Fisica de Semiconductores



Bloch representation expansion

 We wrote earlier the wave functions in the
Bloch representation as an integral

¥ (r) = f dk (k)1 (r)

e We need to be careful with normalization in
the continuum.



Normalization condition |

* |n switching from discrete to continuous we

note that v
> dk
Z; (27T)3 f

BZ

* |In the discrete case, we have
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Normalization condition Il

* The normalization condition in the continuum,
for consistency with the discrete case is,

therefore
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Normalization continuum |

e But this implies

lzfd'r\lf*r\lfr:fdk’fdk\lf*k’\lfkfdrw;k,r

* Therefore, the average value of an operator in
the Bloch representation is




Dipole moment

* The dipole moment of a system of charges is

defined as
p=) .4r

 |f | shift the origin:
p'=>q¢(r+n)=p+r> g

* so that the dipole moment is independent of
the origin for a neutral system.



Infinite solid

* |n an infinite periodic solid, the dipole
moment definition is meaningless, but | can
define a polarization as a dipole moment per

unit cell:
Z qr

unit cell

* |f the solid is neutral, any of its unit cells will
give the same value because of the translation

theorem, but the choice of unit cell is not
unique, and it matters:



1D-solid example |
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1D-solid example Il
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Possible values

* Depending on my choice of unit cell, | get

D 3 1 1 3 5
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e que difieren entre si en una unidad e. Decimos
que la polarizacion esta definida moédulo un
cuanto de polarizacion, en este caso e.



* Desplazo un atomo una pequena cantidad 6 y

Cambios de P |

calculo el cambio en la polarizacion.
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Cambios de P Il

* Desplazo un atomo una pequena cantidad 6 y
calculo el cambio en la polarizacion.
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Cambio vs valor absoluto

* Aun cuando la polarizacién esta definida
modulo un cuanto, los cambios de
polarizacion son independientes de la “rama”
de polarizacion donde esté:

£, displacement, d (a)

arXiv: 1202.1831v1



Realistic infinite solid

* |n a realistic infinite solid, | can approximate
the ions as point charges, but the electrons
form a cloud. An apparently natural way to

address this i§ to define

unit cell

P=2= Z 47— f rn('r')dr

UC unit cell

e However, this doesn’t work in a periodic solid,
as shown by the following toy model.




Polarization in toy model |

* Consider the following model
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Polarization in toy model I

* Consider the following model
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Polarization in toy model Il
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Polarization in toy model Il

* Now the polarization can be shown to change
continuously depending on parameter A. This
makes it impossible to compute changes in
polarization due for example to the
application of strain.

* |tis as if polarization were a surface property



Change in polarization
* From Maxwell’s equations
V-P=—p
. P
3, = 0 FV x M
ot

* Then in a non-magnetic material one can
calculate the change in polarization

b
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Velocity operator |

* The velocity operator is

dr or il . 0 | 0A (k)
E h[H 'r’]—l—@t g-H,zﬁjLAn(k) F—,
e let H = Y- V(r t) where the

time dependenc@does not change the
periodicity, and

Hy (r.t)=E,(t)v,rt)

 the adiabatic solutions.



Velocity operator |

* Therefore, in the Bloch representation, the
hamiltonian is
H=E,(t)

e Then

A (k)

6, ()= %Ek (t),z'% +A (k) —
1




Current

* The current den5|ty operator is then

T 1) =

e So that
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Wannier functions

* Because the Bloch functlon is periodic in k we

can write nk( ) \/Nzw (R T)e
. TherEf@%ZE(T)ekR \/7210 ( )e R}k

Addmgoverk .
D tualr)e % =S (R = Vo (R

. Therefore

w (Rr)= ﬁz% (r)e "




Properties |

 |f we add a lattice vector

wn(R—kR’,rJrR’):Tfk: (r+R’)
=D ()t T = )
:wn(R,r)

Thus

~i(R+R')k



Properties |

e Let’'s compute

[a drw, (r—R)w, (r—R')=
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Continuum version of Wannier

functions
 Making the switch to the continuum:

_LBZ kR _ 1 V _ikR
)= Gl = )
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Polarization change

* The polarization change is then

AP = Z]dtj@ (t) = _;)3 Z | dkjff di aé;t(k)

v (2

= 55 [ak[A (k) -4 (1)

(27)3 v Bz




Definition of polarization

e We thus define the electronic contribution to
the polarization as

P =52 | dkA (k)
27‘(‘) v Bz

e and the total polarization as

P=—3"Zr———=> | dkA (k)




Berry connection/Wannier functions

* Because

v ( T) _ ﬁ; w ( R, r)ez'R.k
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e Therefore
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Berry connection I
* We then have B zfdru ( )

— Nfdrz wv R’,r)'rwv (R,r)€i<R_R/>'k
e Therefore BE oy (r)
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Total polarization |
The total polarization, is Then
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Properties Il

* Let us now consider
R'w (r)= - [ dky, (r)RIe "

\/_(277)
* This is proportional to the Rth coefficient in
the Fourier expansion of a periodic function of

k, and it goes to zero for sufficiently large R.



Tight binding comparison
* When we did tight binding, we defined

a]k() fzesz—M @R()

 Compare with definition of Wannier function

v ( r) _ ﬁ; w ( R, r)ez'R.k

* So that for a Bravais-lattice TB hamiltonian the
Wannier function for position R is simply the
atomic orbital at atom R.



Localization of Wannier functions

* The above arguments suggest that the
Wannier function is strongly localized, so that
the integral of r always converges and the
definition of polarization always makes sense.



