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The	K	point	hamiltonian	I	

•  The	whole	hamiltonian	is	

•  or	
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K-	point	hamiltonian	II	
•  Or	

•  We	then	change	the	zero	of	energy	so	that	
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K	and	K’	point	hamiltonian	
•  We	then	define	a	“mass”	so	that	

	
•  A	similar	analysis	for	the	K’	point	gives		
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Spherical	coordinates	
•  We	define	

	
•  Then	we	get		
	

    

m = k cosθ
q

x
= k sin θ cosϕ

q
y

= k sin θ sinϕ

     
H ′K

= !v
F
k

cosθ sin θeiϕ

sin θe−iϕ −cosθ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

     
H

K
= !v

F
k

cosθ sin θe−iϕ

sin θeiϕ −cosθ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟



Eigenvectors	and	eigenvalues	

•  The	eigenvalues	of	our	hamiltonians	are	

•  and	the	eigenvector	for	the	filled	band:		
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Singularity	

•  The	eigenvector																																is	singular	
for	θ	=0.	

•  The	equivalent	eigenvector																														is	
singular	for	θ	=π.	We	then	choose		
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Berry	connecSon	I	

•  We	now	calculate	the	Berry	connecSon	in	
spherical	coordinates	for	the	south	pole	
eigenvectors.	
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Berry	connecSon	II	
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Berry	curvature	for	K	point	

•  For	the	Berry	curvature	we	use	the	curl	in	
spherical	coordinates,	knowing	that	the	
connecSon	only	has	a	φ	component.	Then	
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Berry	curvature	for	K’	point	

•  For	the	K’	point,	the	only	change	is																			,	
an	this	changes	the	sign	of	the	connecSon	and	
the	curvature,	so		
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Chern	number	
•  The	Chern	number	is	defined	as	the	surface	
integral	of	the	Berry	curvature	over	the	BZ.	-	is	
for	K	point,	+	for	K’	point:	
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Phase	diagram	
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Phase	diagram	

−6'
'

'

'

'

'

'

Figure 6: Example of a choice for magnetic flux in an Haldane cell (left). We have used ' = �/2 to simplify. Second-neighbors hopping
corresponds to a nonzero flux (middle), whereas first-neighbors hopping gives a zero flux (right), so the total flux through a unit cell is zero.

with

h0 = 2t2 cos�
3X

i=1

cos(k · bi) ; hz = M � 2t2 sin�
3X

i=1

sin(k · bi) ; (34a)

hx = t
⇥

1+ cos(k · b1) + cos(k · b2)
⇤

; hy = t
⇥

sin(k · b1)� sin(k · b2)
⇤

; (34b)

with a convention where ~h is periodic: ~h(k+ Gmn) =~h(k).

3.5.4. Phase diagram of Haldane’s model
To determine the phase diagram, let us find the points in the parameter space where the local gap closes

(i.e. h= khk = 0) at some points of the Brillouin torus. In graphene, which corresponds to (M ,�) = (0, 0) in the
diagram, the two energy bands are degenerate (h= 0) at the Dirac points K et K 0 (see eq. (29)). At a generic point
of the diagram, this degeneracy is lifted, and the system is an insulator (h 6= 0), except when |M |= 3

p
3t2 sin�.

The corresponding line separates four a priori different insulating states, see Fig. 7. Haldane has shown that for
|M |> 3

p
3t2 sin�, the Chern number of the filled band vanishes, which means that the corresponding insulator

is topologically trivial. On the contrary, when |M | < 3
p

3t2 sin�, the Chern number is ±1 [5]. This defines
Haldane’s phase diagram (Fig. 7); we will recover these results in section 3.5.6.

−⇡ 0 ⇡

0

3
√
3

−3√3
�

M�t2

C1 = −1 C1 = +1
C1 = 0

C1 = 0

Figure 7: Phase diagram of the Haldane model, giving the first Chern number c1 on the plane (�, M/t2) (the manifold of parameters is
S1 ⇥R, variable � being a phase).

Let us note that on the critical lines which separate insulating phases with different topologies, there is
a phase transition and the system is not insulating anymore: it is a semi-metal with low energy Dirac states.
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Periodicity	of	energy	funcSon	
•  The	energy	funcSon	is	periodic	in	k-space:	

•  Therefore	

•  Now	consider	operator	

•  so	that	the	Bloch	funcSon	is	an	eigenfuncSon	of	
this	operator	with	eigenvalue		
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Bloch	hamiltonian	plus	perturbaSon	

•  Consider	
•  Ansatz	
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Weak	perturbaSon	approx	

•  If	the	perturbaSon	is	weak	enough	not	to	mix	
different	bands	

•  then,	since	the	square	bracket	is	indep	of	k.	

