\left(k_{x}+i k_{y}\right)}{\sqrt{2}} & E_{0} & 0 \\
\left|\frac{3}{2}, \frac{3}{2}\right\rangle_{b} & -\frac{i \hbar P}{m} \frac{\left(k_{x}-i k_{y}\right)}{\sqrt{2}} & 0 & 0 & 0
\end{array}
$$

Reorder:

$$
\begin{array}{ccccc}
& \left|S_{a} \uparrow\right\rangle & \left|\frac{3}{2}, \frac{3}{2}\right\rangle & \left|S_{a} \downarrow\right\rangle & \left|\frac{3}{2},-\frac{3}{2}\right\rangle \\
\left|S_{a} \uparrow\right\rangle & E_{0} & \frac{i \hbar P}{m} \frac{\left(k_{x}+i k_{y}\right)}{\sqrt{2}} & 0 & 0 \\
\left|\frac{3}{2}, \frac{3}{2}\right\rangle & \frac{-i \hbar P}{m} \frac{\left(k_{x}-i k_{y}\right)}{\sqrt{2}} & 0 & 0 & 0 \\
\left|S_{a} \downarrow\right\rangle & 0 & 0 & E_{0} & \frac{i \hbar P}{m} \frac{\left(k_{x}+i k_{y}\right)}{\sqrt{2}} \\
\left|\frac{3}{2},-\frac{3}{2}\right\rangle & 0 & 0 & -\frac{i \hbar P}{m} \frac{\left(k_{x}-i k_{y}\right)}{\sqrt{2}} & 0
\end{array}
$$

Pauli matrices

- This has the form

$$
H=\left(\begin{array}{cc}
H(\boldsymbol{k}) & 0 \\
0 & H^{*}(-\boldsymbol{k})
\end{array}\right) \quad H(\boldsymbol{k})=E(\boldsymbol{k})+\sum_{\alpha} d_{\alpha} \sigma_{i}
$$

- With

$$
d_{x}=\frac{i \hbar P}{\sqrt{2} m} ; \quad d_{y}=-\frac{i \hbar P}{\sqrt{2} m} ; \quad d_{z}=\frac{E_{0}}{2}
$$

The bands

We see that E_{0} is positive for CdTe and negative for HgTe . so we can get the same "mass" reversal we had in the Haldane model. The fact that HgTe is a semimetal, not a semiconductor, can be "fixed" by applying strain, which lifts the degeneracy at the G point. So by making strained layer $\mathrm{HgTe}-\mathrm{CdTe}$ superlattices one can obtain topological phases akin to the Haldane model.