Changing the phase of the u’s

* |f | change the phase of the u’s such that

(8 (r) — U, (T)eigp”(k)
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Choosing the phase |

* |f | demand that the wavefunction be periodic

in k: gpn<k+K> = gpn<k)—|—27TMn(k,K)
* where M is an integer. Then M cannot depend

on k because k can change continuously:
© (k + K) =@ (lj%— 2nM (K)

* Thus 2mM (K): K R
* So gpn(k—l—K):gpn(k)—l—K'Rn

e Define

o, (k)=0 (k)+k- R,



Choosing the phase Il

* Then

o, (k+K)=0(k+K)+(k+K)-R

n

=, (k)+K-R =0 (k)+(k+K) R,

* Or

0 (k+K)=0,(k|

* This means that the most general form for the
phase is a periodic function plus kR



Back to the connection
z'gon(k)

* For the change of phase u , (r) — U (r)e
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* So we get the quantum of polarization. It means
that polarization is defined modulus a quantum.

— 0+



Explicit Calculation of the current

* The following slides show an explicit

calculation of the polarization current without

using the concept of Berry connection from
the very beginning.



Change in polarization
* From Maxwell’s equations
V-P=—p
oP

3, = Py FV x M

* Then in a non-magnetic material one can
calculate the change i in polarization
AP = f]bdt
* Define dimensionless parameter x =1/t
1

AP—tf—d)\—Xf—d)\
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Adiabatic hamiltonian
* Let’s assume that we have a crystal hamiltonian
in which the potential has a slow time-
dependence but does not change the periodicity:
2¢v72
H :—ﬁ—v+v(r,>\) A= A(t) 9 _0dr_ 30

* The COQPrv’esponding snapshot Schar%dir?é\e#t 0A

equation is Htw(A) = E()\)zp()\)
e whose solutions can be written as Bloch
- kT
functions ¢(A) = ¢nk (7‘,)\) = U (r,)\)e
e where the k’s are not functions of time because
the periodicity is unchanged. In the adiabatic

approximation the snapshot solutions are taken
as good approximations to the real solutions.



Current |

For the current, | calculate the velocity for each
electron and add over all electrons. This velocity

o)=L s ) ) = s (3] -] 0]

m

* Interm of the u’s

f dru (A )e ™ [=iV]u, (r,2)e*
:—fdru r )\)[—zv+k]u (r \)

8[—[ fdru r, A -Q,H -unk(r,)




Current Il

h’ . 2
where Hk:—(—VJrk) +V(r,)\)
[ ] 2m [ ] [ ]
* is the well-known hamiltonian for the u’s.

Therefore, within the adiabatic approximation we
et
S AL
h Ok
* But the integral of this over the BZ is zero
(integral of the gradient of a periodic function),
and therefore we conclude that for a filled band
we have no current within the adiabatic approx.

We must incorporate non-adiabatic corrections
to get something different from zero.




Non-adiabatic correction

* Let’s assume that ‘U(O» = |nk,0)

* Then according to Rev. Mod Phys 82 1959 the
lowest order relevant correction to
adiabaticity is ‘n/k )\>< ok )\>

\nk,A> —‘nk,)\> zh)\; 5. 0)-E, (A)

 Therefore, the average velocity is

—<nk,>\‘+z'h>°\z <n ! <§t”k’)“”/k7)‘>}aﬂ {‘nk,x>¢h5\2‘n/k’/\>< o1 "k, >‘>}
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Non adiabatic velocity

OF, nk, N 22| 'k, A) (n'ke, A| 2 ke, A
A ( ) Mz< ‘ L(A)E;ﬁk(A‘) =

- ) <nkA\ \ n'k >\>< 'k A\ nk >\>

v ()\) = g z)\z E g}\) - En,k ()\) + c.c.
e But we showed in Week 1

B, (nk| 4| n'k) = (nk| & H|n'k) = (nk| 3 n'k) + (nk| H 2| n'k )
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Non-adiabatic velocity Il
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In the third term each of the <> is purely
imaginary, so their product is real, and it cancels
out when we subtract the c.c

—¢A'[<nkA\ lnkeX) (nk, \| £




Non-adiabatic velocity Il

Then
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Total current |

The total current density is an integral of the velocity
over the BZ times —e divided by the volume. The first
term then cancels out as in the adiabatic case, and the
third term is also the gradient of a periodic function, so
that its integral vanishes. Accordingly, only the second
term survives, giving

3, (A) = é@:)g( e) 7!; dkv,, (A)
= }/; dk 2 (nk)| 2] nk)

()=



Change in polarization

* The change in polarization is then

AP = f F(AMA = - f dk[ k)| £ nk)\>]

0 (277)

* This is identical to Eq. 7 in the famous King-
Smith/Vanderbilt paper PRB 47 1652

0



Berry connection

* But we defined the Berry connection as

—zfdfr'unk 5’k u )

e Therefore




Adiabatic correction

* The following slides show a calculation of the
lowest-order adiabatic corrections. It was
performed to verify that the formulas given in
the literature were correct. They appear to be
so, but notice that there is a



Adiabatic perturbation theory |

e Let’s start with H(t)‘ ¢(t)> B mi‘_f

* Propose an expansion in instantaneous

solutions .
e f dt’En(t’)
e "o (t)|nft)

v{t)) =3



Adiabatic perturbation theory I

+ aiso afou(e) = e (9 (0fa(o)

* Equating both sides: |
—4 f dt’En<t’>

Sl (On(e)+a. (ol =0

 Mult. times n’ conj and use orthogonality




Adiabatic perturbation theory I

We write thisas d,(t)=g(t]—

with

Then

| then integrate by par

dt:

dF
dt

o el
— —=F 0
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F=in<
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Adiabatic perturbation theory Il
e So that, to first order