•  So	
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EffecSve	mass	theory	I	

•  Let	us	assume	

•  Then	

•  where	F	is	called	an	envelope	funcSon.	
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EffecSve	mass	theory	II	
•  Let	us	now	compute	
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Quantum	wells	

•  The	corresponding	equaSon	is	

•  The	boundary	condiSons	are	complicated.	A	
common	choice	
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Edge	states	IV	
•  We	now	apply	EMT	to	our	Haldane	
hamiltonian		

	
•  We	propose	a	soluSon	
	
•  Then,	using		
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Edge	states	V	
•  Then	
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Edge	states	VI	

•  Restoring	units	

WavefuncSon:	

   E =−!v
F
q

x

 qx
(x , y)/ eiqx x exp

ñ
�
Z y

0

m(y 0)dy 0
ô ✓

1
1

◆
(47)

and has an energy E(qx) = EF + ~hvFqx . This solution is localized transverse to the interface where m changes
sign (see Fig. 10). The edge state crosses the Fermi energy at qx = 0, with a positive group velocity vF and thus
corresponds to a “chiral right moving” edge state. When considering a transition from an insulator with the
opposite Chern number to the vacuum, one would get a “chiral left moving” edge state.

nontrivial insulator trivial insulator

y

m(y) and � �2

Figure 10: Schematic view of edge states at a Chern–trivial insulator interface. The mass m(y) (blue dashed line) and the wavefunction
amplitude
�� 
��2 (red continuous line) are drawn along the coordinate y orthogonal to the interface y = 0.

3.6. Models with higher Chern numbers

O

Figure 11: Let us consider a site at O. The nearest neighbors (from the opposite sublattice) are located on the dotted black circle. The second
neigbors (from the same sublattice) are on the blue dashed circle. The third neighbors are on the continuous red circle.

Topological phases with higher Chern numbers can be incorporated into Haldane’s model by considering
interactions beyond second neighbors [29]. We briefly review an example with third nearest neighbors where the
Chern number can take values 0,±1,±2.
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The	other	side	

•  We	propose	

•  Then	

   
Ψ x,y( ) 1
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= iq
x
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= m y( )Ψ x,y( )
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m y( )Ψ x,y( )− i
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∂x

−
∂Ψ x,y( )
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m y( )Ψ x,y( )− i iq

x( )Ψ x,y( )−m y( )Ψ x,y( ) = EΨ x,y( )
q

x
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F
q
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The	k.p	hamiltonian	

•  In	a	previous	lecture	we	wrote	down	the	k.p	
hamiltonian	for																			.	Allowing	for	x-	and	
y-components,	it	is	easy	to	show	that		
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Heavy	hole	hamiltonian	

•  If	we	make	a	quantum	well	and	apply	effecSve	
mass	theory,	the	light	holes	and	heavy	holes	
will	approximately	decouple,	and	we	get	for	HH		

    

S
a
↑ 3

2
,− 3

2 b
S

a
↓ 3

2
, 3

2 b

S
a
↑ E

0
0 0

i!P
m

k
x

+ ik
y( )

2

3
2
,− 3

2 b
0 0

−i!P
m

k
x
− ik

y( )
2

0

S
a
↓ 0

i!P
m

k
x

+ ik
y( )

2
E

0
0

3
2
, 3

2 b
−

i!P
m

k
x
− ik

y( )
2

0 0 0



Reorder:	
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Pauli	matrices	

•  This	has	the	form	

•  With	
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The	bands	

spontaneously broken at the edge. The stability
of the helical edge states has been confirmed in
extensive numerical calculations (13, 14). The
time-reversal property leads to the Z2 classifica-
tion (10) of the QSH state.

States of matter can be classified according
to their topological properties. For example,
the integer quantum Hall effect is characterized
by a topological integer n (15), which deter-
mines the quantized value of the Hall con-
ductance and the number of chiral edge states.
It is invariant under smooth distortions of the
Hamiltonian, as long as the energy gap does
not collapse. Similarly, the number of helical
edge states, defined modulo 2, of the QSH state
is also invariant under topologically smooth
distortions of the Hamiltonian. Therefore, the
QSH state is a topologically distinct new state
of matter, in the same sense as the charge
quantum Hall effect.

Unfortunately, the initial proposal of the
QSH in graphene (7) was later shown to be
unrealistic (16, 17), as the gap opened by the
spin-orbit interaction turns out to be extremely
small, on the order of 10−3 meV. There are also
no immediate experimental systems available
for the proposals in (8, 18). Here, we present
theoretical investigations of the type III semi-
conductor quantum wells, and we show that the
QSH state should be realized in the “inverted”
regime where the well thickness d is greater
than a certain critical thickness dc. On the basis
of general symmetry considerations and the
standard band perturbation theory for semi-
conductors, also called k · p theory (19), we
show that the electronic states near the Γ point
are described by the relativistic Dirac equation in
2 + 1 dimensions. At the quantum phase
transition at d = dc, the mass term in the Dirac
equation changes sign, leading to two distinct U
(1)-spin and Z2 topological numbers on either
side of the transition. Generally, knowledge of
electronic states near one point of the Brillouin
zone is insufficient to determine the topology of
the entire system; however, it does allow robust
and reliable predictions on the change of
topological quantum numbers. The fortunate
presence of a gap-closing transition in the HgTe-
CdTe quantum wells therefore makes our theoret-
ical prediction of the QSH state conclusive.

The potential importance of inverted band-
gap semiconductors such as HgTe for the spin
Hall effect was pointed out in (6, 9). The central
feature of the type III quantum wells is band
inversion: The barrier material (e.g., CdTe) has a
normal band progression, with the s-type Γ6

band lying above the p-type Γ8 band, and the
well material (HgTe) having an inverted band
progression whereby the Γ6 band lies below the
Γ8 band. In both of these materials, the gap is
smallest near the Γ point in the Brillouin zone
(Fig. 1). In our discussion we neglect the bulk
split-off Γ7 band, as it has negligible effects on
the band structure (20, 21). Therefore, we re-
strict ourselves to a six-band model, and we start

with the following six basic atomic states per
unit cell combined into a six-component spinor:

Y ¼ jΓ6, 1 2〉, jΓ6, −1
2〉, jΓ8, 3 2〉,=
!!"

jΓ8, 1 2〉, jΓ8, −1
2〉, jΓ8, −3

2〉=
#!!

ð1Þ

In quantum wells grown in the [001] direc-
tion, the cubic or spherical symmetry is broken
down to the axial rotation symmetry in the plane.
These six bands combine to form the spin-up
and spin-down (±) states of three quantum well
subbands: E1, H1, and L1 (21). The L1 subband
is separated from the other two (21), and we
neglect it, leaving an effective four-band model.
At the Γ point with in-plane momentum k|| =
0, mJ is still a good quantum number. At this
point the |E1, mJ〉 quantum well subband state
is formed from the linear combination of the
|Γ6, mJ = ±1 2= 〉 and |Γ8, mJ = ±1 2= 〉 states, while
the |H1, mJ〉 quantum well subband state is
formed from the |Γ8, mJ = ± 3

2= 〉 states. Away
from the Γ point, the E1 and H1 states can mix.
Because the |Γ6, mJ = ±1 2= 〉 state has even par-
ity, whereas the |Γ8, mJ = ±3

2= 〉 state has odd
parity under two-dimensional spatial reflection,
the coupling matrix element between these two
states must be an odd function of the in-plane
momentum k. From these symmetry consid-
erations, we deduce the general form of the ef-
fective Hamiltonian for the E1 and H1 states,
expressed in the basis of |E1, mJ = 1

2= 〉, |H1,
mJ = 3

2= 〉 and |E1,mJ = – 1
2= 〉, |H1,mJ = – 3

2= 〉:

Heff ðkx, kyÞ ¼
HðkÞ 0
0 H*ð−kÞ

$ %
,

HðkÞ ¼ eðkÞ þ diðkÞsi ð2Þ

where si are the Pauli matrices. The form of
H*(−k) in the lower block is determined from
time-reversal symmetry, and H*(−k) is uni-
tarily equivalent to H*(k) for this system (22).
If inversion symmetry and axial symmetry
around the growth axis are not broken, then
the interblock matrix elements vanish, as
presented.

We see that, to the lowest order in k, the
Hamiltonian matrix decomposes into 2 × 2
blocks. From the symmetry arguments given
above, we deduce that d3(k) is an even function
of k, whereas d1(k) and d2(k) are odd functions
of k. Therefore, we can generally expand them
in the following form:

d1 þ id2 ¼ Aðkx þ ikyÞ ≡ Akþ

d3 ¼ M − Bðk2x þ k2yÞ, eðkÞ ¼ C − Dðk2x þ k2yÞ
ð3Þ

where A, B, C, and D are expansion parameters
that depend on the heterostructure. The
Hamiltonian in the 2 × 2 subspace therefore
takes the form of the (2 + 1)-dimensional Dirac
Hamiltonian, plus an e(k) term that drops out
in the quantum Hall response. The most im-
portant quantity is the mass or gap parameter
M, which is the energy difference between the
E1 and H1 levels at the Γ point. The overall
constant C sets the zero of energy to be the
top of the valence band of bulk HgTe. In a
quantum well geometry, the band inversion in
HgTe necessarily leads to a level crossing at
some critical thickness dc of the HgTe layer.
For thickness d < dc (i.e., for a thin HgTe

Fig. 1. (A) Bulk energy
bands of HgTe and CdTe
near the G point. (B)
The CdTe-HgTe-CdTe
quantum well in the
normal regime E1 > H1
with d < dc and in the
inverted regime H1 >
E1 with d > dc. In this
and other figures, G8/H1
symmetry is indicated in
red and G6/E1 symmetry
is indicated in blue.
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E0	
E0	

We	see	that	E0	is	posiSve	for	CdTe	and	negaSve	for	HgTe.	so	we	can	get	the	same	“mass”	
reversal	we	had	in	the	Haldane	model.	The	fact	that	HgTe	is	a	semimetal,	not	a	
semiconductor,	can	be	“fixed”	by	applying	strain,	which	lifs	the	degeneracy	at	the	G	
point.	So	by	making	strained	layer	HgTe-CdTe	superlahces	one	can	obtain	topological	
phases	akin	to	the	Haldane	model.	


